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ABSTRACT

Zeroth-order (ZO) optimization enables dimension-free communication in feder-
ated learning (FL), making it attractive for fine-tuning of large language models
(LLMs) due to significant communication savings. However, existing ZO-FL meth-
ods largely overlook curvature information, despite its well-established benefits for
convergence acceleration. To address this, we propose HiSo, a Hessian-informed
ZO federated optimization method that accelerates convergence by leveraging
global diagonal Hessian approximations, while strictly preserving scalar-only com-
munication without transmitting any second-order information. Theoretically, for
non-convex functions, we show that HiSo can achieve an accelerated convergence
rate that is independent of the Lipschitz constant L and model dimension d under
some Hessian approximation assumptions, offering a plausible explanation for the
observed phenomenon of ZO convergence being much faster than its worst-case
O(d)-bound. Empirically, across diverse LLM fine-tuning benchmarks, HiSo deliv-
ers a 1∼5× speedup in communication rounds over existing state-of-the-art ZO-FL
baselines. This superior convergence not only cuts communication costs but also
provides strong empirical evidence that Hessian information acts as an effective
accelerator in federated ZO optimization settings.

1 INTRODUCTION

The explosive development of large language models (LLMs) has sparked strong interest in making
their fine-tuning scalable across distributed and privacy-sensitive data sources (Naveed et al., 2023;
Zhao et al., 2023). Federated fine-tuning offers a promising paradigm in this setting, enabling
collaborative model training while preserving data privacy (Kairouz et al., 2021; Cho et al., 2024).
Yet, modern LLMs’ massive parameter scale (e.g., several billions) introduces a severe scalability
barrier: due to communicating high-dimensional model updates, communication cost has become a
primary bottleneck for federated LLM fine-tuning (Wu et al., 2025; Jia et al., 2025). For instance,
fine-tuning a OPT-1.3B model by FedAvg (McMahan et al., 2017) usually requires about 1 ∼ 5
TB communication cost for one client (Li et al., 2025). To overcome this burden, recent work
has proposed using zeroth-order (ZO) optimization to enable dimension-free communication in
federated learning (FL) (Nesterov & Spokoiny, 2017). In particular, DeComFL (Li et al., 2025)
encodes both uplink and downlink communication using shared random seeds and scalar-only updates,
achieving communication cost independent of model dimension. Specifically, it reduces the total
communication cost from TB level to MB level. This dimension-free communication framework is
especially attractive for federated LLM fine-tuning, where communication is a dominant bottleneck.

However, the practical effectiveness of ZO-based FL is limited by its seriously slow convergence. A
key factor is that LLMs often exhibit heterogeneous and anisotropic curvature across their parameter
space (Kingma & Ba, 2015; Yao et al., 2021; Benzing, 2022), making it difficult for vanilla ZO-SGD
to adaptively scale updates. While prior work has shown that second-order information (e.g., Hessians
or their diagonal approximations) can significantly accelerate convergence (Kingma & Ba, 2015; Ye
et al., 2018; Jiang et al., 2024; Zhao et al., 2025), estimating Hessian approximation and applying
such curvature-aware techniques in FL are non-trivial and even more pronounced in dimension-free
communication frameworks, where transmitting any Hessian-related information reintroduces
expensive costs that scale with model size linearly or even quadratically, directly contradicting
the goal of scalar-only communication. This tension leads to our key research question:

Can we accelerate federated ZO fine-tuning while preserving dimension-free communication?

To answer this question, we first propose a generalized scalar-only communication FL framework that
decouples scalar-only communication from its tight connection with vanilla ZO-SGD, enabling the
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integration of Hessian-informed optimization1. Within this framework, we are equipped to introduce
HiSo, an efficient FL algorithm via Hessian-informed ZO optimization and Scalar-only communica-
tion. Specifically, it captures curvature information through diagonal Hessian approximation without
increasing Hessian-related communication cost. HiSo maintains the scalar-only communication
and significantly improves convergence via Hessian-informed preconditioning. Our theoretical and
empirical results and contributions can primarily be summarized as follows:

• We propose a flexible FL framework with scalar-only communication in both uplink and
downlink, which supports a broader class of optimization algorithms beyond vanilla ZO-SGD.

• Under this framework, we propose HiSo, a fast federated ZO optimization method via Hessian-
informed zeroth-order optimization and Scalar-only communication. It utilizes global Hessian
information to speed up convergence while preserving scalar-only communication (without the
need to communicate Hessian-related information).

• Theoretically, we propose a novel condition to get a tight estimation of the variance of Hessian-
informed ZO gradient under the low-effective rank and whitening assumptions. With this
treatment, we prove that HiSo can achieve a convergence rate independent of model dimension
and function smoothness in non-convex settings, marking the first such result for ZO methods
in FL. In addition, our analysis generalizes the state-of-the-art DeComFL framework and,
importantly, extends the theoretical guarantees to multiple local updates - a key component of
practical federated learning that DeComFL does not support in its convergence analysis.

• Empirically, HiSo achieves up to 5× faster convergence than DeComFL, while delivering
higher test accuracy than all ZO baselines across all tasks. Compared to first-order baselines, up
to 90 million times communication savings can be gained.

2 RELATED WORK

Adaptive Gradient Methods & Hessian-Informed Zeroth-Order (ZO) Optimization. To accel-
erate first-order FL, adaptive FL algorithms (e.g., FedAdam, FedYogi, FedAdagrad (Reddi et al.,
2021)) have been introduced to address the slow convergence in heterogeneous environments. By
adaptively adjusting learning rates or applying momentum techniques, these methods significantly
outperform vanilla FedAvg in terms of convergence speed and final accuracy. Parallel to this line,
recent ZO advances have shown its effectiveness in gradient-free learning, especially when gradients
are unavailable or expensive to compute. To further enhance convergence speed and stability, several
studies (Ye et al., 2018; Zhang et al., 2022; Chen et al., 2024; Zhao et al., 2025; Kim et al., 2025)
proposed Hessian-informed ZO methods that incorporate second-order information, such as diagonal
Hessian approximations, as preconditioning to improve the quality of gradient estimation and reduce
variance, which shows the acceleration in single-node settings.

Communication-Efficient Federated Learning & Scalar-Only Communication. Communication
efficiency is a critical challenge in FL primarily due to the frequent transmission of high-dimensional
model updates between clients and the server (Kairouz et al., 2021; Jia et al., 2025). Numerous
methods have been proposed to reduce communication overhead in FL, including compression
techniques used to reduce the size of transmitted data (Yang et al., 2021; Wang et al., 2022; Hönig
et al., 2022; Su et al., 2024; Li et al., 2024; Zakerinia et al., 2024), parameter-efficient methods, such
as Low-Rank Adaptation (LoRA) (Sun et al., 2024; Guo et al., 2025) to transmit only a low-rank
trainable matrix representing model updates. Moreover, ZO optimization has also been introduced
to the FL context. FedZO (Fang et al., 2022) integrates ZO-SGD into FL, but its communication
heavily relies on the model dimension. DeComFL (Li et al., 2025) pioneeringly exploited the intrinsic
properties of ZO gradients - specifically, their decomposition into gradient scalars and perturbation
vectors determined by random seeds - to achieve dimension-free communication overhead in LLM
fine-tuning. Yet, it suffers from slower convergence due to the nature of ZO-SGD.

3 A GENERALIZED SCALAR-ONLY COMMUNICATION IN FL FRAMEWORK

In this section, we will present a generalized FL framework with scalar-only communication. Before
that, we make a brief review about the zeroth-order method and its application for the dimension-free
communication in FL, which will be the two key pillars for the following algorithm design.

3.1 ZEROTH-ORDER SGD AND SCALAR REPRESENTATIONS
1The term "Hessian-informed" does not imply that we calculate the full Hessian matrix; rather, the update

approximates the Hessian preconditioning direction, as we will explain in detail later.

2
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Figure 1: An illustration of ZO update.

We focus on the randomized gradient estimator (RGE) for
performing ZO gradient estimation in this paper. It is also
commonly referred to as Simultaneous Perturbation Stochastic
Approximation (SPSA) (Spall, 1992; Nesterov & Spokoiny,
2017). Given a scalar-valued loss function f(x) where x ∈ Rd,
the forward-style RGE is

∇̂f(x)=
1

µ

(
f(x+ µu)−f(x)

)
u, u ∼ N (0, Id), (1)

where u represents a random direction vector sampled from a
standard Gaussian distribution and µ > 0 is a small constant,
commonly termed the smoothing parameter, controlling the perturbation step size.

An intriguing attribute of RGE is its efficient representation using only two scalars. First, we introduce
a gradient scalar g := 1

µ (f(x+ µu)− f(x)) ∈ R, which serves as a scaling constant capturing the
directional derivative. g can also be explained as an approximate value for the directional gradient.
Second, due to the deterministic nature of pseudo-random number generators, the random direction
vector u ∈ Rd can be uniquely determined by a random seed s. Hence, ∇̂f(x) can be efficiently
expressed by two scalars. Crucially, this compact representation significantly enhances the efficiency
of model updates in ZO frameworks. To illustrate, consider ZO-SGD update rule shown in Fig. 1:

xR+1 = xR − η

µ

(
f(xR + µuR)− f(xR)

)
uR = xR − ηgRuR = · · · = x0 − η

R∑
r=0

grur (2)

This implies that, given the initial point x0, a few number of gradient scalars {gr} and random seeds
{sr} are sufficient to reconstruct xR, irrespective of the dimensionality d of x. This representation
will play a crucial role in the dimension-free communication FL algorithm that follows.

3.2 FEDERATED LEARNING WITH DIMENSION-FREE COMMUNICATION

We consider a FL scenario with M clients, each owning a local loss function fi. The goal is to
collaboratively minimize the global loss function across all clients without sharing their private data:

min
x∈Rd

f(x) = min
x∈Rd

1

M

M∑
i=1

fi(x), where fi(x) := E [Fi(x; ξi)]. (3)

A typical FL round consists of two communications: 1) Downlink Communication: The server
broadcasts the current aggregated global model to a subset of clients; 2) Uplink Communication:
The selected clients return their locally updated model to the server. Both can be an expansive
communication operation when the number of parameters d is large.

The core idea of dimension-free communication in FL is leveraging the scalar representation of
ZO-SGD to avoid transmitting the full models. To illustrate that, consider the following global model
update rule with the notation that x(i)

r,τ denotes client i’s model at the r-th round and τ -th local update
step and xr denotes the r-th global model:

xr+1 =
1

|Cr|
∑
i∈Cr

x(i)
r,τ = xr +

1

|Cr|
∑
i∈Cr

(x(i)
r,τ − xr) = xr − η

1

|Cr|
∑
i∈Cr

τ−1∑
k=0

g
(i)
r,kur,k, (4)

where Cr is the set of sampled clients in the r-th round, ur,k are generated by shared random
seeds across all clients, ensuring that all clients move along consistent directions. It enables that
the global aggregation step in the server is simply computing an average of the gradient scalars:
gr,k = 1

|Cr|
∑

i∈Cr
g
(i)
r,k from the local gradient scalar g(i)r,k =

(
fi(x

(i)
r,k + µur,k)− fi(x

(i)
r,k)
)
/µ.

Uplink Communication: From Eq. (4), sampled clients only transmit local gradient scalars g(i)r,k

to the server for global aggregation. Downlink Communication: ZO scalar representation only
captures relative updates, so it is crucial to ensure that the server and all clients start from the same
starting point. To achieve this, a model-reset mechanism is introduced: after finishing their local
updates in each round, each participants resets its local model to the initial model, which is the
global server model by induction. With this reset mechanism, the downlink communication can be
conceptualized similarly to Eq. (4), with the distinction that clients may be absent in multiple rounds.

Unlike the standard FL algorithm, reconstructing instead of pulling the model is used for catching the
current server model through global gradient scalars and random seeds from preceding missed rounds.
Consequently, the server is required to maintain auxiliary information: the client’s last participation

3
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round, historical random seeds, and the global gradient scalars. This constitutes a negligible extra
memory requirement as these are merely a few scalar values. We demonstrate the process in Fig. 2.

3.3 GENERALIZED SCALAR-ONLY COMMUNICATION IN FEDERATED LEARNING

reset

reset

Client 1

Client 2

Server

Seed 1 direction

Seed 2 direction

Seed 3 direction

Figure 2: One-round update with 2
clients and 3 local updates. They share the
same direction for each local update with
different lengths. Arrive xr+1 for both
clients requires 7 steps: 3 local updates,
reset and 3 updates with global values.

In the work by Li et al. (2025), the inherent dependency on
ZO-SGD limits its applicability and the full potential of its
dimension-free communication framework. One of our key
contributions is observing that the crucial element is not the
specific choice of ZO-SGD, but the basic use of scalar rep-
resentations. Specifically, by maintaining records of their
respective states with the update constructed by these scalar
representations, the server and clients can effectively accom-
modate a wider range of optimization algorithms within the
dimension-free communication paradigm. Thus, in Algo. 1,
we present a more generalized formulation that allows for the
integration of various optimization techniques.

In Algo. 1, communication is structured as follows: clients
transmit {∆x

(i)
r,k}Kk=1 to the server for global aggregation, and

the server distributes the aggregated update ∆xr to clients for
model reconstruction. The dimension-independent property is preserved if both client-side updates
∆x

(i)
r,k and the server-side aggregated update ∆xr can be effectively represented by scalars. Note a

persistent state may be required to reconstruct ∆xr with rl as the last participated round.
Algorithm 1 Generalized Scalar-only Communication in Federated Learning
1: Initialize: learning rate η, local update steps τ , communication rounds R.
2: Allocate: memory for recording the necessary historical states and client’s participation information.
3: for r = 0, · · · , R− 1 do
4: Server uniformly samples a client set Cr and distributes the shared random seeds {sr}.
5: for each client i ∈ Cr in parallel do
6: Receive the necessary scalar representations of {∆xr′} from server.
7: Reconstruct the {∆xr′} from the scalars and update state.
8: x

(i)
r,0 = x

(i)
rl,τ − η

∑r−1
r′=rl

∆xr′ ▷ Equivalent to pull model
9: for k = 0, · · · , τ − 1 do

10: Find ∆x
(i)
r,k that 1) is ascent direction; 2) can be represented by scalars + state;

11: x
(i)
r,k+1 = x

(i)
r,k − η∆x

(i)
r,k. ▷ Client local update

12: end for
13: x

(i)
r,τ ⇐ x

(i)
r,0 reset the model and other necessary states.

14: Send the necessary scalar representations of {∆x
(i)
r,k} to server. ▷ Equivalent to push model

15: end for
16: Aggregate the scalar representations of {∆x

(i)
r,k} into the ones for the global ∆xr .

17: end for

4 HESSIAN-INFORMED SCALAR-ONLY COMMUNICATION IN FL (HISO)
4.1 FIND A BETTER ASCENT ∆x

(i)
r,k DIRECTION

We use the proposed generalized framework to design a novel method superior to ZO-SGD-based FL
while retaining dimension-free communication. A core challenge in the preceding framework is to
identify an effective ascent direction ∆x

(i)
r,k that is constructible solely from scalar values and current

state information. While ZO-SGD meets these requirements, a superior alternative can be found.

Recall that the ZO methods’ slow convergence is due to its dependency on random search directions
(Ma & Huang, 2025). More specifically, recall the Eq. (1) with u ∼ N (0, I), which uniformly
searches all directions in the Rd space, is the update direction regardless of the scalar g. A natural
extension is that we can guide the search direction with an invertible matrix Hr. Suppose Hr is given,
the Line 11 in Algo. 1 can be formulated as the following sub-optimization problem

min
g∈R

∥∇fi(x
(i)
r,k)−∆x

(i)
r,k∥

2
2 (Ascent Direction) (5)

s.t. ∆x(i)
r = g ·H−1/2

r ur,k, ur,k ∼ N (0, Id) ∈ Rd×1 (Scalars Representation) (6)

4
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It will be clear later why we use this strange H
−1/2
r notation instead of Hr directly. Solving the

above least-squares problem, we have

go = (uT
r,kH

−1
r ur,k)

−1uT
r,kH

−1/2
r ∇fi(x

(i)
r,k) (7)

Note (uTH−1u)−1 is a scalar that is independent of iterates x(i)
r,k. Hence, we can absorb it into the

learning rate. Next, note that uT
r,kH

−1/2
r ∇fi(x

(i)
r,k) =

1
µ

(
fi(x

(i)
r,k+µH

−1/2
r ur,k)−fi(x

(i)
r,k)
)
+O(µ).

Hence, we obtain the following update rule

∆x
(i)
r,k =

1

µ

(
fi(x

(i)
r,k + µH−1/2

r ur,k)− fi(x
(i)
r,k)
)
H−1/2

r ur,k (8)

Now it should be clear why we use the notation H
−1/2
r after we take the expectation of ∆x

(i)
r,k:

E∆x
(i)
r,k ≈ EH−1/2

r ur,ku
T
r,kH

−1/2
r ∇fi(x

(i)
r,k) = H−1

r ∇fi(x
(i)
r,k). (9)

When Hr is a well-approximated Hessian matrix, the expectation of gradient descent follows the
Newton-style gradient descent (Boyd & Vandenberghe, 2004). The first-order counterpart of ∆x

(i)
r,k is

called natural gradient since it can be viewed as a pre-conditioned gradient (Amari, 1998). Recalling
the linear transformation property of Gaussian Distribution, the update Eq. 8 can be more concisely
written as the following form

∆x
(i)
r,k =

1

µ
[fi(x

(i)
r,k + µzr,k)− fi(x

(i)
r,k)]zr,k, zr,k ∼ N (0, H−1

r ). (10)

This formulation also aligns with recent work by Ye et al. (2018) and Zhao et al. (2025), which refers
to this type of update as Hessian-Informed or Hessian-Aware Zeroth-Order Optimization.

4.2 LEARNING GLOBAL CURVATURE WITHOUT EXTRA COMMUNICATION COST

A follow-up question for the above formulation is how to find this Hr matrix. One plausible approach
is, again, utilizing the zeroth-order gradient estimators to approximate directional second derivatives

uT∇2F (x)u ≈ F (x+ µu) + F (x− µu)− 2F (x)

2µ2
, u ∼ N (0, Id). (11)

However, this approach has two limitations: 1) this requires an additional function evaluation per
direction and extra communications; 2) forming the full d× d Hessian is both costly and unnecessary.
Instead, we only seek a diagonal preconditioner, akin to Adam’s per-coordinate scaling (Kingma
& Ba, 2015)2. Recall the global update term ∆xr,k approximates the value of the gradient and it
can be constructed by scalars only as discussed before. Further, notice this value is needed for the
reconstruction step. Hence, we have a free variable to approximate the diagonal Hessian through the
following proposed rule. We only update the Hessian at the beginning of one communication round
with τ -local update steps followed by the exponential moving averaging:

Hr+1 = Hr,τ =(1− ν)Hr,τ−1 + ν
1

m

∑
i∈Sr

Diag([∆xr,τ ]
2 + ϵI)

...
Hr,1 =(1− ν)Hr + ν

1

m

∑
i∈Sr

Diag([∆xr,0]
2 + ϵI), (12)

where ϵ is a small number to make sure that Hr+1 is strictly positive definite.

This Adam-style method, similar to its first-order counterpart (Reddi et al., 2021), has two advantages:
1) the diagonal matrix approximation avoids the d2 storage for the Hessian matrix, making the
proposed method scalable with the large-scale model. 2) the vector ∆xr,k can be represented by
scalars, so the server and clients can reconstruct this global Hessian without any extra communication.

4.3 PUTTING TOGETHER TO ESTABLISH THE DESIGN OF HISO

HiSo is established by substituting the previously determined ascent direction and the global Hessian
learning method into the scalar-only communication framework. A illustration of HiSo is shown in
Fig. 3. To elucidate the basic HiSo with brevity, we write out a simplified case where one local

2More accurately, our method resembles RMSProp as it currently is without a momentum term. Momentum
could be incorporated without additional communication costs using the same technique presented in this section.
Given the existing length of this paper, we will not elaborate on this momentum extension here.
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update occurs per round (τ = 1). The following equation is for one round update of one client.
for t = rl, · · · r − 1 :

∆xt = gtH
−1/2
t ut, ut ⇐ N (seedt)

x
(i)
t+1 = x

(i)
t − η∆xt

Ht+1 = (1− v)Ht + νDiag([∆xt]
2 + ϵI)

 (Reconstruct States for the Missing Rounds)

∆x(i)
r =

1

µ
[fi(x

(i)
r + µH−1/2

r ur)− fi(x
(i)
r )]H−1/2

r ur

x
(i)
r+1 = xr − η∆x(i)

r

x
(i)
r+1 ⇐ xr (reset)

 (Client Local Update)

∆xr =
1

|Cr|
∑
i∈Cr

∆x(i)
r =

(
1

|Cr|
∑
i∈Cr

g(i)r

)
H−1/2

r ur

}
(Global Aggregation at Server)

where rl is the last participated round, x(i)
r is i-th client’s model at communication round r and we

omit the k for local-update while xr is the global/server model. The same notation conventions apply
for g(i)r , gr, ∆x

(i)
r and ∆xr. Though mathematically equivalent, this representation is presented

by disregarding implementation and communication intricacies to highlight the core mechanics
better. Nevertheless, it is essential to highlight that only g

(i)
r , gr and random seeds are required to be

communicated between clients and server as our scalar-only framework proposes. For the detailed
algorithm table with all features, we provide it in the Appendix D.

Client

g_i

Client

g_i

sendrecv

Hessian 
Approx.

Update

Delta X

Generate Perturb

Model

ZOO

Reconstruct
Reset at the end

Record

Historical Seeds and Grad Scalars

Gaussian

agg

Server

Client

Figure 3: Illustration of HiSo

5 PERFORMANCE ANALYSIS

5.1 HESSIAN, VARIANCE OF ZO GRADIENT, AND LOW EFFECTIVE RANK ASSUMPTION

Figure 4: An illustration of the eigenvalue distribution.

To lay the foundation for analyzing HiSo,
we first examine a basic component of
ZO: the estimation of the variance term.
It provides essential insights into Hessian-
informed ZO methods.

E∥u∥2Σ := EuTΣu, (13)

u ∼ N (0, Id) ∈ Rd×1,

where Σ is some semi-positive Hessian ma-
trices3. The standard L-smoothness assumption implies that ∥Σ∥ ≤ L. Consequently, the preceding
quantity can be upper-bounded as:

E∥u∥2Σ ≤ ∥Σ∥ · E∥u∥2 ≤ Ld, (14)

3For a non-convex function, Hessian may contain some negative eigenvalues. One possible choice of Σ can
be the absolute eigenvalues of the Hessian.
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Note that the upper bound derived above can be quite large if the dimension d is large. This
dependence on dimensionality is a well-known factor leading to a typically slow convergence rate
of ZO methods (Nesterov, 2013). Fortunately, this bound only represents a worst-case scenario.
Motivated by empirical observations that the Hessian of trained large language models (LLMs)
possesses relatively few eigenvalues significantly far from zero (Papyan, 2020; Yao et al., 2020; Wu
et al., 2020), Malladi et al. (2023) proposed a low-effective rank assumption. This spectral property,
where most eigenvalues are concentrated near zero, is illustrated in Fig. 4 (left). To utilize this
assumption, we need to treat the variance more carefully:

E∥u∥2Σ = Tr(ΣEuuT) = LTr(Σ/L) := Lκ, (15)
where κ = Tr(Σ/L) is called the effective rank of Hessian Σ. It is computationally prohibitive to
find the exact value of κ, but several previous workers indicate κ ≪ d (Li et al., 2025; Malladi et al.,
2023). Hence, we get a tighter variance estimation. Utilizing the Hessian approximate matrix, we can
further improve this bound. Supposing we have a well approximation matrix H for the Hessian Σ,
the weighted Gaussian vector z is sampled from the distribution N (0, H−1). Then, we have

E∥z∥2Σ = E Tr(H−1/2ΣH−1/2uuT) = Tr(H−1/2ΣH−1/2) := ζ, (16)
where we call the quantity ζ as the low whitening rank of Hessian Σ.

Assumption E∥u∥2Σ E∥z∥2Σ
L-smooth Ld 2d

Low Effective Rank Lκ ζ

Table 1: The Upper-Bound of ZO Gradient Variance

If H is the perfect approximation of Σ, then ζ = d.
This case is neither possible in practice nor ideal in
LLM cases. Recalling that only a few eigenvalues
of Σ are non-zero, then H ≈ Diag(Σ + ϵ1) is
a more effective inverse value, which is similar
to Wiener filtering in the denoising field (Sayed,
2003). Now we summarize the above discussion into the following definition.
Definition. We call a diagonal matrix H as a well-approximate matrix of Hessian Σ if the whitening
matrix Ξ := H−1/2ΣH−1/2 satisfies the following condition:

Tr(Ξ) =Tr(H−1/2ΣH−1/2) ≤
{
2d (L-Smoothness)
ζ (Low Effective Rank)

, (17)

where ζ is a quantity independent of the dimension d, and the factor 2 is just a safety factor to tolerate
the imperfect inverse. The above assumptions and results are summarized in Table 1.

To illustrate the effectiveness of this whitening process, we execute a simple numerical experiment. To
simulate the distribution of Hessian eigenvalues, we assume that there are 200 eigenvalues following
the log-normal distribution, i.e., log(Σ) ∼ N (0, 3I). The simulation, depicted in Fig. 4, shows that
ζ ≪ Lκ ≪ Ld. This lays the theoretical foundation for the acceleration of our proposed HiSo.

5.2 CONVERGENCE RESULTS

We first present some standard assumptions that will be used to establish the convergence results.
Assumption 1 (L-Lipschitz). Suppose the global loss function F is L-smooth, i.e., for all x, y ∈ Rd,
we have ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥.
Assumption 2 (Unbiased Stochastic Gradients with Bounded Variance). The stochastic gra-
dient computed by clients is unbiased with bounded variance: E [∇fi(x; ξ)] = ∇fi(x) and
E ∥∇fi(x; ξ)−∇fi(x)∥2 ≤ σ2

s , ∀x, where ξ represents a data sample.
Assumption 3 (Bounded Heterogeneity). The cost function satisfies ∥∇fi(x)−∇F (x)∥ ≤ σG,∀x.
Assumption 4 (Bounded Learned Hessian). The learned Hessian has 0 < βℓ ≤ ∥Hr∥ ≤ βu,∀r.

The last assumption is common in Hessian-informed (Maritan et al., 2024; Zhao et al., 2025) or
Adam-style algorithms (Kingma & Ba, 2015; Reddi et al., 2021), where the requirement of bounded
gradient implies this assumption directly. It is worth noting that, unlike the assumption on Hessian,
the parameters βℓ and βu can be easily controlled in the algorithm design by adding the clipping step
(Liu et al., 2023). This assumption also implies β−1

u ≤ ∥H−1
k ∥ ≤ β−1

ℓ .

Theorem 1. Under Assumptions 1, 2, 3, and 4, if η ≤ min
(

βℓ

mL ,
1

8ρk
, βℓ

4(τ−1)

√
1

L(d+2)

)
and denote

∆1,∗ := F (x̄1)− F ⋆, the sequence of iterates generated by HiSo satisfies:

1

τR

R−1∑
r=0

τ−1∑
k=0

E∥∇F (x̄r,k)∥2H−1
r

≤4∆1,∗

ητR
+

32η(τ − 1)2Lϕ̄

βℓτm
(σ2

G + σ2
s)︸ ︷︷ ︸

extra client drift term

+
16ηρ̄

βℓm
(σ2

G + σ2
s) +O(ηµ),
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where x̄r,k = 1
M

∑M
i=1 x

(i)
r,k, ρ̄ = 1

τR

∑
r

∑
k(Tr(H

−1/2
r Σr,kH

−1/2
r ) + 2∥H−1/2

r Σr,kH
−1/2
r ∥),

Σr,k is a PSD matrix that upper-bounds Hessian at xr,k and ϕ̄ = 1
R

∑
r(Tr(H

−1
r ) + 2∥H−1

r ∥). ■

Roughly, ρ̄ can be understood as the sum of whitening Hessian eigenvalues and ϕ̄ as the sum of
approximate Hessian eigenvalues. ρ̄ consist of two parts: 1) Tr(H−1/2

r Σr,kH
−1/2
r ) is the quantity

discussed previously, 2) ∥H−1/2
r Σr,kH

−1/2
r ∥, typically, is much smaller than the first term when the

model dimension d is large. The properties of the terms in ϕ̄ are similar to ρ̄.
Corollary 1 (Convergence Rate for HiSo). Suppose the learned global Hessian Hr satisfies the
well-approximated condition (17). When τ = 1 and η =

√
mβℓ/ρ̄R, HiSo’s convergence rate is

O(
√
d/mR). Further, if the Hessian exhibits the low-effective rank property, the rate can be further

improved to O(
√
ζ/mR) independent of the model dimension d and the Lipschitz constant L.

Corollary 2 (Convergence Rate for DeComFL). Note that DeComFL (Li et al., 2025) can be regarded
as a special case of HiSo with Hr ≡ I, ∀r and βℓ = βu = 1. Therefore, we can immediately recover
the convergence rate of DeComFL with τ = 1 is O(

√
Ld/mR) with standard assumptions or

O(
√
Lκ/mR) with the extra low-effective rank phenomenon.

Corollary 3 (Convergence Rate for τ > 1 case). When the local update step τ > 1, the difference
between HiSo and DeComFL becomes bigger. Under the well-approximate and low whitening
rank scenario, the convergence rate of HiSo is O(

√
ζ/τmR) +O(

√
τκ/mR), still independent of

the model dimension d and Lipschitz condition L; meanwhile, DeComFL becomes dependent on d
again. This resolved the previous open question that DeComFL (Li et al., 2025) cannot provide the
convergence rate with a low-effective rank assumption when τ > 1. See Appendix F.6.2 for details.
Remarks about well-approximated condition. It is important to note that Theorem 1 does not
require the well-approximated condition. This condition is only necessary for the three preceding
corollaries, which utilize it to establish clean convergence rates. Although it is hard to determine if
this approximation holds in the context of LLMs, the assumption offers a plausible explanation for
the rapid convergence often observed in practice (where the required iterations are much smaller than
d). If Hr fails to yield an effective Hessian approximation, the performance of HiSo, at worst case,
degenerates into DeComFL. We provide more discussion on this point in Appendix F.7.1.

6 EXPERIMENTS

The Global Diagonal Hessian Approximation H . We begin by training a simple CNN model on
MNIST (LeCun et al., 1998) to visualize the learned diagonal Hessian approximation H . We set
up a 64-client FL environment where data was partitioned non-IID using a Dirichlet distribution
(α = 1). Each communication round involved randomly sampling 8 clients for training. Evaluating
the Hessian smoothing parameter ν revealed negligible impact on convergence and final accuracy
(Fig. 5, left), demonstrating the algorithm’s robustness to this hyperparameter. Furthermore, Fig. 5
(right) plots each entry of the learned diagonal Hessian values at the end of training. While individual
entries may appear stochastic, their overall distribution clearly exhibits a long-tail phenomenon. This
observation aligns with the low effective rank assumption discussed in Sec. 5.1. Although computing
the exact Hessian is computationally prohibitive, the rapid convergence combined with this observed
distribution suggests our strategy effectively approximates relevant Hessian structure. We design
more experiments and provide more direct evidences in Appendix F.7.2.

Figure 5: Ablation study of smoothing parameter ν and the distribution of the learned global Hessian H .

HiSo is Faster Than DeComFL in Small Model Training Tasks. In Fig. 5, we evaluate HiSo
against another dimension-free communication FL method - DeComFL. Crucially, the communication

8
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cost per round are the same for both to ensure a fair comparison of algorithmic efficiency. Fig. 5 shows
that, under the same communication constraints, our HiSo achieves significantly faster convergence
and reaches a superior final performance level compared to DeComFL. For this comparison, both
were tuned using their optimal learning rates. More comparison is provided in Appendix E.

LLM Fine-Tuning Task Setup: Our FL system consists of 6 clients in total, and 2 clients are
uniformly sampled in each round. To comprehensively evaluate HiSo’s performance, we execute
sentiment classification on SST-2 (Socher et al., 2013), question matching on QQP, and question
answering on SQuAD (Rajpurkar et al., 2016). We set P = 5 for all ZO methods.

HiSo Accelerates Training with Less Communication Cost in LLM Fine-Tuning. In Table 2,
HiSo consistently reduces communication rounds required to reach DeComFL’s best test accuracy,
resulting in lower communication cost. Specifically, HiSo achieves 1.4-5.4× speedup with 29%-80%
communication savings across all tasks. These results show that HiSo accelerates convergence and
reduces communication cost, making it more practical for large-scale FL scenarios involving LLMs.

Table 2: HiSo’s Acceleration. For DeComFL, we report the total number of communication rounds required
to fully converge. For HiSo, we report the number of rounds needed to match DeComFL’s best test accuracy,
along with the corresponding communication cost.

Model Method SST-2 QQP SQuAD
Round Speedup Comm. Cost Round Speedup Comm. Cost Round Speedup Comm. Cost

OPT-350M DeComFL 550 1× 21.56 KB 775 1× 30.35 KB 1350 1× 52.73 KB
HiSo 275 2× 10.78 KB 425 1.8× 16.64 KB 250 5.4× 9.77 KB

OPT-1.3B DeComFL 1500 1× 58.59 KB 1125 1× 43.95 KB 350 1× 13.67 KB
HiSo 1075 1.4× 41.85 KB 750 1.5× 29.30 KB 175 2× 6.84 KB

OPT-2.7B DeComFL 1250 1× 41.58 KB 1475 1× 48.75 KB 450 1× 15.65 KB
HiSo 775 1.6× 26.21 KB 975 1.5× 32.11 KB 200 2.3× 6.94 KB

Extensive Baseline Comparison on LLM Fine-Tuning Tasks. In Table 3, first-order methods
(e.g., FedAvg, FedAdam, FedYogi and FedAdagrad) consistently achieve high test accuracy, but at
the cost of TB-level communication volumes, which is quite challenging for real-world federated
fine-tuning. As for ZO baselines, FedZO’s communication cost is also quite high due to transmitting
d-dimensional update. Although DeComFL achieves several orders of magnitude communication
reduction, its cost is still higher than HiSo as it suffers from more rounds due to extremely slow
convergence. Our proposed HiSo not only maintains the lowest communication cost in almost all
tasks (only a little higher than DeComFL on OPT-1.3B+QQP) but also consistently outperforms ZO
baselines in test accuracy.

Table 3: Performance for LLM Fine-Tuning. 1) We report the total communication cost of the single client
during the entire training process until convergence, test accuracy for SST-2 and QQP, F1 score for SQuAD.

Model Method SST-2 QQP SQuAD

OPT-125M

FedAvg 87.63% ± 0.16 (0.15 TB) 61.21% ± 0.37 (0.08 TB) 37.27 ± 0.11 (0.05 TB)
FedAdam 88.29% ± 0.47 (0.30 TB) 63.18% ± 0.31 (0.06 TB) 37.98 ± 0.20 (0.03 TB)
FedYogi 88.06% ± 0.33 (0.29 TB) 62.88% ± 0.21 (0.05 TB) 37.66 ± 0.18 (0.04 TB)

FedAdagrad 85.04% ± 0.51 (0.18 TB) 61.77% ± 0.22 (0.06 TB) 37.29 ± 0.27 (0.04 TB)
FedZO 84.19% ± 0.22 (0.63 TB) 60.06% ± 0.21 (1.94 TB) 34.03 ± 0.26 (0.14 TB)

DeComFL 85.21% ± 0.27 (22.92 KB) 60.11% ± 0.19 (32.17 KB) 34.12 ± 0.22 (17.42 KB)
HiSo (Ours) 85.55% ± 0.21 (14.69 KB) 60.72% ± 0.25 (21.23 KB) 35.26 ± 0.14 (7.12 KB)

OPT-350M

FedAvg 89.79% ± 0.05 (0.58 TB) 63.32% ± 0.13 (0.31 TB) 43.38 ± 0.13 (0.12 TB)
FedAdam 89.92% ± 0.20 (0.21 TB) 63.28% ± 0.19 (0.28 TB) 45.92 ± 0.14 (0.08 TB)
FedYogi 89.68% ± 0.29 (0.25 TB) 63.21% ± 0.16 (0.28 TB) 45.01 ± 0.25 (0.09 TB)

FedAdagrad 87.42% ± 0.09 (0.23 TB) 62.55% ± 0.14 (0.29 TB) 44.49 ± 0.11 (0.09 TB)
FedZO 86.55% ± 0.23 (0.68 TB) 61.22% ± 0.30 (0.66 TB) 38.14 ± 0.24 (0.38 TB)

DeComFL 86.72% ± 0.28 (21.56 KB) 60.58% ± 0.16 (30.35 KB) 38.20 ± 0.15 (52.73 KB)
HiSo (Ours) 87.50% ± 0.22 (17.33 KB) 62.49% ± 0.17 (18.63 KB) 39.13 ± 0.11 (20.51 KB)

OPT-1.3B

FedAvg 90.48% ± 0.35 (0.63 TB) 65.77% ± 0.20 (0.32 TB) 60.39 ± 0.27 (0.41 TB)
FedAdam 92.86% ± 0.43 (0.79 TB) 64.59% ± 0.53 (1.10 TB) 61.56 ± 0.14 (0.27 TB)
FedYogi 92.39% ± 0.58 (0.83 TB) 64.44% ± 0.22 (1.12 TB) 61.44 ± 0.19 (0.29 TB)

FedAdagrad 90.92% ± 0.74 (0.88 TB) 64.05% ± 0.13 (1.08 TB) 60.72 ± 0.23 (0.33 TB)
FedZO 90.01% ± 0.29 (4.73 TB) 62.91% ± 0.14 (3.53 TB) 57.26 ± 0.17 (1.10 TB)

DeComFL 90.22% ± 0.10 (58.59 KB) 63.25% ± 0.11 (43.95 KB) 57.14 ± 0.14 (13.67 KB)
HiSo (Ours) 90.34% ± 0.12 (49.18 KB) 64.20% ± 0.13 (96.67 KB) 57.58 ± 0.07 (7.81 KB)

In Appendix E, we present additional experimental results, along with comparisons and analyses of
memory cost, communication cost, computation time, and other FL+PEFT baselines.
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A STATEMENT OF LLM USAGE

LLM tools were used to help with language refinement and stylistic improvements. After each use of
the tool, we carefully reviewed and validated the correctness and appropriateness of the generated
text to ensure accuracy and alignment with the intended meaning.

B CONCLUSION AND LIMITATIONS

In conclusion, we first present a generalized FL framework that supports scalar-only communication
in both uplink and downlink, enabling the integration of a broader class of optimization algorithms be-
yond vanilla ZO-SGD. Building on this foundation, we propose HiSo, a Hessian-informed federated
optimization algorithm that leverages diagonal Hessian approximations to accelerate convergence
while preserving scalar-only communication efficiency without the demand to transmit any second-
order information. From a theoretical perspective, we introduce a novel variance characterization
for Hessian-informed zeroth-order gradients under a low-effective-rank assumption. This allows
us to establish a convergence rate that is independent of both model dimensionality and function
smoothness in non-convex settings - a result not previously achieved by any ZO method in FL. Our
analysis further generalizes the previous framework and extends its theoretical guarantees to support
multiple local updates, a critical component in practical FL deployments. The analysis offers a
plausible explanation for the observed phenomenon of ZO convergence being much faster than its
worst case. Empirically, HiSo consistently outperforms existing baselines, delivering higher test
accuracy, up to about 5× faster convergence, and substantially lower communication overhead. These
results demonstrate the practical viability and theoretical soundness of unifying curvature-informed
optimization with scalar-only communication in federated fine-tuning.

Limitations: The proposed method is currently limited by its treatment of the loss function fi
as a generic one, without considering model-specific module structures. This is in contrast to
modern parameter-efficient fine-tuning (PEFT) methods that often exploit properties like low-rank
decomposition (e.g., W = ABT, where A ∈ Rk1×r and B ∈ Rk2×r and r ≪ k1, k2). It is important
to note that this explicit low-rank decomposition is distinct from the ‘low effective rank’ of the
Hessian discussed in this paper. Consequently, there is potential to further refine our approach by
designing Hessian information specifically tailored for PEFT methods such as LoRA (Hu et al., 2022)
or GaLore (Zhao et al., 2024).

C COMPARISON OF RELATED WORKS

From Table 4, we observe that HiSo achieves the best convergence rate among all ZO-FL related
works (e.g., FedZO, BAFFLE, DeComFL) and is the first work to provide the rigorous convergence
proof under the low effective rank assumption and supporting the τ > 1 case at the same time.
Compared with first-order related works, HiSo achieves significant communication improvement.

D DETAILED HISO ALGORITHM TABLE

Although the algorithm listed in the main context is quite complicated, it is simple if we ignore
the dimension-free communication property. Mathematically, HiSo is equivalent to the following
standard FedAvg style update

x
(i)
r,0 = xr (Receive Model)

for k = 0, 1, · · · , τ − 1:

g
(i)
r,k =

1

µ

(
fi(x

(i)
r,k + µH−1/2

r ur,k)− fi(x
(i)
r,k)
)

x
(i)
r,k+1 = x

(i)
r,k − ηg

(i)
r,kH

−1/2
r ur,k (Local Update)

xr+1 =
1

|Cr|
∑
i∈Cr

x(i)
r,τ (Aggregate Model)

Hr+1 =(1− ν)Hr + νDiag([xr+1 − xr]⊙ [xr+1 − xr] + ϵI)

With that as reference, we present the full algorithm table for HiSo.
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Algorithm 2 Concrete Scalar Representations Communication with States for Federated Learning
1: Initialize: learning rate η, local update steps K, communication rounds R
2: Allocate: memory for recording the necessary historical states, including historical gradient scalars {g},

corresponding random seeds {s} and clients’ last participation round {r′}, which are initialized as 0.
3:
4: for r = 0, 1, · · · , R− 1 do
5: Server uniformly samples a client set Cr with cardinality m.
6: Server randomly samples a random seed set {sr,k}τ−1

k=0 and broadcasts it to all sampled clients.
7: for each client i ∈ Cr in parallel do
8: {{∆x

(i)
t }τ−1

k=0}
r−1
t=r′ = Rebuild({{s(i)t,k}

τ−1
k=0}

r−1

t=r
′
i

, {{g(i)t,k}
τ−1
k=0}

r−1

t=r
′
i

)

9: x
(i)
r,0 = x

(i)

r′,0 − η
r−1∑
t=r′

τ−1∑
k=0

∆x
(i)
t,k

10: {g(i)r,k}
τ−1
k=0 = LocalUpdate({sr,k}τ−1

k=0)

11: Send {g(i)r,k}
τ−1
k=0 back to the server.

12: end for

13: {gr,k}τ−1
k=0 =

{
1

|Cr|
∑

i∈Cr

g
(i)
r,k

}τ−1

k=0

▶ Global gradient scalar aggregation

14: {∆xr,k}τ−1
k=0 =

{
gr,kH

−1/2
r ur,k

}τ−1

k=0
▶ Global ∆ aggregation at server

15: Store {gr,k}τ−1
k=0 and {sr,k}τ−1

k=0 and update the client’s last participation round r′i = r.

16: xr+1 = xr − η
τ−1∑
k=0

∆xr,k ▶ (Optional) Global model update
17: end for

Algorithm 2a Receiving Step for Hessian-Informed ZO Gradient for i-th Client at r-th Round

1: Function Rebuild({{st,k}τ−1
k=0}

r−1
r=r′ , {{gt,k}

τ−1
k=0}

r−1
r=r′ ): ▶ r′ is last participation round

2: for t = r′, · · · , r − 1 do
3: for k = 0, · · · , τ − 1 do
4: Utilize the random seed st,k to produce ut,k ∼ N (0, I)
5: ∆xt,k = gt,kH

−1/2
t ut,k

6: Ht+1 = (1− ν)Ht + νDiag([∆xt,τ ]
2 + ϵI)

7: end for
8: end for
9: return {{∆xt,k}τ−1

k=0}
r−1
t=r′ ▶ For model reconstruction

Algorithm 2b Sending Step for Hessian-Informed ZO Gradient for i-th Client at r-th Round

1: Function LocalUpdate({sr,k}τ−1
k=0):

2: for k = 0, · · · , τ − 1 do
3: Utilize the random seed sr,k to produce ur,k ∼ N (0, I)
4: g

(i)
r,k=

1
µ

[
fi(x

(i)
r,k + µH

−1/2
r ur,k)− fi(x

(i)
i,r)
]

▶ Compute ZO gradient scalar

5: ∆x
(i)
r,k = g

(i)
r,kH

−1/2
r ur,k ▶ Can be replaced by other representation methods of ∆x

(i)
r,k

6: x
(i)
r,k+1 = x

(i)
r,k − η∆x

(i)
r,k ▶ Update local model

7: end for
8: x

(i)
r,τ ⇐ x

(i)
r,0 ▶ Reset the local model and update other necessary states

9: return {g(i)r,k}
τ−1
k=0
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Table 4: Comparison of Related Work. d is the model dimension. m is the number of sampled clients
per round. P is the number of perturbations. R is the number of rounds. ζ is the low whitening
rank of Hessian. κ is the low effective rank of the Hessian. "LER" means the low effective rank
assumption. "DF" mean dimension-free. "Proof on τ > 1?" means whether the algorithm provides
theoretical convergence proof under multiple local updates τ > 1.

Methods Convergence Rate LER? Uplink Downlink Proof on τ > 1?

FedAvg (McMahan et al., 2017) O
(√

L
mRτ

)
✗ ✗ DF ✗ DF ✓

FedAdam (Reddi et al., 2021) O
(√

L
mRτ

)
✗ ✗ DF ✗ DF ✓

FedZO (Fang et al., 2022) O
(√

Ld
mPRτ

)
✗ ✗ DF ✗ DF ✓

BAFFLE (Feng et al., 2024) O
(√

Ld
mPRτ

)
✗ ✓ DF ✗ DF ✓

DeComFL (Li et al., 2025) O
(√

Lκ
mPR

)
✓ ✓ DF ✓ DF ✗

HiSo (This paper) O
(√

ζ
mPRτ

)
✓ ✓ DF ✓ DF ✓

Client 1 local loss
One possible ZO gradient
Expectation of ZO gradient

Global loss
Directional Gradient without Hessian-Informed
Directional Gradient with Hessian-Informed
Trajectory with Hessian-Informed
Trajectory without Hessian-Informed

Client 2 local loss

One possible ZO gradient
Expectation of ZO gradient

Figure 6: An illustration of Hessian-informed versus regular ZO gradient direction under the FL setting.

E EXTRA ANALYSIS, DISCUSSION, EXPERIMENT DETAIL AND RESULTS

E.1 BASELINE SELECTION

To comprehensively evaluate HiSo’s performance, we select a broad range of classic or recent
baselines covering both first-order and zeroth-order FL methods. We explain the reason why we
choose those baselines as follows:

First-Order FL Baselines:

• FedAvg: the first and most classic first-order FL algorithm.
• FedAdam, FedYogi and FedAdagrad: adaptive gradient-based methods designed to accel-

erate convergence in FL.

Zeroth-Order FL Baselines:

• FedZO: the first FL method to incorporate ZO-SGD into client local updates.
• DeComFL: the first method to achieve dimension-free communication in FL, which also

uses ZO-SGD to perform client local updates.
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E.2 MEMORY COST RESULTS

In HiSo, there are several places that require additional memory to store extra information. We test
their real memory consumption in our FL system.

(a) Global Gradient Scalar and Seed {gr, sr} Pairs: In each communication round, only one
{gr, sr} pair is stored at the server, regardless of the number of clients. Specifically, storing
two scalars per round over one million rounds would require only a few megabytes that is
well within the capacity of any modern server.

(b) Clients’ Historical States (Last Participation Round): The server needs to store the last
participation round (a scalar) for each client, which only consume a few megabytes for a
FL system with even millions of clients. Specifically, storing 1 million client states (i.e., 1
million scalars in int 32) only needs 3.8 MB. Moreover, this storage cost can be optimized.
For example, the server can transmit the last participation round index to each client, and the
client can store it locally as a scalar. When the client returns, it simply sends this scalar back
to server. This design eliminates the need for server to store all clients’ states, so memory
cost becomes negligible.

(c) Clients’ Hessian H: We evaluate the peak memory usage of a single client across all
baselines and our proposed HiSo. The results indicate that HiSo requires substantially less
peak memory than all first-order baselines. Moreover, HiSo also outperforms FedZO in
terms of memory efficiency, as in the original FedZO paper, it is not optimized for memory
usage. Finally, when comparing HiSo with the memory-optimized DeComFL, we observe
that HiSo still consumes less than twice the peak memory of DeComFL.

E.3 COMMUNICATION COST AND TRAINING ACCELERATION RESULTS

HiSo is Extremely Communication-Efficient. Fig. 7 shows the total communication cost of
various FL methods across different model sizes (125M, 350M, and 1.3B), highlighting the dramatic
efficiency of our HiSo. While traditional methods like FedAvg, FedZO, and FedAdam incur
communication costs on the order of 1011 to 1013, HiSo reduces it by over 40 million times for 125M
and 350M models, and up to 90 million times for the 1.3B model. Even compared to the strongest
communication-efficient baseline DeComFL, HiSo still achieves noticeably lower communication
cost because accelerated convergence introduces less training rounds. This substantial reduction
shows that HiSo is highly communication-efficient and particularly well-suited for large-scale FL
with high-capacity models. More experiment details are provided in Appendix E.

Figure 7: Communication Overhead Comparison for LLM Fine-Tuning on SST-2 Dataset
In Table E.3, we show the additional experiment results about HiSo’s acceleration on newer LLMs,
including Qwen3-0.6B (Team, 2025b) and Gemma-3-270M (Team, 2025a). For DeComFL, we
report the number of rounds required to fully converge. For HiSo, we report the rounds required to
match DeComFL’s best accuracy, together with the corresponding communication cost. Across all
settings, HiSo consistently requires far fewer communication rounds while maintaining the same
accuracy target. For the Qwen3-0.6B model, HiSo reduces the communication rounds from 2500 to
950 on SST-2 (a 2.6× speedup), from 1050 to 650 on QQP (a 1.6× speedup), and from 375 to 225 on
SQuAD (a 1.7× speedup). This round reduction directly translates into lower communication cost.
The acceleration is equally pronounced on the lighter Gemma-3-270M model. HiSo achieves a 2.1×
speedup on SST-2, 1.4× on QQP, and 2× on SQuAD, again halving the communication cost compared
to DeComFL. Overall, these results demonstrate that HiSo substantially accelerates zeroth-order FL,
achieving 1.4×–2.6× faster convergence while preserving the extremely low communication footprint.
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This validates the key insight of HiSo: leveraging Hessian-informed ZO updates dramatically
improves convergence efficiency while maintaining scalar-only communication.

Table 5: HiSo’s Acceleration. For DeComFL, we report the total number of communication rounds required
to fully converge. For HiSo, we report the number of rounds needed to match DeComFL’s best test accuracy,
along with the corresponding communication cost.

Model Method SST-2 QQP SQuAD
Round Speedup Comm. Cost Round Speedup Comm. Cost Round Speedup Comm. Cost

Qwen3-0.6B DeComFL 2500 1× 83.16 KB 1050 1× 34.93 KB 375 1× 12.47 KB
HiSo 1000 2.5× 33.26 KB 650 1.6× 21.62 KB 225 1.7× 7.48 KB

Gemma-3-270M DeComFL 2125 1× 70.60 KB 850 1× 28.27 KB 900 1× 29.94 KB
HiSo 1025 2.1× 34.05 KB 625 1.4× 20.79 KB 450 2× 14.97 KB

E.4 TIME COST RESULTS

E.4.1 COMPUTATION TIME COST RESULTS

We profiled the actual computation time per round for Hessian-informed preconditioning (Tpre), along
with the total computation time and estimated communication time on H100 GPUs. These results
are presented in the following Table 6. Our profiling shows that the computation time for Hessian-
informed preconditioning is negligible compared to both the overall computation and communication
time. This confirms that HiSo remains scalable to LLMs. This efficiency is expected, as the core
operations involved in our preconditioning step consist of a matrix squaring and matrix summation,
both of which are computationally lightweight and do not scale prohibitively with model size.

In addition, the communication time heavily depends on the network condition and the number of
transmitted scalars. To offer a comprehensive understanding, we provide an estimated communication
time as follows: considering two types of common bandwidth: 100 Mbps (e.g., wifi or 5G) and 1
Gbps (e.g., enterprise LAN / wired campus network). If we run HiSo with 5 perturbations, it is
reasonable to estimate that there are total 10 scalars to be transmitted in uplink and downlink per
round. For transmitting 10 float32 scalars (approximately 1 KB including protocol overhead), the pure
transmission time is about 0.08 ms under 100 Mbps, and 0.008 ms under 1 Gbps bandwidth. Including
typical round-trip network latency, the total communication time per round is approximately 20-30
ms in 100 Mbps environments and 1-2 ms in 1 Gbps settings. This confirms that HiSo’s per-round
preconditioning time (<0.5 ms in our experiments) is negligible compared to communication time.

Table 6: Comparison of Computation Time for Hessian-Informed Preconditioning with Different
LLM Sizes (Using SST-2). Tpre is the preconditioning time per round. Ttotal is the total time per round.
Test is the estimated communication time per round.

Model Size Tpre Ttotal Tpre/Ttotal Test

OPT-125M 0.118 ms 88.4 ms 0.13% 1∼30 ms
OPT-350M 0.137 ms 127.2 ms 0.11% 1∼30 ms
OPT-1.3B 0.185 ms 329.3 ms 0.06% 1∼30 ms
OPT-2.7B 0.259 ms 438.6 ms 0.06% 1∼30 ms

E.4.2 WALL-CLOCK TIME COST

In Table 7, we report the one-round computation time, one-round communication time and total
wall-clock time until convergence of first-order baselines, ZO baseline and our HiSo. We observe
that first-order FedAvg and FedAdam suffer from extremely high wall-clock time due to their
high-dimensional communication overhead that each round requires 228.8 seconds, significantly
dominating the overall runtime. Thus, despite their low per-round computation time, they require
68788 s and 45858 s total wall-clock time respectively.

In contrast, zeroth-order DeComFL significantly reduce communication to only 2.24× 10−6 seconds
per round, achieving a 29× faster overall runtime than FedAdam. However, DeComFL still requires
many more communication rounds to reach the target accuracy, compared to other three methods.
Further, our HiSo achieves the best overall efficiency. Although the per-round computation time is
slightly higher due to Hessian-informed updates, HiSo converges in far fewer rounds compared to
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DeComFL. Hence, HiSo achieves a total wall-clock time of only 1064 seconds, representing a 43×
speedup over FedAdam, 64× speedup over FedAvg, and a 2.2× improvement over DeComFL. This
shows that HiSo not only preserves the ultra-low communication cost of scalar-only communication
but also substantially accelerates convergence (i.e., less training rounds) through its Hessian-informed
optimization design.

Table 7: Wall-Clock Time Cost Comparison (Qwen3-0.6B Model+SST-2 Dataset). We assume a typical
5G network setting with 100 Mbps uplink and 500 Mbps downlink bandwidth without considering latency,
protocol and so on. We tested this on H100 GPUs.

Method One-round Computation Time One-round Communication Time Total Wall-Clock Time

FedAvg 0.43 s 228.8 s 68788 s
FedAdam 0.49 s 228.8 s 45858 s
DeComFL 0.94 s 2.24× 10−6 s 2350 s
HiSo 1.12 s 2.24× 10−6 s 1064 s

E.5 HISO V.S. FL+PEFT BASELINES

Although this paper focuses on full-parameter FL, which differs in setup and assumptions from
PEFT-based approaches, to provide a comprehensive evaluation, we include additional comparisons
with FL+PEFT baselines. As shown in Table 8, HiSo achieves up to 104× communication overhead
reduction while maintaining competitive test accuracy. Among ZO methods, HiSo consistently
demonstrates lower communication overhead, higher test accuracy, and faster convergence.

Table 8: Comparison of HiSo and FL+PEFT Baselines. We report the communication cost of one client.

Model Dataset Methods Test Acc. Comm. Cost

OPT-125M SST-2

FedAvg+LoRA (r=8) 87.47% 0.34 GB
FedSA-LoRA (Guo et al., 2025) (r=8) 87.53% 0.15 GB

FFA-LoRA (Sun et al., 2024) (r=8) 87.39% 0.16 GB
DeComFL+LoRA (Li et al., 2025) (r=8) 85.23% 27.55 KB

HiSo+LoRA (Ours) (r=8) 85.37% 22.26 KB
HiSo (Ours) 85.55% 14.69 KB

E.6 TRAINING LOSS VS ITERATIONS/WALL-CLOCK TIME

Based on the convergence curves in Figure 8, HiSo consistently demonstrates substantially faster
progress than DeComFL in both iterations and wall-clock time. On SST-2 with Qwen-3-0.6B,
DeComFL requires roughly 2500 iterations to converge, while HiSo reaches the same accuracy within
only about 1000 iterations, achieving a 2.5× speedup in optimization rounds. This faster iteration-
level convergence directly translates into end-to-end efficiency: when measuring real execution
time, including communication and computation, HiSo is about 2.1× faster than DeComFL in
reaching the same final accuracy. The accuracy-time and loss-time curves further confirm that HiSo
maintains a steeper descent trajectory throughout training, reducing both the number of updates
and the total runtime needed for convergence. Overall, these results show that HiSo accelerates
federated fine-tuning in both algorithmic efficiency (iterations) and practical efficiency (wall-clock
time), providing significantly faster convergence under the same hardware and network conditions.

E.7 SCENARIOS SUITABLE FOR HISO

HiSo is not designed as a drop-in solution for any FL scenario. Its core characteristics, Zero-Order
(ZO) nature and extreme communication efficiency, make it the best fit for these critical scenarios:

• Gradient Inaccessibility. When true gradients are inaccessible or prohibitively expensive
to compute, zeroth-order (ZO) optimization serves as a natural and effective alternative. In
such black-box settings, where only function evaluations are available, ZO methods enable
optimization without explicit gradient information, thereby extending applicability to a
broad range of tasks where gradient-based approaches are infeasible. As a ZO-FL method,
HiSo is particularly well-suited to this scenario.
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Figure 8: Training Loss vs Iteration and Training Loss vs Wall-Clock Time. (Qwen3-0.6B + SST-2)

• Bandwidth-Constrained Networks. With a communication overhead limited to the kilo-
byte (KB) range, HiSo is ideally suited for FL deployments in environments with limited
bandwidth. This feature guarantees scalability and practicality even when fine-tuning
massive models.

F MAIN PROOF

F.1 NOTATIONS

The following proof utilizes matrix and vector notations. A bold symbol, such as xk, generally
represents a vector encompassing multiple clients, whereas a normal symbol, such as x(i)

k , denotes
the value for an individual client. To further lighten the notation for multiple clients and the local
cost function, we adopt the following usage:

xk =
[
x
(1)
k x

(2)
k · · · x

(M)
k

]
∈ Rd×M , (18)

f(xk) =
[
f1(x

(1)
k ; ξ

(1)
k ) f2(x

(2)
k ; ξ

(1)
k ) · · · fM (x

(M)
k ; ξ

(1)
k )
]
∈ R1×M , (19)

∇f(xk) =
[
∇f1(x

(1)
k ; ξ

(1)
k ) ∇f2(x

(2)
k ; ξ

(1)
k ) · · · ∇fM (x

(M)
k ; ξ

(1)
k )
]
∈ Rd×M . (20)

where ∇f1(x
(1)
k ; ξ

(1)
k ) represent the stochastic gradient evaluated on local cost function f1 at the

point x(1)
k . Notice the function value fi or the gradient ∇fi applied on the different iterates x

(i)
k

in above notations. Various vector and matrix norms are used in the proof. For any semi-positive
definite matrix Σ, we adopt the following convention in Table 9.

Remark: While the Frobenius norm can be viewed as a special case of the weighted matrix norm,
confusion is unlikely in this paper as we only apply the Frobenius norm to the stacked vector x.
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Table 9: Norm Notations in This Paper
Notation Definition Comment

∥x∥2Σ xTΣx Mahalanobis (weighted) vector norm, where x ∈ Rd.
∥A∥2Σ Tr(ATΣA) Mahalanobis (weighted) matrix norm A ∈ Rd×d

∥A∥2, ∥A∥ σmax(A) Spectrum norm, i.e., largest singular value of A
∥x∥2F Tr(xTx) Frobenius norm (note x is matrix here)

Other commonly used constants and symbols are summarized in the following table.

Table 10: Notations in This Paper
Notation Meaning

i Index of clients
k Index of iterations
r Index of communication round and r = ⌊k/τ⌋τ
τ The number of local update steps
Cr Indices set of clients sampled at r-th round
d Model parameter dimension

m,M Number of sampled and total clients
fi, F Local and global loss function
u, z A random vector drawing from the standard

and weighted Gaussian distributions

The all-one vector 1 = [1, 1, · · · , 1]T ∈ RM×1 and the uniform vector 1u = 1/M ∈ RM×1 are two
common notations we adopted in the rest of the proof. With these symbols, we have the following
identity

∇f(x1T)1u = ∇F (x) ∈ Rd×1 (21)

F.2 ALGORITHM REFORMULATION AND MAIN RECURSION

To make a concise proof, we first re-write the algorithm into the vector-matrix form as introduced in
the previous section. First, to make the convergence proof straightforward, we translate the two-level
for-loop structure (outer round loop and inner local update loop) into a single recursion structure. The
k-th local update in r-th communication round is equivalent to the rτ + k iterations. Then, inspired
by the work (Li et al., 2020; Ying et al., 2025), first we notice the Federated Learning algorithm is
equivalent if we virtually send the server’s model to all clients but keep the aggregation step the same,
i.e., only aggregate the clients’ values in Cr. Under this form, we can equivalently reformulate the
algorithm into this recursion

yk+1 =xk − ηH
−1/2
k uk

f(xk + µH
−1/2
k uk1

T)− f(xk)

µ
, (22)

xk+1 =yk+1Wk. (23)
where xk,yk ∈ Rd×M is the stacked vectors and Wk represents the communication matrix. Note the
single subscript k is for the iteration, which is not the same k in the double subscripts for local update
step. The element of Wk[i, j] represents the effective weight that client i to client j at iteration k.
If the iteration k ̸= rτ , Wk = I – local update step. If k = rτ , Wk becomes some average matrix
representing the model average step. More concretely, it is a column-stochastic matrix, each column
having the same weights and the non-zero elements in each column are the sampled clients in round
r. For instance, suppose client {0, 1, 3} sampled in the four clients case, the corresponding Wk are

Wk =


1
3

1
3

1
3

1
3

0 0 0 0
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 (24)
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Back to the update rule (22) – (23), the following proof is for the general update rule of Hk. Hence,
we just need to focus on the property of Hk instead of combining the update rule and revisit it later.
We further denote zk = H

−1/2
k uk, zk ∼ N (0, H−1

k ) to simplify the update rule:

yk+1 =xk − η

µ
zk

(
f(xk + µzk1

T)− f(xk)
)
, (25)

xk+1 =yk+1Wk (26)
Because of the shared seeds and Hessians, zk is a variable that has no client index subscripts. Using
directional gradient approximation

f(x+ µz) = f(x) + µzT∇f(x) +
µ2

2
zT
(∫ 1

0

∇2f(x+ tz)dt

)
z, (27)

the update rule can be concisely written as

yk+1 =xk − ηzkz
T
k∇f(xk) +O(µη), (28)

xk+1 =yk+1Wk, (29)
To manage notational complexity and the handling of intricate coefficients, we adopt the
O(µη) notation. Since this paper concentrates on addressing client sampling and local updates in
federated learning, the analysis of the zeroth-order approximation error is intentionally simplified.
This approach facilitates a clearer understanding of the distinct error sources in the federated setting,
without sacrificing proof rigor.

We define the (virtual) centralized iterates x̄k := xk1u and ȳk := yk1u. The recursion of centralized
iterates x̄k := xk1u is

x̄k+1 =yk+1Wk1u (30)

=
(
xk − ηzkz

T
k∇f(xk)

)
wk +O(µη) (31)

where we define wk := Wk1u. It is straightforward to see that if k ̸= rτ , wk = 1u; if k = rτ , wk

is the random selection vector with each entry having m/M probability to be 1/m and 0 otherwise.
Hence, we have the following two cases to handle with

x̄k+1 =

{
x̄k − ηzkz

T
k∇f(xk) +O(µη) k ̸= rτ,

x̂k − ηzkz
T
k ∇̂f(xk) +O(µη) k = rτ.

(32)

where we denote
x̂k =xkwk, (33)

∇f(xk) =∇f(xk)1u =
1

M

M∑
i=1

∇fi(x
(i)
k ) ∈ Rd×1, (34)

∇̂f(xk) =∇f(xk)wk =
1

m

∑
i∈Cr

∇fi(x
(i)
k ) ∈ Rd×1. (35)

Above two centralized recursions will be the main reference the following proof.

F.3 KEY LEMMAS

F.3.1 LEMMAS ABOUT GAUSSIAN VARIABLES

The rest proof is built on top of the following two fundamental lemmas about the Gaussian distribution.

Lemma 1 (Fourth-Order Moment of Gaussian Vector). Suppose that the random vector z ∼ N (0,Λ)
where Λ is a diagonal matrix. For any symmetric matrix W , we have

E zzTWzzT = Tr(WΛ) · Λ + 2ΛWΛ. (36)
If u ∼ N (0, I), i.e., drawing from a standard Gaussian distribution, we have

EuuTWuuT = Tr(W ) · I + 2W. (37)
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Proof. Let the matrix Ψ = zzTWzzT. For each element i ̸= j,

Ψ[i, j] = E zizj(
∑
i′,j′

zi′zj′W [i′, j′]) = 2E z2i z
2
jW [i, j] = 2ΛiΛjW [i, j], (38)

where the second equality holds because the zero-mean property of z and zi is independent of each
other. For the diagonal elements,

Ψ[i, i] =E z2i (
∑
i′,j;

zi′zj′W [i′, j′]) =
∑
i′

E z2i z
2
i′W [i′, i′]

=
∑
i′ ̸=i

E z2i E z2i′W [i′, i′] + E z4iW [i, i]

=Λi

∑
i′

Λi′W [i′, i′] + 2W [i, i]Λ2
i , (39)

where we utilize the fact that E z4i = 3Λ2
i . Lastly, combining the above two results into a concise

matrix notation, we establish
Ψ = Tr(WΛ) · Λ + 2ΛWΛ (40)

For the standard Gaussian distribution case, we just need to substitute Λ = I into equation 36.

Lemma 2 (Gaussian Smoothed Function). We define a smooth approximation of objective function f
as fµ(·) that can be formulated as

fµ(x) :=
1

(2π)
d
2

∫
f(x+ µu)e−

1
2∥u∥

2

dz = E [f(x+ µ)], (41)

where µ > 0 is the smoothing parameter, and z is one n-dimensional standard Gaussian random
vector. Then, we have

E
f(x+ µu)− f(x)

µ
u = ∇fµ(x), where u ∼ N (0, I) (42)

Above equality implies the ZO gradient is an unbiased estimate of the gradient of the smoothed
function fµ.

Proof. See the proof in (Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2017).

F.3.2 VARIANCE LEMMA FOR SAMPLING NOISE

Before we present the main proof, we first bound the variance of ∇̂f(xk).

Lemma 3. Suppose fi is L-smooth and the local cost functions satisfy the data heterogeneity
assumption σ2

G. For any semi-positive definite matrix Σ, the variance of the sampled gradient
∇̂f(xk) satisfies:

E∥∇̂f(xk)∥2Σ ≤2∥∇F (x̄k)∥2Σ +
2

m
∥Σ∥(σ2

G + σ2
s) +

2L2

M
∥Σ∥∥xk − x̄k1

T∥2F , (43)

where m is the number of sampled clients per round and M is the total number of clients.

Proof. For any semi-positive matrix Σ, we have

E∥∇̂f(xk)∥2Σ ≤2E∥∇̂f(x̄k1
T)∥2Σ + 2E∥∇̂f(xk)− ∇̂f(x̄k1

T)∥2Σ (44)
where the inequality utilizes Jensen’s inequality.

Next, noticing that the variance identity for any weighted distance ∥ · ∥Σ satisfies

E∥x̄k − E x̄k∥2Σ =E∥x̄k∥2Σ − E (x̄T
kΣE x̄k)− E (E x̄T

k )Σx̄k + ∥E x̄k∥2Σ
=E∥x̄k∥2Σ − ∥E x̄k∥2Σ (45)

Combining with the fact that Ewk
∇̂f(x̄k1

T) = ∇F (x̄k), we establish

E∥∇̂f(x̄k1
T)∥2Σ = E∥∇̂f(x̄k1

T)−∇F (x̄k)∥2Σ + ∥∇F (x̄k)∥2Σ (46)
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The first term in the above equality can be further bounded through the data heterogeneity assumption
that

E∥∇̂f(x̄k1
T)−∇F (x̄k)∥2Σ =

1

m2
E
∥∥ ∑

i∈Cr

(
∇fi(x̄k; ξk)−∇F (x̄k)

)∥∥2
Σ

=
1

mM

M∑
i=1

∥∇fi(x̄k; ξk)−∇F (x̄k)
∥∥2
Σ

≤ 1

m
∥Σ∥(σ2

G + σ2
s) (47)

where the second equality holds since the zero-mean property. Substituting the above results back to
equation 44, we arrive

E∥∇̂f(xk)∥2Σ ≤2∥∇F (x̄k)∥2Σ +
2

m
∥Σ∥(σ2

G + σ2
s) + 2E∥∇̂f(xk)− ∇̂f(x̄k1

T)∥2Σ

≤2∥∇F (x̄k)∥2Σ +
2

m
∥Σ∥(σ2

G + σ2
s) + 2L2∥Σ∥∥xk − x̄k1

T∥2F /M (48)

where we applied the L− Lipschitz condition and Jensen’s inequality in the last step.

F.4 DESCENT LEMMA

Lemma 4. When η ≤
{

βℓ

mL ,
1

8ρk

}
, the virtual centralized iterates x̄k of one round satisfy

EF (x̄(r+1)τ+1) ≤EF (x̄rτ+1)−
η

4

(r+1)τ∑
j=rτ+1

∥∇F (x̄j)∥2H−1
r

+O(η2µ)

+
4τη2

βℓm

(r+1)τ∑
j=rτ+1

ρk(σ
2
G + σ2

s) +
2L

mM

(r+1)τ∑
j=rτ+1

∥xj − x̄j1
T∥2F (49)

where ρk = Tr(H
−1/2
k ΣkH

−1/2
k ) + 2∥H−1/2

k ΣkH
−1/2
k ∥.

Proof. Recall there are two random variables in the main recursion Eq. (32), one is the ZO random
direction zk and the other is the client sampling vector wk. First, taking the conditional expectation
over wk, we have

Ewk
x̄k+1 = x̄k − ηzkz

T
k∇f(xk) +O(ηµ) (50)

for any iteration k. Then, taking conditional expectation over zk, we have

E x̄k+1 =x̄k − ηH−1
k ∇f(xk) +O(ηµ) (51)

As a result of Assumption 1, there is a semi-positive definite matrix Σy ⪯ L · Id such that the global
loss function satisfies

F (x) ≤ F (y) + ⟨∇F (y), x− y⟩+ 1

2
(x− y)TΣy(x− y). (52)

Hence, we have

F (x̄k+1) ≤ F (x̄k) + ⟨∇F (x̄k), x̄k+1 − x̄k⟩+
1

2
(x̄k+1 − x̄k)

TΣk(x̄k+1 − x̄k) (53)

Now, substituting Eq. (32) into the above expansion and taking the conditional expectation, we will
establish the following two cases.

Local Update Iteration:

When the iteration k is not the communication iteration, i.e. k ̸= rτ , we have
EF (x̄k+1) ≤F (x̄k)− η∇f(xk)

TH−1
k ∇F (x̄k) +O(η2µ)

+ η2E [∇̂f(xk)
Tzkz

T
kΣkzkz

T
k ∇̂f(xk)] (54)

First, we focus on the cross term
−∇f(xk)

TH−1
k ∇F (x̄k) =−∇F (x̄k)

TH−1
k ∇F (x̄k) + (∇F (x̄k)−∇f(xk))

TH−1
k ∇F (x̄k)

≤− ∥∇F (x̄k)∥2H−1
k

+
1

2
∥∇F (x̄k)∥2H−1

k

+
1

2
∥∇F (x̄k)−∇f(xk)∥2H−1

k
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=− 1

2
∥∇F (x̄k)∥2H−1

k

+
1

2
∥∇F (x̄k)−∇f(xk)∥2H−1

k

(55)

Because of Assumption 4, we have β−1
u ≤ ∥H−1

k ∥ ≤ β−1
ℓ , which implies

1

2
∥∇F (x̄k)−∇f(xk)∥2H−1

k

≤ 1

2βℓ
∥∇F (x̄k)−∇f(xk)∥2

≤ 1

2βℓN

M∑
i=1

∥∇fi(x̄k)−∇fi(x
(i)
k )∥2

=
L2

2βℓN
∥xk − x̄k1

T∥2F (56)

Substituting back, we have

EF (x̄k+1) ≤F (x̄k)−
η

2
∥∇F (x̄k)∥2H−1

k

+
ηL2

2βℓN
∥xk − x̄k1

T∥2F

+ η2 E [∇̂f(xk)
Tzkz

T
kΣkzkz

T
k ∇̂f(xk)]︸ ︷︷ ︸

:=Q

(57)

Next, the key is this quadratic term. Leveraging Lemma 1, we establish

Q =Ewk

(
∇̂f(xk)

T
(
Tr(ΣkH

−1
k )H−1

k + 2H−1
k ΣkH

−1
k

)
∇̂f(xk)

)
≤(Tr(ΣkH

−1
k ) + 2∥H−1/2ΣkH

−1/2∥)Ewk
∥∇̂f(xk)∥2H−1

k

(58)

where we utilize the following inequality in the last step

∥x∥2
H−1

k ΣkH
−1
k

= Tr(H
−1/2
k xxTH

−1/2
k H

−1/2
k ΣkH

−1/2
k ) ≤ ∥H−1/2

k ΣkH
−1/2
k ∥∥x∥2

H−1
k

.

For simplicity, we introduce the matrix Ξk = H
−1/2
k ΣkH

−1/2
k . Plugging the previous sampling

noise variance result (48), we establish

Q ≤ (Tr(Ξk) + 2∥Ξk∥)
(
2∥∇F (x̄k)∥2H−1

k

+
2

βℓm
(σ2

G + σ2
s) +

2L2

βℓM
∥xk − x̄k1

T∥2F /M
)

(59)

This Tr(Ξk) + 2∥Ξk∥ is the key quantity that we will encounter repeatedly. To further reduce the
notation, we denote ρk = Tr(Ξk) + 2∥Ξk∥ Combining all the above results, we have

EF (x̄k+1) ≤F (x̄k)−
(η
2
− 2η2ρk

)
∥∇F (x̄k)∥2H−1

k

+O(η2µ)

+
( ηL2

2βℓM
+

2η2L2ρk
βℓM

)
∥xk − x̄k1

T∥2F +
2η2ρk
βℓm

(σ2
G + σ2

s) (60)

When η ≤ 1
4ρk

, the coefficients can be simplified into

EF (x̄k+1) ≤F (x̄k)−
η

4
∥∇F (x̄k)∥2H−1

k

+O(η2µ)

+
ηL2

βℓM
∥xk − x̄k1

T∥2F +
2η2ρk
βℓm

(σ2
G + σ2

s) (61)

Communication Iteration:

When the iteration k is the communication iteration, i.e. k ̸= rτ , we have
EF (x̄k+1) ≤F (x̄k)− η∇f(xk)

TH−1
k ∇F (x̄k) +O(η2µ)

+ E
(
x̂k − x̄k − ηηzkz

T
k ∇̂f(xk)

)T
Σk

(
x̂k − x̄k − ηηzkz

T
k ∇̂f(xk)

)
≤F (x̄k)− η∇f(xk)

TH−1
k ∇F (x̄k) +O(η2µ)

+ 2E (x̂k − x̄k)
T
Σk (x̂k − x̄k) + 2η2E [∇̂f(xk)

Tzkz
T
kΣkzkz

T
k ∇̂f(xk)] (62)

Next, we notice that

E (x̂k − x̄k)
T
Σk (x̂k − x̄k) ≤LE∥x̂k − x̄k∥2 =

L

mM
∥xk − x̄k1

T∥2F (63)
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Utilizing previously established result Eq. (60), we have

EF (x̄k+1) ≤F (x̄k)−
(η
2
− 4η2ρk

)
∥∇F (x̄k)∥2H−1

k

+O(η2µ)

+
( L
m

+
ηL2

2βℓ
+

4η2L2

βℓM
ρk

)
∥xk − x̄k1

T∥2F +
4η2ρk
βℓm

(σ2
G + σ2

s) (64)

When η ≤ 1
8ρk

, the coefficients can be simplified into

EF (x̄k+1) ≤F (x̄k)−
η

4
∥∇F (x̄k)∥2H−1

k

+O(η2µ)

+
( L

mM
+

ηL2

βℓM

)
∥xk − x̄k1

T∥2F +
4η2ρk
βum

(σ2
G + σ2

s) (65)

We further require the learning rate η ≤ βℓ

mL to establish

EF (x̄k+1) ≤F (x̄k)−
η

4
∥∇F (x̄k)∥2H−1

k

+O(η2µ)

+
2L

mM
∥xk − x̄k1

T∥2F +
4η2ρk
βℓm

(σ2
G + σ2

s) (66)

Combining Two into One Round:

Combining the above two results and iterating from k = rτ + 1 to k = (r + 1)τ , we establish

EF (x̄(r+1)τ+1) ≤EF (x̄rτ+1)−
η

4

(r+1)τ∑
j=rτ+1

∥∇F (x̄j)∥2H−1
r

+O(η2µ)

+
4τη2ρk
βℓm

(σ2
G + σ2

s) +
2L

mM

(r+1)τ∑
j=rτ+1

∥xj − x̄j1
T∥2F , (67)

where we can absorb the coefficients on the consensus term ∥xj − x̄j1
T∥2F into 2L/mM since above

we already require the learning rate η ≤ βℓ

mL . Also, we replace Hk by Hr since it is not updated
within one communication round.

F.5 CONSENSUS LEMMA

Lemma 5. When η ≤ βℓ

4(τ−1)

√
1

L(d+2) , the sum of the consensus error of one round is bounded by
the following term

1

τ

(r+1)τ∑
k=rτ+1

E∥xk − x̄k1
T∥2F ≤ 4η2(τ − 1)2Mβ−1

ℓ ∥Φr∥(σ2
G + σ2

s) +O(η2µ2) (68)

where Φr := Tr(H−1
r ) + 2H−1

r .

Proof. The consensus residual is defined as
∥xk+1 − x̄k+11

T∥2F = ∥xk − x̄k1
T − η(zkz

T
k∇f(xk)− zkz

T
k∇f(xk)1u1

T) +O(ηµ)∥2F (69)
If k = rτ , all clients have the same value. Hence, we can expand the difference xk − x̄k1

T up to
k = rτ and arrive at

∥xk+1 − x̄k+11
T∥2F

=

∥∥∥∥∥∥η
k∑

j=rτ+1

(
zjz

T
j ∇f(xj)− zjz

T
j ∇f(xj)1u1

T
)
+O(ηµ)

∥∥∥∥∥∥
2

F

≤(τ − 1)

k∑
j=rτ+1

η2∥zjzTj ∇f(xj)− zjz
T
j ∇f(xj)1u1

T∥2F +O(η2µ2), (70)

where we utilize Jensen’s inequality in the above step. Next, we focus on the term in the summation

∥zjzTj ∇f(xj)− zjz
T
j ∇f(xj)1u1

T∥2F
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≤4∥zjzTj ∇f(xj)− zjz
T
j ∇f(x̄j1

T)∥2F + 2∥zjzTj ∇f(x̄j1
T)− zjz

T
j ∇F (x̄j1

T)1T∥2F
+ 4∥zjzTj ∇f(x̄j1

T)1u1
T − zjz

T
j ∇f(xj)1u1

T∥2F
≤8∥zjzTj ∇f(xj)− zjz

T
j ∇f(x̄j1

T)∥2F + 2∥zjzTj ∇f(x̄j1
T)− zjz

T
j ∇F (x̄j1

T)1T∥2F (71)

where we utilize the identity that ∇F (x̄j1
T) = ∇f(x̄j1

T)1u. Recall that

E zjz
T
j zjz

T
j = Tr(H−1

r )H−1
r + 2H−2

r := ΦrH
−1
r (72)

where r is the corresponding round for the iteration j. Notice ∥Φr∥ ≤ (d + 2)/βℓ, which is not a
tight bound though. Hence, taking the expectation with respect to zj , we establish

E∥xk+1 − x̄k+11
T∥2F

≤8η2(τ − 1)

k∑
j=rτ+1

∥∇f(xj)−∇f(x̄j1
T)∥2

ΦrH
−1
r

+ 2η2(τ − 1)

k∑
j=rτ+1

∥∇f(x̄j1
T)−∇F (x̄j1

T)1T∥2
ΦrH

−1
r

+O(η2µ2)

≤8η2(τ − 1)Lβ−1
ℓ ∥Φr∥

k∑
j=rτ+1

∥xj − x̄j1
T∥2F + 2η2(τ − 1)2Mβ−1

ℓ ∥Φr∥(σ2
G + σ2

s) +O(η2µ2)

(73)

Lastly, we just need to take another summation over k from rτ to (r + 1)τ − 2. Recall that
∥xrτ+1 − x̄rτ+11

T∥2F = 0. After rearranging and utilizing the fact that
∑(r+1)τ−2

k=rτ

∑k
j=rτ+1 aj ≤

(τ − 1)
∑(r+1)τ

k=rτ+1 ak for any nonnegative value ak, we have

(
1− 8η2(τ − 1)2Lβ−1

ℓ ∥Φr∥
) 1
τ

(r+1)τ∑
k=rτ+1

∥E∥xk − x̄k1
T∥2F

≤ 2η2(τ − 1)2Mβ−1
ℓ ∥Φr∥(σ2

G + σ2
s) +O(η2µ2) (74)

After restricting η to force 1− 8η2(τ − 1)2Lβ−1
ℓ ∥Φr∥ < 1/2, we establish this lemma.

A special case is local update step τ = 1. In this case, we do not need any consensus error since the
models are all synchronized. We can simply discard the term E∥xk − x̄k1

T∥2F in the descent lemma.

F.6 CONVERGENCE ANALYSIS OF THEOREM 1

F.6.1 CONVERGENCE PROOF OF THEOREM 1

Proof: We are now ready to present the convergence theorem, which simply combines the consensus
lemma and the descent lemma above then taking the double exepection.

E [F (x̄(r+1)τ+1)] ≤E [F (x̄rτ+1)]−
η

4

(r+1)τ−1∑
j=rτ

E∥∇F (x̄j)∥2H−1
r

+O(η2µ)

+
4τη2ρk
βℓm

(σ2
G + σ2

s) +
8η2(τ − 1)2L

τm

(r+1)τ−1∑
j=rτ

∥Φr∥(σ2
G + σ2

s) (75)

Expanding the summations and re-arranging terms, we obtain

1

τR

τR∑
j=1

E∥∇F (x̄j)∥2H−1
r

≤4(F (x̄1)− F ⋆)

ητR
+

16ηρ̄

βℓm
(σ2

G + σ2
s) +

32η(τ − 1)2Lϕ̄

βℓτm
(σ2

G + σ2
s)

+O(ηµ), (76)
where

ρ̄ =
1

K

K∑
k=0

ρk =
1

K

K∑
k=0

(Tr(Ξk) + 2∥Ξk∥) (77)
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=
1

K

K∑
k=0

(Tr(H
−1/2
k ΣkH

−1/2
k ) + 2∥H−1/2

k ΣkH
−1/2
k ∥) (78)

ϕ̄ =
1

R

∑
r

∥Φr∥ =
1

R

∑
r

(Tr(H−1
r ) + 2∥H−1

r ∥) (79)

Combining all learning rate requirements, we have

η ≤ min

(
βℓ

mL
,

1

8ρk
,

βℓ

4(τ − 1)

√
1

L(d+ 2)

)
(80)

Lastly, translating the above result back to the two-level k and r indexing, we establish Theorem 1.

F.6.2 CONVERGENCE RATE

To establish the convergence rate, we distinguish two scenarios – the local update τ = 1 and the local
update τ > 1. When τ = 1, the rate becomes much simpler

1

R

R−1∑
r=0

E∥∇F (x̄r,0)∥2H−1
r

≤ 4(F (x̄1)− F ⋆)

ηR
+

16ηρ̄

βℓm
(σ2

G + σ2
s) +O(ηµ), (81)

When the communication round R is sufficiently large and the ZO smoothing parameter µ is suffi-

ciently small, we choose the learning rate η =
√

mβℓ

ρ̄R , which leads to the following rate:

1

R

R−1∑
r=0

E∥∇F (x̄r,0)∥2H−1
r

= O

(√
ρ̄

mR

)
(82)

Based on the Table 1, we can establish the following four rates based on the conditions:

1. Hr is a well-approximated one with L-smoothness assumption, then the rate is O
(√

d
mR

)
.

2. Hr is a well-approximated one with low effective rank, then the rate is O
(√

ζ
mR

)
.

3. DeComFL Case: No Hessian information is learned, i.e., Hk ≡ I , with L-smoothness

assumption, then the rate is O
(√

Ld
mR

)
.

4. DeComFL Case: No Hessian information is learned, i.e., Hk ≡ I , with low effective rank,
then the rate is O

(√
Lκ
mR

)
.

For the local update τ > 1 case, we choose the learning rate η = min
(√

mβℓ

τρ̄R ,
√

mβℓ

τϕ̄R

)
. Then we

obtain the following rate

1

τR

R−1∑
r=0

τ−1∑
k=0

E∥∇F (x̄r,k)∥2H−1
r

= O

(√
ρ̄

τmR

)
︸ ︷︷ ︸
descent residue

+ O

(√
τ ϕ̄

mR

)
︸ ︷︷ ︸
consensus residue

(83)

where the second extra term comes from the client model diverging in the local update steps.

Similarly, we can establish the four rates based on the assumption. Here we focus on the low effective
rank case since it reveals the difference between DeComFL and HiSo.

When Hr ≡ I , we have ϕ̄ = d + 2 and ρ̄ ≤ Lκ. Therefore, we establish the following rate for
DeComFL rate:

O

(√
Lκ

τmR

)
+O

(√
τd

mR

)
(84)

Here we can see that even if ρ̄ can be tighter bounded by low-effective rank, the convergence rate still
depends on d.
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In contrast, if Hr well-approximates the Hessian Σ with the low effective rank, we establish the
convergence rate for HiSo is

O

(√
ζ

τmR

)
+O

(√
τκ

mR

)
(85)

Now, if we compare Eq. (84) with Eq. (85), we can tell that HiSo is still capable of being independent
of Lipschitz L and model dimension d; meanwhile, DeComFL cannot. This probably explains why
the original paper (Li et al., 2025) cannot provide the proof for the dimension-free rate with τ > 1.
Of course, Eq. (84) is just an upper bound for the worst-case scenario. The practical performance
may not be pessimistic as the bound indicates.

F.7 MORE WELL-APPROXIMATION OF HESSIAN MATRIX ANALYSIS AND EXPERIMENTS

F.7.1 THEORETICAL ANALYSIS WHEN WELL-APPROXIMATION DOES NOT HOLD
As mentioned in the main context, whether this approximation holds in the context of LLMs is
difficult to assess. To understand the impact of the approximation of the Hessian, we refer back to the
key quantity in Theorem 1.

ρ̄ =
1

τR

∑
r

∑
k

(Tr(H−1/2
r Σr,kH

−1/2
r ) + 2∥H−1/2

r Σr,kH
−1/2
r ∥) (86)

This is the dominant and distinguished term compared with other zeroth-order methods. Among
these two terms in the double summation, Tr(H

−1/2
r Σr,kH

−1/2
r ) is usually much larger than

∥H−1/2
r Σr,kH

−1/2
r ∥. Hence, we can just focus on the former term only. Because both Σr,k and Hr

are positive semi-definite matrices, we know
d∑

j=1

λj(Σr,k)/λk(Hr) ≤ Tr(H−1/2
r Σr,kH

−1/2
r ) ≤

d∑
j=1

λj(Σr,k)/λ−k(Hr) (87)

where the notation λj(·) denotes the j-th eigenvalue of a matrix, ranked in descending order (from
largest to smallest), and λ−j(·) represents the eigenvalues in ascending (reverse) order.

At the early stage Hr ≈ I , then Tr(H
−1/2
r Σr,kH

−1/2
r ) ≈ Tr(Σr,k), equivalent to the no learning of

Hessian. This can be thought as the baseline. Now, suppose we unfortunately learn a poor Hessian
approximation that amplifies the largest eigenvalues of the Hessian while shrinking the smallest
ones. In this case, we will obtain a larger ρr,k than Tr(Σr,k), resulting in a worse outcome than the
baseline that does not apply Hessian information. However, this case is unlikely to be stable, since
Hr will gradually improve its approximation of Σr,k to some degree. Most commonly, the value of
ρr,k should lie between the bounds of equation 87. Hr will not have the perfect same eigenspace
as Σr,k). But as long as the largest few eigenvalues of Σr,k) are divided by correspondingly large
values from Hr, the total sum should be smaller than Tr(Σr,k). This is highly probable due to the
long-tail distribution of the Hessian’s eigenvalues.

Lastly, notice ρ̄ has an O(1/R) decay rate, governing how quickly old values are forgotten. It is
common for the estimation to be inaccurate at the beginning, but it eventually converges to a stable
value. This O(1/R) rate matches the algorithm’s convergence rate. Hence, as long as the Hessian
approximation converges no slower than O(1/R), any early, inaccurate estimates will not negatively
impact the final rate.

F.7.2 ESTIMATE THE IMPACT OF MEANINGFUL HESSIAN APPROXIMATION

In Figure 5, we demonstrated that the final performance is relatively insensitive to the choice of ν,
provided that ν remains close to 1. This is because high values of ν ensure sufficient smoothing of
the Hessian estimate. To further investigate the sensitivity, we conducted additional experiments
using the same setup but with significantly smaller values of ν (e.g., ν < 0.5). In this regime, the
estimator effectively utilizes only the most recent 1-2 rounds of zeroth-order information, resulting in
a high-variance and uninformative Hessian approximation. The results, shown in Figure 9, reveal
that performance deteriorates as ν decreases, confirming that a well-accumulated Hessian estimate
is crucial for acceleration. Importantly, while a poor Hessian approximation degrades performance,
the algorithm still converges to a reasonable solution. Since the preconditioner H remains a positive
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Figure 9: Impact of smoothing parameter ν when ν is way smaller than 0.9. The gray area indicates
the final performance of HiSo when ν is chosen in [0.9, 0.99] range. We can view the ν = 0.1 case
does not learn a good Hessian approximate, hence the gap between the curves indicates improvement
of good Hessian approximation.

definite diagonal matrix, the "worst-case" scenario resembles a poorly scaled first-order method rather
than a catastrophic failure. Conversely, these results validate that when the Hessian is well-learned
(high ν), it provides meaningful acceleration.

F.7.3 HESSIAN APPROXIMATION EVALUATION IN RANDOM SUBSPACES

While exact computation for the full model is prohibitive, we can rigorously analyze the exact Hessian
within restricted subspaces. To do so, we randomly sampled 1000 parameters to compute the exact
1000× 1000 Hessian matrix Σ̂. We then projected the learned Hessian H from HiSo into this same
subspace to obtain Ĥ .

The eigenvalue correlation between Σ̂ and Ĥ is modest (7-20%, which we consider a reasonable value
for diagonal approximations). But when we evaluate the quantity E∥û∥Σ̂ discussed in Table 1, we
observe much better improvements. The whitened Hessian eigenvalues are significantly smaller than
the dimension d and lower than the low effective rank estimation in that subspace. Specifically, we
observe ζ̂ ∼ 150, the estimated L̂κ ∼ 250, and L̂d ∼ 5000. Compared to the ideal synthetic result
in figure 4, it is reasonable to expect that the improvement is not significant. But this improvement
is more or less consistent with our LLM experiment in Figure 7. We repeated this process across
multiple sampled subspaces; the boxplot in the left one Figure 10 confirms the consistency of this
observation.

Finally, we acknowledge that subspace Hessian eigenvalues are not unbiased estimators of the full
Hessian. To mitigate this gap, we plotted the estimated quantities across varying subspace dimensions
(the right one in Figure 10). As expected, the worst-case Lipschitz estimation Ld increases rapidly
with dimension, whereas the whitening metric remains robust and insensitive to changes in dimension.

G MULTI-PERTURBATION VERSION

Following our detailed examination of ZO-gradient variance, it is evident that reducing this variance
is crucial for enhancing the performance of ZO-based methods. In this context, multi-perturbation
sampling in ZO-SGD can be viewed as analogous to mini-batching in standard SGD, where
multiple samples are used to improve the quality of the gradient estimate.
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Figure 10: Estimation of E∥z∥2Σ upper bounds in a restricted subspace. We randomly sampled 1,000
parameter indices from the final trained model in Figure 5 to extract the exact subspace Hessian and
the corresponding learned diagonal Hessian H . The plotted quantities correspond to the four upper
bounds listed in Table 1: "Sub. Dim." (2d), "Lipschitz" (Ld, estimated via the largest eigenvalue of
the subspace Hessian), "Low Eff. Rank" (Lκ), and "Whitening" (ζ). The left boxplot figure reports
the values estimated across 10 independently sampled subspaces. The right figure illustrates how
these quantities vary as the dimension of the sampled subspace increases.

In terms of HiSo, the multi-perturbation version is simply replacing the finding ∆x
(i)
r,k step by the

following:

for p = 0, 1 · · · , P − 1 :

ur,k,p ∼ N (0, I)

g
(i)
r,k,p =

1

µ
[fi(x

(i)
r,k + µH−1/2

r ur,k,p)− fi(x
(i)
r,k)]

∆x
(i)
r,k = H−1/2

r

1

P

P−1∑
p=0

g
(i)
r,k,pur,k,p

(88)

Notice for the multi-perturbation version, we need to transmit P random seeds to generate p random
vector ur,k,p. Moreover, P local gradient scalars g(i)r,k,p are required to be communicated as well.

At the server side, the aggregation step now is required to average P values separately:

∆xr,k =
1

τ |Cr|
∑
i∈Cr

τ−1∑
k=0

∆x
(i)
r,k =

1

τ

τ−1∑
k=0

[
1

P

P−1∑
p=0

(
1

|Cr|
∑
i∈Cr

g
(i)
r,k,p

)
︸ ︷︷ ︸

:=gr,k,p

H−1/2
r ur,k,p

]
(89)

Notice we can switch the order of summation in above equations because ur,k,p is common among
all clients. This aggregated gradient scalar gr,k,p stands for the r-th round, k-th local update, and p-th
perturbation. P gradient scalars together with P random seeds are sufficient to reconstruct the global
∆xr,k. For the reconstruction step, everything is the same.

G.1 PERFORMANCE ANALYSIS

Theorem 2 (Multi-Perturbation Version). Under Assumptions 1, 2, 3 and 4, if η ≤
min

(
βℓ

mL ,
1

8ρk,P
, βℓ

4(τ−1)

√
1

L(d+2)

)
, the sequence of iterates generated by HiSo with P pertur-

bations satisfies:

1

τR

R−1∑
r=0

τ−1∑
k=0

E∥∇F (x̄r,k)∥2H−1
r

≤4(F (x̄1)− F ⋆)

ητR
+

32η(τ − 1)2Lϕ̄P

βℓτm
(σ2

G + σ2
s)︸ ︷︷ ︸

extra client drift term

+
16ηρ̄P
βℓm

(σ2
G + σ2

s)

+O(ηµ), (90)
where

ρ̄P =
1

τR

∑
r

∑
k

(
1

P
Tr(H−1/2

r Σr,kH
−1/2
r ) + (

1

P
+ 1)∥H−1/2

r Σr,kH
−1/2
r ∥

)
(91)
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ϕ̄P =
1

R

∑
r

(
1

P
Tr(H−1

r ) + (
1

P
+ 1)∥H−1

r ∥
)

(92)

and the rest of the quantities are the same as Theorem 1.

Proof: In this case, the algorithm formulation can be written as

yk+1 =xk − η
1

P

P∑
p=1

zk,pz
T
k,p∇f(xk; ξk) +O(µη), (93)

xk+1 =yk+1Wk, (94)
Notice there are three sources of the randomness – random direction z, gradient noise coming from
ξkm and the sampling randomness Wk. They are independent of each other, so we can treat them one
by one separately. It is straightforward to verify that the mean is unchanged

E
1

P

P∑
p=1

zk,pz
T
k,p∇f(xk; ξk) = H−1

k ∇f(xk) (95)

Next, noting {zk,p}p is independent and identically distributed, utilizing lemma 1 we establish

1

P 2

P∑
p′=1

P∑
p=1

E zk,pz
T
k,pΣkzk,p′zTk,p′

=
P 2 − P

P 2
H−1

k ΣkH
−1
k +

1

P 2

P∑
p=1

E zk,pz
T
k,pΣkzk,pz

T
k,p

=
P − 1

P
H−1

k ΣkH
−1
k +

1

P
(Tr(ΣkH

−1
k )H−1

k + 2H−1
k ΣkH

−1
k )

=
1

P
Tr(ΣkH

−1
k )H−1

k +

(
1

P
+ 1

)
H−1

k ΣkH
−1
k (96)

Recall that this quantity ρk of the single perturbation case is

ρk = Tr(H
−1/2
k ΣkH

−1/2
k ) + 2∥H−1/2

k ΣkH
−1/2
k ∥2

The multi-perturbation version one will become

ρk,P =
1

P
Tr(H

−1/2
k ΣkH

−1/2
k ) +

(
1

P
+ 1

)
∥H−1/2

k ΣkH
−1/2
k ∥2 ≈ 1

P
ρk

Recall that the first term in ρk is typically much bigger than the second one. Hence, ρk,P ≈ ρk/P as
we expect that multi-perturbation will decrease the variance of the random search direction.

Besides, it is a similar case applied to quantity:

1

P 2

P∑
p′=1

P∑
p=1

E zk,pz
T
k,pzk,p′zk,p′ =

1

P
Tr(H−1

k )H−1
k +

(
1

P
+ 1

)
H−1

k H−1
k (97)

So that the multi-perturbation version of ϕr,P will become

ϕr,P =
1

P
Tr(H−1

r ) +

(
1

P
+ 1

)
∥H−1

r ∥2 ≈ 1

P
ϕr

Notice we just need to update the Eq. (58) with the result of Eq. (96). After some calculations and
simplification, we establish the result of Theorem 2.

G.2 CONVERGENCE RATE

Notice the relationship ρk,P ≈ ρk/P , we can immediately establish that for τ = 1 the convergence

rate of HiSo is O
(√

ρ̄P

mR

)
. Further, under the well-approximated Hessian assumption, we can

establish the dimension-free rate

1

R

R−1∑
r=0

∥∇F (x̄r,0)∥2H−1
r

= O

(√
ζ

mPR

)
(98)
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When τ > 1, we have O
(√

ρ̄
τmR

)
+O

(√
τϕ̄
mR

)
. Further, under the well-approximated Hessian

assumption, we can establish the dimension-free rate

1

τR

R−1∑
r=0

τ−1∑
k=0

∥∇F (x̄r,k)∥2H−1
r

= O

(√
ζ

τmPR

)
+O

(√
τκ

mPR

)
(99)

33


	Introduction
	Related Work
	A Generalized Scalar-Only Communication in FL Framework
	Zeroth-Order SGD and Scalar Representations
	Federated Learning with Dimension-Free Communication
	Generalized Scalar-Only Communication in Federated Learning

	Hessian-informed Scalar-only Communication in FL (HiSo)
	Find a Better Ascent x(i)r,k Direction
	Learning Global Curvature without Extra Communication Cost
	Putting Together to Establish the Design of HiSo

	Performance Analysis
	Hessian, Variance of ZO Gradient, and Low Effective Rank Assumption
	Convergence Results 

	Experiments
	Statement of LLM Usage
	Conclusion and Limitations
	Comparison of Related Works
	Detailed HiSo Algorithm Table
	Extra Analysis, Discussion, Experiment Detail and Results
	Baseline Selection
	Memory Cost Results
	Communication Cost and Training Acceleration Results
	Time Cost Results
	Computation Time Cost Results
	Wall-Clock Time Cost

	HiSo v.s. FL+PEFT Baselines
	Training Loss vs Iterations/Wall-Clock Time
	Scenarios Suitable for HiSo

	Main Proof
	Notations
	Algorithm Reformulation and Main Recursion
	Key Lemmas
	Lemmas about Gaussian Variables
	Variance Lemma for Sampling Noise

	Descent Lemma
	Consensus Lemma
	Convergence Analysis of Theorem 1
	Convergence Proof of Theorem 1
	Convergence Rate

	blue More Well-approximation of Hessian Matrix Analysis and Experiments
	 Theoretical Analysis When Well-approximation Does not Hold
	Estimate the impact of meaningful Hessian Approximation
	Hessian Approximation Evaluation in Random Subspaces


	Multi-Perturbation Version
	Performance Analysis
	Convergence Rate


