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ABSTRACT

In this work, we propose a self-supervised contrastive learning method that inte-
grates the concept of set-based feature learning. The main idea of our method is
to randomly construct sets of instances in a mini-batch and then learn to contrast
the set representations. Inspired by set-based feature learning, we aggregate set
features from individual sample features by a symmetric function. To improve the
effectiveness of our set-based contrastive learning, we propose a set construction
scheme built upon sample permutation in a mini-batch that allows a sample to
appear in multiple sets, which naturally ensures common features among sets by
construction, thus, generating hard negative samples. Our set construction scheme
also increases both the number of positive and negative sets in a mini-batch, leading
to better representation learning. We demonstrate the robustness of our method by
seamlessly integrating it into existing contrastive learning methods such as Sim-
CLR and MoCo. Extensive experiments demonstrate that our method consistently
improves the performance of these contrastive learning methods in various datasets
and downstream tasks.

1 INTRODUCTION

Learning effective representations from data has been a long-standing challenge in machine learning
over the past decades. A prominent direction to address this problem is self-supervised learning
(SSL), which aims to learn the representations without the need of human supervision. Contrastive
learning (Jing & Tian, 2021; Le-Khac et al., 2020) is a modern powerful approach in self-supervised
learning that learns a representation based on the idea of attracting and repelling features, i.e., data
samples with similar semantics are expected to be close to each other in the feature space while
dissimilar samples are expected to stay apart.

A dominant pretext task for contrastive learning is instance discrimination where each instance
is an original data sample represented by a feature vector. Given an instance, positive samples
can be defined as different views of the same instance generated by applying data augmentation
to the instance such as cropping and flipping (Ye et al., 2019; Chen et al., 2020a), luminance and
chrominance decomposition (Tian et al., 2020a). On the other hand, negative samples are defined as
remaining samples such as other samples in the same mini-batch (Ye et al., 2019; Chen et al., 2020a)
or they can be generated through memory banks (He et al., 2020; Wu et al., 2018). By distinguishing
positive samples from negative samples, effective representations can be learned through such self-
supervision. Remarkably, recent progresses demonstrate that self-supervised representations can even
surpass the performance of supervised counterparts in computer vision downstream tasks (Henaff,
2020; He et al., 2020).

A limitation of instance discrimination is that this pretext task can be optimized by simply learning
low-level features of the data, which might not be effective representations for downstream tasks. This
could be due to overfitting when maximizing mutual information between positive views (Tschannen
et al., 2020). Task-irrelevant features could also occur when excessive noise is present due to unneces-
sarily high mutual information between views during learning (Tian et al., 2020b). Unfortunately, it is
challenging to identify useful information from noise without any additional cue such as knowledge
of downstream tasks.

We conjecture that effective features should be shared among instances i.e., embedding of which
should have some degree of mutual information. Our conjecture is based on previous hypothesis
that the good bits are those shared between different views of the world (Tian et al., 2020a; Smith &
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Gasser, 2005). Specifically, previous works such as Tian et al. (2020a) only take views from the same
underlying instance into account while we expand this conjecture to multiple instances. Our intuition
is that even if instances belong to different categories, they should share some high-level properties
such as abstract shapes, part compositions, etc and learning these common concepts might be more
beneficial than low-level features. As the same time, instance embedding should be adequately
discriminative to be distinguished from each other.

In this paper, we facilitate learning such shared features by considering unordered sets of instances
because: 1) the aggregation function in a set-structured representation (Zhang et al., 2020; Naderial-
izadeh et al., 2021) devise a bottleneck that encourages the model to learn common features across
instances to maximize set mutual information (Section 3.4) ; 2) circumventing instance discrimination
helps avoid unintentionally maximizing distances between samples with similar semantics which
hinders common features learning.

To realize the idea of set-based learning into self-supervised learning, we propose Multiple Instance
RAndomly Grouped for Contrastive LEarning, so-called Miracle, a simple algorithm for set-based
contrastive learning in which we arbitrarily sample data points in a mini-batch and group them to form
sets. Similar to instance discrimination (Wu et al., 2018; Ye et al., 2019), we apply data augmentation
to create two views of a set. We construct features of a set by aggregating features of the samples
of a set by a symmetric function, which can then be passed to a contrastive loss. The network is
trained to maximize agreement to views of the same set while being able to distinguish different
sets. We refer to this task as set discrimination. To support the training, we devise an efficient set
construction scheme that is based on permuting the samples in a mini-batch multiple times. The
benefits of our set construction is two-fold. First, it allows an instance to appear in multiple sets, and
therefore the sets can have common features by construction. This encourages the network to learn
common features for the instances, and also generates harder negative sets to improve the robustness
of representation learning. Second, our set construction can increase the number of positive and
negative sets to improve the self-supervision. In contrast, contemporary methods only focus solely on
positives samples (Dwibedi et al., 2021) or negative samples (He et al., 2020; Chen et al., 2020b; Wu
et al., 2018) at a time.

By virtue of the simplicity of proposed approach, we can plug this set-based contrastive learning
into existing contrastive learning methods. Through extensive experiments, we demonstrate the
efficacy of Miracle in various scenarios. First, we show that the proposed method consistently
improve the baselines such as SimCLR (Chen et al., 2020a), MoCo (He et al., 2020) on CIFAR-10,
CIFAR-100, STL-10, ImageNet-100, and ImageNet-1K. We verify the robustness of Miracle when
scaling up the learning with different hyperparameters including pretraining epochs, batch sizes,
learning rates and temperatures. We also study Miracle in various conditions including weaker
data augmentation and transfer learning.

In summary, our contributions are: (1) a new pretext task of set discrimination for self-supervised
visual representation learning; (2) a simple but effective method to integrate set-based feature
learning into existing contrastive learning methods, yielding significant performance improvement;
(3) extensive experiments and ablation studies that empirically demonstrate the usefulness and
robustness of set-based contrastive learning.

2 RELATED WORK

Instance-wise contrastive learning Recent advances in contrastive learning are largely driven by
the instance discrimination task (Wu et al., 2018). Prior work (Chen et al., 2020a; He et al., 2020;
Ye et al., 2019; Wu et al., 2018; Tian et al., 2020a) in this direction treat each instance as a category
and learn an embedding space such that views from same instance, also known as positive samples,
obtained by different transformations of an image, should have small distances while views from
different instances, or negative samples, should have large distances. There are more effective ways
to generate the samples for contrastive learning: Chen et al.; Ye et al. simply use all samples from
the same mini-batch; Wu et al. uses a memory bank which stores the features from previous steps;
He et al. uses a momentum encoder to compute positive samples and memory bank for negative
samples; Hu et al. trains a generative model together with a representation network to generate
negative samples. Most of these methods adopt the InfoNCE loss function (Van den Oord et al., 2018)
which usually requires a large batch size to reduce the bias of the estimation. Yeh et al.; Chen et al.
propose variants of InfoNCE to cope with aforementioned challenge.
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Cluster-based contrastive learning. A potential problem of instance-wise contrastive learning
is that instance discrimination is performed regardless of the semantic structure of the underlying
data, i.e., an instance is attracted to its augmented version and repelled from all other instances
despite their similarities. To address this problem, there exists a family of prototypical contrastive
learning methods that introduce prototypes of data clusters into their representation learning (Guo
et al., 2022; Li et al., 2021a; Caron et al., 2020; Li et al., 2021b; Wang et al., 2021). These methods
perform clustering on adapting features during learning, which is a challenging model selection
problem (Wang et al., 2021). Our method also considers feature learning on a set of instances, but
our grouping is done dynamically for each mini-batch and regardless of instance features.

Data augmentations. Data augmentation is a systematic way to boost data diversity in supervised
and unsupervised learning with recent applications for self-supervised contrastive learning. A class
of data augmentation relevant to our method is image mixtures, e.g., mix-up (Zhang et al., 2018),
cutmix (Yun et al., 2019). A few recent works attempted to use image mixtures with contrastive
learning such as MixCo (Kim et al., 2020), i-Mix (Lee et al., 2021b), and Un-Mix (Shen et al., 2022).
These methods share the same strategy that they first generate mixture samples in the pixel space and
then learn to contrast the features among the image mixtures (Shen et al., 2022) or between the image
image mixtures with the original views of each image in the mixture (Kim et al., 2020). One can
also generate hard negative samples by linear interpolating the embeddings of positive and negatives
samples (Kalantidis et al., 2020). Compared to these methods, we do not explicitly construct any
mixture samples in our learning. We approach the mixture representation from a different perspective
by learning to contrast set features aggregated on-the-fly during training.

Set-based learning. Learning features from a set of data points is essential and has been explored
in machine learning and computer vision under the umbrella of multiple instance learning (Dietterich
et al., 1997; Ilse et al., 2018), 3D shape recognition (Qi et al., 2017a;b). A crucial requirement for
such set representation is permutation invariance i.e., the output of the model is invariant to the order
of each input instance. Existing works achieve this condition via a symmetric function, commonly
implemented by pooling layers e.g., max, mean, sum, etc. to aggregate features from all instances of
a given set. More attempts have been made to devise more sophisticate and learnable aggregation
functions (Skianis et al., 2020; Mialon et al., 2020; Murphy et al., 2019; Lee et al., 2019; Zhang et al.,
2020; Naderializadeh et al., 2021). Here our method integrates the concept of feature aggregation and
permutation invariance in set-based learning to the self-supervised contrastive learning framework.

3 METHODOLOGY

In this section, let us first recall the preliminary of contrastive learning (Section 3.1), and then
introduce our proposed set-based contrastive learning (Section 3.2) and its implementation details
(Section 3.3). We then provide a discussion on why and how our set discrimination works from
different perspectives (Section 3.4).

3.1 CONTRASTIVE LEARNING

Given a set X = {x1,x2,⋯,xN} of N of unlabeled data samples, we aim to learn a function f
that maps xi to a low-dimensional embedding hi on an unit hypersphere i.e., f ∈ F ∶ Rd → Sm.
This mapping can be learned with instance discrimination in contrastive learning. Specifically, in a
mini-batch, a positive sample pair is generated by applying data augmentation t, t′ ∼ T to a sample
xi, and pairs that involve augmentations of remaining samples are negative samples. The network f
can be trained to maximize the agreement between two augmented views of the same instance, and
minimize that of views from different instances by using InfoNCE (Van den Oord et al., 2018) loss:

LInfoNCE = − log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k≠i] exp(sim(zi, zk)/τ)

, (1)

where zi = g(hi) and zj = g(hj) are projected vectors of the embedding h given a projection
function g; τ is the temperature to control the confidence of the feature similarity between two vectors
using sim(u, v) = u⊤v/(∥u∥∥v∥).
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Figure 1: Training pipeline of our proposed method. Similar to conventional instance discrimination
task, we apply random augmentation to each image to obtain two views of corresponding instance.
Then, we randomly pair K instances to construct a set and apply permutation-invariant pooling on
the projected embedding to obtain set representation ∈ S127. We simply plug this representation for
existing contrastive learning methods such as SimCLR (Chen et al., 2020a), MoCo (He et al., 2020).

3.2 SET-BASED CONTRASTIVE LEARNING

We take this idea of instance discrimination (Wu et al., 2018; Ye et al., 2019) a step further by
generalizing the representation learning to a set of samples, letting the network learn features
invariant to a set. An overview of our approach is depicted in Figure 1.

Let us briefly recall the basic idea of set-based learning. To construct the model for processing
set-structured data, we can leverage a set pooling model (Zaheer et al., 2017). In this model, each
instance in a set is first fed into a neural network independently. Then, we use an aggregation function
ϕ to obtain the global signature of a set where ϕ is a symmetric function, which allows its output to
be invariant to the order of the input elements. More formally:

net({x1,x2,⋯,xn}) = g(ϕ(f(x1), f(x2),⋯, f(xn))) (2)

where f , g are neural networks, ϕ is an aggregation function that can be implemented by a pooling
layer. Zaheer et al. (2017) proved that the above composition provides a universal approximator for
any permutation-invariant functions. This set-based learning is also widely adopted for point cloud
feature learning in 3D computer vision (Qi et al., 2017a;b).

We propose to apply the idea of set-based learning to self-supervised contrastive learning as follows.
Given a mini-batch of size B, we construct a set of K random samples {x1,⋯,xK} from the
mini-batch. We then apply data augmentations t, t′ ∼ T to generate two sets of K augmented
samples {y1,⋯,yK} and {y′

1,⋯,y
′
K}, where yk = t(xk) and y

′
k = t

′(xk) for k ∈ {1, ...,K}.
The representation of the sets can be written as:

h = ϕ (g(f(y1)),⋯, g(f(yK))) , (3)

h
′
= ϕ (g(f(y′

1)),⋯, g(f(y′
K))) ,

where we followed SimCLR (Chen et al., 2020a) and use an encoder f and projection head g to
obtain the features of the sample in each set. Note that in our formulation we place the aggregation
function ϕ at last. In fact, we can add another projection head after ϕ as done in the architecture by
Zaheer et al. (2017). However, we empirically found that the difference in performance with and
without the additional projection head is negligible. Here we use the formulation with the aggregation
at the end and report variants of this design in the appendix.

3.3 INPUT PERMUTATION

Given a mini-batch of B samples, we need to generate sets of size K for our set-based contrastive
learning. A naive approach is to randomly group every K samples in the batch to construct a set.
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However, this yields inferior performance compared to conventional instance discrimination. This
is because this approach can only construct a limited number of sets with ⌈B

K
⌉ positive pairs and

2(⌈B
K
⌉ − 1) negative samples for each mini-batch. The utilization of the samples in a batch is not

optimal because each sample is only considered once during set construction.

Algorithm 1: Pseudocode of our method in SimCLR style.
# batch B, permutation size M, set size K
# encoder f, projection g, augmentation
t, t

′
∼ T

for sampled minibatch {xk}Bk=1 :
for k ∈ {1, . . . , B} :

yk = t(xk), y
′
k = t

′(xk)
let π = permutation matrix of size M ×B
let N = BM/K, let z = []
for k ∈ {1, . . . ,M} :

for i ∈ {1, . . . , B/K} :
ψ = π[k, (i − 1)K + 1 ∶ iK]
z = ϕ (g(f(yψ(1))),⋯, g(f(yψ(K))))
z
′
= ϕ (g(f(y′

ψ(1))),⋯, g(f(y′
ψ(K))))

z.append(z, z
′)

for i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} :
si,j = z

⊤
i zj/(∥zi∥∥zj∥)

let ℓ(i, j) = − log
exp(si,j/τ)

∑2N
k=1 1k≠i exp(si,j/τ)

L =
1

2N
∑N
k=1 ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)

minimize L and update f and g
return f and discard g

To address this problem, we propose to
permute input samples multiple times
to augment both positive and negative
samples for each training step. Particu-
larly, we first fed the B input samples to
the feature extractor (before the pooling
layer). Next, we create a permutation
matrix π of size M ×B where each row
of the matrix is a permutation of indexes
ranging from 0 to B and M is the num-
ber of times we shuffle the input. Each
set in the mini-batch can then be con-
structed by gathering corresponding K
elements from the permutation matrix.
Finally, we perform pooling and (option-
ally) fed those aggregated vectors to the
last MLP.

This approach effectively increases the
number of positive and negative pairs
and extends a mini-batch for a total of
BM/K sets. Another benefit of this set
construction scheme is that it allows an
instance to appear in multiple sets, which means that some sets can naturally share some common
features by construction. When these sets form negative pairs, these pairs can be regarded as
hard negatives which can improve the robustness of the representation learning. We empirically
demonstrate the importance of our set construction step in Section 4.2 and Figure 2.

3.4 DISCUSSION

Set-based contrastive learning encourages common features. We explain why set discrimination
prioritize common features than low-level features from the instances with the following theorem.

Theorem 1. Let X1, X2 be two instances of a set and Z,Z ′ be the set representation from two views
of previous instances. The objective function of set discrimination is the lower bound of:

InfoNCE(Z;Z ′) ≤ I(Z;X1) + I(Z;X2) + I(X1;X2∣Z)

The proof can be found in the appendix for interested readers. We can observe that the upper bound of
objective function in set discrimination shares similarities with the objective in Deep InfoMax (Hjelm
et al., 2019). Particularly, the ”global” context, i.e., set representation Z is encouraged to have high
mutual information with all the instances of that set. Moreover, the set representation is bottlenecked
because its vector has the same dimension as the vector of each instance representation. If the
encoder learns features that are specific to only one instance of the set, it does not increase the
mutual information with any of the other instances of that set. Therefore, this training scheme favors
encoding aspects of the data that are shared across elements.

We also note that attracting or repelling the aggregated representation in contrastive learning directly
leads to optimizing the representation of each individual sample in the set. This is an important factor
that separates our method from cluster-based contrastive learning, where the cluster prototypes act
as a regularization in additional to the learning of instance discrimination pretext task. By contrast,
we find that simply training the model with only set discrimination task without using any instance
discrimination loss can already lead to performance gain.
Set discrimination from hard negatives perspective. To discriminate between sets, a set represen-
tation that can preserve more information from all instances is desirable. This is because given that
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our set construction scheme ensures an instance to appear in multiple sets, if the output only favors
representative features of an individual sample in a set, the network will eventually produce identical
representations for multiple sets, rendering it even harder to distinguish between these sets. From
the perspective of negative sample mining, our set construction can also be regarded as a strategy to
produce hard negatives.
Set discrimination from data augmentation perspective. Compare to SDMP (Liu et al., 2022),
i-mix (Lee et al., 2021b), mix-Co (Kim et al., 2020), Miracle can be viewed as a more general and
principled way for data augmentation. For instance, i-mix mixes the input images together in image
space, which can be challenging to adopt to two views from different modalities e.g., image and
language. On the contrary, our method operates on latent space and has the potential to be applicable
for such mixing. There are multiple options to select the aggregation function ϕ as a symmetric
function: average pooling, max pooling, Wasserstein pooling (Naderializadeh et al., 2021), attention
pooling (Lee et al., 2019), etc. More results are provided in Table 5 in Section 4.2.

4 EXPERIMENTS

We conduct experiments and empirically verify the effectiveness of proposed method Miracle
when plugging it to different contrastive learning baselines. More experiments on transfer learning,
etc can be found in the appendix. Note that for simplicity, we do not use multi-crop augmentation.

4.1 EXPERIMENTAL SETUP

We conduct experiments on both small-scaled benchmarks: CIFAR-10/CIFAR-100 (Krizhevsky et al.,
2009), STL-10 (Coates et al., 2011) and large-scaled benchmarks: ImageNet-1K (Deng et al., 2009),
ImageNet-100 (Tian et al., 2020a).
Small-scaled datasets. For CIFAR-10, CIFAR-100, and STL-10, we use ResNet-18 (He et al.,
2016) as the backbone model and remove the MaxPool layer of it according to conventional. We
follow the hyper-parameters of of CLD (Wang et al., 2021). The configuration in this setting is similar
to ImageNet setup except the temperature τ is set to 0.07, and we use weight decay of 0.0005 for all
experiments. The data augmentation strategies are adopted from CLD and provided in the appendix.
Large-scaled datasets. For ImageNet-1K and ImageNet-100, we implement our method following
SimCLR (Chen et al., 2020a). Specifically, we use ResNet-50 (He et al., 2016) as the backbone
network. We use SGD optimizer with learning rate η = 0.03 × batch size/256, weight decay of
0.0001, momentum of 0.9. We utilize the cosine annealing learning rate schedule and warm-up the
learning rate for the first 5 epochs by linearly increase it to η. We set the temperature τ to 0.1 and
latent vector has the dimension of 128.
Evaluation. For linear probing benchmark, we adopt standard setup as in (Li et al., 2021a; He et al.,
2020). Specifically, we train the linear layer for 100 epochs with SGD optimizer with the learning
rate of 30, weight decay of 0, and momentum of 0.9. The learning rate is decayed by a factor of 0.1
at epoch 60 and 80, batch size is set to 256. For k-nearest neighbors (kNN) evaluation, we set the
number of neighbors to 200.
Miracle configuration. We set number of elements per set to K = 2, because it is sufficient
for learning common features as in Theorem 1. We use the global average pooling (GAP) as our
aggregation function. We experiment with permutation size M = 32 unless otherwise stated. For
evaluation, we extract the same features as in SimCLR (Chen et al., 2020a).

4.2 MAIN RESULTS

We demonstrate the effectiveness of Miracle while incoporating it to other self-supervised methods:
SimCLR (Chen et al., 2020a), MoCo (He et al., 2020). We use the same training and evaluation setup
between all approaches for fair comparison.
CIFAR and STL. We first evaluate the performance of Miracle with different batch sizes and
compare it to the baseline SimCLR (Chen et al., 2020a) and MoCo (He et al., 2020). From Table 1, we
can observe that integrating our framework consistently increases the performance for all scenarios.
It is worth noticing that for STL-10, we train all self-supervised models on the “train+unlabeled”
split similar to Wang et al. (2021).
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Table 1: Comparison of Miracle with SimCLR and MoCo baselines on CIFAR-10, CIFAR-100,
STL-10 with k-nearest neighbors. The 95% confidence interval with 3 runs is approximately 0.3 for
all experiments.

CIFAR-10 CIFAR-100 STL-10
Batch size 128 256 512 1024 128 256 512 1024 128 256 512 1024

SimCLR 80.1 81.2 81.7 81.6 51.6 52.3 52.7 53.1 76.7 77.6 76.6 76.3
w/ Miracle 85.8 86.2 86.2 86.1 55.4 56.6 57.1 57.1 84.7 85.2 84.6 84.5

MoCo-v2 82.1 82.6 81.9 81.2 53.2 53.2 53.8 53.0 79.8 79.0 79.3 79.3
w/ Miracle 86.1 86.6 85.8 85.5 56.3 58.1 57.3 57.1 84.7 85.0 84.0 84.1

DCL 83.1 82.7 82.3 82.1 52.7 53.3 53.5 53.1 81.6 81.1 81.2 81.1
w/ Miracle 86.1 86.7 86.6 86.6 56.3 57.6 57.7 57.7 84.9 85.3 85.8 85.6

FlatNCE 82.9 83.0 82.5 82.4 53.7 53.8 53.2 53.5 81.5 81.0 81.2 80.9
w/ Miracle 86.5 86.5 86.6 86.3 56.4 57.1 57.5 57.2 84.6 85.8 85.4 85.1

Table 2: Comparison between our Miracle and SimCLR (Chen et al., 2020a) on ImageNet-100
with k-nearest neighbors and linear probing evaluation.

kNN Linear probing
Top-1 Top-5 Top-1 Top-5

Batch size 256 512 1024 256 512 1024 256 512 1024 256 512 1024

SimCLR 55.6 56.0 57.2 83.9 84.0 84.7 70.6 69.5 70.7 90.2 90.5 91.0
w/ Miracle 65.6 67.3 67.8 90.2 90.5 90.4 77.2 77.0 76.1 93.8 93.6 93.0

We also conduct experiments to examine whether our proposed method can give benefits to these
variants, namely, Decoupled Contrastive Learning (Yeh et al., 2021), FlatNCE (Chen et al., 2021a).
Table 1 reports the performance of our proposed approach with aforesaid objective functions. We
can observe that these loss functions indeed boost the performance of contrastive models on all
examined datasets. At the same time, integrating Miracle with these losses also leads to superior
performances compared to vanilla SimCLR and slightly better than using Miracle with InfoNCE.

ImageNet. For ImageNet-100, in Table 2, we report the top-1 and top-5 accuracy with linear
evaluation of Miracle and SimCLR baselines. For ImageNet-1K, we report the top-1 accuracy
evaluated with linear probing of Miracle in Table 3. We denote our implementation for the baseline
with conventional SGD optimizer and the aforesaid configuration as SimCLR, respectively. In
addition, we also study the efficacy of with more optimal/well-tuned hyper-parameters for SimCLR
as suggested in (Chen et al., 2020a; 2021b), which are indicated as SimCLR+. More concretely,
ResNet-50 network and 4-layers MLP projection head is trained with LARS optimizer (You et al.,
2017) and square learning rate scaling.

4.3 WEAKER DATA AUGMENTATION

As aforementioned, another perspective to view our approach is through the lens of data augmentation.
Therefore, we compare our method with SimCLR (Chen et al., 2020a) where we using different
groups of data augmentation techniques. Here we report the performance of SimCLR (Chen et al.,
2020a) and our method when a specific data augmentation technique is removed from both methods.
As can be seen in Table 4, with fewer data augmentation techniques, the accuracy of both SimCLR
and our method is decreased, but our method can still outperform SimCLR by a wide margin, proving
the effectiveness of our set-based contrastive learning. This also proves that our method is orthogonal
to existing data augmentation techniques used by SimCLR (Chen et al., 2020a).

4.4 ABLATION STUDY

In this section, we conduct a wide range of ablation studies to further articulate and analyze the
behavior of Miracle as well as its robustness on various scenarios.

Choice of aggregation functions. For simplicity, in all previous experiments, we use global average
pooling (GAP) as the aggregate function ϕ(⋅). Here we adopt other pooling implementations and
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Table 3: Comparison be-
tween our Miracle and Sim-
CLR (Chen et al., 2020a)
on ImageNet-1K with linear
probing evaluation.

ImageNet-1K
Batch size 256 1024

SimCLR 61.5 68.0
w/ Miracle 65.2 68.6

Table 4: Top-1 kNN accuracy of SimCLR and Miracle on CIFAR-
10 and CIFAR-100 without a specified data augmentation. GB de-
notes Gaussian blurring, CJ denotes color jittering, HF denotes
horizontal flipping, RC denotes random cropping. In each run, we
remove only the specified augmentation from training.

CIFAR-10 CIFAR-100
without GB CJ HF RC GB CJ HF RC
SimCLR 80.3 71.9 80.1 40.6 51.8 41.8 50.5 15.5
Miracle 85.9 79.0 85.1 49.1 56.9 43.8 54.4 22.3

Table 5: Top-1 accuracy of Miracle with various aggregation functions on CIFAR-10, CIFAR-
100, STL-10, and ImageNet-100. All methods are pretrained for 200 epochs with batch size of
256. ResNet-18 is used as the backbone network for CIFAR/STL while we adopt ResNet-50 for
ImageNet-100. For evaluation, k-nearest neighbor is used for CIFAR-10, CIFAR-100, STL-10 and
linear probing is used for ImageNet-100.

Aggregation CIFAR-10 CIFAR-100 STL-10 ImageNet-100

SimCLR 81.2 52.3 77.6 70.6
GAP 86.2 56.6 85.2 77.2
MaxPool 86.3 56.1 84.6 77.2
PMA (Lee et al., 2019) 85.7 55.9 84.4 76.9
FSPool (Zhang et al., 2020) 85.7 55.5 84.4 76.5
PSWE (Naderializadeh et al., 2021) 85.4 55.1 84.2 76.9

compare their performance. We conduct experiments with MaxPool, Featurewise Sort Pooling (Zhang
et al., 2020), Pooling with Sliced-Wasserstein Embedding (PSWE) (Naderializadeh et al., 2021), and
Pooling by Multihead Attention (PMA) (Lee et al., 2019). We report the performance of Miracle-
32 with aforementioned aggregation methods in Table 5. Perhaps surprisingly, GAP achieves the
highest accuracy compared to other sophisticated algorithms. Nevertheless, we can observe that our
proposed approach consistently outperforms the vanila contrastive learning on all datasets regardless
of the choice of the aggregation function. These empirical results demonstrate the robustness of
Miracle with a wide range of aggregation functions.
Number of input permutation We analyze the importance of input permutation to increase the
number of positive and negative sets in Figure 2. We denote Miracle-m as proposed method
with M = m. Without input permutation, i.e., Miracle-1, set discrimination results in inferior
performance than instance discrimination. However, with permutation of size M = 2, which
implies the same number of positive and negative samples in a mini-batch for both Miracle and
SimCLR (Chen et al., 2020a), our method can immediately outperform the baseline. Using M > 2
leads to even better performance.
Number of elements of a set. By default we only construct sets of size K = 2. We now extend
the number of instances per set (i.e., set size) to a larger number and examine the performance of
learned models. Intuitively, increasing the number of elements per set can lead to more challenging
optimization problems since learning common features of the instances in the set becomes more
difficult, and therefore the network cannot preserve as much information in a large set compared to a
smaller one. Figure 3 shows the top-1 accuracy of models with different set sizes. As the number
of possible sets is BM/K (Section 3.4), increasing K reduces significantly the number of positive
and negative sets, which deteriorates the performance. However, with enough input permutation, we
found that the value of set size does not have a strong effect on the final accuracy.
Hyperparameters sensitivity. We investigate the sensitivity of our approach to hyperparameters
such as temperature τ and learning rate η compared to SimCLR on CIFAR-100 and STL-10. Figure 3c
and 3d report the top-1 accuracy of Miracle compared to SimCLR when varying the temperature τ .
We observe that Miracle significantly and consistently outperforms SimCLR for most temperature
values. Furthermore, Miracle seems to be more robust to temperature changing than SimCLR.
Figure 4 reports the top-1 accuracy of Miracle compared to SimCLR when varying the learning
rate η. It shows that Miracle consistently outperforms SimCLR for all learning rate values.
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Figure 2: Performance of Miracle with different input permutation of size M ∈ {1, 2, 8, 32} on
CIFAR-10/100, and STL-10 with varying batch sizes. With the same number of positive and negative
samples per batch i.e., Miracle-2, our method already achieves better performance than SimCLR.
Additional accuracy gain can be obtained by increasing number of positive and negatives via M .
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Figure 3: Performance of Miracle-32 and SimCLR with different set sizes and temperature. All
models are trained with batch size of 256. We use ResNet-18 and k-nearest neighbors for evaluation.

0.03 0.06 0.09 0.12
Learning Rate

70

75

80

85

90

95

T
op

-1
A

cc
.

CIFAR-10

SimCLR Miracle

(a) kNN evaluation on CIFAR-10

0.03 0.06 0.09 0.12
Learning Rate

40

45

50

55

60

65

T
op

-1
A

cc
.

CIFAR-100

SimCLR Miracle

(b) kNN evaluation on CIFAR-100

0.03 0.06 0.09 0.12
Learning Rate

70

75

80

85

90

T
op

-1
A

cc
.

STL-10

SimCLR Miracle

(c) kNN evaluation on STL-10

Figure 4: Performance of Miracle and SimCLR when varying learning rate value on CIFAR-10,
CIFAR-100, and STL-10. All models are pretrained for 200 epochs with batch size of 256 and
ResNet-18 as backbone. Miracle consistently outperform SimCLR for all learning rate values.

5 CONCLUSION

In this paper, we introduce the novel idea of incorporating set-structured learning to contrastive
learning, resulting in the set discrimination pretext task. Our method brings a simple but effective
extension to existing contrastive learning methods including SimCLR and MoCo, encouraging the
learning of instance features via contrasting positive and negative set features. Our experiments
demonstrate the effectiveness and robustness of our proposed method on various scenarios. Our
finding is potential in that it is orthogonal to existing data augmentations and image mixtures used
in contrastive learning, and hence opens the opportunities to further increase the performance by
combining all these methods together.
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In this appendix, we provide additional experiments of our method in various scenarios. First,
we provide proof for our theorem in main paper (Section A). We show our method is orthogonal
to existing data augmentations in SimCLR. Even though with fewer augmentation techniques,
our method can still improve upon SimCLR (Section 4.3). We also compare our method in the
scenario of transfer learning (Section B). We then report more ablation studies (Section C), and the
implementation details (Section D). For clarity, we include all table details for the plots in the main
paper as well (Section E).

A PROOF

Theorem 1. Consider two random variables represent first and second element of a set: X1, X2. We
denote extracted features from view 1 of X1 and X2 as Z1 and Z2, respectively. Similarly, Z ′

1, Z
′
2

are extracted features from view 2. Let Z and Z ′ be aggregated features for set representation from
view 1 and 2, respectively. The probabilistic graphical model can be illustrated as: Z ← (Z1, Z2) ←
(X1, X2) → (Z ′

1, Z
′
2) → Z

′. Above model is I-equivalent to Z → (Z1, Z2) → (X1, X2) →

(Z ′
1, Z

′
2) → Z

′. Applying the data processing inequality to above Markov chain, the objective in set
discrimination has an upper-bound of:

InfoNCE(Z;Z ′) ≤ I(Z ′
;Z) ≤ I(Z; (X1, X2)) = H(X1, X2) −H(X1, X2∣Z) (4)

Since we randomly pairX1 and X2, they are independent to each other, i.e., H(X1, X2) = H(X1)+
H(X2). In addition, we have H(X1, X2∣Z) = H(X1∣Z) +H(X2∣Z) − I(X1;X2∣Z).

Replacing above equations to Equation 4, we obtain:

I(Z; (X1, X2)) = H(X1, X2) −H(X1, X2∣Z)
= H(X1) +H(X2) − [H(X1∣Z) +H(X2∣Z) − I(X1;X2∣Z)]

= [H(X1) −H(X1∣Z)] + [H(X2) −H(X2∣Z)] + I(X1;X2∣Z)
= I(Z;X1) + I(Z;X2) + I(X1;X2∣Z)

B TRANSFER LEARNING

We analyze the benefit of Miracle for transfer learning on 10 image classification datasets including:
CIFAR-10/100, STL-10, Food, Pets, StanfordCars, Oxford Flowers, Oxford Pets, Caltech-101, CUB-
200. We use the linear protocol as in Chen et al. (2020a); Lee et al. (2021a). Particularly, we train a
linear classifier on extracted features from freezed pretrained models. For both training and testing,
images are resized to 224 pixels along the shorter size with bicubic interpolation. We then center crop
input images by 224× 224. The linear classifier is trained with L-BFGS optimizer and ℓ2-regularized
cross-entropy loss. The regularization hyper-parameter is chosen from 45 logarithmically spaced
values ranged from 10

−6 to 10
5. After validation, we train the classifier again with both train and val

data. Note that our train/test split follow Lee et al. (2021a).

Table 6 shows the result of transfer learning with Resnet-50 pretrained on Imagenet-1K with batch
size of 256 for 200 epochs. More concretely, aforesaid SimCLR and our Miracle achieve top-1
accuracy of 61.5 and 65.2 with linear probing on Imagenet-1K, respectively. We report the top-1
accuracy of all datasets except those marked with *, which we adopt class average accuracy similar
to Lee et al. (2021a).

C ADDITIONAL ABLATION STUDIES

Use of additional projection head. For simplicity, we do not use any layers after the aggregation
functions ϕ in all previous experiments. In this section, we conduct an ablation study to investigate
the effect of different choices of additional layers after the aggregation function ϕ. We denote this
additional function as h(⋅). Thus, the representation of a set of size n consisting of {x1,⋯,xn}
is given by h(ϕ(g(f(x1)),⋯, g(f(xn)))). Table 7 reports the performance of Miracle with
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Table 6: Performance of SimCLR Chen et al. (2020a) and our Miracle pretrained on Imagenet-1K
for 200 epochs with batch size of 256 when transfering to other datasets. We use linear probing with
LBFGS optimizer for all experiments. * denotes datasets evaluated with class average accuracy,
other datasets are evaluated with top-1 accuracy.

Dataset CIFAR10 CIFAR100 STL10 Food Cars CUB Flowers* Pets* Caltech101*

SimCLR 81.6 60.1 92.1 65.2 36.1 31.5 86.1 70.5 84.1
Miracle 86.7 63.7 95.0 64.4 36.9 33.4 85.4 76.0 86.0

different choices of h(⋅). We found that using h as an identity function yields the best results. Other
functions such as linear or MLP does not yield improvement.

Table 7: Performance of Miracle-32 with different setups of of layers after aggregation i.e., h(⋅)
on CIFAR-10, CIFAR-100, STL-10 evaluated with k-nearest neighbors.

CIFAR-10 CIFAR-100 STL-10
Batch size 128 256 512 1024 128 256 512 1024 128 256 512 1024

SimCLR 80.1 81.2 81.7 81.6 51.6 52.3 52.7 53.1 76.7 77.6 76.6 76.3
h = Identity 85.8 86.2 86.2 86.1 55.4 56.6 57.1 57.1 84.7 85.2 84.6 84.5
h = Linear 85.7 85.8 86.2 86.0 55.5 56.3 56.6 56.7 84.5 84.8 - -
h = MLP 85.6 85.9 85.8 85.8 55.0 55.6 56.5 56.5 84.4 84.3 - -

Comparisons with other methods. We compare Miracle with other self-supervised learning
algorithms such as SimSiam Chen & He (2021), BYOL Grill et al. (2020), etc. on small-scale datasets
in Table 9. In these experiments, we pretrain Miracle for 200 epochs with batch size of 256 and
learning rate of 0.06. We train the linear classifier for 100 epochs with batch size of 256 and SGD
optimizer. More precisely, we set the learning rate to 30, momentum to 0.9 and weight decay to 0. As
can be seen, our method outperforms all other methods on CIFAR-100, STL-10, and ImageNet-100,
and works comparably (0.4% difference) with SimSiam Chen & He (2021) on CIFAR-10.
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Figure 5: Performance of Miracle-32 and SimCLR when scaling up the pre-training budget. All
models are trained with batch size of 1024. We use ResNet-18 and k-nearest neighbors for evaluation
on CIFAR, STL, and use ResNet-50 and linear probing for evaluation on ImageNet-100.

Performance with more training budgets. It is well established that contrastive learning benefits
more from both longer training and larger batch size than its supervised counterpart. Here, we investi-
gate whether our proposed method remains effective when expanding the scale of the pretraining
phase. We report the performance of SimCLR (Chen et al., 2020a) and Miracle in Figure 5. We
observe that Miracle remains effective when scaling up the pretraining budget. For small-scale
datasets, the performance gap between Miracle and SimCLR (Chen et al., 2020a) remains large
when scaling up the number of epochs. For large-scale datasets like ImageNet-100, the gap between
Miracle and SimCLR (Chen et al., 2020a) becomes smaller at 400 epochs but Miracle remains
more accurate than SimCLR (Chen et al., 2020a).
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Table 8: Top-1 accuracy comparison on linear evaluation between Miracle and existing methods
on ImageNet-1K. All models are pretrained for 200 epochs with ResNet-50 backbone. Cells, which
report our implementation, are shaded in green. ME and MB are Momentum Encoder and Memory
Bank, respectively. * denotes number taken from (Xu et al., 2021). SwAV (Caron et al., 2020) uses
multi-crop to booster the performance of trained network.

Method Batch ME MB T1 Acc. Method Batch ME MB T1 Acc.

NPID (Wu et al., 2018) 256 ✗ ✓ 58.5 PIRL (Misra & Maaten, 2020) 1024 ✗ ✓ 63.6
MoCo v2 (He et al., 2020) 256 ✓ ✓ 67.5 CPCv2 (Henaff, 2020) 512 ✗ ✗ 67.6
PCL (Li et al., 2021a) 256 ✓ ✓ 67.6 MoCHi (Kalantidis et al., 2020) 512 ✓ ✓ 67.6
CPC v2 (Henaff, 2020) 256 ✗ ✗ 63.8 PIC (Cao et al., 2020) 512 ✗ ✓ 67.6
SimSiam (Chen & He, 2021) 512 ✗ ✗ 70.0 MoCo v2* (He et al., 2020) 1024 ✓ ✓ 67.5
SogCLR (Chen & He, 2021) 256 ✗ ✗ 67.1 SwAV Caron et al. (2020) 4096 ✗ ✗ 69.1
SimCLR 256 ✗ ✗ 61.5 SimCLR+ 1024 ✗ ✗ 68.0
- w/ Miracle 256 ✗ ✗ 65.2 +4.7 - w/ Miracle 1024 ✗ ✗ 68.6 +0.6

Table 9: Top-1 accuracy of Miracle with other SSL algorithms on CIFAR-10, CIFAR-100, STL-10,
and ImageNet-100 with linear probing. All methods are pretrained for 200 epochs with batch size
of 256. ResNet-18 (ResNet-50) is used as the backbone network for CIFAR/STL (ImageNet-100).
♥,⋄ denotes results taken from Wang et al. Wang et al. (2021), Zheng et al. Zheng et al. (2021),
respectively. Cells, which report our implementation, are shaded in green. Our method achieves
competitive results in all scenarios.

Method CIFAR-10 CIFAR-100 STL-10 ImageNet-100

SimCLR Chen et al. (2020a) ⋄ 84.9 59.3 85.5 -
MoCo v2 He et al. (2020) ⋄ 86.2 59.5 85.9 76.6

♥

BYOL Grill et al. (2020) ⋄ 85.5 60.0 87.5 75.8
♥

SimSiam Chen & He (2021) ⋄ 88.5 57.8 87.5 -
SimCLR 82.5 56.4 83.8 70.6
w/ Miracle-32 88.1 60.5 87.8 77.2

D IMPLEMENTATION DETAILS

D.1 SIMCLR+

ResNet-50 network is trained with LARS optimizer You et al. (2017) with weight decay of 0,
momentum of 0.9. The learning rate is adjusted with square root scaling i.e., the learning rate
η = 0.075×

√
BatchSize. We use the batch size of 1024 which yield the learning rate of 2.4. On top

of that, we adopt 4 layers MLP for projection head as suggested in Chen et al. (2021b). Specifically,
each hidden layer is composed of linear layer (without bias) with the hidden dimension of 2048,
batch normalization, ReLU activation. The projected dimension is 128.

Linear evaluation. For evaluation, we also use LARS optimizer with the same configuration.
We train the linear classification with batch size of 1024 for 100 epochs. Note that for ImageNet-
100, we observer that using normalized extracted features before the linear classifer yields slightly
improvement for both SimCLR and Miracle (around 2%). Therefore, we leverage this setup for
linear probing on ImageNet-100.

D.2 OUR METHOD

Projection head. We adopt the projection head as in SimCLR Chen et al. (2020a) unless otherwise
stated. Particularly, a Linear → ReLU → Batch Normalization → Linear → Batch Normalization.
The hidden dimension is equal to input dimension i.e., 2048 for ImageNet and 512 for CIFAR/STL.

Data augmentations. We adopt the data augmentation of Chen et al. (2020a) including: random
cropping, horizontal flip, grayscale, color jittering, Gaussian blurring for pretraining. For linear
probing, we simply use random cropping and horizontal flipping.

MoCo setup. We apply the same training recipe of SimCLR for MoCo in Table 1. In addition, we
use the momentum m = 0.99 and queue size of 16384. Note that we use symmetric loss for training.
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Runtime performance. Our method has similar training time to SimCLR. In our experiments, we
do not observe any significant difference in timing compared to SimCLR during training.

E OTHER NUMERICAL RESULTS

The numerical results of the plots in the main paper are reported below. Particularly, we report the
performance with different number of permutation M in Table 10, the ablation study with learning
rates in Table 11, the ablation study with different temperature values in Table 12, and the ablation
study with different set sizes in Table 13.

Table 10: Comparing performance of Miracle with SimCLR and MoCo baselines on CIFAR-10,
CIFAR-100, STL-10 with k-nearest neighbors. Miracle-n denotes our method when reorder-
ing/permuting the input n times.

CIFAR-10 CIFAR-100 STL-10
Batch size 128 256 512 1024 128 256 512 1024 128 256 512 1024

SimCLR 80.1 81.2 81.7 81.6 51.6 52.3 52.7 53.1 76.7 77.6 76.6 76.3
Miracle-1 77.2 79.0 80.0 80.9 50.1 50.9 51.7 52.3 75.4 76.0 76.3 76.4
Miracle-2 82.0 82.5 83.2 83.8 51.2 52.1 53.6 54.1 78.3 79.3 79.6 79.4
Miracle-4 84.0 84.5 84.9 85.0 53.2 53.8 55.4 56.2 81.4 82.2 82.3 82.4
Miracle-8 85.0 85.4 85.6 85.7 54.7 55.6 55.9 57.0 83.0 83.5 83.6 83.6
Miracle-16 85.3 86.0 86.0 85.8 55.3 56.2 56.5 57.1 84.2 84.4 84.2 84.7
Miracle-32 85.8 86.2 86.2 86.1 55.4 56.6 57.1 57.1 84.7 85.2 84.6 84.5

Table 11: Performance of Miracle and SimCLR on CIFAR-10/CIFAR-100 and STL-10 with
k-nearest neighbors when varying the learning rate. Batch size of all experiments are set to 256 and
the number of pretraining epoch is 200.

CIFAR-10 CIFAR-100 STL-10
Learning rate 0.03 0.06 0.09 0.12 0.03 0.06 0.09 0.12 0.03 0.06 0.09 0.12

SimCLR 81.2 81.7 81.1 80.7 52.3 52.2 51.5 50.9 77.6 77.8 77.2 77.2
Miracle-32 85.8 86.4 87.0 86.9 56.6 57.4 57.4 57.4 85.2 84.5 84.5 84.6

Table 12: Performance of Miracle and SimCLR on CIFAR-10/CIFAR-100 with k-nearest neigh-
bors when varying the temperature. Batch size of all experiments are set to 256. Miracle-n denotes
our method when reordering/permuting the input n times.

CIFAR-10 CIFAR-100
Temperature 0.03 0.05 0.07 0.1 0.2 0.5 0.03 0.05 0.07 0.1 0.2 0.5

SimCLR 79.6 79.2 81.2 83.2 85.7 84.2 52.4 51.4 52.3 52.7 52.4 48.4
Miracle-32 86.4 85.9 86.2 86.6 86.5 84.1 56.5 57.5 56.6 55.5 53.1 47.5

Table 13: Performance of Miracle with k-nearest neighbors evaluation compared to SimCLR
when varying number of elements per set. All models are pretrained with batch size of 256 for 200
epochs. The accuracy of SimCLR on CIFAR-10 and CIFAR-100 is 81.2 and 52.3, respectively.

CIFAR-10 CIFAR-100
Set size 2 3 4 5 6 2 3 4 5 6

w/ Miracle-1 79.0 76.9 75.1 72.3 71.1 50.1 43.4 41.0 38.4 36.4
w/ Miracle-32 86.2 86.3 86.3 86.0 85.9 56.6 56.2 55.9 55.7 55.0
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