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ABSTRACT
Math formulas (e.g., “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”) serve as one of the
fundamental commonsense knowledge in human cognition, where
humans naturally acquire and manipulate them in logical thinking
for mathematical reasoning problems. However, existing reasoning
models mainly focus on learning heuristic linguistics or patterns
to generate answers, but do not pay enough attention on learn-
ing with such formula knowledge. Thus, they are not transparent
(thus uninterpretable) in terms of understanding and grasping basic
mathematical logic. In this paper, to promote a step forward in the
domain, we first construct two datasets (Math23K-F and MAWPS-F)
with precise annotations of formula usage in each reasoning step
for math word problems. Especially, our datasets are refined on the
benchmark datasets, and thus ensure the generality and compa-
rability for relevant research. Then, we propose a novel Formula-
mastered Solver (FOMAS) with the guidance of mastering formula
knowledge to solve the problems. Specifically, we establish FOMAS
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with two systems drawing insight from the dual process theory,
including a Knowledge System and a Reasoning System, to learn
and apply formula knowledge, respectively. The Knowledge System
accumulates the math formulas, where we propose a novel pretrain-
ing manner to mimic how humans grasp the mathematical logic
behind them. Then, in the Reasoning System, we develop elaborate
formula-guided symbol prediction and goal generation methods
that retrieve the necessary formula knowledge from Knowledge
System to improve both reasoning accuracy and interpretability. It
organically simulates how humans conduct complex reasoning un-
der the explicit instruction of math formulas. Experimental results
prove that FOMAS has a stronger reasoning ability and achieves a
more interpretable reasoning process, which verifies the necessity
of introducing formula knowledge transparently.
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Figure 1: Example of learning and applying the formula
knowledge to mathematical reasoning on MWP.

1 INTRODUCTION
Knowledge is the human belief encompassing empirical aware-
ness of facts and epistemic contact with the world [45]. It lays the
foundation for human cognition, where humans naturally acquire
knowledge from experience and manipulate it in cognitive behav-
iors [33, 44]. In the domain of data mining, there is an emerging
trend to investigate how to gain knowledge from data and apply it
in several complex reasoning tasks [15, 31, 32, 39]. Among them,
mathematical reasoning is one of the core tasks in quest of models
with human cognitive ability, which requires various knowledge
(e.g., algebra, geometry, probability) in logical thinking [5, 16, 53].

Specially, math formula is a kind of essential and commonsense
knowledge formed from human experience [25]. We are constantly
learning and applying various math formulas to figure out problems,
and typically, math word problems (MWP). Let us take an example
in Figure 1. Solving the MWP generally asks to read a problem
description (“If Anne ... go ?”) and then reasons an expression
(“2 × 3”) for getting the answer. This process requires necessary
formulas (“𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”) to explicitly serve as the
guidance that navigates the thinking pattern and directs symbol
derivation based on problem understanding [12, 14], which reflects
the complicated mastery of abstract logic in human cognition. Thus,
the mastery of math formulas for conducting reasoning like humans
is a necessary sign of the intelligent level of models [6].

However, in the literature, such explicit knowledge has not at-
tracted enough attention in relevant research on reasoning. Taking
the widely studied MWP as an example, although traditional work
takes into account mathematical rules or templates [2, 11, 37], they
operate according to manually defined programs without really
gaining the ability to understand this knowledge. Comparatively,
most current methods rely on a Seq2Seq model [35, 47], which gen-
erate a hidden state (or named as reasoning goal [49]) at each de-
coding step to predict a specific symbol. They mainly grasp the lin-
guistic semantics [22, 27] and heuristic reasoning patterns [19, 49],
but ignore whether the model can master the epitome of logic
manifested in explicitly utilizing formula knowledge [38, 50].

To further verify the necessity, we tend to experimentally quan-
tify the mastery degree of formula knowledge for current mod-
els. Nevertheless, existing mathematical benchmark datasets (e.g.,
Math23K [47], MAWPS [24], GSM8K [4], MATH [13]) do not pro-
vide such a label for formula usage in expression reasoning process.

In this paper, to promote a step forward in the domain, we first
construct two datasets (Math23K-F and MAWPS-F) with precise
annotations to support specific explorations. They contain 51 and
18 different math formulas and 23, 162 and 2, 373 annotated prob-
lems refined on benchmarks Math23K and MAWPS respectively,
which ensures the generality and comparability for relevant re-
search. For each problem, we annotate the formula required at each
reasoning step in its expression, e.g., “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”
for “×” in Figure 1. Based on our datasets, we conduct empirical
experiments (described in Section 3.1) for existing representative
methods (GTS [49], Graph2Tree [54], BERT-Tree [26]) and observe
that more than 22% of their errors are due to the inability to use
formulas. Thus, we argue that it is vital to investigate how models
learn and apply formula knowledge for mathematical reasoning.

Along this line, there remain many technical challenges to be
confronted. First, math formulas are highly symbolic that involve
abstract structure and concrete concepts. For example, “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒” in Figure 1 is composed of the structure “𝑎 = 𝑏 × 𝑐”
and concepts “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠𝑝𝑒𝑒𝑑, 𝑡𝑖𝑚𝑒”. “𝑎 = 𝑏 × 𝑐” reflects the cal-
culation pattern that could be shared between different formulas
(e.g., “𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒_𝑎𝑟𝑒𝑎 = 𝑙𝑒𝑛𝑔𝑡ℎ ×𝑤𝑖𝑑𝑡ℎ” also satisfies “𝑎 = 𝑏 × 𝑐”),
while concepts determine the semantic information that should
be displayed in the structure to truly understand the formula. It is
indispensable to mine their respective meanings as well as integrate
them as a whole. Second, math formulas contain rich mathemati-
cal logic. Humans not only learn whether a formula is correct or
not, but are also able to perform logical transformations such as
changing “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒” to “𝑠𝑝𝑒𝑒𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷ 𝑡𝑖𝑚𝑒”.
Teaching models to master such implied knowledge is necessary
but challenging. Third, the process of human application of formula
knowledge is sophisticated, which includes selecting formulas ac-
cording to different problems (e.g., choose “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑×𝑡𝑖𝑚𝑒”
when reasoning “×” for problem in Figure 1) and utilizing them in
multiple reasoning steps (inherit the information of “𝑠𝑝𝑒𝑒𝑑” and
“𝑡𝑖𝑚𝑒” to derive symbols “2” and “3”). The unclear cognitive mecha-
nisms behind it brings many difficulties in modeling.

To address the challenges above, we propose a novel Formula-
mastered Solver (FOMAS) to mimic how humans solve MWP under
the guidance of formula knowledge. In FOMAS, we draw insights
from the dual process theory [8, 20] that elaborates on the structure
of human cognition to construct two systems: Knowledge System
and Reasoning System. The Knowledge System plays the role of hu-
man brain to store, represent, and learn formula knowledge, while
the Reasoning System analytically applies the formula knowledge
accumulated in Knowledge System to reason answers for MWP.
Specifically, in Knowledge System, we first adequately excavate
the information of each formula by decoupling and encoding its
structure feature and lexical feature. Then, we propose a pretraining
manner to realize autonomous formula learning, where two novel
pretraining objectives are designed based on human understanding
of formula legality and flexibility. In Reasoning System, given a
math word problem, we retrieve formulas from the Knowledge Sys-
tem to guide the expression decoding phase (i.e., symbol prediction
and goal generation). To be specific, we develop three sophisti-
cated reasoning mechanisms to predict a symbol at each reasoning
step, including a formula-selected one, a formula-inherited one,
and a typical direct one. Their results are organically ensembled
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to simulate complex human thought. Moreover, we introduce the
representations of intermediate steps of formulas into deriving
explainable reasoning goals. Extensive experiments on our bench-
mark datastes verify FOMAS’ improvements on answer accuracy
and reasoning interpretability. The contributions of this paper are:

• We propose a Formula-mastered Solver (FOMAS) that learns
and applies formula knowledge to conduct mathematical
reasoning. To the best of our knowledge, we are the first
to explore it by referring to the characteristics of human
cognition, whose main ideas of Knowledge-Reasoning sys-
tems and specific learning/reasoning methods can be quite
general for different types of mathematical problems.

• We design a novel pretraining manner to learn the knowl-
edge behind math formulas and develop elaborate formula-
guided symbol prediction/goal generationmechanisms, which
enhance reasoning accuracy and interpretability.

• We construct two benchmark MWP datasets (Math23K-F,
MAWPS-F) with annotations of the required formula at each
reasoning step to support the exploration of formula knowl-
edge in the domain. Extensive experiments on them clearly
demonstrate the effectiveness of FOMAS.

2 RELATEDWORK
Math Word Problem. Mathematical reasoning aims to acquire
knowledge from data and apply it to solve math problems. Accord-
ing to different problem types, representative benchmarks include
for MWP (e.g., Math23K [47]), geometry (e.g., Inter-GPS [34]), uni-
fied task (e.g., MATH [13]), etc., among which MWP motivates the
fundamental and far-reaching research since the 1960s [10, 17].

In the literature, traditional MWP solvers can be classified into
three types: rule-based [2], statistic-based [37], and semantics parsing-
based [43]. They require manually created schemas, templates, or
formal language to derive expressions, respectively, and thus suffer
from limited applications on large datasets and low generality. Re-
cently, Wang et al. [47] presented a Seq2Seq model that adopted the
encoder-decoder to directly translate a problem into the expression.
Based on such a structure, most advanced work can be summarized
from two aspects: improving the semantic understanding ability of
encoder [22, 28, 29] and the reasoning ability of decoder [19, 49].
For problem understanding, Zhang et al. [54] proposed a GCN-
based encoder to capture the relationships and order information of
quantities, Lin et al. [29] adopted a word-clause-problem hierarchi-
cal encoder to simulate human reading habits. Besides, pretrained
language models [22, 26, 27] and external knowledge graphs [48]
have also been applied to inject human knowledge into problem
comprehension. As for reasoning, Xie et al. [49] adopted a goal-
driven decomposition mechanism to generate binary expression
trees, while Wang et al. [46] designed M-tree structure to unify the
diverse outputs, and Jie et al. [19] proposed a deductive reasoner to
iteratively construct step-by-step expressions.

Neural-Symbolic Systems. The core goal of our paper is to
simulate human cognition to master the symbolic math formula
knowledge for mathematical reasoning. Thus, we report the re-
lated work regarding neural-symbolic systems [51], which have
flourished inmany reasoning tasks such as knowledge graph reason-
ing [3, 42], visual reasoning [36, 52], and text reasoning [30, 39]. For

distance     speed     time

distance

speed time

Figure 2: An example of our annotated data.

example, Qu et al. [42] proposed pLogicNet that leveraged the first-
order logic of triplets to support inference on knowledge graphs.
Mao et al. [36] constructed NS-CL that executed logic operations
in a symbolic program to derived answers for visual questions. Spe-
cially, for mathematical reasoning, Peng et al. [39] designed a novel
representation architecture GATE to conduct interpretable sym-
bolic deduction and computation. Aiming at MWP, Qin et al. [41]
proposed NS-Solver to incorporate symbolic constraints in training
by four auxiliary tasks. Yang et al. [50] built LogicSolver that used
logic formula as prompts to enrich problem understanding and pre-
dicted formulas as explanations, which for the first time introduced
and verified the importance of formula knowledge for MWP.

Our work improves previous studies from the following three
aspects. First, current neural-symbolic systems mainly focus on
logic rules and knowledge graph. Comparatively, we explore how to
master the commonsense but essential formula knowledge in math-
ematical reasoning, aiming at which we propose a novel formula
pretraining schema and design elaborate application mechanisms.
Second, compared with existing work on MWP, our method learns
and applies the math formulas to finely guide expression reasoning,
which is more transparent and accurate in terms of the reasoning
process. Specially, unlike the most relevant LogicSolver [50] that
uses formulas as prompts and post-explanation, our formula ap-
plication mechanisms are more in line with human cognition and
achieves better effectiveness. Third, from the perspective of dataset,
our benchmarks provide high-quality annotations to support ex-
ploration of formula knowledge, maintaining great generality and
comparability to potentially boost further study in the domain.

3 PRELIMINARIES
3.1 Dataset Construction and Analysis
In the field of math word problem (MWP), representative datasets
include Math23K [47], MAWPS [24], SVAMP [38], GSM8K [4], etc..
However, to the best of our knowledge, they do not provide satis-
factory annotations to guide models how to apply formula knowl-
edge step by step in the reasoning process. In response to such a
burgeoning need, we expect to construct datasets that have two
characteristics. First, they should precisely describe the formula
usage of reasoning process, i.e., annotate the formula applied at
each reasoning step. Second, we hope to ensure the generality so
that most previous models can be easily and fairly compared on
them. Based on these considerations, we decide to annotate the two
most widely studied MWP datasets Math23K [47] and MAWPS [24],
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Table 1: The 5 most frequently used math formulas.

Math23K-F

1. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒
2. 𝑤𝑜𝑟𝑘 = 𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒
3. 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 = 𝑢𝑛𝑖𝑡_𝑐𝑜𝑠𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
4. 𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑢𝑛𝑖𝑡_𝑎𝑚𝑜𝑢𝑛𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
5. 𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑢𝑛𝑖𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟

MAWPS-F

1. 𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑢𝑛𝑖𝑡_𝑎𝑚𝑜𝑢𝑛𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
2. 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 = 𝑢𝑛𝑖𝑡_𝑐𝑜𝑠𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
3. 𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑢𝑛𝑖𝑡_𝑖𝑛𝑐𝑜𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
4. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒
5. 𝑤𝑜𝑟𝑘 = 𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒

which contain 23,162 and 2,373 problems at the elementary school
level respectively. There original data consists of “problem”, “an-
swer”, and “expression”, as shown in the top three lines in Figure 2.

Our annotation is conducted as follows. Inspired by existing
work [1, 50], we firstly collected essential math formulas from text-
books and summarized 51 and 18 representative ones on Math23K
and MAWPS respectively under the guidance of two elementary
school teachers. Secondly, we invited five well-trained annotators
with undergraduate degree to manually select the most suitable
formula for each reasoning step of data in Math23K and MAWPS
from the set of all formulas and their variants (will be defined
in Section 3.2). For example, as depicted in the “Formula” line
in Figure 2, the annotation of problem “If Anne ... go ?” is [𝜙 ,
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒 , 𝜙], whose length is equal to the length of
expression “2 × 3”. The explanation behind it is that reasoning the
“×” requires “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”, while reasoning “2” and “3”
do not need additional formulas (thus denoted as an empty formula
𝜙). Thirdly, another three annotators were asked to evaluate the
annotations, based on which the annotators modified the results
and repeated the evaluation-modification processes. After three
revisions with a pass rate of 93.2%, 96.3%, and 97.7%, we settled on
the final annotations and name the new datasets as Math23K-F and
MAWPS-F. In summary, on our benchmarks, 33.5% and 38.4% of
problems require the use of formulas respectively. We report the 5
most frequently used formulas in Table 1 and summarize the dataset
statistics in Table 2. More analyses are presented in Appendix A.

Based on our benchmark datasets, we tend to verify whether
the study of formula knowledge is necessary. For this purpose, we
select the three most representative SOTA MWP models, including
GTS [49], Graph2Tree [54], and BERT-Tree [26], and evaluate their
mastery degree of formula knowledge. Specifically, we introduce
a 𝑃𝐼𝐹 metric that calculates the Percentage of problems that a
model answers Incorrectly at steps requiring a Formula (as we
annotated above) in all problems that it gets the answer wrong. A
higher 𝑃𝐼𝐹 reflects a greater defect in formula mastery. As shown
in Figur 3, 𝑃𝐼𝐹 of the three models exceeds 0.220 on both datasets,
which indicates that the accuracy of the existing work is greatly
limited due to lack of applying math formulas. Thus, we argue that
it is necessary to explore how to master formula knowledge for
conducting more reliable mathematical reasoning.

3.2 Problem Definition
Formally, the input of a math word problem 𝑃 is a sequence of 𝑛
words and numeric values: 𝑋𝑃 = [𝑥1, 𝑥2, ..., 𝑥𝑛], where 𝑥𝑖 is either
a word (e.g., “If”, “Anne” in Figure 2) or a number (e.g., “3”, “2”).

Table 2: Statistics of our benchmark datasets.
Dataset Math23K-F MAWPS-F

Num. problems 23,162 2,373
Num. formulas (and variants) 51 (131) 18 (46)

Num. problems requiring formula 7,750 911
Avg. problem length 28.02 30.08
Avg. expr. length 5.55 4.20

GTS Graph2Tree BERT-Tree

Figure 3: 𝑃𝐼𝐹 of GTS, Graph2Tree, and BERT-Tree.

The output of 𝑃 is a sequence of𝑚 symbols: 𝑌𝑃 = [𝑦1, 𝑦2, ..., 𝑦𝑚].
Symbol 𝑦𝑖 is taken from a vocabulary 𝑉𝑃 composed of the operator
set 𝑉𝑂 (e.g., {+,×,−,÷}), numeric constant set 𝑉𝑁 (e.g., 1, 𝜋 ), and
numeric values 𝑁𝑃 in 𝑋𝑃 , i.e., 𝑉𝑃 = 𝑉𝑂 ∪𝑉𝑁 ∪ 𝑁𝑃 . As 𝑁𝑃 varies
with the input sequence, different problems may have different
𝑉𝑃 . The target of MWP is to train a model that reads the problem
description 𝑋𝑃 and then generates the corresponding expression
𝑌𝑃 , based on which calculates a numeric answer for 𝑃 (e.g., “6”).

For formula knowledge, we formalize it as a set of𝐾 math formu-
las 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝐾 } (𝐾 = 51 and 18 on Math23K-F and MAWPS-F
respectively). Each formula 𝑟𝑘 is represented as an Operator Tree
(OPT) [40]. For example, the formula “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”
corresponds to a tree that contains five nodes as shown in Figure 2,
with “=” as the root and “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒”,“𝑠𝑝𝑒𝑒𝑑”,“𝑡𝑖𝑚𝑒” as the leaf nodes.
Thus, we denote 𝑟𝑘 as a sequence of 𝑙 elements 𝑟𝑘 = [𝑧1, 𝑧2, ..., 𝑧𝑙 ]
that represents the prefix expression of the OPT, where 𝑧𝑖 is either
an abstract concept (e.g., “𝑡𝑖𝑚𝑒”) or an operator (e.g., “×”). For ex-
ample, “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒” is represented as [=, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , ×,
𝑠𝑝𝑒𝑒𝑑 , 𝑡𝑖𝑚𝑒]. Furthermore, we define a set of variants 𝐴(𝑟 ) ⊈ 𝑅

for each formula 𝑟 (e.g., “𝑠𝑝𝑒𝑒𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷ 𝑡𝑖𝑚𝑒” and “𝑡𝑖𝑚𝑒 =

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷ 𝑠𝑝𝑒𝑒𝑑”) to imply logical formula transformation, which
is important in formula learning and application in Section 4.1 and
Section 4.2. In summary, the research problem in this paper is:

Definition 3.1. Given the MWP dataset 𝐷 = {(𝑋𝑃 , 𝑌𝑃 )} and
the formula set 𝑅, our goal is to build a model that learns the
formula knowledge in 𝑅 and applies it to reason the expression
𝑌𝑃 = [𝑦1, 𝑦2, ..., 𝑦𝑚] for each problem 𝑋𝑃 = [𝑥1, 𝑥2, ..., 𝑥𝑛].

4 FORMULA-MASTER SOLVER
Generally, the dual process theory [8, 20] indicates that human cog-
nition is built on two systems: one is an intuitive, unconscious sys-
tem that processes human experience and knowledge, and the other
is a reasoning system that uses the knowledge for slow, explicit
logical thinking. Drawing this insight, we construct two systems in
our Formula-master Solver (FOMAS): Knowledge System and Rea-
soning System, as shown in Figure 4(a)(b). Specifically, Knowledge
System stores the formula knowledge 𝑅 and mimics how humans
represent and learn it autonomously, while Reasoning System ap-
plies the formula knowledge in Knowledge System to reason the
expression 𝑌𝑃 for a specific math word problem 𝑋𝑃 .
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P: Y

Figure 4: The overview of FOMAS. The left part (a)(b) shows the architecture of FOMAS that consists of Knowledge System and
Reasoning System . The right part (c) is an example workflow of formula-guided symbol prediction and goal generation.

4.1 Knowledge System
In this system, we first design a representation module to com-
prehensively mine the features of formulas. Then we propose a
pretraining manner to learn these features, which resembles hu-
mans’ mastery of the mathematical logic behind formulas.

4.1.1 Formula Representation. As logicians and mathematicians
have pointed out, the difficulty of understanding formula knowl-
edge lies in distinguishing formulas that have the same structure
but different meanings [7]. For example, “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”
and “𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒_𝑎𝑟𝑒𝑎 = 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ” have the same structure
abstracted as 𝑎 = 𝑏×𝑐 . However, they are different in the lexicons of
𝑎, 𝑏, 𝑐 (e.g., 𝑎 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝑏 = 𝑠𝑝𝑒𝑒𝑑 , 𝑐 = 𝑡𝑖𝑚𝑒). The meaning of the
whole formula is compositionally built up from the combination
of these two types of information, both of which are necessary.
Inspired by it, we decouple each formula 𝑟 ∈ 𝑅 into two types of
features: structural feature 𝐹𝑟 and lexical feature 𝐸𝑟 , which focus
on the structural information and concrete meaning respectively.

Specifically, the structural feature 𝐹𝑟 defines the order and mode
of formula calculation, sowe design an innovative kind of node func-
tion 𝑓 and formalize 𝐹𝑟 as a sequence of it, i.e., 𝐹𝑟 ≜ [𝑓1, 𝑓2, ..., 𝑓𝑤],
where 𝑤 is the length of formula 𝑟 and 𝑓𝑖 is the function of 𝑖-th
node (i.e., 𝑧𝑖 ). For example, the structural feature of “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒” is 𝐹𝑟 = [𝑓=, 𝑓𝑎, 𝑓×, 𝑓𝑏 , 𝑓𝑐 ]. The input and output of 𝑓
will be explained below after introducing the lexical feature.

The lexical feature 𝐸𝑟 reflects the semantics of formula 𝑟 em-
bodied in the leaf nodes of its OPT (e.g., 𝑎, 𝑏, 𝑐). We formalize it as
a sequence of concept vectors, i.e., 𝐸𝑟 ≜ [𝒆1, 𝒆2, ..., 𝒆𝑣], where 𝑣 is
the number of leaf nodes, 𝒆𝑖 ∈ R𝑑 is the 𝑖-th node vector, and 𝑑
is the dimension. For example, the lexical feature of “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒” is 𝐸𝑟 = [𝒆1, 𝒆2, 𝒆3], where 𝒆1, 𝒆2, 𝒆3 are the concept
vectors of “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒”, “𝑠𝑝𝑒𝑒𝑑”, “𝑡𝑖𝑚𝑒”, respectively.

Nowwe explain the computing flow of the node functions, which
basically follows a bottom-up pattern. Specifically, given formula 𝑟 ,
for a leaf node in its OPT, the node function 𝑓 is an identity mapping,
whose input and output are the same concept vector of the node.

For example, as marked green in Figure 4(a), 𝑓𝑎 (·) ≜ 𝑓𝑎 (𝒆𝑎) = 𝒆𝑎 ,
where 𝒆𝑎 is input as the concept vector of “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒” (i.e., 𝒆1) for
“𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”. For a non-leaf node, the function 𝑓

encodes a representation of the intermediate step in the formula.
It takes into the outputs of its left and right child nodes, and fuses
them with the operator information. For example, in Figure 4(a),
𝑓× (·, ·) ≜ 𝑓× (𝑓𝑏 (𝒆𝑏 ), 𝑓𝑐 (𝒆𝑐 )). By taking 𝒆𝑏 = 𝒆2, 𝒆𝑐 = 𝒆3, we can
obtain the embedding of node “×”, which reflects the meaning of
“𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”. Specially, 𝑓· (·, ·) is implemented as a network:

𝑓𝜏 (𝒆𝑙 , 𝒆𝑟 ) = 𝒗𝜏 ⊙ 𝒈𝜏 ,

𝒗𝜏 = 𝜎 (𝑾𝑛1 · [𝒆𝑙 , 𝒆𝑟 , 𝒐𝜏 ]), 𝒈𝜏 = 𝑡𝑎𝑛ℎ(𝑾𝑛2 · [𝒆𝑙 , 𝒆𝑟 , 𝒐𝜏 ]),
(1)

where 𝜏 ∈ {+,−,×,÷,=} indicates the operator, 𝒐𝜏 ∈ R𝑑 is its sym-
bol embedding, 𝒆𝑙 , 𝒆𝑟 are the outputs of the left and right child nodes
(e.g., 𝑓𝑏 (𝒆𝑏 ), 𝑓𝑐 (𝒆𝑐 )), ⊙ is element-wise product, 𝜎 is the sigmoid
function, and𝑾𝑛1,𝑾𝑛2 are parameters.

In summary, structural feature 𝐹𝑟 = [𝑓1, 𝑓2, ..., 𝑓𝑤] defines the
calculation pattern of formula 𝑟 by node functions, while lexical
feature 𝐸𝑟 = [𝒆1, 𝒆2, ..., 𝒆𝑣] stores the practical meanings by concept
vectors. Combining them, we can iteratively encode a semantic
embedding 𝑠 for each non-leaf node by Eq. (1), which represents
an intermediate state of the formula. We denote these semantic
embeddings as 𝑆𝑟 = [𝒔1, ..., 𝒔𝑤−𝑣], where 𝒔1 is the embedding of root
“=” that encodes the information of thewhole formula. In Section 4.2,
we will see how they contribute to guiding mathematical reasoning,
which reflects the superiority of our representation module over
directly encoding formulas by RNN-like models.

4.1.2 Formula Pretraining. In order to mimic how humans process
and learn the formula knowledge autonomously, we further pretrain
FOMAS’ representation module (i.e., parameters of node functions
in 𝐹𝑟 and concept vectors in 𝐸𝑟 ). However, since the formulas are
short in length, strong in logic, and do not have a large corpus,
it is not suitable to adopt the existing pretraining manners (e.g.,
Masked Language Model [56]). Thus, as shown in Figure 4(a), to
embody mathematical logic into formula learning, we design two
novel pretraining objectives: legality 𝐿𝑙𝑒𝑔 and flexibility 𝐿𝑓 𝑙𝑒 .
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The legality 𝐿𝑙𝑒𝑔 focuses on learning to distinguish whether
a formula is legal or not. That is, not only do humans acquire
that “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒” is a valid formula, but also know
“𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑×𝑤𝑖𝑑𝑡ℎ” is invalid and avoid using it in reasoning.
Through this objective, FOMAS can pay attention to the detailed
components of formulas and grasp more refined understanding. For
this purpose, we introduce a dichotomous task. For each formula
𝑟 ∈ 𝑅, we first obtain the semantic vector of its root node “=” using
features 𝐹𝑟 and 𝐸𝑟 according to Section 4.1.1, denoted as 𝒔𝑟 . Then,
we randomly replace one of the concept vectors in 𝐸𝑟 to construct
an illegal formula sample 𝑟 ′, e.g., “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 ×𝑤𝑖𝑑𝑡ℎ”, and
obtain the representation of its root 𝒔𝑟 ′ similarly. Finally, we input
𝒔𝑟 , 𝒔𝑟 ′ to calculate the following loss:

𝐿𝑙𝑒𝑔 =
∑︁
𝑟 ∈𝑅

𝑙𝐵𝐶𝐸 (𝑀𝑗𝑢𝑑 (𝒔𝑟 ), 1) + 𝑙𝐵𝐶𝐸 (𝑀𝑗𝑢𝑑 (𝒔𝑟 ′ ), 0),

𝑀𝑗𝑢𝑑 (𝒔) = 𝜎 (𝑾𝑢1 · 𝑅𝑒𝐿𝑢 (𝑾𝑢2 · 𝑡𝑎𝑛ℎ(𝑾𝑢3 · 𝒔))),
(2)

where 𝑀𝑗𝑢𝑑 (𝒔) : R𝑑 → [0, 1] is a judgment network to learn the
probability that 𝑟 and 𝑟 ′ are legal. 𝑙𝐵𝐶𝐸 is the BCE loss, 1 and 0 are
ground-truth labels that represent “legal” and “illegal”, respectively.

For a formula, it is not enough to grasp its own legitimacy, be-
cause humans can based on it to judge whether its complex trans-
formations (e.g., “𝑠𝑝𝑒𝑒𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷ 𝑡𝑖𝑚𝑒” and “𝑡𝑖𝑚𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷
𝑠𝑝𝑒𝑒𝑑” for “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”) are also legal, which together
constitute a comprehensive mastery of the mathematical logic. For
this purpose, we further incorporate a flexibility objective 𝐿𝑓 𝑙𝑒 ,
whose basic idea is that the variants of an (il)legal formula are also
(il)legal. In specific, for formula 𝑟 ∈ 𝑅, we first obtain its variants
𝐴(𝑟 ). Then, for each 𝑟 ′′ ∈ 𝐴(𝑟 ), we similarly construct a negative
sample 𝑟 ′′− . Finally, we feed them into𝑀𝑗𝑢𝑑 and calculate:

𝐿𝑓 𝑙𝑒 =
∑︁
𝑟 ∈𝑅

∑︁
𝑟 ′′∈𝐴(𝑟 )

𝑙𝐵𝐶𝐸 (𝑀𝑗𝑢𝑑 (𝒔𝑟 ′′ ), 1) + 𝑙𝐵𝐶𝐸 (𝑀𝑗𝑢𝑑 (𝒔𝑟 ′′− ), 0) . (3)

With 𝐿𝑙𝑒𝑔 and 𝐿𝑓 𝑙𝑒 , our pretraining schema is to minimize Eq. (4),
which can capture strong mathematical logic in formula represen-
tations to better guide the reasoning process in Section 4.2.

𝐿𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = 𝐿𝑙𝑒𝑔 + 𝐿𝑓 𝑙𝑒 . (4)

4.2 Reasoning System
The Reasoning System aims at applying the formula knowledge in
the Knowledge System to reason answers for a specific problem.
As depicted in Figure 4(b), we generally adopt an encoder-decoder
manner which first encodes the problem sentence and then decodes
an expression tree [49]. This systemmainly focuses on the decoding
phase, which uses formulas to guide the symbol prediction and goal
generation processes in decoder, namely formula-guided symbol
prediction and formula-guided goal generation, respectively.

4.2.1 Encoder-Decoder. Given problem 𝑃 , we first input the prob-
lem sentence 𝑋𝑃 = [𝑥1, 𝑥2, ..., 𝑥𝑛] into an encoder 𝑓𝜃 to obtain the
word representations 𝑯 = [𝒉1,𝒉2, ...,𝒉𝑛] and generate the initial
reasoning goal 𝒒1 for the decoder:

(𝑯 , 𝒒1) = 𝑓𝜃 ( [𝑥1, 𝑥2, ..., 𝑥𝑛]) . (5)

𝑓𝜃 can be specified as RNN (e.g., GTS [49]), BERT (e.g., BERT-
Tree [26]), or specific MWP encoder (e.g., HMS [29]). Here we
adopt BERT [21] due to its strong capability of language modeling.

Then, we utilize a decoder to generate the expression 𝑌𝑃 =

[𝑦1, 𝑦2, ..., 𝑦𝑚] step by step. At each step 𝑡 (𝑡 = 1, 2, ...,𝑚), the de-
coder 1) predicts the symbol 𝑦𝑡 (e.g., “×”, “2”) given the reasoning
goal 𝒒𝑡 by 𝑃 (𝑦𝑡 |𝑦1, ..., 𝑦𝑡−1, 𝒒𝑡 ,𝑯 ); 2) generates the next reasoning
goal 𝒒𝑡+1 based on 𝑞𝑡 and 𝑒 (𝑦𝑡 ) to support the next step 𝑡 +1, where
𝑒 (𝑦𝑡 ) is the embedding of symbol 𝑦𝑡 , which is taken as 𝒉𝑖 if 𝑦𝑡 is
the word 𝑖 in 𝑃 or 𝒐𝜏 if 𝑦𝑡 is operator 𝜏 .

Intuitively, the formula knowledge can guide both symbol predic-
tion and goal generation in decoder. For example, when solving the
problem in Figure 4(c), if we figure out that the first step (i.e., 𝑡 = 1)
requires the use of formula “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”, then we can
easily extract the symbol “×” from it as 𝑦1. Then, having decided to
use this formula, we can clearly know that the 𝑡 = 2 and 𝑡 = 3 steps
are to get the “𝑠𝑝𝑒𝑒𝑑” and “𝑡𝑖𝑚𝑒” information respectively, which
injects great interpretability into the reasoning goals 𝒒2, 𝒒3, so as
to benefit further reasoning of 𝑦2 = 2, 𝑦3 = 3.

In summary, given problem sentence 𝑋𝑃 and expression 𝑌𝑃 , the
training objective of FOMAS is:

𝐿 =
∑︁
𝑃

∑︁
𝑡

−𝑙𝑜𝑔 𝑃 (𝑦𝑡 |𝑦1, ..., 𝑦𝑡−1, 𝒒𝑡 ,𝑯 ) + 𝛼 · 𝐿𝑟 (6)

where
∑
𝑃

∑
𝑡
−𝑙𝑜𝑔𝑃 (𝑦𝑡 |𝑦1, ..., 𝑦𝑡−1, 𝒒𝑡 ,𝑯 ) is the symbol prediction

loss. 𝐿𝑟 is a loss that corresponds to deciding the used formula as
illustrated above, which will be specified in Section 4.2.2. 𝛼 is a
hyper-parameter that balances these two losses.

4.2.2 Formula-guided Symbol Prediction. Now we discuss how
FOMAS applies the formula knowledge in the Knowledge System
to predict symbol 𝑦𝑡 given the reasoning goal 𝒒𝑡 . Specifically, we
propose three types of symbolic reasoningmechanisms summarized
from sophisticated human thought process [9], i.e., formula-selected
mechanism, formula-inherited mechanism, and direct reasoning.
Symbol prediction at each step 𝑡 requires a combination of these
three mechanisms, as depicted in Figure 4(b) and (c).

Formula-selected mechanism. Humans can naturally select
a formula by referring to the current reasoning goal 𝒒𝑡 at step 𝑡
and extract a symbol from it as 𝑦𝑡 . For example in Figure 4(c), if
the goal 𝒒1 implies “calculate the distance”, we can easily pick out
the formula “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒” and then reason “𝑦1 = ×”,
retrieving the semantic and symbolic information of formulas from
Knowledge System respectively. Formally, at the current reasoning
step 𝑡 , we first calculate the attention of formula 𝑟 and the goal 𝒒𝑡
on problem word representations {𝒉𝑖 } by:

𝑎𝑡𝑡𝑟𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝒘⊤
𝑎 · 𝑡𝑎𝑛ℎ(𝑾𝑎 · [𝒔𝑟 ,𝒉𝑖 ])),

𝑎𝑡𝑡
𝑔

𝑖
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝒘⊤

𝑏
· 𝑡𝑎𝑛ℎ(𝑾𝑏 · [𝒒𝑡 ,𝒉𝑖 ])),

(7)

where 𝒔𝑟 is the semantic embedding of the root “=” of 𝑟 , and𝒘 ·,𝑾·
are parameters. Then, we integrate these two kinds of attention to
generate a score for 𝑟 :

𝑠𝑐𝑜𝑟𝑒 (𝑟 ) =𝑾𝑠1 · 𝑡𝑎𝑛ℎ(𝑾𝑠2 · 𝒄𝑟 ), 𝒄𝑟 = (𝑎𝑡𝑡𝑟𝑖 + 𝛽 · 𝑎𝑡𝑡
𝑔

𝑖
) · 𝑯 . (8)

Here, the hyper-parameter 𝛽 controls the integration weight. Since
a problem may not require any formula (e.g., calculate the sum of
two values), we also consider the empty formula 𝜙 introduced in
Section 3.1, denoted as 𝑟0, and calculate 𝑠𝑐𝑜𝑟𝑒 (𝑟0) by Eqs. (7)(8),
where 𝒔𝑟0 is a learnable vector. Finally, we derive the probability of
selecting formula 𝑟 from all formulas and their variants, denoted as
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𝑅 = 𝑅 ∪ {𝐴(𝑟 ), 𝑟 ∈ 𝑅} ∪ {𝑟0} (|𝑅 | = 132 and 47 on Math23K-F and
MAWPS-F respectively according to the statistics in Table 2):

𝑃𝑠𝑒𝑙 (𝑟 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒 (𝑟 )), 𝑟 ∈ 𝑅, (9)

and extract the right child 𝑦 of root “=” for the formula with the
highest 𝑃𝑠𝑒𝑙 (𝑟 ) (e.g., “×” in Figure 4(c)). We take the one-hot em-
bedding of 𝑦 as the reasoning result, denoted as 𝑦𝑠𝑒𝑙𝑡 ∈ R |𝑉𝑃 | :

𝑦𝑠𝑒𝑙𝑡 = 𝑜𝑛𝑒 − ℎ𝑜𝑡 (𝑟𝑖𝑔ℎ𝑡_𝑐ℎ𝑖𝑙𝑑 (𝑎𝑟𝑔𝑚𝑎𝑥𝑟 ∈𝑅 𝑃𝑠𝑒𝑙 (𝑟 ))) . (10)

To train all the parameters in Eqs. (7)(8), we define 𝐿𝑟 in Eq. (6) as
the following cross entropy, where 𝑦𝑟 ∈ {0, 1} is the ground-truth
label of selected formula that we have annotated in Section 3.1:

𝐿𝑟 = −
∑︁
𝑟 ∈𝑅

𝑦𝑟 · 𝑙𝑜𝑔 𝑃𝑠𝑒𝑙 (𝑟 ). (11)

Formula-inherited mechanism. The selected formula not
only affects the current step, but also implies a kind of thinking
pattern that navigates multiple reasoning steps [25]. For example,
in Figure 4(c), after selecting the formula “𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒”
at 𝑡 = 1, we can inherit the “𝑠𝑝𝑒𝑒𝑑” concept (i.e., the child of node
“×” in formula OPT) at 𝑡 = 2 to derive 𝑦2 = 2 (find the “𝑠𝑝𝑒𝑒𝑑”
value). Inspired by it, in this mechanism, we inherit the symbols
and concepts of the formula selected in preceding reasoning steps to
derive𝑦𝑡 . Formally, at step 𝑡 : (1) if an operator (e.g., “×”) is inherited,
we obtain its one-hot embedding as 𝑦𝑖𝑛ℎ𝑡 ∈ R |𝑉𝑃 | , otherwise (2) if
an abstract concept (e.g., “𝑠𝑝𝑒𝑒𝑑”) is inherited, we reason𝑦𝑖𝑛ℎ𝑡 based
on its concept vector 𝒆𝑖𝑛ℎ retrieved from Knowledge System:

𝑦𝑖𝑛ℎ𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑾ℎ1 · 𝑡𝑎𝑛ℎ(𝑾ℎ2 · [𝒆𝑖𝑛ℎ, 𝒒𝑡 ])) . (12)

Direct Reasoning. Besides, humans can directly reason a sym-
bol based on the reasoning goal 𝒒𝑡 without any formula guidance
as most existing MWP solvers do. Here, we set it as the scheme of
GTS [49] and its reasoning result is denoted as 𝑦𝑑𝑖𝑟𝑡 ∈ R |𝑉𝑃 | .

To aggregate the results of different reasoning mechanisms, i.e.,
𝑦𝑠𝑒𝑙𝑡 , 𝑦𝑖𝑛ℎ𝑡 , and 𝑦𝑑𝑖𝑟𝑡 , we further propose a confidence-based ensem-
ble inspired by the mixture of experts (MoE) [18, 55]. Specifically,
we hold that 𝑃𝑠𝑒𝑙 reflects the confidence of using the selected for-
mula. Similarly, the inherited formula also comes with a probability
that is inherited from the step selecting it, which we denote as 𝑃𝑖𝑛ℎ .
In summary, FOMAS reasons 𝑦𝑡 by ensembling all mechanisms:

𝑦𝑡 =
𝑃𝑠𝑒𝑙 · 𝑦𝑠𝑒𝑙𝑡 + 𝑃𝑖𝑛ℎ · 𝑦𝑖𝑛ℎ𝑡 + 1 · 𝑦𝑑𝑖𝑟𝑡

𝑃𝑠𝑒𝑙 + 𝑃𝑖𝑛ℎ + 1
. (13)

4.2.3 Formula-guided Goal Generation. After predicting 𝑦𝑡 , the
core step of FOMAS is to apply the formula knowledge to generate
an explainable next reasoning goal 𝒒𝑡+1. For this purpose, as shown
in Figure 2, we observe that for the formula OPT and the expression
tree, there is a one-to-one correspondence between the children of
the same node. For instance, for “×”, its left child “𝑠𝑝𝑒𝑒𝑑” in formula
conveys the goal to reason the left child “2” in the expression,
which also holds true for the right child “𝑡𝑖𝑚𝑒” and “3”. Besides, as
illustrated in Section 4.1.1, the nodes in formula 𝑟 carry the concept
vectors 𝐸𝑟 (for leaf nodes) and semantic embeddings 𝑆𝑟 (for non-leaf
nodes) with strong semantics, e.g., the semantic embedding of “×”
represents “multiplication of 𝑠𝑝𝑒𝑒𝑑 and 𝑡𝑖𝑚𝑒”. We argue that it can
be combined with the correspondence to inject explicit meaning
into the reasoning goals, thus ensuring good interpretability.

Formally, if we have selected or inherited a formula 𝑟 that derives
symbol 𝑦𝑡 by the mechanisms in Section 4.2.2, here we will use
the concept vector (or semantic embedding) of 𝑦𝑡 ’s left/right child
in 𝑟 from Knowledge System, denoted as 𝒔𝑙 /𝒔𝑟 , to guide generate
𝑦𝑡 ’s left/right sub-goal 𝒒𝑙 (i.e., 𝒒𝑡+1)/𝒒𝑟 respectively. Taking 𝒒𝑙 for
example, we implement our method as Eq. (14), where 𝒄 is the
context vector [49]. 𝒒𝑟 is obtained similarly.

𝒒𝑙 = 𝒐𝑙 ⊙ 𝒅𝑙 ,

𝒐𝑙 = 𝜎 (𝑾𝑜 · [𝒔𝑙 , 𝑞𝑡 , 𝒄]), 𝒅𝑙 = 𝑡𝑎𝑛ℎ(𝑾𝑑 · [𝒔𝑙 , 𝒒𝑡 , 𝒄])
(14)

In summary, our FOMAS mainly has three advantages. First,
its Knowledge-Reasoning Systems simulate the human cognitive
structure of formula mastery, whose main idea is general to be
potentially applicable to different reasoning problems (e.g., physical
problems) that also require essential formula knowledge. Second,
it provides a novel learning manner that masters both semantics
and mathematical logic of formulas, which well models the human
understanding characteristics (verified in Section 5.3.1). Third, it
imitates the pattern of human thought to conduct reasoning under
the instruction of math formulas, which duduces more reliable and
reasonable results in a transparent way.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Implementation Details. In Knowledge System, the dimen-
sion 𝑑 of concept vectors is 512, and the epoch of pretraining is
100. In Reasoning System, the dimension of hidden vectors is 512.
Specifically, 𝛼 in Eq. (6) is set as 0.5 and 0.05 on Math23K-F and
MAWPS-F respectively, and 𝛽 in Eq. (8) is set to be 0.2. We will dis-
cuss their sensitivity in Section 5.2.3. All parameters are initialized
uniformly and trained by Adam [23], with other hyperparameters
being set following [27]. For dataset preprocessing, we follow the
public train(21,162)/valid(1,000)/test(1,000) partition of Math23K
for Math23K-F. For MAWPS-F, the models are evaluated with 5-fold
cross-validation. All experiments are run on a Linux server with
four 2.30GHz Intel Xeon Gold 5218 CPUs and a Tesla V100 GPU1.

5.1.2 Baselines. We take the following representative and SOTA
MWP models, as well as ChatGPT as baselines for comparison.

• Seq2Seq [35]: uses a vanilla seq2seq model with attention
to translate MWP to equation templates directly.

• GTS [49]: adopts a heuristic goal-driven reasoning manner
to generates expression trees.

• Graph2Tree [54]: incorporates the relationships and order
information among quantities into problem understanding.

• HMS [29]: develops a hierarchical word-clause-problem re-
lation to better exploit the problem semantics.

• NS-Solver [41]: incorporates four auxiliary tasks into train-
ing to master symbolic constraints.

• BERT-Tree [26]: employs BERT as semantic encoder and
derives expressions by the decoder of GTS.

• SUMC [46]: designs a M-tree coding to unify the diverse but
equivalent expressions represented by binary trees.

1Our datasets and codes are available at https://github.com/Ljyustc/FOMAS.
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Table 3: Answer Accuracy (∗ : 𝑝 < 0.05 w.r.t. BERT-Tree).
Math23K-F MAWPS-F

Seq2Seq 0.640 0.797
GTS 0.756 0.826

Graph2Tree 0.774 0.837
HMS 0.761 0.803

NS-Solver 0.757 /
BERT-Tree 0.833 0.872
SUMC 0.825 0.820

LogicSolver 0.834 /
ChatGPT 0.649 0.883
FOMAS 0.848∗ 0.886∗

Table 4: Results of ablation study.
Math23K-F MAWPS-F

FOMAS 0.848 0.886
Knowledge
System

w/o legality 0.829 0.875
w/o flexibility 0.832 0.875

Reasoning
System

w/o select 0.839 0.878
w/o inherit 0.843 0.880

w/o formula-goal 0.842 0.882

• LogicSolver [50]: retrieves logical formulas as prompts to
improve problem representations and predicts formulas after
expression generation as explanations.

• ChatGPT2: is a flourishing model trained on large-scale
dialogue datasets, which is capable to interact in a conversa-
tional way. We input the math word problem into its chatbox
and manually extract the numeric answer from its response.

5.2 Performance on Answer Reasoning
5.2.1 Answer Accuracy. Table 3 reports the answer accuracy of
all models, and we find several key observations. First, our FO-
MAS outperforms all the baselines, and by applying paired t-test,
its improvements over the SOTA BERT-Tree on both datasets are
statistically significant with 𝑝 < 0.05 (marked with ∗). This result
demonstrates that mastering the formula knowledge is necessary
and valuable to achieve stronger mathematical reasoning ability.
Second, FOMAS performs better than LogicSolver which takes for-
mulas as prompts to enrich problem understanding. It reflects that
conducting reasoning under the guidance of formulas is necessary
and more in line with human cognitive process, and verifies the
effectiveness of our proposed formula application mechanisms in
Reasoning System. Third, FOMAS obtains comparable performance
to ChatGPT on MAWPS-F but is significantly better than it on
Math23K-F. As Math23K-F is more difficult than MAWPS-F (i.e.,
has longer expression that requires more reasoning steps as shown
in Table 2), we can conclude that the capability to acquire and ex-
plicitly apply formula knowledge makes our FOMAS more robust
in figuring out complex mathematical problems (more analyses of
ChatGPT are presented in Appendix B).

5.2.2 Ablation Study. To examine each part of FOMAS, we con-
duct the ablation study in Table 4. Specifically, in the Knowledge
System, we introduce “w/o legality” and “w/o flexibility” that omit
2https://openai.com/blog/chatgpt/. Please see Appendix B for more details.

Figure 5: Accuracy with different hyperparameters 𝛼 and 𝛽 .

the legality objective 𝐿𝑙𝑒𝑔 and flexibility objective 𝐿𝑓 𝑙𝑒 in Eq. (4),
respectively. In the Reasoning System, we introduce “w/o select”
and “w/o inherit” that remove the formula-selected mechanism and
formula-inherited mechanism in Eq. (13), respectively. Moreover,
“w/o formula-goal” replaces our formula-guided goal generation in
Eq. (14) by the original generation method of GTS [49].

We conclude the results as follows. First, all components of FO-
MAS contribute to correctly mastering the formula knowledge,
because removing each of them leads to a performance decrease.
Second, the removal of legality or flexibility has the greatest im-
pact on the effect, which implies that grasping the mathematical
logic behind formulas is the foundation of using them. Besides,
the two pretraining objectives are almost equally important as
there is no significant difference between their results. Third, “w/o
select” and “w/o inherit” diminish the results more greatly than
“w/o formula-goal”, which suggests that formula-guided symbol
prediction contributes more to FOMAS than goal generation.

5.2.3 Hyperparameter Sensitivity. In FOMAS, 𝛼 in Eq. (6) and 𝛽
in Eq. (8) play an important role for modeling. Specifically, 𝛼 bal-
ances the weight of symbol prediction and formula selection when
training FOMAS. 𝛽 controls the preference to focus more on the
reasoning goal or the formula itself when selecting the most appro-
priate formula for reasoning steps. Figure 5 shows the performances
of 𝛼 ∈ {0.01, 0.05, 0.1, 0.5, 1} and 𝛽 ∈ {0.1, 0.2, 0.5, 1, 5}.

As 𝛼 increases, the accuracy first increases, but then decreases.
It indicates that properly balancing the objectives of symbol pre-
diction and formula selection is beneficial. Besides, the peak of
performance is attained when 𝛼 = 0.5 and 0.05 on Math23K-F and
MAWPS-F, respectively. This suggests the high correlation between
the difficulty of mastering the application of formulas and the dif-
ficulty of datasets, where a simple one (i.e., MAWPS-F) is easier
for knowledge learning (i.e., requires a smaller regularization 𝛼). 𝛽
shows a similar trend, requiring a precise balance between concerns
on the reasoning goal and the formula. In particular, since the result
is better when 𝛽 < 0.5, it implies that compared with the reasoning
goal, the relevance of the formula to the problem sentence should
be paid more attention in the selection mechanism.

5.3 Analyses of FOMAS
5.3.1 Formula Learning. For formula learning, we expect FOMAS
to comprehensively grasp the meanings of formulas, which we
verify by investigating the distribution of different formulas’ rep-
resentations. Specifically, we take the semantic vectors of the root
𝒔𝑟 of all formulas and their variants after pretraining Eq. (4), and
visualize the 5 most frequent ones (with their variants) by T-SNE
in Figure 7. Generally, we observe that formulas from different
prototypes (i.e., in different colors) are well separated, while those
with the same structure feature (e.g., “𝑟𝑎𝑡𝑒 = 𝑤𝑜𝑟𝑘 ÷ 𝑡𝑖𝑚𝑒” and
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Problem 1: If Benjamin skated 

kilometers at 1 kilometers per hour , 

how long was Benjamin skating ?

[ , , 1]

[÷, , 1]

=

÷

= .

( ): .799

(÷): .

BERT-Tree 

FOMAS

Figure 6: Case 1 (please see Appendix C for cases 2 and 3). We visualize FOMAS’s formula-selected mechanism at 𝑡 = 1.
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= ×

= ×

= ÷

= ÷

Figure 7: Visualization of the 5 most frequently used formu-
las (with their variants in the same color) after pretraining
Eq. (4). The formula of id 1-5 is referred in Table 1.

“𝑡𝑖𝑚𝑒 = 𝑤𝑜𝑟𝑘 ÷ 𝑟𝑎𝑡𝑒”) are relatively closer. It validates that FOMAS
has advantages in formula learning through encoding the structural
and lexical information separately. Besides, it also reflects FOMAS’s
capability to keep the formula semantics well when conducting
mathematical transformation, validating that our pretraining man-
ner has acquired and maintained the knowledge behind it.

5.3.2 Formula Applying. For formula application, one of the core
steps of FOMAS is to select the most suitable formula by Eq. (9)
in Reasoning System. Thus, we first quantify the performance of
FOMAS’ formula-selected mechanism, which covers the correct-
ness of the formula-inherited mechanism. Specifically, we report
the 𝐴𝐶𝐶 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝑅𝑒𝑐𝑎𝑙𝑙 from both classification and top-1
ranking aspect and compare the results with “IP” that replaces the
𝑠𝑐𝑜𝑟𝑒 (𝑟 ) in Eq. (8) by inner product of 𝒔𝑟 and 𝒒𝑡 . From Table 5, our
FOMAS achieves the best performances on all metrics, which veri-
fies the effectiveness and robustness of our proposed mechanisms.
Second, to more clearly show how FOMAS benefits from mastering
the formulas for mathematical reasoning, we compare its solutions
with BERT-Tree (“BT”) and calculate the 𝑃𝐼𝐹 metric introduced in
Section 3.1. As reported in Table 5, FOMAS significantly reduces
this proportion of errors, which explicitly demonstrates that it has
learned to use the formula knowledge to conduct more accurate
reasoning. After a more detailed inspection of these results, we find
that FOMAS performs better at formulas that occur more often,
while 31.6% and 63.3% of its mistakes on Math23K-F and MAWPS-F
are due to formulas appearing fewer than 30 times in the training
set, respectively. Thus, we leave one of the possible future directions
is to explore knowledge learning in a few-shot scenario.

5.3.3 Interpretability Verification. Further, we conduct case study
to illustrate the interpretable formula application process of FOMAS.
We plot one case in Figure 6 and two cases in Appendix C. For each
case, we first report the problem sentence and the prefix expressions
generated by BERT-Tree and FOMAS. Then, we visualize the output
symbol distribution of formula-selected/inherited mechanism of
FOMAS at steps where it corrects the mistakes of BERT-Tree.

Specifically, for cases 1 and 3, FOMAS correctly reasons “÷”
at 𝑡 = 1, while BERT-Tree responds the wrong “−” (“×”) with a
high probability 0.799 (0.974). From the visualized formula-selected

Table 5: Performances of formula application.
Math23K-F MAWPS-F

FOMAS IP FOMAS IP
ACC(↑) 0.954 0.950 0.961 0.957

Precision(↑) 0.749 0.731 0.808 0.776
Recall(↑) 0.687 0.621 0.758 0.742

FOMAS BT FOMAS BT
PIF(↓) 0.112 0.220 0.134 0.257

mechanism at 𝑡 = 1, we observe that FOMAS selects the formula
“𝑡𝑖𝑚𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷ 𝑠𝑝𝑒𝑒𝑑” and “𝑠𝑝𝑒𝑒𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷ 𝑡𝑖𝑚𝑒” with
𝑃𝑠𝑒𝑙 = 0.956 and 0.999 in cases 1 and 3 respectively, based on which
extracts “÷” as 𝑦𝑠𝑒𝑙1 and corrects the wrong symbol by confidence-
based ensemble. This phenomenon confirms the necessity and effec-
tiveness of our formula-selected mechanism and ensemble method.
In particular, the selected two formulas are variants of the same
“𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑡𝑖𝑚𝑒 × 𝑠𝑝𝑒𝑒𝑑”. The precise use of them again verifies
FOMAS’ mastery of formula semantics and mathematical logic.

For case 2, although BERT-Tree generates the correct first two
symbols𝑦1 = ×,𝑦2 = 𝑁 0, it still deduces the wrong𝑦3 as 0.01. Com-
paratively, FOMAS selects formula “𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑢𝑛𝑖𝑡_𝑎𝑚𝑜𝑢𝑛𝑡×
𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟” at the first reasoning step 𝑡 = 1. Instructed by this
formula, at 𝑡 = 3, it inherits the information of 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟 to
calculate “the number of packages” and reasons 𝑦𝑖𝑛ℎ3 = 𝑁1 with
probability 0.961 by formula-inherited mechanism. With the inherit
probability 𝑃𝑖𝑛ℎ = 0.997 in confidence-based ensemble, FOMAS
overrides the wrong 𝑃 (𝑦𝑑𝑖𝑟3 = 0.01) = 0.568 predicted by direct
reasoning (i.e., BERT-Tree) and generates the correct 𝑦3 = 𝑁1.
Thus, formula-inherited mechanism is a crucial and indispensable
component of formula knowledge application in FOMAS.

6 CONCLUSION AND FUTUREWORK
In this paper, we focused on the commonsense formula knowl-
edge that is essential for mathematical reasoning. Specifically, we
first constructed two benchmark datasets named Math23K-F and
MAWPS-F with precise annotations of formula usage to support
our study, which are quite general to benefit future research in this
field. Then, we proposed a novel Formula-mastered Solver (FOMAS)
that contained Knowledge-Reasoning Systems inspired by human
cognitive structure and elaborate formula learning/applying mech-
anisms. Experiments verified FOMAS’ improvements on reasoning
accuracy and interpretability, and validated the necessity of for-
mula knowledge for robust reasoning. In the future, we will extend
FOMAS to acquire more types of symbolic knowledge from data
automatically and generalize to more datasets.
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Table 6: All 51 math formulas on Math23K-F.
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒
𝑤𝑜𝑟𝑘 = 𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 = 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒
𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 = 𝑢𝑛𝑖𝑡_𝑡𝑖𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑢𝑛𝑖𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 = 𝑢𝑛𝑖𝑡_𝑐𝑜𝑠𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑢𝑛𝑖𝑡_𝑣𝑜𝑙𝑢𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑢𝑛𝑖𝑡_𝑖𝑛𝑐𝑜𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑢𝑛𝑖𝑡_𝑎𝑚𝑜𝑢𝑛𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑎𝑡𝑙_𝑎𝑟𝑒𝑎 = 𝑢𝑛𝑖𝑡_𝑎𝑟𝑒𝑎 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ = 𝑢𝑛𝑖𝑡_𝑙𝑒𝑛𝑔𝑡ℎ × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒_𝑎𝑟𝑒𝑎 = 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ
𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒_𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = (𝑙𝑒𝑛𝑔𝑡ℎ + 𝑤𝑖𝑑𝑡ℎ) × 2
𝑠𝑞𝑢𝑎𝑟𝑒_𝑎𝑟𝑒𝑎 = 𝑠𝑖𝑑𝑒 × 𝑠𝑖𝑑𝑒
𝑠𝑞𝑢𝑎𝑟𝑒_𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 𝑠𝑖𝑑𝑒 × 4
𝑐𝑖𝑟𝑐𝑙𝑒_𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 2 × 𝜋 × 𝑟𝑎𝑑𝑖𝑢𝑠
𝑐𝑖𝑟𝑐𝑙𝑒_𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 𝜋 × 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
𝑐𝑖𝑟𝑐𝑙𝑒_𝑎𝑟𝑒𝑎 = 𝜋 × 𝑟𝑎𝑑𝑖𝑢𝑠 ∧ 2
𝑐𝑖𝑟𝑐𝑙𝑒_𝑎𝑟𝑒𝑎 = 𝜋 × 𝑟𝑎𝑑𝑖𝑢𝑠 × 𝑟𝑎𝑑𝑖𝑢𝑠
𝑐𝑖𝑟𝑐𝑙𝑒_𝑎𝑟𝑒𝑎 = 𝜋 × (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ÷ 2) ∧ 2 × 𝑟𝑎𝑑𝑖𝑢𝑠
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚_𝑎𝑟𝑒𝑎 = 𝑙𝑒𝑛𝑔𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡
𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒_𝑎𝑟𝑒𝑎 = 𝑙𝑒𝑛𝑔𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 ÷ 2
𝑡𝑟𝑎𝑝𝑒𝑧𝑖𝑢𝑚_𝑎𝑟𝑒𝑎 = (𝑠𝑖𝑑𝑒1 + 𝑠𝑖𝑑𝑒2) × ℎ𝑒𝑖𝑔ℎ𝑡 ÷ 2
𝑡𝑟𝑎𝑝𝑒𝑧𝑖𝑢𝑚_𝑎𝑟𝑒𝑎 = 𝑝𝑙𝑢𝑠_𝑠𝑖𝑑𝑒1_𝑠𝑖𝑑𝑒2 × ℎ𝑒𝑖𝑔ℎ𝑡 ÷ 2
𝑐𝑢𝑏𝑖𝑜𝑑_𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑏𝑎𝑠𝑒_𝑎𝑟𝑒𝑎 × ℎ𝑒𝑖𝑔ℎ𝑡
𝑐𝑢𝑏𝑖𝑜𝑑_𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡
𝑐𝑢𝑏𝑒_𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑠𝑖𝑑𝑒 × 𝑠𝑖𝑑𝑒 × 𝑠𝑖𝑑𝑒
𝑐𝑜𝑛𝑒_𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑏𝑎𝑠𝑒_𝑎𝑟𝑒𝑎 × ℎ𝑒𝑖𝑔ℎ𝑡 ÷ 3
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟_𝑎𝑟𝑒𝑎 = 2 × 𝜋 × 𝑟𝑎𝑑𝑖𝑢𝑠 × ℎ𝑒𝑖𝑔ℎ𝑡
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟_𝑎𝑟𝑒𝑎 = 𝜋 × 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 × ℎ𝑒𝑖𝑔ℎ𝑡
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟_𝑎𝑟𝑒𝑎 = 𝑏𝑎𝑠𝑒_𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 × ℎ𝑒𝑖𝑔ℎ𝑡
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟_𝑣𝑜𝑙𝑢𝑚𝑛𝑒 = 𝑟𝑎𝑑𝑖𝑢𝑠 ∧ 2 × 𝜋 × ℎ𝑒𝑖𝑔ℎ𝑡
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟_𝑣𝑜𝑙𝑢𝑚𝑛𝑒 = (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ÷ 2) ∧ 2 × 𝜋 × ℎ𝑒𝑖𝑔ℎ𝑡
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟_𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑏𝑎𝑠𝑒_𝑎𝑟𝑒𝑎 × ℎ𝑒𝑖𝑔ℎ𝑡
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟_𝑣𝑜𝑙𝑢𝑚𝑒 = 𝜋 × 𝑟𝑎𝑑𝑖𝑢𝑠 × 𝑟𝑎𝑑𝑖𝑢𝑠 × ℎ𝑒𝑖𝑔ℎ𝑡
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 = 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 × 𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒
𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 + 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒
𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒 = 𝑝𝑟𝑜 𝑓 𝑖𝑡 + 𝑐𝑜𝑠𝑡_𝑝𝑟𝑖𝑐𝑒
𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒 = 𝑐𝑜𝑠𝑡_𝑝𝑟𝑖𝑐𝑒 × (1 + 𝑝𝑟𝑜 𝑓 𝑖𝑡%)
𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒 = 𝑐𝑜𝑠𝑡_𝑝𝑟𝑖𝑐𝑒 + 𝑐𝑜𝑠𝑡_𝑝𝑟𝑖𝑐𝑒 × 𝑝𝑟𝑜 𝑓 𝑖𝑡%
𝑡𝑎𝑥_𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑡𝑎𝑥_𝑖𝑛𝑐𝑜𝑚𝑒 × 𝑡𝑎𝑥_𝑟𝑎𝑡𝑒
𝑡𝑎𝑥_𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑠𝑎𝑙𝑎𝑟𝑦 − 𝑏𝑎𝑠𝑒
𝑎𝑐𝑡𝑢𝑎𝑙_𝑠𝑎𝑙𝑎𝑟𝑦 = 𝑠𝑎𝑙𝑎𝑟𝑦 − 𝑡𝑎𝑥_𝑎𝑚𝑜𝑢𝑛𝑡
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑠𝑢𝑚_𝑜 𝑓 _𝑡𝑒𝑟𝑚𝑠 ÷ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑡𝑒𝑟𝑚𝑠
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ÷ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦
𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑐ℎ𝑎𝑛𝑔𝑒% = (𝑓 𝑖𝑛𝑎𝑙 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ) ÷ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑙𝑎𝑠𝑡_𝑡𝑒𝑟𝑚 = 𝑓 𝑖𝑟𝑠𝑡_𝑡𝑒𝑟𝑚 + (𝑛 − 1) × 𝑐𝑜𝑚𝑚𝑜𝑛_𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒
𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑣𝑜𝑙𝑢𝑚𝑒
𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡_𝑎𝑙𝑙 × 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛%
2𝑛𝑑_𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑙𝑐𝑚 × ℎ𝑐𝑓 ÷ 1𝑠𝑡_𝑛𝑢𝑚𝑏𝑒𝑟
𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 = 1 ÷ 𝑛𝑢𝑚𝑏𝑒𝑟

A MORE DATASET ANALYSES
Tables 6 and 7 list all math formulas on our benchmark datasets, and
the distributions of their usage frequency are visualized in Figure 8.
Besides, we count the number of used formulas for each problem
and report the distribution in Table 8. It indicates that 33.5% and
38.4% problems require at least one formula on Math23K-F and
MAWPS-F, respectively, as we have reported in Section 3.1. Espe-
cially, those requiring one formula (i.e., 4, 520 and 860) account

Figure 8: Distributions of formula usage frequency.

Table 7: All 18 math formulas on MAWPS-F.
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒
𝑤𝑜𝑟𝑘 = 𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 = 𝑐𝑜𝑛𝑠𝑢𝑚𝑒_𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒
𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 = 𝑢𝑛𝑖𝑡_𝑡𝑖𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑢𝑛𝑖𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 = 𝑢𝑛𝑖𝑡_𝑐𝑜𝑠𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑢𝑛𝑖𝑡_𝑣𝑜𝑙𝑢𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑢𝑛𝑖𝑡_𝑖𝑛𝑐𝑜𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑢𝑛𝑖𝑡_𝑎𝑚𝑜𝑢𝑛𝑡 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒_𝑎𝑟𝑒𝑎 = 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 = 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 × 𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒
𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 + 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒
𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒 = 𝑝𝑟𝑜 𝑓 𝑖𝑡 + 𝑐𝑜𝑠𝑡_𝑝𝑟𝑖𝑐𝑒
𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒 = 𝑐𝑜𝑠𝑡_𝑝𝑟𝑖𝑐𝑒 × (1 + 𝑝𝑟𝑜 𝑓 𝑖𝑡%)
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑠𝑢𝑚_𝑜 𝑓 _𝑡𝑒𝑟𝑚𝑠 ÷ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑡𝑒𝑟𝑚𝑠
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ÷ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦
𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑐ℎ𝑎𝑛𝑔𝑒 = (𝑓 𝑖𝑛𝑎𝑙 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ) ÷ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × 100
𝑙𝑎𝑠𝑡_𝑡𝑒𝑟𝑚 = 𝑓 𝑖𝑟𝑠𝑡_𝑡𝑒𝑟𝑚 + (𝑛 − 1) × 𝑐𝑜𝑚𝑚𝑜𝑛_𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒

Table 8: Distributions of the number of used formulas.
# Used Formulas # Problems (Math23K-F) # Problems (MAWPS-F)

0 14,412 1,462
1 4,520 860
2 3,005 33

More than 2 225 18

for 19.5% and 36.2% on each dataset. This result verifies that for-
mulas are very important for reasoning expressions correctly, thus
validating the motivation and contribution of our work.

B CHATGPT: EXPERIMENTS AND ANALYSES
ChatGPT is a recently released AI chatbot developed by OpenAI
(https://openai.com/), which has garnered significant attention due
to its strong language generation capability. Equipped with a vast
array of factual knowledge, it is capable of responding problems
across domains such as history, culture, and science.

Here, we are interested in evaluating ChatGPT’s performance
in answering math word problems. We conducted this experiment
in January, 2023, and OpenAI did not publish the code API at
that time. Therefore, we can only access the official website tool
(https://openai.com/blog/chatgpt/) to obtain its responses to all
problems (by a crawler), and then calculate the answers. Specifi-
cally, we show an example in Figure 10. The problem (“Maggi had
... left?”) is input into its online chatbox without any restrictions or
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Problem 2: Jose strolled to Jane ‘s 

house . It is miles from Jose 's house 

to Jane 's house . It took Jose 1 hours 

to get there . How fast did Jose go ?

[×, , 1]

[÷, , 1]

= .

(×): .974

(÷): .

=

÷

Problem 3: White t - shirts can be 

purchased in packages of . If Mom 

buys 1 packages , how many white t -

shirts will she have ?

[×, , . ]

[×, , ]

BERT-Tree

FOMAS

BERT-Tree 

FOMAS
= .

_ _

=

×_

. : .

.428

Figure 9: Cases 2 and 3. For case 2, we visualize FOMAS’s formula-inherited mechanism at 𝑡 = 3. For case 3, we visualize the
formula-selected mechanism at 𝑡 = 1.

Figure 10: Example of ChatGPT’s response.

(Translation)

Problem: The number of chicken eggs is 120, and the number of 

duck eggs is 1/6 greater than that of the chicken eggs. What is the 

total number of eggs? 

ChatGPT: The number of duck eggs is calculated as 120 * 1/6 = 20.

Thus, the total number of chicken and duck eggs is 120 + 20 = 140.

FOMAS: [+, ×, 120, +, 1, (1/6), 120]

Figure 11: A fraction case between ChatGPT and FOMAS.

(Translation)

Problem: Uncle Wang made a deposit of 6000 yuan in a bank with a 

3.24% annual interest rate for a 2-year period. What is the amount that 

can be retrieved at maturity? 

ChatGPT: The annual interest is 6000 × 3.24% = 193.44

So the gross interest is 193.44 × 2 = 386.88

Add it with the original 6000, the amount that can be 

retrieved at maturity is 6000 + 386.88 = 6386.88    

FOMAS: [+,  6000,  ×, ×,  6000,  3.24%,  2]

Figure 12: An arithemetic case betweenChatGPT and FOMAS.

illustrations. We scrape the whole response (“Maggi had a totoal ... 7
cupcakes left.”) and manually extract the numeric answer (i.e., 7) as
ChatGPT’s result. Moreover, since the responses of ChatGPT may
be different with multiple trials, we operate the above processes
three times to obtain the stable results for all problems.

As reported in Table 3, ChatGPT obtains answer accuracy of
64.9% and 88.3% on Math23K-F and MAWPS-F respectively, which
reflects that it has basic mathematical reasoning ability. Specially,
the performance on Math23K-F indicates that ChatGPT may still
lack sufficient Chinese MWP corpus, and has some room for im-
provement on the problems that require more reasoning steps (re-
call that Math23K-F is a Chinese benchmark dataset that contains
more difficult problems than MAWPS-F through the analysis in
Section 3.1). We also make case study on Math23K-F, and find that
there are mainly two typical errors that should be concerned. First,
it struggles to answer the problems that examine fraction or pro-
portion as plotted in Figure 11. Second, its arithmetic capability
remains to be further improved. It can derive the correct expres-
sion for a problem, but makes a mistake when calculating the final
numeric answer, e.g., in Figure 12, it gets the wrong value 193.44
based on the correct expression 6000 × 3.24% (marked red).

Besides, for a more sufficient comparison, we design another
baseline named ChatGPT-P by prompting all our annotated formu-
las together with the problem sentence as the input of ChatGPT. Our
prompt is: “[problem sentence]. You may use the following math
formulas to solve this problem: [formulas]”, and we also manually
extract the numeric answer from its response. ChatGPT-P obtains
58.4% and 89.2% answer accuracy on Math23K-F and MAWPS-F, re-
spectively. After suspecting its outputs, we found that on Math23K-
F, ChatGPT-P might misunderstand the task after giving all the
formulas. For example, it might just type out all formulas and out-
put “\𝑛 𝑠𝑝𝑒𝑒𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷ 𝑡𝑖𝑚𝑒, \𝑛 𝑟𝑎𝑡𝑒 = 𝑤𝑜𝑟𝑘 ÷ 𝑡𝑖𝑚𝑒, ...” instead
of actually solving the problem. We guess it is probably because the
51 formulas (reported in Table 2) in the dataset take up most of the
place in the prompt and make ChatGPT frustrated with what to do,
thus resulting in a performance drop. While for MAWPS-F that has
fewer (i.e., 18) formulas, prompting can improve the answer accu-
racy, which shows the necessity of studying formula knowledge on
mathematical reasoning in this paper, and verifies the validity of
our manually constructed formulas from another perspective. The
different performances above inspire us to explore how to combine
large-scale language models with external knowledge without in-
troducing too much noise. We think it will be an interesting and
valuable research direction in the future.

C CASES 2 AND 3
We show one case in Section 5.3.3 and another two cases in Figure 9.
Pleaser refer to Section 5.3.3 for detailed explanations and analyses.
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