
Under review as a conference paper at ICLR 2024

ITERATION AND STOCHASTIC FIRST-ORDER ORACLE
COMPLEXITIES OF STOCHASTIC GRADIENT DESCENT
USING CONSTANT AND DECAYING LEARNING RATES

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of stochastic gradient descent (SGD), which is the simplest first-
order optimizer for training deep neural networks, depends on not only the learn-
ing rate but also the batch size. They both affect the number of iterations and the
stochastic first-order oracle (SFO) complexity needed for training. In particular,
the previous numerical results indicated that, for SGD using a constant learning
rate, the number of iterations needed for training decreases when the batch size
increases, and the SFO complexity needed for training is minimized at a criti-
cal batch size and increases once the batch size exceeds that size. This paper
studies the relationship between batch size and the iteration and the SFO com-
plexities needed for nonconvex optimization in deep learning with SGD using
constant/decay learning rates. We show that SGD using a step-decay learning rate
and a small batch size reduces the SFO complexity to find a local minimizer of a
loss function. We also provide numerical comparisons of SGD with the existing
first-order optimizers and show the usefulness of SGD using a step-decay learning
rate and a small batch size.

1 INTRODUCTION

1.1 BACKGROUND

First-order optimizers can train deep neural networks by minimizing loss functions called the ex-
pected and empirical risk. They use stochastic first-order derivatives (stochastic gradients), which
are estimated from the full gradient of the loss function. The simplest first-order optimizer is stochas-
tic gradient descent (SGD) (Robbins & Monro, 1951; Zinkevich, 2003; Nemirovski et al., 2009;
Ghadimi & Lan, 2012; 2013) and it has a number of variants, such as momentum methods (Polyak,
1964; Nesterov, 1983) and adaptive methods including adaptive gradient (AdaGrad) (Duchi et al.,
2011), root mean square propagation (RMSProp) (Tieleman & Hinton, 2012), adaptive moment es-
timation (Adam) (Kingma & Ba, 2015), adaptive mean square gradient (AMSGrad) (Reddi et al.,
2018), and Adam with decoupled weight decay (AdamW) (Loshchilov & Hutter, 2019).

SGD can be applied to nonconvex optimization (Vaswani et al., 2019; Fehrman et al.,
2020; Chen et al., 2020; Scaman & Malherbe, 2020; Loizou et al., 2021; Arjevani et al., 2023;
Khaled & Richtárik, 2023), where its performance strongly depends on the learning rate αk. For
example, under the bounded variance assumption, SGD using a constant learning rate αk = α

satisfies that 1
K

∑K−1
k=0 ∥∇f(θk)∥2 = O(1

K) + σ2 (Scaman & Malherbe, 2020, Theorem 12) and
SGD using a decaying learning rate (i.e., αk → 0) satisfies that 1

K

∑K−1
k=0 E[∥∇f(θk)∥2] = O(1√

K
)

(Scaman & Malherbe, 2020, Theorem 11), where (θk)k∈N is the sequence generated by SGD to find
a local minimizer of f , K is the number of iterations, and σ2 is the upper bound of the variance.

The performance of SGD also depends on the batch size b. Convergence analyses of SGD in
(Jain et al., 2018; Cotter et al., 2011; Chen et al., 2020; Arjevani et al., 2023) indicated that SGD
with a decaying learning rate and large batch size converges to a local minimizer of the loss function.
In (Smith et al., 2018), it was numerically shown that using an enormous batch leads to reductions
in the number of parameter updates and model training time.

1

Under review as a conference paper at ICLR 2024

1.2 MOTIVATION

The previous numerical results in (Shallue et al., 2019) indicated that, for SGD using constant/linear
decay learning rates, the number of iterations K needed to train a deep neural network de-
creases when the batch size b increases. Motivated by the numerical results in (Shallue et al.,
2019), we decided to clarify the iteration complexity of SGD using a constant/decay learning rate
needed to train a deep neural network in theory. The theoretical performance measure of SGD is
mink∈[0:K−1] E[∥∇f(θk)∥] ≤ ϵ, where ϵ (> 0) is the precision and [0 : K−1] := {0, 1, . . . ,K−1},
which was used in the previous theoretical analyses of SGD. If SGD is an ϵ–approximation
mink∈[0:K−1] E[∥∇f(θk)∥] ≤ ϵ, then SGD can train a deep neural network in K iterations.

In addition, the numerical results in (Shallue et al., 2019) indicated an interesting fact wherein di-
minishing returns exist beyond a critical batch size; i.e., the number of iterations needed to train a
deep neural network does not strictly decrease beyond the critical batch size. Here, we define the
stochastic first-order oracle (SFO) complexity as N := Kb, where K is the number of iterations
needed to train a deep neural network and b is the batch size, as stated above. The deep neural net-
work model uses b gradients of the loss functions per iteration. The model has a stochastic gradient
computation cost of N = Kb. From the numerical results in (Shallue et al., 2019, Figures 4 and
5), we can conclude that using the critical batch size b⋆ (if it exists) is useful for SGD, since the
SFO complexity N(b) is minimized at b = b⋆ and the SFO complexity increases once the batch size
exceeds b⋆. Hence, on the basis of the first motivation stated above, we decided to clarify the SFO
complexities of SGD using constant/decay learning rates needed to achieve an ϵ–approximation.

1.3 CONTRIBUTION

1.3.1 UPPER BOUND OF THEORETICAL PERFORMANCE MEASURE

To clarify the iteration and SFO complexities of SGD needed to achieve an ϵ–approximation,
we first give upper bounds of mink∈[0:K−1] E[∥∇f(θk)∥2] for SGD generating the sequence
(θk)k∈N using constant/decay learning rates, as indicated in Table 1 (see Theorem 3.1 for
the definitions of Ci and Di). The aim of this paper is to show that SGD is an ϵ–
approximation mink∈[0:K−1] E[∥∇f(θk)∥2] ≤ ϵ2. Hence, it is desirable that the upper bounds
of mink∈[0:K−1] E[∥∇f(θk)∥2] become small. Table 1 indicates that the upper bounds become
small when the number of iterations and batch size are large. In particular, it shows that a step-
decay learning rate (the “Step Decay” row) may perform better other learning rates in the sense
of minimizing the upper bound of mink∈[0:K−1] E[∥∇f(θk)∥2]. For example, if we set small
batch size, such as b = 21, 22, SGD using a step-decay learning rate has the convergence rate,
mink∈[0:K−1] E[∥∇f(θk)∥2] = O(1

K), which is better than the convergence rate O(1
K + C2) =

O(1
K + σ2) of SGD using a constant learning rate, where σ2 is the upper bound of the variance.

The table also indicates that the convergence of SGD strongly depends on the batch size, since the
variance terms (including σ2 and b; see Theorem 3.1 for the definitions of C2, D2, and D3) in the
upper bounds of mink∈[0:K−1] E[∥∇f(θk)∥2] decrease as the batch size becomes larger.

1.3.2 OPTIMAL BATCH SIZE TO REDUCE SFO COMPLEXITY

Section 1.3.1 showed that using large batch sizes is appropriate for SGD in the sense of minimiz-
ing the upper bound of the performance measure. We are interested in finding appropriate batch
sizes from the viewpoint of the computation cost of SGD. This is because the SFO complexity in-
creases when batch sizes are sufficiently large. As indicated in Section 1.2, the critical batch size
b⋆ minimizes the SFO complexity, N = Kb. Hence, we will investigate the properties of the SFO
complexity N = Kb needed to achieve an ϵ–approximation. For example, let us consider SGD
using a constant learning rate. Then, from the “Upper Bound” row in Table 1, we have that

min
k∈[0:K−1]

E[∥∇f(θk)∥2] ≤
C1

K
+

C2

b
≤ ϵ2︸ ︷︷ ︸

⇔K≥K(b):=
C1b

ϵ2b−C2
(b>C2

ϵ2
)

.

We can check that the number of iterations, K(b) := C1b
ϵ2b−C2

, needed to achieve an ϵ–approximation
is monotone decreasing and convex with respect to the batch size b (Theorem 3.2). Then, we have

2

Under review as a conference paper at ICLR 2024

Table 1: Upper bounds of mink∈[0:K−1] E[∥∇f(θk)∥2] for SGD using constant/decay learning rates
and optimal batch sizes to minimize the SFO complexities (Ci and Di are positive constants, K is
the number of iterations, b is the batch size, and L is the Lipschitz constant of∇f)

Learning Rate Upper Bound Optimal Batch Size

Constant α ∈ (0, 2
L)

C1

K
+

C2

b

2C2

ϵ2

a ∈ (0, 1
2)

D1

Ka
+

D2

(1− 2a)Kab

(1− a)D2

a(1− 2a)D1

Decay a = 1
2

D1√
K

+

(
1√
K

+ 1

)
D2

b
Small Batch Size

αk = 1
(k+1)a a ∈ (12 , 1)

D1

K1−a
+

2aD2

(2a− 1)K1−ab

2a2D2

(1− a)(2a− 1)D1

Step Decay αk ≥ α
D1

αK
+

D3

αKb
Small Batch Size

that K(b) ≥ inf{K : mink∈[0:K−1] E[∥∇f(θk)∥] ≤ ϵ}, where SGD using the batch size b generates
(θk)

K−1
k=0 . Moreover, we find that the SFO complexity is N(b) = K(b)b = C1b

2

ϵ2b−C2
. The convexity

of N(b) = C1b
2

ϵ2b−C2
(Theorem 3.3) ensures that a critical batch size b⋆ = 2C2

ϵ2 whereby N ′(b⋆) = 0

exists such that N(b) is minimized at b⋆ (see the “Optimal Batch Size” row in Table 1). A similar
discussion guarantees the existence of a critical batch size for SGD using a decaying learning rate
αk = 1

(k+1)a , where a ∈ (0, 1
2) or a ∈ (12 , 1) (see the “Optimal Batch Size” row in Table 1).

Meanwhile, for a decaying learning rate αk = 1√
k+1

or a step-decay learning rate, although N(b) is
convex with respect to b, we have that N ′(b) > 0 for all b > 0 (Theorem 3.3(iii)). Hence, for these
two cases, a critical batch size b⋆ defined by N ′(b⋆) = 0 does not exist. Accordingly, small batch
sizes are appropriate for a decaying learning rate αk = 1√

k+1
or a step-decay learning rate in the

sense of minimizing the SFO complexities. Accordingly, we will define the optimal batch size (in
the sense of minimizing the SFO complexity) by

Optimal Batch Size b∗ =

{
Critical Batch Size b⋆ if N ′(b⋆) = 0

Small Batch Size if N ′(b) > 0 for all b > 0.
(1)

Then, we have that N(b∗) ≥ inf{N : mink∈[0:K−1] E[∥∇f(θk)∥] ≤ ϵ}, where SGD using the batch
size b∗ generates (θk)K−1

k=0 .

1.3.3 ITERATION AND SFO COMPLEXITIES

LetF(n,∆, L) be an L–smooth function class with f := 1
n

∑n
i=1 fi and f(θ0)−f⋆ ≤ ∆ (see (C1))

and letO(b, σ2) be a stochastic first-order oracle class (see (C2) and (C3)). The iteration complexity
Kϵ (Arjevani et al., 2023, (7)) and the SFO complexity Nϵ of SGD generating θk(f,O) = θk (f ∈
F(n,∆, L),O ∈ O(b, σ2)) needed to achieve an ϵ–approximation are defined by

Kϵ(n, b,∆, L, σ2) := sup
O∈O(b,σ2)

sup
f∈F(n,∆,L)

inf

{
K : min

k∈[0:K−1]
E[∥∇f(θk)∥] ≤ ϵ

}
,

Nϵ(n, b,∆, L, σ2) := sup
O∈O(b,σ2)

sup
f∈F(n,∆,L)

inf

{
N : min

k∈[0:K−1]
E[∥∇f(θk)∥] ≤ ϵ

}
.

(2)

Table 2 summarizes the iteration and SFO complexities (see also Theorem 3.4). It indicates that
using a step-decay learning rate reduces the iteration and SFO complexities. However, since the
positive constants, such as Ci and Di, depend on the learning rate, we need to compare numerically
the performances of SGD using constant/decay learning rates. Moreover, we also need to compare
the existing first-order optimizers with SGD using a step-decay learning rate to verify its usefulness.
Section 4 describes numerical comparisons showing that SGD using a step-decay learning rate and
small batch size performs better than the existing first-order optimizers.

3

Under review as a conference paper at ICLR 2024

Table 2: Iteration and SFO complexities of SGD using constant/decay learning rates needed to
achieve an ϵ–approximation (The optimal batch sizes defined as in (1) are used to compute Nϵ)

Learning Rate Iteration Complexity Kϵ SFO Complexity Nϵ(n, b
∗,∆, L, σ2)

Constant α ∈ (0, 2
L) O

(
1

ϵ2

)
= sup

f,O
K(b) O

(
1

ϵ4

)
= sup

f,O

4C1C2

ϵ4

a ∈ (0, 1
2) O

(
1

ϵ
2
a

)
= sup

f,O
K(b) O

(
1

ϵ
2
a

)
= sup

f,O

(1− a)1−
1
aD2

a(1− 2a)D
1− 1

a
1 ϵ

2
a

Decay a = 1
2 O

(
1

ϵ4

)
= sup

f,O
K(b) O

(
1

ϵ4

)
= sup

f,O

(
D1 +D2

ϵ2 −D2

)2

αk = 1
(k+1)a a ∈ (12 , 1) O

(
1

ϵ
2

1−a

)
= sup

f,O
K(b) O

(
1

ϵ
2

1−a

)
= sup

f,O

2a2−
1

1−a (1− a)−1D2

(2a− 1)D
1− 1

1−a

1 ϵ
2

1−a

Step Decay αk ≥ α O

(
1

ϵ2

)
= sup

f,O
K(b) O

(
1

ϵ2

)
= sup

f,O

D1 +D3

αϵ2

2 NONCONVEX OPTIMIZATION AND SGD

2.1 NONCONVEX OPTIMIZATION IN DEEP LEARNING

Let Rd be a d-dimensional Euclidean space with inner product ⟨x,y⟩ := x⊤y inducing the norm
∥x∥ and N be the set of nonnegative integers. Define [0 : n] := {0, 1, . . . , n} for n ≥ 1. Let (xk)k∈N
and (yk)k∈N be positive real sequences and let x(ϵ), y(ϵ) > 0, where ϵ > 0. O denotes Landau’s
symbol; i.e., yk = O(xk) if there exist c > 0 and k0 ∈ N such that yk ≤ cxk for all k ≥ k0, and
y(ϵ) = O(x(ϵ)) if there exists c > 0 such that y(ϵ) ≤ cx(ϵ). Given a parameter θ ∈ Rd and a
data point z in a data domain Z, a machine learning model provides a prediction whose quality is
measured by a differentiable nonconvex loss function ℓ(θ; z). We aim to minimize the empirical loss
defined for all θ ∈ Rd by f(θ) = 1

n

∑n
i=1 ℓ(θ; zi) = 1

n

∑n
i=1 fi(θ), where S = (z1, z2, . . . , zn)

denotes the training set and fi(·) := ℓ(·; zi) denotes the loss function corresponding to the i-th
training data zi.

2.2 SGD

2.2.1 CONDITIONS AND ALGORITHM

We assume that a stochastic first-order oracle (SFO) exists such that, for a given θ ∈ Rd, it returns
a stochastic gradient Gξ(θ) of the function f , where a random variable ξ is independent of θ. Let
Eξ[·] be the expectation taken with respect to ξ. The following are standard conditions.

(C1) f := 1
n

∑n
i=1 fi : Rd → R is L–smooth, i.e., ∇f : Rd → Rd is L–Lipschitz continuous

(i.e., ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥). f is bounded below from f⋆ ∈ R. Let ∆ > 0
satisfy f(θ0)− f⋆ ≤ ∆, where θ0 is an initial point.

(C2) Let (θk)k∈N ⊂ Rd be the sequence generated by SGD. For each iteration k,
Eξk [Gξk(θk)] = ∇f(θk), where ξ0, ξ1, . . . are independent samples and the random
variable ξk is independent of (θl)kl=0. There exists a nonnegative constant σ2 such that
Eξk [∥Gξk(θk)−∇f(θk)∥2] ≤ σ2.

(C3) For each iteration k, SGD samples a batch Bk of size b independently of k and estimates
the full gradient ∇f as ∇fBk

(θk) :=
1
b

∑
i∈[b] Gξk,i

(θk), where ξk,i is a random variable
generated by the i-th sampling in the k-th iteration.

Algorithm 1 is the SGD optimizer under (C1)–(C3).

4

Under review as a conference paper at ICLR 2024

Algorithm 1 SGD
Require: αk ∈ (0,+∞) (learning rate), b ≥ 1 (batch size), K ≥ 1 (iteration)
Ensure: θK

1: k ← 0, θ0 ∈ Rd

2: loop
3: ∇fBk

(θk) :=
1
b

∑
i∈[b] Gξk,i

(θk)

4: θk+1 := θk − αk∇fBk
(θk)

5: k ← k + 1
6: end loop

2.2.2 LEARNING RATES

We use the following learning rates:

(Constant) αk does not depend on k ∈ N, i.e., αk = α < 2
L (k ∈ N), where the upper bound 2

L of
α is needed to analyze SGD (see Appendix A.2).

(Decay) (αk)k∈N ⊂ (0,+∞) is monotone decreasing for k (i.e., αk ≥ αk+1) and converges to
0. In particular, we use αk = 1

(k+1)a , where (Decay 1) a ∈ (0, 1
2) ∨ (Decay 2) a =

1
2 ∨ (Decay 3) a ∈ (12 , 1). It is guaranteed that there exists k0 ∈ N such that, for all
k ≥ k0, αk < 2

L . We assume that k0 = 0, since we can replace αk = 1
(k+1)a with

α
(k+1)a ≤ α < 2

L (k ∈ N), where α ∈ (0, 2
L) is defined as in (Constant).

(Step Decay) Let α > 0, η ∈ (0, 1), T, P ≥ 1, and K = TP . A step-decay learning rate is

(Decay 4) (αk)
K−1
k=0 = (α, α, · · · , α︸ ︷︷ ︸

T

, αη, αη, · · · , αη︸ ︷︷ ︸
T

, · · · , αηP−1, αηP−1, · · · , αηP−1︸ ︷︷ ︸
T

),

which is monotone decreasing for k. Let α > 0 be a lower bound of αK−1. We assume
that α < 2

L , which implies that, for all k ∈ [0 : K − 1], αk < 2
L .

3 OUR RESULTS

3.1 UPPER BOUND OF THE SQUARED NORM OF THE FULL GRADIENT

We give an upper bound of mink∈[0:K−1] E[∥∇f(θk)∥2], where E[·] stands for the total expectation,
for the sequence generated by SGD using each of the learning rates defined in Section 2.2.2.
Theorem 3.1 (Upper bound of the squared norm of the full gradient) The sequence (θk)k∈N
generated by Algorithm 1 under (C1)–(C3) satisfies that, for all K ≥ 1,

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2

]
≤

C1

K
+

C2

b
(Constant)

D1

Ka
+

D2

(1− 2a)Kab
(Decay 1)

D1√
K

+

(
1√
K

+ 1

)
D2

b
(Decay 2)

D1

K1−a
+

2aD2

(2a− 1)K1−ab
(Decay 3)

D1

αK
+

D3

αKb
(Decay 4)

where

C1 :=
2(f(θ0)− f⋆)

(2− Lα)α
, C2 :=

Lσ2α

2− Lα
,

D1 :=

2(f(θ0)− f⋆)

2− Lα0
(Decay 1)–(Decay 3)

2(f(θ0)− f⋆)

2− Lα
(Decay 4),

D2 :=
Lσ2

2− Lα0
, D3 :=

Lα2Tσ2

(1− η2)(2− Lα)
.

5

Under review as a conference paper at ICLR 2024

Theorem 3.1 indicates that the upper bound of mink∈[0:K−1] E[∥∇f(θk)∥2] consists of a bias term
including f(θ0)− f⋆ and a variance term including σ2 and that these terms become small when the
number of iterations and the batch size are large. In particular, the bias term using (Constant) or
(Decay 4) is O(1

K), which is a better rate than using (Decay 1)–(Decay 3). Moreover, the variance
term using (Decay 4) is O(1

Kb), which is a better rate than using other learning rates.

3.2 NUMBER OF ITERATIONS NEEDED TO ACHIEVE ϵ–APPROXIMATION OF SGD

Let us consider an ϵ–approximation of SGD defined as follows:
E
[
∥∇f(θK∗)∥2

]
:= min

k∈[0:K−1]
E
[
∥∇f(θk)∥2

]
≤ ϵ2, (3)

where ϵ > 0 is the precision and K∗ ∈ [0 : K − 1]. Condition (3) implies that E[∥∇f(θK∗)∥] ≤ ϵ.
Theorem 3.1 below gives the number of iterations needed to achieve an ϵ–approximation (3) of SGD.
Theorem 3.2 (Numbers of iterations needed for nonconvex optimization of SGD) Let (θk)k∈N
be the sequence generated by Algorithm 1 under (C1)–(C3) and let K : R→ R be

K(b) =

C1b

ϵ2b− C2
(Constant){

1

ϵ2

(
D2

(1− 2a)b
+D1

)} 1
a

(Decay 1)(
D1b+D2

ϵ2b−D2

)2

(Decay 2){
1

ϵ2

(
2aD2

(2a− 1)b
+D1

)} 1
1−a

(Decay 3)

1

αϵ2

(
D3

b
+D1

)
(Decay 4)

where C1, C2, D1, D2, and D3 are defined as in Theorem 3.1, the domain of K in (Constant) is
b > C2

ϵ2 , and the domain of K in (Decay 2) is b > D2

ϵ2 . Then, we have the following:

(i) The above K achieves an ϵ–approximation (3).

(ii) The above K is a monotone decreasing and convex function with respect to the batch size
b.

Theorem 3.2 indicates that the number of iterations needed for SGD using constant/decay learning
rates to be an ϵ–approximation is small when the batch size is large. Hence, it is appropriate to
set a large batch size in the sense of minimizing the iterations needed for an ϵ–approximation (3).
However, the SFO complexity, which is the stochastic gradient computation cost, becomes larger as
b grows. Hence, the appropriate batch size should also minimize the SFO complexity.

3.3 SFO COMPLEXITY TO ACHIEVE ϵ–APPROXIMATION OF SGD

Theorem 3.2 leads to the following theorem on the properties of the SFO complexity N needed to
achieve an ϵ–approximation (3) of SGD.
Theorem 3.3 (SFO complexity needed for nonconvex optimization of SGD) Let (θk)k∈N be the
sequence generated by Algorithm 1 under (C1)–(C3) and define N : R→ R by

N(b) = K(b)b =

C1b
2

ϵ2b− C2
(Constant){

1

ϵ2

(
D2

(1− 2a)b
+D1

)} 1
a

b (Decay 1)(
D1b+D2

ϵ2b−D2

)2

b (Decay 2){
1

ϵ2

(
2aD2

(2a− 1)b
+D1

)} 1
1−a

b (Decay 3)
1

αϵ2
(D3 +D1b) (Decay 4)

6

Under review as a conference paper at ICLR 2024

where C1, C2, D1, D2, and D3 are as in Theorem 3.1, the domain of N in (Constant) is b > C2

ϵ2 ,
and the domain of N in (Decay 2) is b > D2

ϵ2 . Then, we have the following:

(i) The above N is convex with respect to the batch size b.

(ii) There exists a critical batch size

b⋆ =

2C2

ϵ2
(Constant)

(1− a)D2

a(1− 2a)D1
(Decay 1)

2a2D2

(1− a)(2a− 1)D1
(Decay 3)

(4)

satisfying N ′(b⋆) = 0 such that b⋆ minimizes the SFO complexity N .

(iii) For (Decay 2) and (Decay 4), N ′(b) > 0 holds for all b > 0.

Theorem 3.3(ii) indicates that, if we can set a critical batch size (4) for each of (Constant), (Decay
1), and (Decay 3), then the SFO complexity will be minimized. However, it would be difficult to set
b⋆ in (4) before implementing SGD, since b⋆ in (4) involves unknown parameters, such as L and σ2

(see Theorem 3.1 for the definitions of C2, D1, and D2). Meanwhile, Theorem 3.3(iii) indicates that
small batch sizes are appropriate when using (Decay 2) and (Decay 4) in the sense of minimizing
the SFO complexity N .

3.4 ITERATION AND SFO COMPLEXITIES OF SGD

Theorems 3.2 and 3.3 lead to the following theorem indicating the iteration and SFO complexities
needed to achieve ϵ–approximation of SGD (see also Table 2).
Theorem 3.4 (Iteration and SFO complexities of SGD) The iteration and SFO complexities such
that Algorithm 1 under (C1)–(C3) can be an ϵ–approximation (3) are as follows:

(Kϵ(n, b,∆, L, σ2),Nϵ(n, b
∗,∆, L, σ2)) =

(
O

(
1

ϵ2

)
, O

(
1

ϵ4

))
(Constant)(

O

(
1

ϵ
2
a

)
, O

(
1

ϵ
2
a

))
(Decay 1)(

O

(
1

ϵ4

)
, O

(
1

ϵ4

))
(Decay 2)(

O

(
1

ϵ
2

1−a

)
, O

(
1

ϵ
2

1−a

))
(Decay 3)(

O

(
1

ϵ2

)
, O

(
1

ϵ2

))
(Decay 4)

whereKϵ(n, b,∆, L, σ2) andNϵ(n, b,∆, L, σ2) are defined as in (2), the optimal batch sizes (1) are
used to computeNϵ(n, b

∗,∆, L, σ2) (see also (4)), and we assume that, for (Constant) and (Decay
2), there exists M > 0 such that ϵ2b− C2, ϵ

2b−D2 ≥Mϵ2b to compute Kϵ(n, b,∆, L, σ2).

Theorem 3.4 indicates that the iteration complexities for (Constant) and (Decay 4) are better than
those for (Decay 1)–(Decay 3) and the SFO complexity for (Decay 4) is the best. Therefore, we
can conclude that using the step-decay learning rate (Decay 4) is useful for SGD in the sense of
minimizing the iteration and SFO complexities needed to achieve an ϵ–approximation.

4 NUMERICAL RESULTS

We numerically verified the number of iterations and SFO complexities needed to achieve high test
accuracy for different batch sizes in training ResNet (Appendix A.6 provides the number of itera-
tions and SFO complexities needed to achieve high training accuracy). The parameter α used in
(Constant) was determined by conducting a grid search of {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. The
parameters α used in the decaying learning rate (Decay 1)–(Decay 3) defined by αk = α

(k+1)a were

7

Under review as a conference paper at ICLR 2024

determined by a grid search of {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}. The parameters α and η used
in (Decay 4) were determined by a grid search of α ∈ {0.125, 0.25, 0.5} and η ∈ {0.25, 0.5, 0.75}.
The parameter T in (Decay 4) was set to T = 20 epochs. The parameter a in (Decay 1)
and (Decay 3) was set to a = 1

4 and a = 3
4 , respectively. We compared SGD using (De-

cay 4) with SGD with momentum (momentum), Adam, AdamW, and RMSProp. The learning
rates and hyperparameters of the four optimizers were determined on the basis of the previous
results (Kingma & Ba, 2015; Loshchilov & Hutter, 2019; Tieleman & Hinton, 2012) (The weight
decay used in the momentum was 5 × 10−4). The experimental environment consisted of an
NVIDIA DGX A100×8GPU and Dual AMD Rome7742 2.25-GHz, 128 Cores×2CPU. The soft-
ware environment was Python 3.10.6, PyTorch 1.13.1, and CUDA 11.6. The code is available at
https://anonymous.4open.science/r/SGD_with_decaying/.

21 22 23 24 25 26 27 28 29 210 211

Batch Size

104

105

106

Ite
ra

tio
n

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 1: Number of iterations needed for SGD
with (Constant), (Decay 1), (Decay 2), (Decay 3),
and (Decay 4) to achieve a test accuracy of 0.9
versus batch size (ResNet-18 on CIFAR-10)

21 22 23 24 25 26 27 28 29 210 211

Batch Size

106

107

SF
O

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 2: SFO complexity needed for SGD with
(Constant), (Decay 1), (Decay 2), (Decay 3), and
(Decay 4) to achieve a test accuracy of 0.9 versus
batch size (ResNet-18 on CIFAR-10)

21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

103

104

105

106

Ite
ra

tio
n

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 3: Number of iterations needed for SGD
with (Decay 4), momentum, Adam, AdamW, and
RMSProp to achieve a test accuracy of 0.9 versus
batch size (ResNet-18 on CIFAR-10)

21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

106

SF
O

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 4: SFO complexity needed for SGD with
(Decay 4), momentum, Adam, AdamW, and RM-
SProp to achieve a test accuracy of 0.9 versus
batch size (ResNet-18 on CIFAR-10)

First, we trained ResNet-18 on CIFAR-10 dataset. The stopping condition of the optimizers was 200
epochs. Figures 1 and 2 show performance measures for five different learning rates in achieving
a test accuracy of 0.9. Figure 1 indicates that using (Decay 2) and (Decay 3) did not reach the
test accuracy 0.9 before the stopping condition was reached (Figures 9 and 10 in Appendix A.6
indicate that using (Decay 2) and (Decay 3) reached the training accuracy 0.9). Meanwhile, Figure
1 indicates that using (Constant), (Decay 1), and (Decay 4) decreased the number of iterations.
Figure 2 indicates that, in the case of SGD using (Constant), a critical batch size b⋆ = 24 exists at
which the SFO complexity is minimized. Figures 1 and 2 indicate that, for using a small batch size
(b = 21, 22), SGD using (Decay 4) performs better than SGD using (Constant) and (Decay 1).

Figures 3 and 4 compare SGD with (Decay 4) with other optimizers. These figures indicate that,
for using a small batch size (b = 21, 22), SGD with (Decay 4) performed better than the other
optimizers in minimizing the number of iterations and the SFO complexity. Figure 4 also indicates
that the existing optimizers using constant learning rates had critical batch sizes minimizing the SFO
complexities. In particular, AdamW using the critical batch size b⋆ = 25 (Figure 4) and SGD using
(Constant) and b⋆ = 24 (Figure 2) performed well. However, it would be difficult to set the critical
batch size in advance, since it involves unknown parameters L and σ2 (see (4) and C2 = Lσ2α

2−Lα

8

Under review as a conference paper at ICLR 2024

(computing the Lipschitz constant L is NP-hard (Virmaux & Scaman, 2018)). Meanwhile, we can
set small batch sizes for using SGD with a step-decay learning rate.

Next, we trained ResNet-18 on the CIFAR-100 dataset. The stopping condition of the optimizers
was 1000 epochs. Figures 5 and 6 show performance measures of SGD for five different learning
rates in achieving a test accuracy of 0.6. As in Figures 3 and 4, Figures 7 and 8 indicate that, for using
a small batch size (b = 21, 22, 23, 24), SGD with (Decay 4) reduced the SFO complexity. Figures
7 and 8 indicate that using the existing optimizers with b = 21 did not reach the test accuracy 0.6
before the stopping condition was reached, in contrast to SGD with (Decay 4) and b = 21. Moreover,
the SFO complexity of SGD with (Decay 4) and the batch size b = 24 was the smallest of other
optimizers for any batch size. Figures 5–8 indicate that SGD with (Decay 4) was more robust than
other optimizers in terms of using small batch sizes (See Figures 17–20 for the results on the MNIST
dataset).

21 22 23 24 25 26 27 28 29 210 211

Batch Size

103

104

105

106

Ite
ra

tio
n

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 5: Number of iterations needed for SGD
with (Constant), (Decay 1), (Decay 2), (Decay 3),
and (Decay 4) to achieve a test accuracy of 0.6
versus batch size (ResNet-18 on CIFAR-100)

21 22 23 24 25 26 27 28 29 210 211

Batch Size

106

107

SF
O

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 6: SFO complexity needed for SGD with
(Constant), (Decay 1), (Decay 2), (Decay 3), and
(Decay 4) to achieve a test accuracy of 0.6 versus
batch size (ResNet-18 on CIFAR-100)

21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

103

104

105

106

Ite
ra

tio
n

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 7: Number of iterations needed for SGD
with (Decay 4), momentum, Adam, AdamW, and
RMSProp to achieve a test accuracy of 0.6 versus
batch size (ResNet-18 on CIFAR-100)

21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

106

107

SF
O

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 8: SFO complexity needed for SGD with
(Decay 4), momentum, Adam, AdamW, and RM-
SProp to achieve a test accuracy of 0.6 versus
batch size (ResNet-18 on CIFAR-100)

5 CONCLUSION AND FUTURE WORK

This paper investigated the required number of iterations and SFO complexities of SGD using con-
stant/decay learning rates to achieve an ϵ–approximation. Our theoretical analyses indicated that
the number of iterations needed for an ϵ–approximation is monotone decreasing and convex with
respect to the batch size and the SFO complexity needed for an ϵ–approximation is convex with
respect to the batch size. Moreover, we showed that SGD using a step-decay learning rate and a
small batch size reduces the SFO complexity. The numerical results indicated that SGD using a
step-decay learning rate and a small batch size performs better than the existing optimizers in the
sense of minimizing the SFO complexity.

The results in this paper can be applied to only SGD. This is a limitation of our work. Hence, in
the future, we should investigate whether our results can be applied to variants of SGD, such as the
momentum methods and adaptive methods.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–
214, 2023.

Hao Chen, Lili Zheng, Raed AL Kontar, and Garvesh Raskutti. Stochastic gradient descent in cor-
related settings: A study on Gaussian processes. In Advances in Neural Information Processing
Systems, volume 33, 2020.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. In Advances in Neural Information Processing Systems, volume 24,
2011.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Benjamin Fehrman, Benjamin Gess, and Arnulf Jentzen. Convergence rates for the stochastic gradi-
ent descent method for non-convex objective functions. Journal of Machine Learning Research,
21:1–48, 2020.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly con-
vex stochastic composite optimization I: A generic algorithmic framework. SIAM Journal on
Optimization, 22:1469–1492, 2012.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly con-
vex stochastic composite optimization II: Shrinking procedures and optimal algorithms. SIAM
Journal on Optimization, 23:2061–2089, 2013.

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Paralleliz-
ing stochastic gradient descent for least squares regression: Mini-batching, averaging, and model
misspecification. Journal of Machine Learning Research, 18(223):1–42, 2018.

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of The International Conference on Learning Representations, 2015.

Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic polyak step-
size for SGD: An adaptive learning rate for fast convergence. In Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 130, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of The
International Conference on Learning Representations, 2019.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19:1574–
1609, 2009.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence O(1/k2). Doklady AN USSR, 269:543–547, 1983.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 4:1–17, 1964.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
Proceedings of The International Conference on Learning Representations, 2018.

Herbert Robbins and Herbert Monro. A stochastic approximation method. The Annals of Mathe-
matical Statistics, 22:400–407, 1951.

Kevin Scaman and Cédric Malherbe. Robustness analysis of non-convex stochastic gradient descent
using biased expectations. In Advances in Neural Information Processing Systems, volume 33,
2020.

10

Under review as a conference paper at ICLR 2024

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20:1–49, 2019.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations, 2018.

Tijmen Tieleman and Geoffrey Hinton. RMSProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for machine learning, 4:26–31, 2012.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. In Ad-
vances in Neural Information Processing Systems, volume 32, 2019.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In Advances in Neural Information Processing Systems, volume 31, 2018.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning, pp. 928–936, 2003.

A APPENDIX

A.1 LEMMA

First, we will prove the following lemma.
Lemma A.1 The sequence (θk)k∈N generated by Algorithm 1 under (C1)–(C3) satisfies that, for
all K ≥ 1,

K−1∑
k=0

αk

(
1− Lαk

2

)
E
[
∥∇f(θk)∥2

]
≤ E [f(θ0)− f⋆] +

Lσ2

2b

K−1∑
k=0

α2
k.

Proof: Condition (C1) (L-smoothness of f) implies that the descent lemma holds, i.e., for all k ∈ N,

f(θk+1) ≤ f(θk) + ⟨∇f(θk),θk+1 − θk⟩+
L

2
∥θk+1 − θk∥2,

which, together with θk+1 := θk − αk∇fBk
(θk), implies that

f(θk+1) ≤ f(θk)− αk⟨∇f(θk),∇fBk
(θk)⟩+

Lα2
k

2
∥∇fBk

(θk)∥2. (5)

Condition (C2) guarantees that

E [∇fBk
(θk)|θk] = ∇f(θk) and E

[
∥∇fBk

(θk)−∇f(θk)∥2|θk
]
≤ σ2

b
. (6)

Hence, we have

E
[
∥∇fBk

(θk)∥2|θk
]
= E

[
∥∇fBk

(θk)−∇f(θk) +∇f(θk)∥2|θk
]

= E
[
∥∇fBk

(θk)−∇f(θk)∥2|θk
]
+ 2E [⟨∇fBk

(θk)−∇f(θk),∇f(θk)⟩|θk]
+ E

[
∥∇f(θk)∥2|θk

]
≤ σ2

b
+ E

[
∥∇f(θk)∥2

]
. (7)

Taking the expectation conditioned on θk on both sides of (5), together with (6) and (7), guarantees
that, for all k ∈ N,

E [f(θk+1)|θk] ≤ f(θk)− αkE [⟨∇f(θk),∇fBk
(θk)⟩|θk] +

Lα2
k

2
E
[
∥∇fBk

(θk)∥2|θk
]

≤ f(θk)− αk∥∇f(θk)∥2 +
Lα2

k

2

(
σ2

b
+ ∥∇f(θk)∥2

)
.

11

Under review as a conference paper at ICLR 2024

Hence, taking the total expectation on both sides of the above inequality ensures that, for all k ∈ N,

αk

(
1− Lαk

2

)
E
[
∥∇f(θk)∥2

]
≤ E [f(θk)− f(θk+1)] +

Lσ2α2
k

2b
.

Let K ≥ 1. Summing the above inequality from k = 0 to k = K − 1 ensures that

K−1∑
k=0

αk

(
1− Lαk

2

)
E
[
∥∇f(θk)∥2

]
≤ E [f(θ0)− f(θK)] +

Lσ2

2b

K−1∑
k=0

α2
k,

which, together with (C1) (the lower bound f⋆ of f), implies that the assertion in Lemma A.1 holds.
2

A.2 PROOF OF THEOREM 3.1

(Constant): Lemma A.1 with αk = α implies that

α

(
1− Lα

2

)K−1∑
k=0

E
[
∥∇f(θk)∥2

]
≤ E [f(θ0)− f⋆] +

Lσ2α2K

2b
.

Since α < 2
L , we have that

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2

]
≤ 1

K

K−1∑
k=0

E
[
∥∇f(θk)∥2

]
≤ 2(f(θ0)− f⋆)

(2− Lα)α︸ ︷︷ ︸
C1

1

K
+

Lσ2α

2− Lα︸ ︷︷ ︸
C2

1

b
.

(Decay): Since (αk)k∈N converges to 0, there exists k0 ∈ N such that, for all k ≥ k0, αk < 2
L . We

assume that k0 = 0 (see Section 2.2.2). Lemma A.1 ensures that, for all K ≥ 1,
K−1∑
k=0

αk

(
1− Lαk

2

)
E
[
∥∇f(θk)∥2

]
≤ E [f(θ0)− f⋆] +

Lσ2

2b

K−1∑
k=0

α2
k,

which, together with αk+1 ≤ αk < 2
L (k ∈ N), implies that

αK−1

(
1− Lα0

2

)K−1∑
k=0

E
[
∥∇f(θk)∥2

]
≤ E [f(θ0)− f⋆] +

Lσ2

2b

K−1∑
k=0

α2
k.

Hence, we have that
K−1∑
k=0

E
[
∥∇f(θk)∥2

]
≤ 2(f(θ0)− f⋆)

(2− Lα0)αK−1
+

Lσ2

b(2− Lα0)αK−1

K−1∑
k=0

α2
k,

which implies that

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lα0︸ ︷︷ ︸
D1

1

KαK−1
+

1

b

Lσ2

2− Lα0︸ ︷︷ ︸
D2

1

KαK−1

K−1∑
k=0

α2
k.

Meanwhile, we have that

K−1∑
k=0

α2
k =

K−1∑
k=0

1

(k + 1)2a
≤ 1 +

∫ K−1

0

dt

(t+ 1)2a
≤

1

1− 2a
K1−2a (Decay 1)

1 + logK (Decay 2)
2a

2a− 1
(Decay 3)

and
1

KαK−1
=

1

K1−a
.

12

Under review as a conference paper at ICLR 2024

Accordingly, we have that

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2

]
≤

D1

K1−a
+

D2

(1− 2a)Kab
(Decay 1)

D1√
K

+
D2(1 + logK)√

Kb
(Decay 2)

D1

K1−a
+

2aD2

(2a− 1)K1−ab
(Decay 3)

which, together with logK <
√
K and the condition on a, implies that

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2

]
≤

D1

Ka
+

D2

(1− 2a)Kab
(Decay 1)

D1√
K

+

(
1√
K

+ 1

)
D2

b
(Decay 2)

D1

K1−a
+

2aD2

(2a− 1)K1−ab
(Decay 3).

(Step Decay): We have that
K−1∑
k=0

α2
k ≤

+∞∑
k=0

α2
k ≤

+∞∑
k=0

α2Tη2k =
α2T

1− η2
and

1

KαK−1
≤ 1

αK
.

Hence, from αk ≤ α,

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2

]
≤ D1

αK
+

Lα2Tσ2

(1− η2)(2− Lα)︸ ︷︷ ︸
D3

1

αKb
(Decay 4).

2

A.3 PROOF OF THEOREM 3.2

(i) Let us consider the case of (Constant). We consider that the upper bound C1

K + C2

b in Theorem
3.1 is equal to ϵ2. This implies that K = C1b

ϵ2b−C2
achieves an ϵ–approximation. A discussion similar

to the one showing that K = C1b
ϵ2b−C2

is an ϵ–approximation ensures that the assertion in Theorem
3.2(i) is true.

(ii) It is sufficient to prove that K ′ = K ′(b) < 0 and K ′′ = K ′′(b) > 0 hold.

(Constant): Let K = C1b
ϵ2b−C2

. Then, we have that

K ′ =
C1(ϵ

2b− C2)− ϵ2C1b

(ϵ2b− C2)2
= − C1C2

(ϵ2b− C2)2
< 0,

K ′′ =
2ϵ2C1C2(ϵ

2b− C2)

(ϵ2b− C2)4
=

2ϵ2C1C2((
C1

K + C2

b)b− C2)

(ϵ2b− C2)4
=

2ϵ2C2
1C

2
2

K(ϵ2b− C2)4
> 0.

(Decay 1): Let K = (1
ϵ2 (D1 +

D2

(1−2a)b))
1
a . Then, we have that

K ′ =
1

a

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1
a−1 (

− D2

ϵ2(1− 2a)b2

)
= − D2

aϵ2(1− 2a)b2

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1−a
a

< 0,

K ′′ =
2D2

aϵ2(1− 2a)b3

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1−a
a

+
2(1− a)D2

a2ϵ2(1− 2a)b3

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1−a
a −1

D2

ϵ2(1− 2a)b2
> 0.

13

Under review as a conference paper at ICLR 2024

(Decay 2): Let K = (bD1+D2

bϵ2−D2
)2. Then, we have that

K ′ =
2D1(bD1 +D2)(bϵ

2 −D2)
2 − 2ϵ2(bϵ2 −D2)(bD1 +D2)

2

(bϵ2 −D2)4
,

which, together with bϵ2 −D2 > 0, implies that

(bϵ2 −D2)
3K ′ = 2D1(bD1 +D2)(bϵ

2 −D2)− 2ϵ2(bD1 +D2)
2

= 2D1(ϵ
2D1b

2 + (ϵ2D2 −D1D2)b−D2)− 2ϵ2(b2D2
1 + 2D1D2b+D2

2)

= 2ϵ2D2
1b

2 + 2D1(ϵ
2D2 −D1D2)b− 2D1D2 − 2ϵ2D2

1b
2 − 4ϵ2D1D2b− 2ϵ2D2

2

= −2D1D2(D1 + 2ϵ2)b− 2D2(D1 + ϵ2D2) < 0.

Moreover,

K ′′ =
−2D1D2(D1 + 2ϵ2)(bϵ2 −D2)

3 + 3ϵ2(bϵ2 −D2)
2(2D1D2(D1 + 2ϵ2)b+ 2D2(D1 + ϵ2D2))

(bϵ2 −D2)6
,

which implies that

(bϵ2 −D2)
4K ′′

= −2D1D2(D1 + 2ϵ2)(bϵ2 −D2) + 3ϵ2(2D1D2(D1 + 2ϵ2)b+ 2D2(D1 + ϵ2D2))

= −2D1D2(ϵ
2D1b−D1D2 + 2ϵ4b− 2ϵ2D2) + 3ϵ2(2D2

1D2b+ 4ϵ2D1D2b+ 2D1D2 + 2ϵ2D2
2)

= −2ϵ2D2
1D2b+ 2D2

1D
2
2 − 4ϵ4D1D2b+ 4ϵ2D1D

2
2 + 6ϵ2D2

1D2b

+ 12ϵ4D1D2b+ 6ϵ2D1D2 + 6ϵ4D2
2

= 4ϵ2D1D2(D1 + 2ϵ2)b+ 2D2
1D

2
2 + 4ϵ2D1D

2
2 + 6ϵ2D1D2 + 6ϵ4D2

2 > 0.

(Decay 3): Let K = (1
ϵ2 (D1 +

2aD2

(2a−1)b))
1

1−a . Then, we have that

K ′ =
1

1− a

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} 1
1−a−1 (

− 2aD2

ϵ2(2a− 1)b2

)
= − 2aD2

ϵ2(1− a)(2a− 1)b2

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} a
1−a

< 0,

K ′′ =
4aD2

ϵ2(1− a)(2a− 1)b3

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} a
1−a

+
2a2D2

ϵ2(1− a)2(2a− 1)b2

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} a
1−a−1

2aD2

ϵ2(2a− 1)b2
> 0.

(Decay 4): Let K = (D1 +
D3

b) 1
ϵ2α . Then, we have that

K ′ = − D3

ϵ2αb2
< 0, K ′′ =

2D3

ϵ2αb3
> 0.

2

A.4 PROOF OF THEOREM 3.3

(Constant): Let N = C1b
2

ϵ2b−C2
. Then, we have that

N ′ =
2C1b(ϵ

2b− C2)− ϵ2C1b
2

(ϵ2b− C2)2
=

C1b(ϵ
2b− 2C2)

(ϵ2b− C2)2
.

If N ′ = 0, we have that ϵ2b− 2C2 = 0, i.e., b = 2C2

ϵ2 . Moreover,

N ′′ =
(2ϵ2C1b− 2C1C2)(ϵ

2b− C2)
2 − 2ϵ2(ϵ2b− C2)(ϵ

2C1b
2 − 2C1C2b)

(ϵ2b− C2)4

(ϵ2b− C2)
3N ′′ = (2ϵ2C1b− 2C1C2)(ϵ

2b− C2)− 2ϵ2(ϵ2C1b
2 − 2C1C2b)

= 2C1C
2
2 > 0,

14

Under review as a conference paper at ICLR 2024

which implies that N is convex. Hence, there is a critical batch size b⋆ = 2C2

ϵ2 > 0 at which N is
minimized.

(Decay 1): Let N = Kb. Then, we have that

N ′ = K + bK ′

=

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1
a

+
1

a

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1
a−1 (

− D2

ϵ2(1− 2a)b2

)
b

=

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1
a−1 {

1

ϵ2

(
D1 +

D2

(1− 2a)b

)
− D2

aϵ2(1− 2a)b

}
.

If N ′ = 0, we have that

1

ϵ2

(
D1 +

D2

(1− 2a)b

)
− D2

aϵ2(1− 2a)b
= 0, i.e., b =

D2(a− 1)

aD1(2a− 1)
.

Moreover,

N ′′ = K ′ + (K ′ + bK ′′) = 2K ′ + bK ′′

= − 2D2

aϵ2(1− 2a)b2

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1−a
a

+
2D2

aϵ2(1− 2a)b2

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1−a
a

+
2(1− a)D2

a2ϵ2(1− 2a)b2

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1−a
a −1

D2

ϵ2(1− 2a)b2

=
2(1− a)D2

a2ϵ2(1− 2a)b2

{
1

ϵ2

(
D1 +

D2

(1− 2a)b

)} 1−a
a −1

D2

ϵ2(1− 2a)b2
> 0,

which implies that N is convex. Hence, there is a critical batch size b⋆ = D2(a−1)
aD1(2a−1) > 0.

(Decay 2): Let N = bK. Then, we have that

N ′ = K + bK ′

=
(bD1 −D2)

2

(bϵ2 −D2)2
− b(2D1D2(D1 + 2ϵ2)b− 2D2(D1 + ϵ2D2))

(bϵ2 −D2)3

=
1

(bϵ2 −D2)3
{(bD1 −D2)

2(bϵ2 −D2)− 2D1D2(D1 + 2ϵ2)b2 − 2D2(D1 + ϵ2D2)b}

=
1

(bϵ2 −D2)3
{(D2

1b
2 − 2D1D2b+D2

2)(bϵ
2 −D2)− 2D2

1D2b
2 − 4ϵ2D1D2b

2

− 2D1D2b− 2ϵ2D2
2b}

=
1

(bϵ2 −D2)3
(ϵ2D2

1b
3 −D1D2b

2 − 2ϵ2D1D2b
2 + 2D1D

2
2b+ ϵ2D2

2b−D3
2

− 2D2
1D2b

2 − 4ϵ2D1D2b
2 − 2D1D2b− 2ϵ2D2

2b)

=
1

(bϵ2 −D2)3
(ϵ2D2

1b
3 −D1D2b

2 − 6ϵ2D1D2b
2 − 2D2

1D2b
2 + 2D1D

2
2b− ϵ2D2

2b−D3
2)

=
1

(bϵ2 −D2)3
(D1b+D2)(ϵ

2D1b
2 −D2(3D1 + ϵ2)b−D2

2).

15

Under review as a conference paper at ICLR 2024

If N ′ = 0, we have that D1b+D2 = 0, i.e., b = −D2

D1
< 0. Moreover,

N ′′ = 2K ′ + bK ′′

= −2(2D1D2(D1 + 2ϵ2)b− 2D2(D1 + ϵ2D2))

(bϵ2 −D2)3

+
4ϵ2D1D2(D1 + 2ϵ2)b2 + (2D2

1D
2
2 + 4ϵ2D1D

2
2 + 6ϵ2D1D2 + 6ϵ4D2

2)b

(bϵ2 −D2)4

= (−2(2D1D2(D1 + 2ϵ2)b− 2D2(D1 + ϵ2D2))(bϵ
2 −D2)

+ 4ϵ2D1D2(D1 + 2ϵ2)b2 + (2D2
1D

2
2 + 4ϵ2D1D

2
2 + 6ϵ2D1D2 + 6ϵ4D2

2)b)
1

(bϵ2 −D2)4

= (−4ϵ2D2
1D2b

2 + 8ϵ4D1D2b
2 + 4D2

1D
2
2b+ 8ϵ2D1D

2
2b− 2ϵ2D1D2b− 2ϵ4D2

2b+ 2D1D
2
2

+ 2ϵ2D3
2 + 4ϵ2D2

1D2b
2 + 8ϵ4D1D2b

2 + 2D2
1D

2
2b+ 4ϵ2D1D

2
2b+ 6ϵ2D1D2b+ 6ϵ4D2

2b)

× 1

(bϵ2 −D2)4

= (4D2
1D

2
2b+ 12ϵ2D1D

2
2b+ 2D1D

2
2 + 2ϵ2D3

2 + 2D2
1D

2
2b+ 4ϵ2D1D2b+ 4ϵ4D2

2b)

× 1

(bϵ2 −D2)4
> 0,

which implies that N is convex and that a critical batch size does not exist.

(Decay 3): Let N = bK. Then, we have that

N ′ = K + bK ′

=

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} 1
1−a

− 2aD2

ϵ2(1− a)(2a− 1)b

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} 1
1−a−1

=

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} 1
1−a−1 {

1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)
− 2aD2

ϵ2(1− a)(2a− 1)b

}
.

If N ′ = 0, we have that

1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)
− 2aD2

ϵ2(1− a)(2a− 1)b
= 0, i.e., b =

2a2D2

(2a− 1)(1− a)D1
.

Moreover,

N ′′ = 2K ′ + bK ′′

= − 2aD2

ϵ2(1− a)(2a− 1)b2

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} a
1−a

+
2aD2

ϵ2(1− a)(2a− 1)b2

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} a
1−a

+
2a2D2

ϵ2(1− a)2(2a− 1)b

{
1

ϵ2

(
D1 +

2aD2

(2a− 1)b

)} 2a−1
1−a 2aD2

ϵ2(2a− 1)b2

=
2a2D2

ϵ2(1− a)2(2a− 1)b

{
1

ϵ2(D1 +
2aD2

(2a−1)b)

} 2a−1
1−a

2aD2

ϵ2(2a− 1)b2
> 0,

which implies that N is convex. Hence, there is a critical batch size b⋆ = 2a2D2

(2a−1)(1−a)D1
> 0.

(Decay 4): We have that

N = bK = (D1b+D3)
1

ϵ2α
> 0, N ′ =

D1

ϵ2α
> 0, N ′′ = 2K ′ + bK ′′ = − 2D3

ϵ2αb2
+

2D3

ϵ2αb2
= 0,

which implies that N is convex and that a critical batch size does not exist. 2

16

Under review as a conference paper at ICLR 2024

A.5 PROOF OF THEOREM 3.4

Using K defined in Theorem 3.2 leads to the iteration complexity. For example, SGD using (Decay
4) satisfies that K(b) = 1

αϵ2 (
D3

b + D1), which implies that Kϵ = O(1
ϵ2). SGD using (Constant)

satisfies that N(b) = C1b
2

ϵ2b−C2
(Theorem 3.3). Using the critical batch size b⋆ = 2C2

ϵ2 in (4) leads to

inf

{
N : min

k∈[0:K−1]
E[∥∇f(θk)∥] ≤ ϵ

}
≤ N(b⋆) =

4C1C2

ϵ4
, i.e., Nϵ = O

(
1

ϵ4

)
.

A similar discussion, together with using N defined in Theorem 3.3 and the critical batch size b⋆ in
(4), leads to the SFO complexities of (Decay 1) and (Decay 3). Using N defined in Theorem 3.3
and a small batch size b leads to the SFO complexities of (Decay 2) and (Decay 4). 2

A.6 NUMERICAL RESULTS FOR TRAINING DATASETS

20 21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

100

101

102

103

104

105

Ite
ra

tio
n

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 9: Number of iterations needed for SGD
with (Constant), (Decay 1), (Decay 2), (Decay 3),
and (Decay 4) to achieve a training accuracy of
0.9 versus batch size (ResNet-18 on CIFAR-10)

20 21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

100

101

102

103

104

105

106

107

SF
O

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 10: SFO complexity needed for SGD with
(Constant), (Decay 1), (Decay 2), (Decay 3), and
(Decay 4) to achieve a training accuracy of 0.9
versus batch size (ResNet-18 on CIFAR-10)

20 21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

101

102

103

Ite
ra

tio
n

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 11: Number of iterations needed for SGD
with (Decay 4), momentum, Adam, AdamW, and
RMSProp to achieve a training accuracy of 0.9
versus batch size (ResNet-18 on CIFAR-10)

20 21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

101

102

103

104

105

106

SF
O

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 12: SFO complexity needed for SGD with
(Decay 4), momentum, Adam, AdamW, and RM-
SProp to achieve a training accuracy of 0.9 versus
batch size (ResNet-18 on CIFAR-10)

A.7 TRAINING RESNET-18 ON THE MNIST DATASET

17

Under review as a conference paper at ICLR 2024

20 21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

101

102

103

104

105

106

Ite
ra

tio
n

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 13: Number of iterations needed for SGD
with (Constant), (Decay 1), (Decay 2), (Decay 3),
and (Decay 4) to achieve a training accuracy of
0.9 versus batch size (ResNet-18 on CIFAR-100)

20 21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

101

102

103

104

105

106

107

SF
O

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 14: SFO complexity needed for SGD with
(Constant), (Decay 1), (Decay 2), (Decay 3), and
(Decay 4) to achieve a training accuracy of 0.9
versus batch size (ResNet-18 on CIFAR-100)

20 21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

101

102

103

104

105

Ite
ra

tio
n

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 15: Number of iterations needed for SGD
with (Decay 4), momentum, Adam, AdamW, and
RMSProp to achieve a training accuracy of 0.9
versus batch size (ResNet-18 on CIFAR-100)

20 21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

101

102

103

104

105

106

107

SF
O

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 16: SFO complexity needed for SGD with
(Decay 4), momentum, Adam, AdamW, and RM-
SProp to achieve a training accuracy of 0.9 versus
batch size (ResNet-18 on CIFAR-100)

21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

103

104

105

Ite
ra

tio
n

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 17: Number of iterations needed for SGD
with (Constant), (Decay 1), (Decay 2), (Decay 3),
and (Decay 4) to achieve a test accuracy of 0.99
versus batch size (ResNet-18 on MNIST)

21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

105

106

107

SF
O

Constant
Decay 1
Decay 2
Decay 3
Decay 4

Figure 18: SFO complexity needed for SGD with
(Constant), (Decay 1), (Decay 2), (Decay 3), and
(Decay 4) to achieve a test accuracy of 0.99 versus
batch size (ResNet-18 on MNIST)

21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

102

103

104

105

Ite
ra

tio
n

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 19: Number of iterations needed for SGD
with (Decay 4), momentum, Adam, AdamW, and
RMSProp to achieve a test accuracy of 0.99 versus
batch size (ResNet-18 on MNIST)

21 22 23 24 25 26 27 28 29 210 211 212

Batch Size

106

SF
O

SGD with Decay4
momentum
Adam
AdamW
RMSProp

Figure 20: SFO complexity needed for SGD with
(Decay 4), momentum, Adam, AdamW, and RM-
SProp to achieve a test accuracy of 0.99 versus
batch size (ResNet-18 on MNIST)

18

