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ABSTRACT

Complex spatio-temporal dependencies govern many real-world processes – from
climate dynamics to disease spread. Modeling these processes continuously using
purpose-built neural network architectures, so-called location encoders, presents
an emerging paradigm in analyzing and interpolating geographic data. In this work,
we expand existing spatial location encoders and introduce a new time-informed
architecture: the space-time encoder. Our method takes in geographic (latitude,
longitude) and temporal information simultaneously and learns smooth, continuous
functions in space and time. The inputs are first transformed using positional
encoding functions and then fed into neural networks that allow the learning of
complex functions. We consider, via detailed experimental analysis, (1) how to
efficiently combine space and time encodings, (2) the effect of different choices of
encoding functions for the time component and (3) frameworks for encouraging
orthogonality of feature representations to improve representational power. We
highlight the effectiveness and flexibility of the space-time encoder on a range
of tasks representing different spatio-temporal dynamics, from climate prediction
to animal species classification. Our results show improvements over existing
methods for modeling spatio-temporal data, owing both to the space-time encoder
architecture and our orthonormal regularizer.

1 INTRODUCTION

Breeding range
Nonbreeding range

(7.76, -75.2, Dec-12)

(36.1, -85, Sep-02)

(39, -78.8, Jun-29)

Figure 1: Modeling bird migration patterns, an example
for the importance of modeling spatio-temporal pro-
cesses accurately. This figure shows the learned pres-
ence probability map P (y|λ, ϕ, t) of the Golden-winged
Warbler, a migratory warbler species found in the Amer-
icas, learned by our Space-Time Encoder.

Geospatial data are central to a wide range
of scientific and real-world applications, in-
cluding conservation of biodiversity (Cole
et al., 2023; Dhakal et al., 2025), Earth
system modeling (Chen et al., 2024), and
agricultural decision-making (Lin et al.,
2020). Many tasks in these domains–such
as predicting species occurrence patterns,
estimating environmental variables from
sensor output, or mapping crops–require
learning patterns that unfold across space
and time. Figure 1 exemplifies the im-
portance of modeling spatio-temporal pro-
cesses on the example of migratory bird
species. Tasks like these often rely on
sparse, irregular observations anchored to
specific spatio-temporal coordinates, from
which models must interpolate or extrapo-
late dense, high-resolution outputs.

With the growing power of deep learning
methods and availability of open-access
data from remote sensing and citizen sci-
ence, there has been an abundance of work
leveraging deep learning for geospatial
tasks (Zhu et al., 2024). As this field has

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

grown, there has been an increasing recognition of the value of designing specialized architectures
and methods for encoding the geographical structure of positional information (Mac Aodha et al.,
2019a; Mai et al., 2023; Rußwurm et al., 2024; Klemmer et al., 2023) in the form of location encoders
that can be incorporated into a variety of specific algorithms. However, the adoption of location
encoders has so far consisted mainly in incorporating the spatial structure of datapoints situated on
the Earth. Geospatial data often contain additional temporal components that affect the observed
process, and thus may be expected to change the optimal spatial encoding. Strong temporal dynamics
occur in diverse problems such as climate model emulation over time (Watt-Meyer et al., 2023),
species distribution modeling of migratory birds (Zuckerberg et al., 2016), and seasonal crop yield
forecasting (Cai et al., 2018). Some prior works have leveraged temporal information as input to
spatio-temporal encoders (Mac Aodha et al., 2019b; Mai et al., 2020; Dollinger et al., 2025) but to
date, there has been no systematic study of different temporal encodings and their integration into
location encoder architectures.

In this paper, we construct and evaluate a variety of techniques for integrating time information
into location encoders. Motivated by existing studies on the value of orthogonal space-only loca-
tion encodings (Rußwurm et al., 2024), our work introduces a novel regularizer that encourages
representation orthogonality. We run experiments testing the value of encoding spatio-temporal data
in the contexts of multi-variate climate model emulation –and as auxiliary information in image
classification of animal species. Our contributions are as follows:

• We introduce the Space-Time Encoder framework combining location and temporal encod-
ings, including several modular design options.

• We design a novel regularization method that promotes orthogonality between individual
components of the representation and can be used with any encoder architecture.

• We show the value of Space-Time Encoders across a variety of datasets featuring geospatial
data with a strong temporal component, including ACE (Watt-Meyer et al., 2023), BirdSnap
(Berg et al., 2014), and iNaturalist (iNaturalist 2018 competition dataset), and show an
improvement on existing baselines. We identify strong time encoding types and find that
our orthogonal regularizer can further boost performance.

2 RELATED WORK

2.1 MACHINE LEARNING FOR EARTH

Recent years have seen a rapid growth in the scale and variety of data describing our planet, ranging
from satellite images to the trajectories of cellphone users. Recent work estimates the scale of
Earth observation data as around 800 Petabytes in size, growing at a rate of 100 Petabytes per year
(Wilkinson et al., 2024). Many diverse types of data have in common the property that they are
indexed in space and time. Given such large and diverse data sources, machine learning is becoming
an increasingly powerful tool, with promising applications including climate modeling (Bodnar et al.,
2025; Lam et al., 2023), agricultural forecasting (Lin et al., 2020; Nedungadi et al., 2025; Kondmann
et al., 2021) and land-use change detection (Bai et al., 2023; He et al., 2024). A plethora of methods
have been developed for this domain (Rolf et al., 2024), including an increasing number of foundation
models aiming to provide general-purpose modeling frameworks for Earth data, such as SatMAE
(Cong et al., 2022), ScaleMAE (Reed et al., 2022), Prithvi (Jakubik et al., 2023; Szwarcman et al.,
2024), Presto (Tseng et al., 2023), Galileo (Tseng et al., 2025), and AlphaEarth (Brown et al., 2025).

2.2 LOCATION ENCODERS

Within machine learning for Earth, a growing body of work has focused on location encoders. These
are neural network models that take as input geographic coordinates (longitude and latitude), in
contrast to e.g. vision models that expect satellite image inputs. Location encoders are lightweight
and highly flexible and have shown potential for constructing dense maps from sparse inputs (spatial
interpolation) and as “geographic priors” (Mac Aodha et al., 2019a), conditioning an existing model
on geographic information (Rußwurm et al., 2024; Mai et al., 2020). Location encoders can also
be pretrained on unlabeled Earth data to obtain global “location embeddings” that contain ground
conditions captured by the input data (e.g. features recognizable on a satellite image). This can be
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Figure 2: Overview of our proposed Space-Time Encoder in the center, with a focus on the orthogonal
regularizer (top right panel) and different time encoding configurations (left panel).

facilitated through contrastive learning objectives (Jean et al., 2019; Mai et al., 2023; Klemmer et al.,
2023; Vivanco Cepeda et al., 2023) or even untrained “kitchen sink” features (Rolf et al., 2021).

2.3 INCORPORATING SPATIO-TEMPORAL STRUCTURE

Spatio-temporal tasks can be broadly split into two categories: (1) Directly predicting some output
from space-time coordinates (y ∼ f([lon, lat, time])) and (2) leveraging space-time coordinates
as auxiliary information in a predictive task with primary predictors x (y ∼ f(x, [lon, lat, time])).
For the first category, traditional machine learning approaches include Gaussian Processes (GPs)
(Williams & Rasmussen, 2006), Kriging (Matheron, 1969) and other interpolation techniques. More
recently, neural networks have been introduced in this setting, promising better scaling and flexibility
(Mai et al., 2022; Rußwurm et al., 2024; Chen et al., 2024). For the second category, classical
approaches have included domain-specific models that capture the structure of auxiliary information,
such as statistical species distribution models (Martínez-Minaya et al., 2018). With more recent deep
learning approaches, spatio-temporal metadata has been incorporated as a prior for tasks such as
animal and crop type classification from imagery (Mac Aodha et al., 2019b; Mai et al., 2020).

3 METHOD

Our methodology addresses the prediction problem of learning functions mapping spatio-temporal
coordinates – expressed in longitude, latitude, and time – to an outcome variable of interest, such as
air temperature values. In our proposed Space-Time Encoder framework (Figure 2), the spatial and
temporal coordinates are mapped to two separate embedding vectors. While the design of the spatial
encodings has been the subject of several past studies (Rußwurm et al., 2024; Mai et al., 2020), there
is no existing comparison of different temporal encodings for geospatial modeling tasks. We address
this research gap in our work.

3.1 DEFINITIONS

We here define the property of orthogonality, which will be useful in explaining our methodology.
Let F = {f1, . . . fN} denote a set of functions mapping a common domain, D, to the real numbers,
that is, fi : D → R. For our purposes, this domain will usually be the sphere S2, the (time) interval
I , or their Cartesian product S2 × I . The scalar product of two functions f, g : D → R can be
defined as the integral of their point-wise product over the domain D: ⟨f, g⟩ =

∫
D
f(x)g(x)dx. The

set of functions F is an orthogonal family if the scalar product of any two distinct elements is zero:
⟨f, g⟩ = 0, whenever f ̸= g.

We now consider the neurons of a neural network layer as functions, ni : D → R from the domain of
the network to the real numbers. We define a layer to be orthogonal if its neurons represent a set of
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Name Formula Orthogonal Description

No time fk(t) = 1 No The same constant term in each dimension

Time copy fk(t) = t No The original time coordinate in each dimension
Triangular fk(t) = 2 ·

∣∣2 (kt+1
2 −

⌊
kt+1
2

⌋)
− 1

∣∣− 1 No Piecewise linear family of functions
Monomial fk(t) = tk No Polynomials with a single term

Legendre fk(t) =
2k−1

k tfk−1(t)− k−1
k fk−2(t) Yes Orthogonal and normalized version of Monomial

Fourier fk(t) =
1√
2
sin

(
πkt
2

)
, gk(t) =

1√
2
cos

(
πkt
2

)
Yes Widely used, orthogonal and normalized

Table 1: Overview of function families for encoding time coordinate grouped into baseline (No
time), non-orthogonal time encoders (Time copy, Triangular, Monomial) and orthogonal functions
(Legendre and Fourier).

orthogonal functions. Note that an orthogonal layer consisting of a weight matrix A, bias vector b,
and activation function σ, does not necessarily have an orthogonal weight matrix A and that A being
an orthogonal matrix need not imply that the layer is orthogonal.

3.2 ENCODING TIME

Our work directly expands on a study using spherical harmonics functions to encode spatial coordi-
nates (Rußwurm et al., 2024). These functions have two desirable properties that we seek to retain
in our Space-Time Encoder model: they are both orthogonal and normed - or orthonormal - with
respect to the scalar product of square integrable functions on the sphere. Orthonormal functions can
represent data with high efficiency due to lack of “overlap” between the information captured.

For the time encoder, we proceed similarly to the space encoder: We choose a family of encoding
functions, which we then apply to the time coordinate to obtain an embedding vector. A popular
choice for temporal encoding is a basis of Fourier functions, which allows the capture of periodic
phenomena such as seasonality. However, based on the dynamics of interest, a different function
might be chosen. A neural network can then transform this embedding vector further to obtain the
final time embedding vector. The two temporal and spatial embedding vectors are combined and
passed through a neural network trained to output the prediction vector.

We compare the effectiveness of several different function families in encoding time, defined formally
and compared in Table 1; we summarize them informally here. The No time family ignores the time
coordinate. The Time copy family simply copies the time coordinate across all embedding dimensions.
The Triangular family spans the set of functions that are piecewise linear in time. The Monomial
family spans the set of functions that are polynomial in time. Triangular and monomial families
are not orthogonal families of functions. The Legendre family is a family of polynomials which are
orthogonal with respect to the uniform distribution on the interval, and, like the monomial basis,
spans the full set of polynomial functions. The Fourier family is a family of trigonometric functions
that is also orthogonal with respect to the uniform distribution on the interval.

3.3 ORTHOGONAL REGULARIZATION

While orthogonal encodings of spatial and temporal inputs help encode information efficiently when
passed into a neural network, the orthogonality property is not preserved after passing the encoded
coordinates through a neural network.

To encourage the neurons of the last layer L of a neural network to represent orthogonal functions, we
introduce a novel regularizer N (L|X ). Since we are interested in orthogonality with respect to a data
distribution, the regularizer is dependent on the training dataset. This regularizer can be applied to
any location encoder architecture, allowing for more flexibility than fixed sets of orthogonal functions
such as spherical harmonics functions or Fourier functions which are orthogonal with respect to a
fixed probability distribution such as the uniform distribution on the sphere (spherical harmonics) or
on the interval (Fourier functions).
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The total loss in our experiments is a sum of a supervised loss, Lsup, such as MSE or Cross-Entropy,
and the regularization term weighted by a hyperparameter α:

Ltotal = Lsup + αN (L|X ).

Just like the total loss, the data-dependent regularizer can be computed on batches of samples.

Given a uniform sample with N elements from the data manifold X = {x1, . . . , xN}, one can
approximate the integrals that are necessary to test orthogonality: ⟨f, g⟩ =

∫
D
f(x)g(x)dx ≈

1
N

∑
i f(xi)g(xi). We define a data-dependent scalar product using this Monte Carlo approximation:

⟨f, g⟩X := 1
N

∑
i f(xi)g(xi). Using this new scalar product, for a layer L = {n1, . . . nK}, we can

express an approximate version of the orthogonality condition as: ⟨nj , nk⟩X − δj,k = 0. By squaring
each such equation and adding the equations for all j, k ∈ [K], we obtain the regularization term:

N (L|X ) :=
∑
j

∑
k:k ̸=j

⟨nj , nk⟩2X (1)

The data-dependent scalar product needs O(N) additions and multiplications. The double sum
has K2 −K terms since we do not sum over terms with k = j. Each term consists of a squared
data-dependent scalar product. Therefore, evaluating the regularizer requires O(NK2) additions and
O(K2) squaring operations. Since the regularizer is computed in a batched fashion and the width
of deep learning layers is much smaller than the number of data-points, this asymptotic complexity
bound shows that the regularization term is inexpensive to evaluate.

3.4 COMBINING SPATIAL AND TEMPORAL ENCODERS

We now construct orthogonal functions for spatio-temporal coordinates from S2 × I using spher-
ical harmonics for the geographic coordinates (spherical domain). There are several examples of
orthogonal function sets on the interval (temporal domain) such as Fourier bases and Legendre
polynomials–the analogous concept to spherical harmonics on the interval. Orthogonal functions on
the sphere and on the interval can be combined to orthogonal functions on the cross product of the
sphere and the interval as follows: Consider an orthogonal set of functions S = {f1, . . . fN}, which
are defined on the sphere, S2, and an orthogonal set of functions which are defined on the interval, I ,
I = {g1, . . . , gM}. Then the set S ⊗ I = {f1 ⊗ g1, . . . , fi ⊗ gj , . . . , fN ⊗ gM} is orthogonal on
the Cartesian product S2 × I . Here, the tensor product of two functions f : S2 → R and g : I → R
is defined as f ⊗ g : S2 × I → R, (x, y) 7→ f(x) · g(y). The proof that S ⊗ I is indeed orthogonal,
follows from Fubini’s theorem.

For example, assuming that we chose a spherical harmonics basis, {Y m
l (θ, ϕ}l,m∈[L]×[M ], for

encoding the geographic coordinates and a Fourier basis, {sin(nπ · t), cos(nπ · t)}n∈[N ] for the
temporal coordinate, the Tensor product of both will have L ·M ·N elements of the form Y m

l (θ, ϕ) ·
sin(n · π · t) and Y m

l (θ, ϕ) · cos(n · π · t).

4 EXPERIMENTS

We assess the performance of the Space-Time Encoder by performing experiments on three datasets
that have location and time information: animal image classification with iNaturalist 2018 (iNaturalist
2018 competition dataset) and BirdSnap (Berg et al., 2014), and multi-task climate variable regression
with the AI2 Climate Emulator dataset (Watt-Meyer et al., 2023).

4.1 CLIMATE VARIABLE REGRESSION

ACE dataset Our experiments are based on a subset of the dataset of the AI2 Climate Emulator
(Watt-Meyer et al., 2023). The original dataset is composed of 11 climate model simulations each
over a period of 10 years. The simulations associate values for 55 climate variables to spatio-temporal
location coordinates. The datapoints are arranged on a spatio-temporal grid with a temporal resolution
of 6h and spatial grid spacing of 100km. We select 1 year of data from 1 simulation and further
select 8 climate variables representing temperatures at different altitudes. We consider the task of
interpolation given a sparse set of spatio-temporal coordinates. We used 3% of the available grid
points for training set, validation set and test set in equal proportion, i.e. 1% of data, or around 1
million spatio-temporal coordinates randomly sampled from a uniform distribution, for each set.
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Table 2: Comparison of different time encod-
ings and effect of regularization on ACE. We
report mean and standard deviation of aver-
age RMSE over 8 temperature variables for
3 runs for regularization weights α = 0 (no
regularization) and α = 1.

Time enc. ACE ↓
α = 0 α = 1

No time 5.75 (0.02) 5.69 (0.01)

Time Copy 2.61 (0.14) 2.36 (0.08)
Triangular 3.16 (0.01) 3.13 (0.01)
Monomial 2.22 (0.01) 2.01 (0.03)

Legendre 1.63 (0.08) 1.41 (0.01)
Fourier 1.70 (0.05) 1.48 (0.02)

Reg. better 6 of 6

Setup For this task, the training data are mean-
centered and scaled by their standard deviation. The
models are trained with the Adam optimizer and a
Mean Square Error loss function using early stopping
with a patience parameter of 5 epochs. We evaluate
the models with Root Mean Square Error (RMSE)
averaged over the 8 considered temperature variables.
Across all datasets, we first consider an encoding
baseline in which only the spatial coordinates are
used for model prediction but not the time coordinate.
We then explore two methods for improving further
on this baseline. First, we add a positional time en-
coding considering five encoding families as shown
in 2. Second, we investigate adding an orthogonal
regularization term for the last layer during training.

4.2 SPATIO-TEMPORAL
SPECIES DISTRIBUTION MAPPING

Datasets The iNaturalist 2018 (iNat2018) dataset
(iNaturalist 2018 competition dataset) is a species
image classification dataset gathered by citizen scien-
tists, and contains 461,939 observations covering 8,142 categories. The BirdSnap dataset (Berg et al.,
2014) contains 49,829 images and species labels for 500 bird species found in North America. For
both datasets, we use the same location and time metadata and dataset splits as in Mac Aodha et al.
(2019b). Since the iNat2018 test set labels are not publicly available, we split the training set into
training and validation sets (in a 90%-10% split) and evaluate on the original iNat2018 validation set.
Due to the seasonal pattern of species, similarly to Mac Aodha et al. (2019b), we consider days of the
year as the timesteps.

Setup For both tasks, we train a space-time encoder on coordinates attached to an image without
using the image data. For evaluation, we use two options: For a direct prediction, we evaluated
the accuracy of the species distribution classification using only space and time coordinates. For
a combined prediction, we multiply the prediction vectors with logits from a pre-trained vision
network which we obtain from TorchSpatial (Wu et al., 2024). This corresponds to a combined model
P (y|I, λ, ϕ, t) ∝ P (y|λ, ϕ, t)P (y|I) where the spatio-temporal species distributions probabilities
P (y|λ, ϕ, t) serve as a prior to an image classifier P (y|I) following Mac Aodha et al. (2019a).
The effects of different time encodings and of orthogonal regularization are studied in the same way
as for the ACE dataset.

4.3 IMPLEMENTATION DETAILS

We use the FCNet architecture which has been proved effective for geospatial interpolation
(Mac Aodha et al., 2019b) for the positional encoding networks to encode time and space. For
encoding the spatial coordinates we use spherical harmonics functions across all experiments.

ACE dataset We use a model with 4 Residual Blocks of size-1024 layers with a total of 8.9 M
trainable parameters. We fix the positional space encoding to a set of 400 spherical harmonics
(L = 20) basis functions also following the approach in Rußwurm et al. (2024). The size of the
positional time encoding is fixed to 40 dimensions across all experiments. Both positional encodings
are concatenated to form a combined spatio-temporal positional encoding with 440 dimensions.

Species Distribution Mapping For the Birdsnap and iNat2018 datasets we use the same general
architecture with 4 and 2 Residual Blocks for the respective datasets containing 1024 neurons in each
hidden layer. The positional space encoding uses spherical harmonics with 64 dimensions (L = 8).
The time encoding dimension is fixed to 8 across both datasets and all experiments. For Birdsnap
the spatial and temporal encodings are combined using the tensor product approach which yields
a combined spatio-temporal embedding of dimension 512. The number of trainable parameters is

6
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Table 3: Effect of different time encodings and of training our models without and with regularization
- α = 0 and α = 0.0001 respectively - on Birdsnap and iNat2018, including baseline results from
prior work. We report mean and standard deviation of accuracy over 10 runs. Baseline methods
results are taken from Mac Aodha et al. (2019a), in which standard deviations were not reported. For
each setup, best models are marked in bold and second best models are marked in italic.

Method BirdSnap ↑ iNat2018 ↑
α = 0 α = 0.0001 α = 0 α = 0.0001

No time 0.737 (0.003) 0.738 (0.002) 0.733 (0.001) 0.733 (0.001)

Time Copy 0.737 (0.002) 0.739 (0.004) 0.742 (0.001) 0.742 (0.002)
Triangular 0.754 (0.005) 0.753 (0.002) 0.736 (0.001) 0.736 (0.001)
Monomial 0.750 (0.002) 0.749 (0.004) 0.742 (0.001) 0.741 (0.002)

Legendre 0.751 (0.004) 0.754 (0.004) 0.740 (0.001) 0.739 (0.001)
Fourier 0.751 (0.004) 0.753 (0.004) 0.740 (0.001) 0.741 (0.001)

Baseline Mac Aodha et al. (2019a)
Vision only 0.701 (-) 0.602 (-)
GeoPriors (without time) 0.717 (-) 0.724 (-)
GeoPriors (with time) 0.718 (-) 0.727 (-)

Figure 3: Example results of a Space-Time Encoder trained on the ACE dataset. ACE consists of
climate model data in a 1◦ × 1◦ grid, with 64800 spatial locations. We train a Space-Time Encoder to
reconstruct a full year of ACE data from 1% of the data per timestep (red dots in the first column).
The first colum (Day 1), shows dense reconstruction results on the lowest-to-the-ground temperature
layer of ACE, T7. The other columns show changes in subsequent timesteps compared to Day 1,
highlighting the capability of our Space-Time Encoder to learn smooth and consistent patterns over
both space and time.

9.3M. For iNat2018 the spatio-temporal embedding is obtained by concatenating spatial and temporal
encoding vectors such that the combined dimension is 72. The model contains 12.9M trainable
parameters.

4.4 RESULTS & DISCUSSION

Table 2 reports the average RMSE over the 8 temperature variables for the ACE task and Table 3
reports the top-1 species classification accuracies for iNat2018 and Birdsnap over different time
encoding methods involving No time as baseline, Time Copy, triangular, Monomial as non-orthogonal
time encoders, and Legendre and Fourier as orthogonal time encoders. For each dataset, we also
compare results with orthogonality regularization (α > 0) and without regularization (α = 0). We
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Breeding range
Wintering range

Figure 4: Left - Breeding and wintering ranges of the Golden-winged Warbler, a migratory songbird
species found in the Americas. (Adapted from “Birds of North America Online”: https://
birdsoftheworld.org/bow/home) Right - Occurrence probability maps of Golden-winged
Warblers for different months of the year, obtained via our encoder models trained on spatio-
temporal coordinates from the BirdSnap dataset. The top row shows probabilities from a Space-Time
Encoder using Fourier temporal encodings, the bottom row probabilities from a model not using time
information. It is clearly visible that the Fourier Space-Time Encoder learns temporal (migration)
patterns of the bird.

further illustrate the ACE reconstruction task and the ability of the Space-Time Encoder to learn
smooth and continuous patterns in space and time in Figure 3.

We find that our Space-Time Encoder architecture provides consistent performance improve-
ments over the GeoPrior architecture (Mac Aodha et al., 2019a) throughout experiments on
iNat2018 and Birdsnap. As expected, and confirming results from (Mac Aodha et al., 2019a), adding
temporal information improves performance across all dataset. The increases from adding a time
component on the species classification tasks are clearly more pronounced than in the baseline results:
While adding a time information for the Birdsnap dataset yielded an increase from 71.7% to 71.8% in
Mac Aodha et al. (2019a), in our experiments we could observe an increase from 73.7% without time
information to 75.4 % with triangular time embeddings. For the ACE dataset, adding the temporal
information is essential and improves the average RMSE of the spatial-only encoder by a factor of
3.5 - from 5.75 to 1.63.

The choice of time encoding can also significantly impact model performance, with Legendre
embeddings reducing average RMSE by half compared to triangular embeddings on the ACE dataset.
While the best time encoding differs across datasets, Legendre and Fourier are consistently top or
close to top performing across all datasets, which could point to a benefit of orthogonality at the
encoding level. Overall, our Space-Time Encoder is the first architecture for geospatial modeling that
allows for customizable temporal encodings.

Table 4: Accuracy (means and standard deviation
over 10 runs) of encoders without time encoding
and with Fourier time encoding on subsets of the
BirdSnap dataset containing only non-migratory
and only migratory birds.

Time enc. non-migratory migratory
No time 0.78 (0.006) 0.737 (0.004)
Fourier 0.773 (0.005) 0.755 (0.003)

We find that the benefit of orthogonal regulariza-
tion can be large, but the effects differ between
tasks. For the species classification tasks on both
Birdsnap and iNat2018, the regularizer shows im-
provements which are not clear cut. However, for
the regression task on the ACE dataset, we see
a clear benefit of adding orthogonal regulariza-
tion across all choices of time encodings. This
indicates that the regularizer currently performs
well for training with an MSE loss on regression
tasks but that one has to adapt it for training with
a cross-entropy loss on classification tasks.
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4.4.1 ANALYSIS ON MIGRATORY BIRDS

The BirdSnap image classification task allows us to specifically compare performance of our models
for classifying migratory and non-migratory bird species. Intuitively, we would expect that perfor-
mance on migratory bird species, which e.g. spend different season for breeding or wintering in
different parts of the world, should benefit from the integration of temporal information into the
modeling process. On the other hand, we should be able to model species that reside in the same
areas throughout the year sufficiently without temporal information. To test this hypothesis, we
compare the performance two of our encoder models, one without time encoding and one with Fourier
time encoding, on subsets of the BirdSnap dataset that represent migratory and non-migratory birds
respectively. The results, presented in Table 4 and Figure 4, show that adding a temporal encoding
does not improve performance for non-migratory bird species, however it improves performance for
migratory species by around 1.5 percentage points, thus confirming our hypothesis.

4.4.2 EFFECT OF REGULARIZER WEIGHT α

Figure 5: Performance on the BirdSnap dataset
for Space-Time Encoders trained with different
regularizer weight values α. Results are averaged
over 10 individually trained models.

Experimentally, we found that choosing a too
large regularizer weight α can be detrimental to
the performance. To better understand the sensi-
tivity of our proposed regularizer, we investigate
the performance of our models for different reg-
ularizer weights α. Figure 5 highlights the per-
formance of Space-Time Encoders trained on co-
ordinates from the BirdSnap dataset with differ-
ent regularizer weight values α when combined
with pre-trained vision logits. Compared to mod-
els trained without regularization (α = 0), using
the regularizer with low α values results in con-
sistent Top-1 accuracy improvements. We also
observe a slow but increasingly steep perfor-
mance drop after increasing α over its optimal

value around α = 0.0001. This indicates that in practice, the hyperparameter α needs to be tuned to
the task at hand.

5 CONCLUSION

We introduce the Space-Time Encoder, a novel neural network architecture working with spatio-
temporal coordinates (longitude, latitude and time) as inputs. Our method is aimed at capturing
spatio-temporal dynamics, which are crucial in real-world processes such as climate prediction
or animal recognition. Our method is a direct expansion of the existing location-only encoder
architecture introduced by Rußwurm et al. (2024) and specifically focuses on two aspects: (1) A
modular design of the temporal positional encoding, allowing for different encoding functions, and (2)
A regularizer that encourages the learning of orthogonal representations within the neural network.

We run experiments on three datasets for two different tasks. First, we test the Space-Time Encoder
for reconstructing dense spatio-temporal climate model data from sparse data points. Second, we test
it as a space-time prior in image classification tasks of animal species, where space-time coordinates
are available as auxiliary information. We experiment with different temporal encoding functions,
highlighting the best performing options. We also find that our orthogonal regularizer helps to
improve the performance of predictive models. Overall, our method outperforms an existing baseline
space-time prior in the image classification tasks.

We see the Space-Time Encoder as a prototype of a neural implicit representation model, learning
continuous, smooth maps in space and time. The location-only encoder (Rußwurm et al., 2024) model
also served as the basis for a self-supervised pretraining procedure with globally available pretraining
data (Klemmer et al., 2023). In future work, we aim to extend our approach similarly, pretraining
Space-Time Encoders using globally available, multi-modal and unlabeled geospatial data.
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