
Knowledge-Based Systems 254 (2022) 109616

M
a

b

c

d

e

g
s
s
a
f
a
s
c
s
v

w
y
m

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Improving performance and efficiency of GraphNeural Networks by
injective aggregation
Wei Dong a, Junsheng Wu b, Xinwan Zhang b, Zongwen Bai c, Peng Wang d,∗,
arcin Woźniak e,∗

School of Computer Science and Engineering, Northwestern Polytechnical University, China
School of Software, Northwestern Polytechnical University, China
Shaanxi Key Laboratory of Intelligent Processing of Big Energy Data, School of Physics and Electronic Information, Yanan University, China
School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522, Australia
Faculty of Applied Mathematics, Silesian University of Technology, Kaszubsa 23, 44100 Gliwice, Poland

a r t i c l e i n f o

Article history:
Received 29 October 2021
Received in revised form 30 July 2022
Accepted 3 August 2022
Available online 13 August 2022

Keywords:
Graph Neural Networks
Aggregation function
Aggregation matrix
Injectivity
Traffic state prediction

a b s t r a c t

Aggregation functions are regarded as the multiplication between an aggregation matrix and node
embeddings, based on which a full rank matrix can enhance representation capacity of Graph Neural
Networks (GNNs). In this work, we fill this research gap based on the full rank aggregation matrix
and its functional form, i.e., the injective aggregation function, and state that injectivity is necessary to
guarantee the rich representation capacity to GNNs. To this end, we conduct theoretical injectivity
analysis for the typical feature aggregation methods and provide inspiring solutions on turning
the non-injective aggregation functions into injective versions. Based on our injective aggregation
functions, we create various GNN structures by combining the aggregation functions with the other
ingredient of GNNs, node feature encoding, in different ways. Following these structures, we highlight
that by using our injective aggregation function entirely as a pre-processing step before applying
independent node feature learning, we can simultaneously achieve satisfactory performance and
computational efficiency on the large-scale graph-based traffic data for traffic state prediction tasks.
Through comprehensive experiments on standard node classification benchmarks and practical traffic
state data (for Chengdu and Xi’an cities), we show that the representation capacity of GNNs can be
improved by using our injective aggregation functions just by changing the model in simple operations.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Graph Neural Networks (GNNs) [1,2] have revolutionized
raph representation learning as a special type of neural network
tructure extended from the application of neural networks on
peech recognition [3], natural language processing [4], and other
pplications in networking systems [5]. Given the promising
eatures GNNs have shown thereon, recent years have witnessed
surge of interest in proposing GNN approaches to model graph-
tructured data. Some successful application areas of GNNs in-
lude, but are not limited to, social networks [6], recommender
ystem [7–9], natural language processing [10], and computer
ision [11,12].

∗ Corresponding authors.
E-mail addresses: dw156@mail.nwpu.edu.cn (W. Dong),

ujunsheng@nwpu.edu.cn (J. Wu), zhangxinwan@mail.nwpu.edu.cn (X. Zhang),
dbzw@yau.edu.cn (Z. Bai), pengw@uow.edu.au (P. Wang),
arcin.wozniak@polsl.pl (M. Woźniak).
ttps://doi.org/10.1016/j.knosys.2022.109616
950-7051/© 2022 Elsevier B.V. All rights reserved.
Essentially, two operations underpinning the representation
capacity of GNNs are neighborhood aggregation and node fea-
ture encoding. Neighborhood aggregation, a.k.a. message passing,
updates the features of a node by aggregating the features of
the neighboring nodes. Node feature encoding learns a param-
eterized mapping function to encode the node features. Based
on these two operations, various GNN approaches are proposed,
and normally these two operations are recursively iterated to
model high-order contextual information from the neighborhood
[13]. Motivated differently, these feature aggregation functions
have different forms, and the performance of the GNNs can vary
with applications. In terms of the node feature encoding, com-
mon options are single or Multiple Layer Perceptron (MLP). The
difference between many GNN variants lies in the design of
the feature aggregation functions [14]. These feature aggregation
functions can be essentially formalized as the multiplication of
the aggregation matrix and its independent variables, that is,
the node feature embeddings. Hence, aggregation functions not
only aggregate the node features from the neighborhood but
also project the node feature embeddings into the space spanned

https://doi.org/10.1016/j.knosys.2022.109616
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2022.109616&domain=pdf
mailto:dw156@mail.nwpu.edu.cn
mailto:wujunsheng@nwpu.edu.cn
mailto:zhangxinwan@mail.nwpu.edu.cn
mailto:ydbzw@yau.edu.cn
mailto:pengw@uow.edu.au
mailto:marcin.wozniak@polsl.pl
https://doi.org/10.1016/j.knosys.2022.109616

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

b
o
b
i
i
a
a
G
t
i

g
t
b
r
m
d

t
t
r
d
t
f
a
G
d
a
s
f
i
v
w
f
o
f
t
n
n
v
p
t
n
t
a
p
p
T
c
w
t
f

v
m
n
r
o
f
o
t
n
o
n

v
a
a
c

H

w
b

a
s
t
f
e
a
a
b
[

y its base vectors through multiplication operation. The result
f the projection is generated by the linear combination of the
ase vectors. Generally, if the rank of the aggregation matrix
s larger, the linear combination is more diverse, thus enrich-
ng the representation capacity for GNNs. Because the rank of
matrix is equal to the number of base vectors, a full rank

ggregation matrix can enhance the representation capacity of
NNs maximally. Some latest works [9,15,16] focus on the using
he co-embedding strategies, fusing these strategies and GNNs to
mprove the representation learning for various tasks.

However, theoretically and practically, the lack of a unified
uidance on how to improve the proposed aggregation functions
o the full rank version as well as a systematical comparison
etween the existing aggregation schemes with and without full
ank not only makes it challenging to select the appropriate
eans to aggregate neighboring features but also hinders the
esign of new feature aggregation functions.
In this work, we fill the above research gap by providing a

heoretical and practical guidance for analyzing and improving
he effectiveness of aggregation functions to enhance the rep-
esentation capacity of the GNNs. Our study is based on the
esign of the full rank aggregation matrix, which is equivalent
o how to construct an injective feature aggregation function
rom a mathematical perspective. This implies injectivity of the
ggregation function is a necessary property in guaranteeing the
NNs to rich its representation capacity. To this end, we con-
uct theoretical injectivity analysis for a set of popular feature
ggregation functions in existing GNN models and provide in-
piring solutions on how to turn the non-injective aggregation
unctions into injective versions. To verify the effectiveness of the
njective feature aggregation functions in this work, we create
arious GNN structures by combining the aggregation functions
ith the node feature encoding in three different ways. One way

ollows the recursive aggregation and encoding schemes [13]. The
ther two ways completely decouple the feature aggregation and
eature learning by using a two-stage pipeline: firstly aggregating
he features and then applying the feature encoding for each
ode or firstly encoding the node features and then fusing the
eighborhood information for node classification. Among these
ariants, we highlight that: to perform the tasks of traffic state
rediction from large-scale graph-based traffic data, the combina-
ion of prepositive aggregation and postpositive encoding mode
ot only achieves satisfactory performance but also alleviates
he computational burden on GPUs, as it can put the feature
ggregation in CPUs as a pre-processing step. We conduct com-
rehensive experiments on eight node classification tasks and
ractical traffic state data (for Chengdu and Xi’an cities) [17,18].
he results demonstrate that the graph representation capacity
an be improved by using our injective aggregation functions,
hich can be easily realized by just changing minor operation in
he model. The contributions of this work can be summarized as
ollows:

• We present theoretical and practical guidance on how to
derive injective feature aggregation functions from graph-
structured data to enhance the representation capacity of
GNNs. The injective aggregation functions in our work can
be used as plug-ins to improve the effectiveness of the
representation capacity in GNNs by simply changing simple
operations.

• We provide a systematical comparison between some typi-
cal feature aggregation functions in the context of various
GNN structures derived by combining feature aggregation
and node encoding in different ways. To our knowledge, this
is the first work which conducts a comprehensive experi-
mental study on the feature aggregation functions in GNNs

in this way. A

2

• We highlight that the combination of prepositive aggre-
gation and postpositive encoding mode has advantages in
satisfactory performance and low dependency on the large-
scale graph-based traffic data [17,18], verified by the exper-
iments on the practical traffic state data for Chengdu and
Xi’an cities.

The rest of the paper is organized as follows. Section 2 briefly
presents some preliminary knowledge about GNNs and their ap-
plications in traffic domain. Section 3 elaborately describes how
to design novel injective aggregation functions and turn the non-
injective aggregation functions into injective versions. Section 4
creates various GNN structures by combining the aggregation
functions with the node feature encoding in three different ways,
verifying the effectiveness of the injective feature aggregation
functions in this work. Section 5 highlights and analyzes the
time and memory complexities of the combination of prepositive
aggregation and postpositive encoding mode, and proceeds to
utilize this combination scheme to perform the task of the large-
scale traffic state prediction. Section 6 shows the competitive
results of our models on the eight benchmark datasets and the
efficient model performance on the large-scale traffic state pre-
diction. Section 7 concludes the paper and proposes the future
work.

2. Preliminary knowledge

Let G = (V,A) denotes an undirected graph with node feature
ector Xv ∈ RD(0)

for v ∈ V and adjacency (typically symmetric)
atrix A ∈ RN×N , where aij denotes the edge weight between
odes vi and vj. GNNs aim to learn node representation or graph
epresentation based on such graph structure. Two elementary
perations in GNNs are neighboring feature aggregation and node
eature encoding. While the former updates the representation
f a node by aggregating the feature vectors of the neighbors,
he latter learns a parameterized mapping function to encode the
ode features. Different variants of GNNs vary with the forms
f these two components. In this work, we focus mainly on the
eighborhood aggregation part.
Graph Convolutional Networks (GCNs) [13] are a prevailing

ariant of GNN models for node classification tasks. It consists of
stack of learned first-order spectral filters followed by nonlinear
ctivation function to learn node representations. Mathemati-
ally, GCNs can be written as:
(l)

= σ (ÂsnH(l−1)W(l)), (1)

ith Âsn being the neighboring feature aggregation matrix, W(l)

eing the feature encoding matrix in layer l, and σ (·) being a
non-linear activation function. The feature aggregation matrix is
a symmetrically normalized Laplacian matrix with the form:

Âsn = D̃−
1
2 ÃD̃−

1
2 , (2)

where Ã = A + IN denotes the adjacency matrix with self
loops and D̃ =

∑
j Ãij denotes the diagonal degree matrix. A is

the original adjacency matrix with element aij = 1 if nodes vi
nd vj are connected and otherwise aij = 0. In the aggregation
tep, GCN utilizes an aggregator Ĥ(l−1)

= ÂsnH(l−1) to gather
he neighboring features into each node representation. In the
ollowing encoding step, an updater H(l)

= Ĥ(l−1)W(l) is used to
ncode the representation for each node. These two operations
re recursively iterated. After k iterations, the representation of
node captures k-hop contextual information from the neigh-
orhood. This recursive process is adopted in most GNN models
13,19,20], which can be written mathematically as:

= E (L)
◦ F ◦ · · · ◦ E (1)

◦ F, (3)
rec

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

w
here Arec : RN×D(0)
→ RN×D(L)

can be regarded as a recursive
GNN with input node features X = H(0)

∈ RN×D(0)
. F : RN×D(l)

→

RN×D(l)
is an aggregation function to propagate neighboring fea-

tures on the hidden representations H(l) based on the aggregation
matrix. E (l)

: RN×D(l)
→ RN×D(l+1)

is an encoding mapping to
independently update each node representation in Ĥ(l).

Following GCNs, a subsequent of GNN variants have been
proposed with various forms of feature aggregation matrices. In
this paper, apart from the aggregation function in GCNs [13], we
also explore some other popular feature aggregators, including
GraphSAGE-Mean (Mean) [19], original PageRank (OPR) [21], and
the personal PageRank (PPR) [21] for analysis. Mean aggregator
[19] employs the mean of the neighboring features of each node
as an aggregation scheme. Compared with GCNs [13], the ben-
efit of Mean aggregator is that it can randomly sample a fixed
number of neighbors per node for aggregation, thus reducing the
computational cost when the neighborhood size is large [19]. The
definition of the aggregation matrix in Mean aggregator is:

Âmean = D̃−1Ã, (4)

where D̃ and Ã have the same definitions as in Eq. (2).
Original PageRank [22] is an algorithm used to rank web

pages. It updates the ranking of a page by weighted sum of
its linked pages’ rankings, where the weight for a neighbor-
ing page is defined as the reciprocal of its degree. This idea
was extended in general graph-structured data for neighbor-
hood propagation. This results in an OPR aggregation matrix [21],
which is mathematically defined as:

Âopr = ÃD̃−1. (5)

The neighborhood aggregation in original GCN [13,19] is es-
sentially Laplacian smoothing and stack of too many such aggre-
gation layers can lead to over-smoothing. To enlarge the neigh-
borhood size and overcome the over-smoothing issue, two ag-
gregation models based on personalized PageRank’s propagation
scheme [22], termed personalized propagation of neural predic-
tions (PPNP) and approximate personalized propagation of neural
predictions (APPNP), are proposed [21].

PPNP utilizes the propagation scheme of πppr (⃗ix) = (1 −

α)Âsnπppr (⃗ix)+αi⃗x to design its aggregation pipeline. The teleport
vector i⃗x defining the root node x is a one-hot indicator vector.
α ∈ (0, 1] is the teleport (restart) probability. By solving this
propagation scheme, we get πppr (⃗ix) = α(IN − (1 − α)Âsn)−1 i⃗x.
Substituting the unit matrix IN for the indicator vector i⃗x, we
obtain PPNP aggregation matrix Âppnp = α(IN − (1 − α)Âsn)−1.
PPNP follows a predict-then-propagate pipeline, which can be
expressed as:

H(l)
= σ (H(l−1)W(l)), l ∈ N

Z = softmax(α(IN − (1 − α)Âsn)−1H(L−1)).
(6)

However, directly calculating the inverse operation in PPNP
aggregator is expensive. To solve this issue, an approximate
PPNP model (APPNP) is proposed [21], which uses topic-sensitive
PageRank [23] instead of the fully personalized PageRank [22]
as the aggregation scheme. Specifically, APPNP adopts the iter-
ative computation manner from topic-sensitive PageRank, which
avoids the calculation of matrix inversion. Mathematically, APPNP
is written as:

Z(0)
= H(l)

= σ (H(l−1)W(l)), l ∈ N

Z(k+1)
= (1 − α)ÂsnZ(k)

+ αZ(0),

Z(K)
= softmax((1 − α)ÂsnZ(K−1)

+ αZ(0)).

(7)

After the (k)th aggregation step, the result of Z(k) is rewritten as
Z(k)

= Â H(0), where Â = (1−α)kÂk
+α

∑k−1(1−α)iÂi

appnp appnp sn i=0 sn

3

is APPNP aggregation matrix. When taking the limit k → +∞,
Z(k)

→ α(IN − (1− α)Âsn)−1H(0), which is the PPNP’s aggregation.
Therefore, PPNP and APPNP aggregators are equivalent in theory
when k → +∞.

In this section we show the underpinnings for prevailing ag-
gregation functions of GNNs. Following this way, we will state
how to turn the non-injective aggregation functions into injective
versions (such as Âsn, Âmean, and Âopr), and how to prove the
injectivity of PPNP and APPNP aggregators given specific factors.

3. New injective feature aggregation functions

The above-mentioned feature aggregators can be essentially
formalized as the multiplication of the aggregation matrix and the
node feature embeddings. Aggregators project the node feature
embeddings into the space spanned by its base vectors through
multiplication operation. Generally, if the rank of the aggregation
matrix is larger, the linear combination is more diverse. Because
the rank of matrix is equal to the number of base vectors, a full
rank aggregation matrix (non-singular matrix) can enhance the
representation capacity of GNNs maximally, i.e., mathematically,
the multiplication of the full rank aggregation matrix and the
node feature embeddings can maintain the invariance of the rank
of the node feature embeddings:

rank(PH) = min(rank(P), rank(H)), (8)

where P is any full rank aggregation matrix and H is the node
feature embeddings. Following this way, we theoretically pro-
pose Lemma 1 (proved in Appendix A) to describe the difference
between the representation capacity of the non-singular aggre-
gations and singular ones by using the theory of Von Neumann
Entropy [24].

Lemma 1. Non-singular aggregations may have more representa-
tion capacity than singular ones.

However, it leaves how to theoretically and practically im-
prove the representation capacity of a general GNN model unan-
swered. To provide a necessary and important complement to
GNNs, we resort to matrix theories to analyze the injectivity na-
ture of the above aggregation functions and provide solutions on
how to turn the non-injective aggregators into injective versions
in order to enhance the representation capacity for the GNNs
resulted.

Lemma 2 ([25]). Let B be M × N matrix in general:

• If the matrix has full rank, i.e., rank(B) = min{M,N}, then
the aggregator induced from B is: (1) injective if M ≥ N =

rank(B); (2) surjective if N ≥ M = rank(B); (3) bijective if
M = N = rank(B).

• If the matrix B does not have full rank, i.e., rank(B) <
min{M,N}, the aggregator derived from B is neither injective
nor surjective.

According to Lemma 2, we can associate the injectivity prop-
erty of an aggregation function with the rank of its aggregation
matrix. Because the aggregators studied in this work, i.e., SN,
Mean, and OPR, are symmetric matrices, changing the eigenvalues
of these matrices can make them full rank based on Lemma 3:

Lemma 3 ([25]). The number of non-zero eigenvalues of a sym-
metric matrix equals to its rank since symmetric matrices can be
diagonalized.

Furthermore, we add new Lemma 4 to facilitate our analysis
on aggregation injectivity. The proof is presented in Appendix B
by using diagonalization, which is the precondition for proving
the injectivity of aggregators.

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

L

f

F
m
s
i
i
t
o
s

A

o
t

b
i

3

w
m

A
w

3
s

A
F

L
α

L
(
A

a
w
i
i

i
g
T
A
I
α

v
A

A

A

w
t
o
α

emma 4. The three symmetric matrices, Âsn, Âmean, and Âopr in
Eqs. (2), (4), (5), have the same eigenvalues λ1, . . . , λN with λn ≤ 1
or n ∈ [1, 2, . . . ,N].

Not all aggregators can be designed to injective functions.
or instance, Graph ATtention network (GAT) is a prevalent GNN
odel leveraging masked self-attentional layers to address the
hortcomings of GNNs by heuristic design. Specifically, by stack-
ng layers in which nodes are able to attend over their neighbor-
ng features, GAT implicitly enables specifying different weights
o different nodes in a neighborhood, without requiring any kind
f costly matrix operation or depending on knowing the graph
tructure upfront. The definition of GAT is:

αi,j = exp(φ∗(a⃗(l)⊤
[h⃗(l−1)

i ∥ h⃗(l−1)
j])),

ˆ (l)
gat [i,j] =

αi,j∑
k∈Ni

αi,k
,

(9)

where Â(l)
gat is the masked self-attentional aggregation matrix,

the attention weights are a⃗(l)
∈ R2D(l)

, ∥ is the concatenation
peration, the representation of the node vi is h⃗(l−1)

i ∈ H(l−1), and
he nonlinear activation function φ∗ is LeakyReLU.

However, Â(l)
gat is asymmetric, thus, the conclusion that Â(l)

gat can
e injective cannot be proved by diagonalization. This conclusion
s ambiguous.

.1. Building injective aggregation functions

The aggregators derived from Âsn, Âmean, and Âopr cannot be
guaranteed to be injective because their eigenvalues can be 0, ac-
cording to Lemma 4. To make them injective, based on Lemmas 2
and 3, one way is to change the eigenvalues of such symmetric
matrices in order that all of their eigenvalues are non-zero, what
makes these matrices full rank and the associated aggregation
functions bijective (injective and surjective). To achieve this goal,
we propose the following solution:

Âisn = βIN + Â2k
sn, (10)

here the β ∈ (0, 1] is a hyper-parameter and Â2k
sn denotes the

atrix Âsn to the power of 2k. The reason why we define the even
power 2k is because of transforming the eigenvalue range of Âsn
from λn ≤ 1 to 0 ≤ λn ≤ 1 is conducive to designing injective
functions. Intuitively, Â2k

sn can be understood as applying the
original feature aggregation based on Âsn for an even number of
times, which essentially models 2k-hop contextual information.
The eigenvalues of Â2k

sn fall in the range of 0 ≤ λ2k
sn ≤ 1 with

k ∈ N. Adding βIN on Â2k
sn ensures the eigenvalues of Âisn to fall

in the range of β ≤ λisn ≤ 1 + β . Therefore, the symmetric
matrix Âisn has full rank and the corresponding aggregator is
bijective (injective and surjective) according to Lemmas 2 and
3. Similarly, injective Mean and OPR aggregators define their
associated aggregation matrices as:

Âimean = βIN + Â2k
mean, (11)

Âiopr = βIN + Â2k
opr. (12)

Although our injective aggregators and the aggregators of residual
GNNs [26,27] have similar forms, the injective aggregators use
the residual connection to construct the injective function. In
contrast, the aggregators of residual GNNs employ the residual
connection to prevent the gradient vanishing or exploding prob-
lem in the node feature encoding. Moreover, Graph Isomorphism
Network (GIN) [28] used the injective hash mapping inferred
from Weisfeiler–Lehman graph isomorphism test (WL-Test) [29,
30] as the aggregation function to capture the graph structure
4

Table 1
The comparison of the representation capacity between non-injective and
injective aggregators. The representation capacity is described by Von Neumann
Entropy [24].

Aggregator Âsn Âisn

Representation Capacity 7.22998500122903 7.88019742347323

Aggregator Âmean Âimean

Representation Capacity 7.22998499824809 7.88019742125691

Aggregator Âopr Âiopr

Representation Capacity 7.22998499825765 7.88019742112355

for enhancing the performance of graph classification tasks. The
difference against GIN is that our injective aggregation function
focuses on to enlarge the linear combination diversity of the base
vectors in the aggregation matrix to enrich the representation
capacity for GNNs. To summarize, we define Lemma 5 and present
its detailed proof in Appendix C. We also compare the representa-
tion capacity gap between non-injective and injective aggregators
in Table 1, implying that the original aggregation functions are
close to be injective ones.

Lemma 5. The aggregators based on the three aggregation matrices
ˆ isn, Âimean, and Âiopr defined in Eqs. (10), (11), (12) are injective,
hen k ∈ N and β ∈ (0, 1].

.2. Injectivity analysis for personalized PageRank’s propagation
chemes

We claim that PPNP aggregator is injective intrinsically and
PPNP aggregator is injective under some additional constraints.
ormally, we propose Lemmas 6 and 7:

emma 6. PPNP aggregator with its aggregation matrix Âppnp =

(IN − (1 − α)Âsn)−1 is injective.

emma 7. APPNP aggregator with its aggregation matrix Âappnp =

1−α)kÂk
sn+α

∑k−1
i=0 (1−α)iÂi

sn is injective if the symmetrical matrix
ˆ sn is irreducible, k = 2u (u ∈ N), and α ∈ (0, 1).

The invertibility of the square matrix IN − (1 − α)Âsn in PPNP
ggregation matrix has been proved in Klicpera et al. work [21],
hich implies that Âppnp is full rank and PPNP aggregator is

njective based on Lemma 2. Following this clue, we prove the
njectivity of PPNP aggregator in Appendix D.

In Lemma 7, an irreducible aggregation matrix Âsn means that
ts corresponding graph is a connected graph, i.e., a node in the
raph must have a path to arrive at any other node in the graph.
he irreducible property also indicates the eigenvalues of matrix

ˆ sn to be −1 ≤ λsn ≤ 1 based on Perron–Frobenius theorem [25].
f k = 2u (u ∈ N), we have λappnp = (1 − α)2uλ2u

sn + α
∑u−1

i=0 (1 −

)2iλ2i
sn(1+ (1−α)λsn), which is proved in Appendix E. Hence, by

irtue of Lemmas 2 and 3, λappnp > 0 with −1 ≤ λsn ≤ 1 ensures
ˆ appnp to be full rank and APPNP aggregator to be bijective.

To ensure the injectivity of APPNP even with reducible matrix
ˆ sn, we further propose the injective Even-Power (EP) APPNP:

ˆ eappnp = βIN + (1 − α)kÂ2k
sn + α

k−1∑
i=1

(1 − α)iÂ2i
sn, (13)

here k ∈ N, β is a hyper-parameter as in Eq. (10), and α is a
eleport probability as in Eq. (6). Similar to the injectivity proof
f APPNP, we can have λeappnp = β + (1 − α)kλ2k

sn + α
∑k−1

i=1 (1 −

)iλ2i . When λ ≤ 1, we have λ > 0, which indicates
sn sn eappnp

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616
Fig. 1. Illustration of three GNN frameworks which are derived by combining aggregation functions and feature encoding functions through different ways: (a)
recursive (REC) aggregation and learning; (b) prepositive-aggregation and postpositive-encoding (AE); (c) prepositive-encoding and postpositive-aggregation (EA).
c

4

a
r
s
r

L
h

C

E
p

4

f
i
T
[
p
a
a
p
C
s
w
t
f

A

d
3
w
f
H

the injectivity property of EP APPNP based on Lemmas 2 and
3. In addition, since the odd-power terms are removed in EP
APPNP, it can save computation comparing to the original APPNP
when performing feature aggregation. In summary, we propose
Lemma 8, with the detailed proof in Appendix F:

Lemma 8. The EP APPNP aggregator with the aggregation matrix
Âeappnp = βIN + (1−α)kÂ2k

sn +α
∑k−1

i=1 (1−α)iÂ2i
sn is injective when

k ∈ N, α ∈ (0, 1], and β ∈ (0, 1].

4. Composing GNNs by integrating injective aggregation func-
tions and node encodings in different ways

With the injective aggregation functions in Section 3, we can
compose various GNN models that enrich the representation
capacity as much as possible by combining these aggregation
functions with the node feature encoding functions. In this work,
we choose non-linear MLP as node feature encoding function
because, by the universal approximation theorem [31], the non-
linear MLP is easier to fit injective functions than 1-layer percep-
tron [28].

To substantially verify the effectiveness of the proposed in-
jective aggregators and provide a comprehensive test for typical
aggregation functions, we go beyond the commonly adopted re-
cursive framework and create different GNN structures by inte-
grating the aggregators and feature encoding functions in three
different ways: (1) recursive (REC) aggregation and encoding
as in most GNNs [13,19,20,32]; (2) prepositive-aggregation and
postpositive-encoding (AE) [33,34]; and (3) prepositive-encoding
and postpositive-aggregation (EA) [21]. These three frameworks
are shown in Fig. 1.

Under these three types of GNN frameworks, one common
question we aim to answer is: do the GNN models resulted from
the injective aggregation functions observe advantage over the GNNs
built from the non-injective counterparts? To answer this question,
we begin by defining the representation capacity of the aggre-
gation function for GNN models, and theoretically comparing the
capacity of the GNN models with injective or non-injective aggre-
gation functions. The representation capacity of the aggregation
function is defined as:

Definition 1. Let a mapping A be a GNN. The representation
capacity of the aggregation mapping F for A is defined as:

CA ≡ rank(F), (14)

where F could be any aggregation function represented by an
aggregation matrix.
5

The representation capacity CA can be effectively improved if
F is an injective mapping. Before diving into the discussion of the
representation capacity of the three different GNN frameworks,
we need one additional lemma from discrete mathematics.

Lemma 9 ([35]). If f1 and f2 are both injective functions, then the
omposite function f1 ◦ f2 is injective.

.1. Composing GNNs under REC framework

REC framework expressed in Eq. (3) indicates aggregation
nd encoding steps are performed alternately. To enhance the
epresentation capacity of existing recursive GNNs, we can sub-
titute F with an injective aggregator to make Arec have more
epresentation capacity. Hence, we propose:

emma 10. Let the mapping Arec be a recursively trained GNN. We
ave:

Arec|F is injective ≥ CArec . (15)

Relying on Lemma 2, each GNN layer in the recursive process,
(l)

◦ F , has more representation capacity if F is injective. The
roof of Lemma 10 is shown in Appendix G.

.2. Composing GNNs under AE framework

The aggregation and encoding are closely coupled in the REC
ramework, which results in time and memory complexity grow-
ng exponentially with the increasing number of model layers.
his poses a challenge to the training of GNNs on large graphs
20]. To address this bottleneck, AE framework completely decou-
les the aggregation and encoding into two independent stages,
s shown in Fig. 1. The advantage by doing this is that the
ggregation can be fully removed from the training process as a
re-processing step, which can be performed in less expensive
PU and host memory once for all. Then in the feature encoding
tate, the encoding function applies to each node independently,
hich can be implemented in mini-batch mode without the need
o loading the features of all the nodes into GPU memory. The AE
ramework is defined as:

ae = E (L)
◦ · · · ◦ E (1)

◦ F ◦ · · · ◦ F . (16)

The AE framework is relatively a new GNN framework. The
esign of the aggregation functions in the existing work [33,
4] are still based on empirical intuition and heuristics. In this
ork, we use our theoretically-sound injective aggregators in this

ramework to improve the representation capacity of the GNNs.
ence, we propose:

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

p

C

4

c
n
p
p
t
t
p

A

t
m

L
a

C

o
u
r

5
t

w
c
p
s

5
c

R
d
t
m
a

Table 2
GNN structures based on various aggregation functions under three GNN frameworks.
Model AE EA REC

SN ReLu(Â2
snXW(1))W(2) Â2

sn(ReLu(XW(1))W(2)) Â2
snReLu(Â2

snXW(1))W(2)

Injective SN ReLu(ÂisnXW(1))W(2) Âisn(ReLu(XW(1))W(2)) ÂisnReLu(ÂisnXW(1))W(2)

Mean ReLu(Â2
meanXW(1))W(2) Â2

mean(ReLu(XW(1))W(2)) Â2
meanReLu(Â2

meanXW(1))W(2)

Injective Mean ReLu(ÂimeanXW(1))W(2) Âimean(ReLu(XW(1))W(2)) ÂimeanReLu(ÂimeanXW(1))W(2)

OPR ReLu(Â2
oprXW(1))W(2) Â2

opr(ReLu(XW(1))W(2)) Â2
oprReLu(Â2

oprXW(1))W(2)

Injective OPR ReLu(ÂioprXW(1))W(2) Âiopr(ReLu(XW(1))W(2)) ÂioprReLu(ÂioprXW(1))W(2)

APPNP ReLu(ÂappnpXW(1))W(2) Âappnp(ReLu(XW(1))W(2)) ÂappnpReLu(ÂappnpXW(1))W(2)

EP APPNP ReLu(ÂeappnpXW(1))W(2) Âeappnp(ReLu(XW(1))W(2)) ÂeappnpReLu(ÂeappnpXW(1))W(2)

PPNP ReLu(ÂppnpXW(1))W(2) Âppnp(ReLu(XW(1))W(2)) ÂppnpReLu(ÂppnpXW(1))W(2)
w

Lemma 11. Let the mapping Aae be a prepositive-aggregation and
ostpositive-encoding framework. We have:

Aae|F is injective ≥ CAae . (17)

The proof of Lemma 11 is provided in Appendix H.

.3. Composing GNNs under EA framework

EA is another framework that decouples aggregation and en-
oding in GNN, which encodes the node features to obtain the
ode-wise predictions first and then neighboring predictions are
ropagated in the second aggregation stage to update the node
redictions. In this sense, the GNNs under EA framework must be
rained in an end-to-end fashion, which requires all the node fea-
ures to be loaded into GPU memory. This framework is originally
roposed in the work [21], which can be defined as:

ea = F ◦ · · · ◦ F ◦ E (L)
◦ · · · ◦ E (1). (18)

Again, we replace the aggregation mapping F with our injec-
ive aggregators to create the injective GNN models under the EA
odels. We propose:

emma 12. Let the mapping Aea be a pre-encoding and post-
ggregation GNN framework. We have:

Aea|F s injective ≥ CAea . (19)

The detailed proof is given in Appendix I.
In summary, Lemmas. 10, 11, and 12 prove the advantage

f the GNN models based on the injective aggregation functions
nder three frameworks, which theoretically answer the question
aised at the beginning of this section.

. Complexity analysis for AE framework and performing it on
he task of traffic state prediction

This section focuses on analyzing the complexity of AE frame-
ork and comparing it to state-of-the-art GNNs. Based on the
omplexity analysis, we utilize the advantage of AE framework
erformed on large-scale graph-based data to predict the traffic
tate.

.1. Complexity analysis for GNNs under AE framework and the
omplexity comparison to state-of-the-art GNNs

We compare the time as well as memory complexity between
EC and AE frameworks by employing the mini-batch mode. We
efine D(1)

= · · · = D(l)
= · · · = D(L)

= D to simplify
he description of time and memory complexities. The time and
emory complexities of all state-of-the-art models in Section 6.1
re shown in Table 3.
In Eq. (1), the aggregator Ĥ(l−1)

= ÂsnH(l−1) costs O(∥Âsn∥0D)
and the updater H(l)

= Ĥ(l−1)W(l) costs O(ND2). Given the time
6

costs we have shown thereon, an L-layer GCN [13] consumes
O(L∥Âsn∥0D + LND2) time complexity by using full-batch mode,
with requiring O(LND) memory complexity. Both time and mem-
ory complexities of full-batch training GCN are proportional to N
or L, which results in poor scalability.

Vanilla GCN is a variant of GCN [13] that uses mini-batch mode
for GCN. It is defined as:

ωij =
1

(δi + 1)
1
2 (δj + 1)

1
2
,

h⃗(l)
i = σ ((W(l))T (ωiih⃗

(l−1)
i +

∑
j∈Ni

ωijh⃗
(l−1)
j)),

(20)

here h⃗(l)
i is a feature vector in (l)th layer for node i. δi is node i’s

degree. Ni is the neighborhood of node i. (W(l))T is the transpose
of a matrix W(l). We suppose B to be the mini-batch samples
and SNEI to be the neighborhood size, then the training time
complexity is O(SLNEIBD

2) and the memory complexity is O(SLNEIBD).
Several mini-batch variants of the vanilla GCN have been

proposed to address the bottleneck of poor scalability. GraphSAGE
[19] uses fixed-size sampling to reduce the computing range of
the neighborhood in each layer, but it still faces the same bottle-
neck of vanilla GCN in essence. By defining S as the sampling size
and S < SNEI, the training time complexity is O(SLBD2) and the
memory complexity is O(SLBD) for GraphSAGE.

FastGCN [36] leverages global importance sampling instead of
fixed-size sampling to reduce the growth of the sampling size S
from the exponential to linear level. However, FastGCN [36] must
require the extra complexity for the global importance sampling,
so its complexities are > O(SLBD2) for time and > O(SLBD) for
memory.

VRGCN [37] reduces the sample size in each layer by using
the variance reduction. Its time complexity is O(SLVRBD

2) with the
reduced sample size SVR ≤ S, and its memory complexity is
O(LND).

Cluster-GCN [38] first utilizes the graph clustering to partition
the whole graph to several subgraphs, employing the vanilla GCN
[13] performed over each subgraph. Its performance depends on
the chosen graph clustering methods heavily to difficultly ensure
training stability. It also uses stochastic multiple partitions to en-
hance its performance to make its model structure sophisticated
excessively.

Up to now, L-GCN [20] learns graph structured data by a layer-
wise training manner. It performs aggregation step once for the
(l − 1)th node representations across each layer trained, feeding
the node representations into a single layer perceptron in the
encoding step by using mini-batch mode. Training (l)th layer of
L-GCN by the layer-wise strategy detailed as:

(W(l)∗,Θ∗) =

ˆ (l−1) (l)
(21)
minW(l),Θ Loss(σ (AsnH W),Θ,Y).

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

w
s

d
e

Table 3
In the training process, You et al. [20] summarized the time complexity of state-of-the-art GCNs with REC framework for feature aggregation, and the memory
complexity of them for storing node representations. We add the time and memory complexities of AE framework for the training process to compare to these
GCNs. For the weight storage, the memory costs are the same for all compared methods; hence, we ignore them in this table. L is the layer number, D is the feature
dimension, N is the node number, SNEI is the neighborhood size, B is the mini-batch size, S is the training sample size, SVR is the reduced sample size, and NBAT is
the mini-batch number.
Complexity GCN [13] Vanilla GCN [13] GraphSAGE [19] FastGCN [36] VRGCN [37] L2-GCN [20] AE Framework

Training time O(L∥Âsn∥0D + LND2) O(SLNEIBD
2) O(SLBD2) > O(SLBD2) O(SLVRBD

2) > O(L ∥Âsn∥0
NBAT

D + BD2) O(LBD2)
Training memory O(LND) O(SLNEIBD) O(SLBD) > O(SLBD) O(LND) > O(BD) O(LBD)
Fig. 2. The comparison between AE framework and existing GNN models associated with GRU.
Fig. 3. The training time (seconds) comparison between AE and EA frameworks.
a
t
m

t
e
A
a
T
t
A
s

After finishing the (l)th layer training, L-GCN [20] saves the
weight matrix W(l)∗ between the current input layer and the
hidden layer, and drops the weight matrices Θ∗ between this
hidden layer and output layer unless l = L, then calculating the
(l)th layer representations for next layer-wise training weights,
i.e., (W(l+1)∗,Θ∗). This process is repeated until all layers are
trained. Moreover, You et al. [20] further propose L2-GCN by
using a learned RNN controller to decide when to stop in each
layer’s training [39] via policy-based Reinforcement Learning
[40], leading to that the time complexity is > O(L ∥Âsn∥0

NBAT
D + BD2)

and the memory complexity is > O(BD). However, the layer-
ise training strategy and the learned RNN controller are too
ophisticated to guarantee the model’s initial performance.
For the training time complexity, AE framework only con-

ucts aggregation results once in the preprocessing stage, and
ncodes each node representation independently in the training
 b

7

process. Therefore, the time complexity of aggregation pipeline
is O(k∥Âsn∥0D) and the time complexity of encoding pipeline
is O(LBD2), where k is the k-hop neighborhood. Because the
ggregation pipeline is not involved in the training stage, the
raining time complexity of AE framework is O(LBD2), and training
emory complexity for all L layers is O(LBD).
L2-GCN [20] runs the aggregating preprocessing stage before

raining each layer, thereby performing L times aggregation op-
ration with L layers. By contrast, the aggregation pipeline of
E framework only performs neighborhood aggregation once for
ll during the whole preprocessing stage and training process.
o compute and store the large symmetrically normalized ma-
rix Âsn and its k times aggregation with the feature matrix
ˆ k
snH(0), we could take advantage of distributed computing and
torage systems to finish these costly aggregating propagation
efore starting the training process. Moreover, unlike L2-GCN [20]

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

a
R
t
s

5

t
g
a
t
f
p
a
t
s
(
b

Table 4
The comparison between the GNN models constructed from injective and non-injective aggregation functions under AE framework and the state-of-the-art methods,
in terms of micro-f1, training time (seconds), and GPU memory usage (MBs). OOM denotes out of memory. The best results for each dataset are highlighted in (bold),
and the best between injective aggregation function and its corresponding non-injective version is highlighted in bold.
Model Cora Citeseer Pubmed Amazon Photo

Micro-F1 Time Memory Micro-F1 Time Memory Micro-F1 Time Memory Micro-F1 Time Memory

Vanilla Mini-Batch [13] 84.60 ± 0.15 24.13 s 459M 76.58 ± 0.28 46.21 s 584M 86.60 ± 0.10 89.52 s 926M 90.25 ± 0.22 56.92 s 706M
GraphSAGE-Mean [19] 85.10 ± 0.10 25.40 s 655M 77.82 ± 0.15 68.20 s 660M 87.15 ± 0.05 502.20 s 678M 90.26 ± 0.26 89.10 s 652M
FastGCN [36] 85.40 ± 0.10 8.21 s 659M 78.24 ± 0.30 26.06 s 696M 88.00 ± 0.10 41.05 s 862M 90.42 ± 0.23 26.30 s 853M
VRGCN [37] 85.30 ± 0.20 8.09 s (256M) 78.06 ± 0.23 20.60 s (315M) 87.10 ± 0.15 165.23 s (386M) 90.68 ± 0.52 65.03 s (362M)
Cluster-GCN [38] 84.50 ± 0.15 15.50 s 372M 76.93 ± 0.60 46.35 s 386M 86.85 ± 0.15 208.25 s 465M 89.68 ± 0.20 86.36 s 380M
GIN [28] 81.40 ± 0.22 8.28 s 680M 73.20 ± 0.25 22.20 s 690M 85.80 ± 0.22 113.86 s 884M 84.27 ± 0.36 89.42 s 864M
L-GCN [20] 84.60 ± 0.10 4.62 s 619M 77.06 ± 0.18 4.52 s 620M 87.40 ± 0.15 7.25 s 620M 89.82 ± 0.40 4.20 s 420M
L2-GCN [20] 84.00 ± 0.15 3.56 s 619M 77.00 ± 0.12 4.08 s 618M 86.35 ± 0.10 6.21 s 634M 89.60 ± 0.26 3.64 s 422M

SN 87.64 ± 0.30 3.03 s 358M 78.52 ± 0.25 4.62 s 364M 88.94 ± 0.05 6.60 s 414M 90.60 ± 0.24 (2.09 s) 382M
Injective SN 88.02 ± 0.50 (2.71 s) 358M (79.89 ± 0.24) 4.06 s 364M 90.72 ± 0.16 9.80 s 414M 92.14 ± 0.47 2.45 s 382M

Mean 87.50 ± 0.29 2.95 s 358M 78.28 ± 0.20 4.54 s 364M 87.32 ± 0.12 (5.64 s) 414M 89.54 ± 0.37 2.14 s 382M
Injective Mean (88.42 ± 0.26) 2.93 s 358M 79.45 ± 0.16 4.58 s 364M 89.26 ± 0.42 6.40 s 414M 91.26 ± 0.21 2.35 s 382M

OPR 87.34 ± 0.27 2.89 s 358M 77.89 ± 0.16 4.30 s 364M 89.48 ± 0.25 6.21 s 414M 90.78 ± 0.05 2.18 s 382M
Injective OPR 88.00 ± 0.32 2.92 s 358M 79.65 ± 0.22 3.99 s 364M 90.40 ± 0.34 9.22 s 414M 91.60 ± 0.54 2.17 s 382M

APPNP 87.42 ± 0.16 2.82 s 358M 78.27 ± 0.26 4.28 s 364M 89.98 ± 0.18 9.75 s 414M (92.26 ± 0.29) 2.15 s 382M
EP APPNP 88.35 ± 0.27 2.91 s 358M 79.78 ± 0.25 (3.92 s) 364M (91.09 ± 0.20) 11.38 s 414M 91.83 ± 0.58 2.25 s 382M

PPNP 88.42 ± 0.21 2.76 s 358M 79.60 ± 0.63 4.35 s 364M 90.72 ± 0.39 7.76 s 414M 91.89 ± 0.29 2.18 s 382M

Model Coauthor Physics Reddit OGBN-Arxiv OGBN-Products

Micro-F1 Time Memory Micro-F1 Time Memory Micro-F1 Time Memory Micro-F1 Time Memory

Vanilla Mini-Batch [13] 92.05 ± 0.28 386.51 s 2548M 92.96 ± 0.17 697.46 s 5621M 70.15 ± 0.14 602.18 s 1328M OOM
GraphSAGE-Mean [19] 92.20 ± 0.30 361.28 s 2208M 93.50 ± 0.10 1120.05 s 4352M 70.20 ± 0.10 925.16 s 2053M OOM
FastGCN [36] 92.58 ± 0.10 25.00 s 2588M 92.63 ± 0.16 922.18 s 4432M 69.45 ± 0.06 321.30 s 2015M OOM
VRGCN [37] 92.35 ± 0.10 265.23 s 1680M 94.35 ± 0.04 263.24 s 878M 69.95 ± 0.12 152.20 s 492M 75.10 ± 0.20 1256.58 s 890M
Cluster-GCN [38] 92.30 ± 0.18 320.25 s 1745M 94.66 ± 0.12 524.24 s 585M 68.82 ± 0.09 356.85 s 516M 74.50 ± 0.24 1754.20 s 733M
GIN [28] 86.85 ± 0.38 284.06 s 2028M 90.58 ± 0.35 696.28 s 4860M 64.38 ± 0.10 462.08 s 2100M OOM
L-GCN [20] 91.90 ± 0.25 6.25 s 720M 94.30 ± 0.16 48.21 s 622M 69.23 ± 0.14 29.54 s 486M 75.04 ± 0.10 82.14 s 518M
L2-GCN [20] 91.85 ± 0.10 4.21 s 720M 94.15 ± 0.08 49.21 s 638M 69.90 ± 0.14 26.42 s 488M 75.20 ± 0.16 65.42 s 536M

SN 92.67 ± 0.21 0.79 s (608M) 94.62 ± 0.06 60.49 s (414M) 70.10 ± 0.10 21.54 s (382M) 74.11 ± 0.09 (26.87 s) (382M)
Injective SN 93.69 ± 0.12 0.86 s (608M) 95.43 ± 0.08 48.14 s (414M) 71.28 ± 0.15 24.85 s (382M) 75.55 ± 0.24 33.60 s (382M)
Mean 92.66 ± 0.05 0.82 s (608M) 94.86 ± 0.05 52.28 s (414M) 70.63 ± 0.12 21.41 s (382M) 77.76 ± 0.12 44.59 s (382M)
Injective Mean 93.45 ± 0.06 0.87 s (608M) (96.45 ± 0.03) 42.79 s (414M) (71.58 ± 0.09) 23.07 s (382M) (78.80 ± 0.18) 42.76 s (382M)
OPR 92.84 ± 0.08 0.80 s (608M) 91.46 ± 0.09 39.19 s (414M) 68.36 ± 0.25 18.15 s (382M) 67.82 ± 0.24 36.07 s (382M)
Injective OPR (93.88 ± 0.03) 0.85 s (608M) 92.84 ± 0.14 (37.28 s) (414M) 68.95 ± 0.16 (17.48 s) (382M) 70.65 ± 0.22 38.24 s (382M)
APPNP 92.40 ± 0.06 (0.75 s) (608M) 94.22 ± 0.08 46.00 s (414M) 69.82 ± 0.06 23.76 s (382M) 74.28 ± 0.15 40.37 s (382M)
EP APPNP 93.68 ± 0.02 0.94 s (608M) 94.95 ± 0.06 50.60 s (414M) 69.99 ± 0.16 21.64 s (382M) 74.96 ± 0.17 42.04 s (382M)
PPNP OOM OOM OOM OOM
Fig. 4. Comparison of the GPU memory (MBs) usage (GPU memory usage during training) between AE and EA frameworks.
o
l
a

6

o
d
f
i
i
e

s

nd Cluster-GCN [38], which require the complicatedly learned
NN controller and the sophisticated graph clustering algorithm
o optimize their performance, respectively, AE framework is
traightforward without any additional techniques or tricks.

.2. Performing AE framework on the task of traffic state prediction

Based on the above analysis, as our AE framework alleviates
he computational cost, performing it on the tremendous traffic
raph-based data is efficient [17]. By decoupling two running-
lternated and indispensable steps in GNNs, which are, respec-
ively, neighborhood aggregation and node feature encoding
unctions, we arrange the aggregation part as a pre-processing
ipeline before applying independent node feature learning as
n encoding pipeline. The benefit of the decoupled structure is
hat we can deploy the intensive-consumed former on inexpen-
ive computing and storage devices like Central Processing Units
CPUs) and memory, and the weights-learnable latter on costly
ut efficient parallel-computing resources (Graphics Processing
8

Units, GPUs). To perform the tasks of traffic state prediction from
graph-based traffic data implying spatial and temporal features
[17], we elaborately design AE framework based on combining a
temporal model, i.e., Gate Recurrent Unit (GRU). In this regard,
ur AE framework can aggregate spatial features, and GRU can
earn temporal features. The comparison between AE framework
nd existing GNN models with GRU are shown in Fig. 2.

. Experiments

In this section, we firstly introduce the datasets we used for
ur experiments. Then we present some key implementation
etails of our methods. After that, we compare the GNNs derived
rom our injective aggregation functions to those built from non-
njective aggregators as well as the state-of-the-art GNN models,
n terms of both node classification performance and training
fficiency.
Datasets: We conducted experiments on eight node clas-

ification datasets, which are increasingly larger. These datasets

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

c
a
t
s
a
A

m
s
c

o

Table 5
The CPU time consumption of the pre-processing step in AE framework.
Model Cora Citeseer Pubmed Amazon photo

SN (0.06 s) 0.20 s 0.19 s (0.30 s)
Injective SN 0.09 s 0.32 s 0.29 s 0.34s

Mean 0.07 s (0.19 s) 0.19 s (0.30 s)
Injective Mean 0.09 s 0.30 s 0.29 s 0.36s

OPR (0.06 s) (0.19 s) (0.18 s) (0.30 s)
Injective OPR 0.09 s 0.31 s 0.28 s 0.38s

APPNP 0.12 s 0.39 s 0.36 s 0.49s
EP APPNP 0.10 s 0.32 s 0.29 s 0.37 s
PPNP 8.14 s 14.76 s 490.81 s 221.36s

Model Coauthor Physics Reddit OGBN-Arxiv OGBN-Products

SN 8.45 s 25.78 s 1.25 s 74.97 s
Injective SN 11.18 s 27.02 s 1.36 s 102.29s

Mean (8.34 s) (25.31 s) (1.04 s) (29.78 s)
Injective Mean 11.00 s 26.88 s 1.27 s 56.03s

OPR 8.35 s 25.64 s 1.06 s 71.60 s
Injective OPR 11.33 s 26.68 s 1.30 s 97.98s

APPNP 14.68 s 38.95 s 1.75 s 123.38s
EP APPNP 11.32 s 27.86 s 1.36 s 102.66 s
PPNP OOM OOM OOM OOM

include two small-scale datasets: Cora [13] and Citeseer [13];
three medium-scale datasets: Pubmed [13], Amazon Photo [43],
and Coauthor Physics [43]; and three large-scale datasets: Reddit
[19], OGBN-Arxiv [44], and OGBN-Products [44]. Among these
datasets, the graph representation of Citeseer is not connected
and its corresponding adjacency matrix is reducible. Besides the
eight datasets, we also introduce two large-scale graph-based
traffic data: the traffic networks for Chengdu and Xi’an cities. The
detailed dataset statistics are summarized in Appendix J.

Implementation details: We present the detailed network
structures of our GNN models in Table 2, where SN, Mean, and
OPR indicate the aggregation functions used, are the original non-
injective versions introduced in Section 2 and injective x indicates
the injective version of aggregation function x is used. To ensure
the same 2-order neighborhood size in AE and EA frameworks,
we set k = 2 in APPNP and k = 1 in the other models. For REC in
Table 2, all 2-layer models have 4-order neighborhood since each
of our injective aggregation function has minimum order of 2. The
teleport probability α is set to be 0.2 for PPNP, APPNP, and EP
APPNP; the bias β is 0.2 for injective SN, injective Mean, injective
OPR, and EP APPNP under the AE framework; and β is set to be 0.1
for these injective models under REC and EA frameworks. We use
Adam optimizer with the learning rate of 0.001 for AE and 0.0045
for EA and REC. The weight decay is set to be 0.005. A dropout
with ratio 0.2 is used. We train the models for 1000 epochs, with
the epoch number for early stopping set to be 10 for Cora and
Citeseer, 30 for Amazon Photo, and 5 for the other datasets. We
implement our models by Tensorflow 1.5. All of the experiments
are performed on a machine with Intel 8-core i7-8700K CPU
(3.70 GHz), 64 GB CPU memory, and one GeForce RTX 2080Ti
card (11 GB GPU’s memory). For each dataset, we run a model
five times and the mean and standard variation of the micro-f1
score, and the average training time and GPU consumption are
used as evaluation metrics. For data normalization, we employ
the row normalized approach [13] for Cora, Citeseer, Pubmed,
Amazon Photo, and Coauthor Physics, and use the standard scalar
method [43] for the others.

6.1. The experiments under AE framework

Considering the GNN models derived from our injective ag-
gregation functions under AE framework, they can simultane-
ously achieve satisfactory classification performance and compu-

tational efficiency, we compare such injective AE models with

9

eight state-of-the-art GNN models, including Vanilla Mini-Batch
[13], GraphSAGE-Mean [19], FastGCN [36], VRGCN [37], Cluster-
GCN [38], GIN [28], L-GCN [20], and L2-GCN [20]. The results
are shown in Table 4. The numbers reported for the comparing
methods are obtained as the best performance by running the
code publicly released from the original papers five times. For fair
comparisons, all the comparing methods use the same settings,
including the same batch size, the same feature dimensionality
and the same number of model layers. Concretely, we set the
batch size to be 256 for Cora and Citeseer, and 1024 for the other
datasets; The channel dimensionality for the hidden layers are set
to be 16 for Cora and Citeseer, and 512 for the remaining datasets.
All the models have 2 layers.

From the table we can see, the GNNmodels based on our injec-
tive aggregation functions outperform the state-of-the-art models
in terms of all the three metrics, i.e., micro-f1, training time,
and GPU memory consumption. The reason for the high training
and memory efficiency of our models lies in that we remove the
neighborhood aggregation from the training pipeline as a pre-
processing step. The CPU time consumption of the pre-processing
step in AE framework is shown in Table 5. The independent
node-wise encoding in the training pipeline can be conveniently
implemented using mini-batch mode, which alleviates the GPU
burden. Although the comparing methods also adopt mini-batch
training, they employ the recursive training structure, which
results in expensive computation.

We also compare our GNN models with those built from the
original non-injective aggregation functions. As can be seen, the
injective versions obtain superior performance over the non-
injective baselines on almost all the datasets. This observation
empirically verifies the effectiveness of our injective aggregation
functions, formally claimed in Lemma 11. PPNP is a powerful ag-
gregation scheme, which results in stable performance. But since
it requires the calculation of matrix inverse, it leads to enormous
memory consumption especially on large graph datasets. This
explains why one can observe ‘‘out of memory’’ issues.

6.2. The experiments under EA framework

In this section, we evaluate the performance of GNNs built
from our injective aggregation functions under EA framework.
Firstly, we compare our injective models to some existing GNN
models in Table 6. Following [43], we choose MLP and another
two state-of-the-art models, recursively full-batch trained GAT
[41] and MoNet [42] for comparison, where MLP means the
models do not have the neighboring feature aggregation opera-
tion. The experimental setup is the same as that under the AE
framework except that the learning rate under EA framework is
set to be 0.0045. From the table we can see that our injective
models outperform such comparing methods on all the datasets.

Note that PPNP and APPNP in their original work [21] are
under EA framework. As analyzed in Lemmas 6 and 7, PPNP
aggregator is injective and APPNP aggregator is injective when
the power k is even and the graph is not reducible. One special
ase for APPNP is the Citeseer dataset, which is not connected
nd thus cannot guarantee the injectivity of the APPNP aggrega-
ion function. The proposed EP APPNP performs on par with or
ometimes better than these two PPR variants but with higher
ggregation efficiency as it removes the odd-power terms in the
PPNP formulation.
In the comparison between the injective and non-injective

odels under EA frameworks, the injective models again ob-
erve better performance on most of the datasets. The results are
onsistent with Lemma 12.
Furthermore, we compare AE and EA frameworks in terms

f GPU time in Fig. 3 and GPU memory consumption in Fig. 4

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616
Table 6
The comparison between the GNN models constructed from injective and non-injective aggregation functions under
EA framework and the state-of-the-art methods. The results on OGBN-Products are removed from the table due to
OOM.
Model Cora Citeseer Pubmed Amazon Photo

MLP 74.46 ± 4.77 74.94 ± 0.54 86.46 ± 0.21 81.72 ± 0.57
GAT [41] 87.02 ± 0.12 78.38 ± 0.10 87.75 ± 0.22 85.78 ± 3.08
MoNet [42] 86.95 ± 0.15 77.89 ± 0.25 88.06 ± 0.08 91.00 ± 0.28

SN 87.20 ± 0.01 79.02 ± 0.32 88.20 ± 0.12 92.09 ± 0.18
Injective SN 87.95 ± 0.22 79.78 ± 0.12 89.30 ± 0.16 92.85 ± 0.12
Mean 87.06 ± 0.18 78.96 ± 0.21 86.94 ± 0.16 91.99 ± 0.15
Injective Mean 87.84 ± 0.03 79.58 ± 0.18 87.86 ± 0.23 92.68 ± 0.25
OPR 87.12 ± 0.23 79.16 ± 0.33 88.02 ± 0.40 91.76 ± 0.30
Injective OPR 87.68 ± 0.10 79.88 ± 0.20 88.84 ± 0.25 (92.87 ± 0.20)
APPNP [21] 87.15 ± 0.12 80.04 ± 0.29 (89.78 ± 0.30) 92.49 ± 0.36
EP APPNP 87.72 ± 0.10 (80.24 ± 0.22) 89.24 ± 0.33 92.87 ± 0.19
PPNP [21] (88.26 ± 0.37) 79.76 ± 0.21 89.74 ± 0.39 92.25 ± 0.12

Model Coauthor Physics Reddit OGBN-Arxiv

MLP 87.89 ± 0.55 73.87 ± 0.09 55.15 ± 0.24
GAT [41] 92.55 ± 0.38 OOM OOM
MoNet [42] 92.62 ± 0.10 94.60 ± 0.08 69.52 ± 0.24

SN 92.85 ± 0.12 95.17 ± 0.06 70.06 ± 0.18
Injective SN (93.72 ± 0.09) (96.07 ± 0.07) (70.85 ± 0.32)
Mean 92.04 ± 0.08 94.92 ± 0.03 70.14 ± 0.22
Injective Mean 93.67 ± 0.03 95.99 ± 0.06 70.73 ± 0.12
OPR 92.71 ± 0.08 94.22 ± 0.06 69.13 ± 0.30
Injective OPR 93.56 ± 0.03 95.02 ± 0.08 69.95 ± 0.15
APPNP [21] 93.34 ± 0.05 95.58 ± 0.11 69.13 ± 0.34
EP APPNP 93.56 ± 0.04 96.06 ± 0.05 70.39 ± 0.29
PPNP [21] OOM OOM OOM
Table 7
The comparison between GNN models constructed from non-injective and injective aggregation functions under REC framework. The
results on Coauthor Physics, Reddit, and OGBN-Products are removed from this table due to OOM.
Model Cora Citeseer Pubmed Amazon Photo OGBN-Arxiv

SN 87.05 ± 0.18 78.38 ± 0.44 86.30 ± 0.18 89.02 ± 0.28 70.46 ± 0.20
Injective SN 87.58 ± 0.32 78.54 ± 0.14 87.06 ± 0.15 89.78 ± 0.38 70.74 ± 0.26
Mean 87.48 ± 0.19 77.70 ± 0.70 85.24 ± 0.22 89.63 ± 0.35 70.41 ± 0.43
Injective Mean 87.64 ± 0.29 (78.62 ± 0.44) 85.68 ± 0.07 (90.42 ± 0.10) 70.50 ± 0.21
OPR 87.32 ± 0.23 78.18 ± 0.27 86.46 ± 0.10 89.21 ± 0.38 69.79 ± 0.10
Injective OPR 87.58 ± 0.20 78.42 ± 0.64 86.94 ± 0.24 89.48 ± 0.51 69.94 ± 0.15
APPNP 87.28 ± 0.13 78.10 ± 1.09 (88.06 ± 0.14) 90.34 ± 0.37 70.09 ± 0.10
EP APPNP 87.42 ± 0.34 78.24 ± 0.44 86.90 ± 0.55 89.70 ± 0.27 (70.79 ± 0.10)
PPNP (87.86 ± 0.44) 77.98 ± 0.48 86.80 ± 0.14 89.35 ± 0.84 OOM
Table 8
The comparison between the GNN models constructed from injective and non-injective aggregation functions under AE framework,
in terms of micro-f1, training time (seconds), and GPU memory usage (MBs). OOM denotes out of memory. The best results for each
dataset are highlighted in (bold), and the best between injective aggregation function and its corresponding non-injective version
is highlighted in bold.
Model Chengdu Xi’an

Micro-F1 Time Memory Micro-F1 Time Memory

SN 92.23 ± 0.12 68.67 s 426M 90.06 ± 0.22 55.52 s 414M
Injective SN 93.28 ± 0.20 62.56 s 426M 92.58 ± 0.18 58.20 s 414M

Mean 91.45 ± 0.10 60.62 s 426M 91.68 ± 0.23 56.02 s 414M
Injective Mean 93.58 ± 0.14 (60.35 s) 426M 92.05 ± 0.15 54.25 s 414M

OPR 92.25 ± 0.18 65.38 s 426M 91.14 ± 0.52 (51.45 s) 414M
Injective OPR (93.65 ± 0.25) 62.65 s 426M (92.84 ± 0.14) 55.28 s 414M

APPNP 93.38 ± 0.25 68.56 s 426M 92.15 ± 0.30 60.28 s 414M
EP APPNP 93.40 ± 0.18 65.39 s 426M 92.82 ± 0.26 62.65 s 414M

PPNP OOM OOM
on all datasets except OGBN-Products. As EA framework needs
to perform the feature encoding and feature aggregation on the
10
whole graph online, its training follows the full-batch mode,
which loads all the node features into the GPU memory. This

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

L

o
t
o
i
C

6
p

A
s
b
i
t
M
T
w
t
o
c

7

m
w
a
i
r
a
f
i
i
e
o

f
t
p
a
c
w

w

i
m

A

P
s
t
f

f
i

A

f

D

Table 9
The CPU time consumption of the pre-processing step in AE framework for the
Chengdu and Xi’an datasets.
Model Chengdu Xi’an

SN 235.21 s 205.68 s
Injective SN (218.08 s) 211.07 s

Mean 256.12 s 218.53 s
Injective Mean 268.05 s 225.40 s

OPR 276.10 s (196.62 s)
Injective OPR 269.08 s 206.85 s

APPNP 251.39 s 268.69 s
EP APPNP 263.12 s 263.38 s

PPNP OOM OOM

leads to more expensive computation and memory consumption
comparing to the models under AE framework, where the whole
aggregation pipeline is removed from the training process.

6.3. The experiments under REC framework

The last set of experiments in Table 7 are conducted to verify
emma 10, i.e., injective REC models have better representation
capacity than its non-injective versions and are thus expected to
obtain higher classification accuracy. From the table, we can see
the GNN models constructed from the injective SN, Mean, OPR
utperform the models from the non-injective aggregators on all
he datasets. The three PPR variants, i.e., PPNP, APPNP, EP APPNP,
bserve comparable performance as the aggregation functions
n all these three cases are injective, where one special case is
iteseer which cannot guarantee the injectivity of APPNP.

.4. The experiments of AE framework on the task of traffic state
rediction

Besides the experiments mentioned above, we also employ
E framework to predict the traffic state based on the large-
cale graph-based traffic data. Table 8 shows the comparison
etween the GNN models constructed from injective and non-
njective aggregation functions under AE framework. Note that
he state-of-the-art GNN models mentioned above are Out-Of-
emory (OOM) on the two large-scale graph-based traffic data.
his experiment implies the outstanding efficiency of AE frame-
ork on the task of traffic state prediction. Table 9 indicates
hat: on the two traffic datasets, the CPU time consumption
f the pre-processing step in AE framework is acceptable and
ompetitive.

. Conclusions

In this work, we improved the representation capacity of GNN
odels by proposing injective aggregation functions. To this end,
e analyzed the injectivity for the typical aggregation functions
nd proposed solutions on turning the non-injective functions
nto injective versions. Our solutions can not only improve the
epresentation capacity of the GNNs but also provide theoretical
nd practical guidance on the design of new feature aggregation
unctions in GNNs. We have evaluated the effectiveness of the
njective functions under various GNN frameworks. The exper-
mental results demonstrated the advantages of our proposals,
specially showing the state-of-the-art results of AE framework
n the task of traffic state prediction.
In future work, we will explore more injective aggregation

unctions theoretically and practically, generalizing these func-
ions performed on other tasks like graph classification and link
rediction. We also hope to extend the applicability of such
ggregation functions to other large-scale graph-structured appli-
ations, such as social networks and recommendation networks,
idely verifying the effectiveness and efficiency of our proposals.
11
CRediT authorship contribution statement

Wei Dong: Conceptualization, Software, Investigation, Writing
– original draft. Junsheng Wu: Conceptualization, Software, In-
vestigation, Writing – original draft. Xinwan Zhang: Conceptual-
ization, Software, Investigation, Writing – original draft. Zongwen
Bai: Conceptualization, Software, Validation, Investigation, Visu-
alization, Writing – original draft. Peng Wang: Conceptualization,
Methodology, Validation, Investigation, Writing – original draft,
Supervision. Marcin Woźniak: Conceptualization, Methodology,
Validation, Investigation, Writing – original draft, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

Authors would like to acknowledge contribution to this re-
search from the Rector of the Silesian University of Technology,
Gliwice, Poland under pro-quality Grant No. 09/010/RGJ22/0068.
Our work has also been supported by these following projects:
Natural Science Basic Research Program of Shaanxi (Program No.
2021JLM-16) and National Natural Science Foundation of China
(Grant No. 61872284).

Appendix A. Proof of Lemma 1

Proof. Given an aggregation matrix P ∈ RN×N , the Von Neumann
Entropy [24] defined thereon is described as:

H(P) =

N∑
n=1

−
λn∑N
n=1 λn

log
λn∑N
n=1 λn

, (A.1)

here λn is the eigenvalue derived from the aggregation matrix P.
The work [24] states that large H(P) implies more information ca-
pacity, enhancing its corresponding representation ability in the
basis space spanned by the aggregation matrix P. Generally, non-
singular aggregation matrix has non-zero eigenvalues, implying
its larger range of the probability distribution λn∑N

n=1 λn
than that

of singular ones. In term of Eq. (A.1) the larger range λn∑N
n=1 λn

ndicates higher H(P), thus non-singular aggregations may have
ore representation capacity than singular ones. □

ppendix B. Proof of Lemma 4

roof. Mean aggregation matrix Âmean defined in Eq. (4) is a right
tochastic square matrix with each row summing to 1. According
o Gershgorin circle theorem [25], any eigenvalue λmean derived
rom this matrix is λmean ≤ 1.

Let λsn be any eigenvalue and v⃗sn be the associated eigenvector
or the symmetrically normalized Laplacian matrix Âsn described
n Eq. (2). There is:

ˆ snv⃗sn = D̃−
1
2 ÃD̃−

1
2 v⃗sn = λsnv⃗sn (B.1)

By multiplying Eq. (B.1) with the diagonal degree matrix D̃−
1
2

rom left, Eq. (B.1) can be rewritten as:

˜ −
1
2 Âsnv⃗sn = D̃−

1
2 D̃−

1
2 ÃD̃−

1
2 v⃗sn,

˜ −1 ˜ ˜ −
1

ˆ ˜ −
1 (B.2)
= D AD 2 v⃗sn = AmeanD 2 v⃗sn.

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

D

D

L

A

B
s
i
D

m

A

w

D

A

D

F

A

E

B

F
c
I

A

ue to Eq. (B.1), there is:

˜ −
1
2 Âsnv⃗sn = D̃−

1
2 λsnv⃗sn = λsnD̃−

1
2 v⃗sn. (B.3)

et combining Eqs. (B.2) and (B.3), we obtain:

ˆmeanD̃−
1
2 v⃗sn = λsnD̃−

1
2 v⃗sn,

= λmeanD̃−
1
2 v⃗sn = λmeanv⃗mean.

(B.4)

y virtue of Eq. (B.4), λsn = λmean and each eigenvector of the
ymmetrically normalized Laplacian matrix Âsn is the correspond-
ng eigenvector of the right stochastic matrix Âmean scaled by
˜ −

1
2 .
Relying on the deducing process we presented above and

ultiplying the following equation:

ˆ oprv⃗opr = ÃD̃−1v⃗opr,
= λoprv⃗opr,

(B.5)

ith D̃−1 from left, there is:
˜ −1Âoprv⃗opr = D̃−1ÃD̃−1v⃗opr,

= ÂmeanD̃−1v⃗opr.
(B.6)

s Eq. (B.5), we obtain:

˜ −1Âoprv⃗opr = D̃−1λoprv⃗opr,

= λoprD̃−1v⃗opr.
(B.7)

rom Eqs. (B.6) and (B.7) we can get λopr = λmean by:

ˆmeanD̃−1v⃗opr = λoprD̃−1v⃗opr,

= λmeanD̃−1v⃗opr = λmeanv⃗mean.
(B.8)

ach eigenvector of the matrix Âmean scaled by D̃−1 is the related
eigenvector of the OPR matrix Âopr. Therefore, these three sym-
metric matrices Âsn, Âmean, and Âopr have the same eigenvalues
and thereby λsn = λopr = λmean ≤ 1. □

Appendix C. Proof of Lemma 5

Proof. As any real symmetric matrix can be diagonalized [25], the
real symmetric matrix Âsn is diagonalizable. Diagonalizing Âsn as
PΛsnP−1, there is:

Â2k
sn = Âsn · · · Âsn,

= PΛsnP−1
· · · PΛsnP−1

= PΛ2k
snP

−1,
(C.1)

where Λsn is a diagonal matrix with the eigenvalues of Âsn.
Based on Eq. (C.1), the aggregation matrix Âisn of the injective SN
aggregator can be diagonalized as:

Âisn = βIN + Â2k
sn,

= βIN + PΛ2k
snP

−1,

= βPP−1
+ PΛ2k

snP
−1,

= P(βP−1
+ Λ2k

snP
−1),

= P(βIN + Λ2k
sn)P

−1.

(C.2)

From Eq. (C.2) we can obtain the eigenvalue of Âisn to be λisn =

β + λ2k
sn . According to λsn ≤ 1 in Lemma 4, the eigenvalues of

Âisn fall in the range of β ≤ λisn ≤ 1 + β to avoid the numerical
value 0, making Âisn full rank and its associated aggregator to be
an injective function based on Lemmas 2 and 3.

In the same way, diagonalizing the real symmetric matrices
Âimean and Âiopr can deduce their corresponding aggregators to be
injective. □
12
Appendix D. Proof of Lemma 6

Proof. The symmetric matrix Âppnp can be diagonalized with the
symmetrically normalized matrix Âsn = PΛsnP−1:

Âppnp = α(IN − (1 − α)Âsn)−1,

= α(IN − (1 − α)PΛsnP−1)−1,

= α(PP−1
− (1 − α)PΛsnP−1)−1,

= α(P(IN − (1 − α)Λsn)P−1)−1, (D.1)

= α((IN − (1 − α)Λsn)P−1)−1P−1,

= αP(IN − (1 − α)Λsn)−1P−1,

= Pα(IN − (1 − α)Λsn)−1P−1.

ecause α(IN − (1 − α)Λsn)−1 is a diagonal matrix, so λppnp =
α

1−(1−α)λsn
. Due to λsn ≤ 1 (shown in Lemma 4) and 0 < α ≤ 1

(shown in Eq. (6)), λppnp is always greater than 0. As a result, Âppnp
is full rank and its associated aggregator is bijective (injective and
surjective) by virtue of Lemmas 2 and 3. □

Appendix E. Proof of Lemma 7

Proof. Being similar to the injectivity proof of PPNP aggregator
represented in Appendix D, we use the diagonalizable property of
the symmetrically normalized Laplacian matrix Âsn = PΛsnP−1 to
demonstrate the injectivity of APPNP aggregator. Due to Eq. (C.1),
there is:

Âappnp

=(1 − α)kÂk
sn + α

k−1∑
i=0

(1 − α)iÂi
sn,

=(1 − α)k(PΛsnP−1)k + α

k−1∑
i=0

(1 − α)i(PΛsnP−1)i,

=(1 − α)kPΛk
snP

−1
+ α

k−1∑
i=0

(1 − α)iPΛi
snP

−1,

=P((1 − α)kΛk
snP

−1
+ α

k−1∑
i=0

(1 − α)iΛi
snP

−1),

=P((1 − α)kΛk
sn + α

k−1∑
i=0

(1 − α)iΛi
sn)P

−1.

(E.1)

rom Eq. (E.1) we can conclude, APPNP aggregation matrix Âappnp
an be diagonalized by the matrix P and is a symmetric matrix.
f k is a even integer 2u with the integer u ∈ N, then:

ˆ appnp

=P((1 − α)kΛk
sn + α

k−1∑
i=0

(1 − α)iΛi
sn)P

−1,

=P((1 − α)2uΛ2u
sn + α

u−1∑
i=0

((1 − α)2iΛ2i
sn+

(1 − α)2i+1Λ2i+1
sn))P−1,

=P((1 − α)2uΛ2u
sn + α

u−1∑
i=0

(1 − α)2iΛ2i
sn(IN+

−1

(E.2)
(1 − α)Λsn))P .

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

m

Table J.10
The statistics of datasets.
Dataset Nodes Edges Feature Classes Train/Val/Test

Cora 2,708 5,429 1433 7 1208/500/1000
Citeseer 3,327 4,732 3703 6 1827/500/1000
Pubmed 19,717 44,338 500 3 17,717/500/1000
Amazon Photo 7,650 119,043 745 8 160/240/7250
Coauthor Physics 34,493 247,962 8415 5 100/150/34,243
Reddit 232,965 11,606,919 602 41 153,932/23,699/55,334
OGBN-Arxiv 169,343 1,166,243 128 40 90,941/29,799/48,603
OGBN-Products 2,449,029 61,859,140 100 47 196,615/39,323/2,213,091
Table J.11
The statistics of two large-scale graph-based traffic datasets.
Dataset Length of time series Nodes Edges Feature Classes Train/Val/Test

Chengdu 1,756,800 4,266,815 82,320,569 20 3 853,363/426,682/2,986,770
Xi’an 1,756,800 3,852,855 65,209,168 20 3 770,571/385,285/2,696,999
B
a

λ

W
t
a
a

A

P
L

C

E
c

Following Eq. (E.2), the eigenvalue λappnp of APPNP aggregation
atrix Âappnp is:

λappnp =(1 − α)2uλ2u
sn + α

u−1∑
i=0

(1 − α)2iλ2i
sn(1+

(1 − α)λsn), (E.3)

=(1 − α)2uλ2u
sn + α(1 + (1 − α)λsn)+

α

u−1∑
i=1

(1 − α)2iλ2i
sn(1 + (1 − α)λsn).

Given α ∈ (0, 1), and |λsn| ≤ 1 based on Perron–Frobenius theo-
rem [25] that requires the irreducible matrix Âsn, the eigenvalue
λappnp is always greater than 0, i.e., λappnp > 0. Therefore, the
symmetric matrix Âappnp is full rank and its associated aggregator
is bijective (injective and surjective) based on Lemmas 2 and 3.

On the other hand, if k is a odd integer 2u + 1, then:

Âappnp

=P((1 − α)2u+1Λ2u+1
sn + α(1 − α)2uΛ2u

sn+

α

u−1∑
i=0

(1 − α)2iΛ2i
sn(IN + (1 − α)Λsn))P−1,

=P((1 − α)2uΛ2u
sn ((1 − α)Λsn + αIN)+

α

u−1∑
i=0

(1 − α)2iΛ2i
sn(IN + (1 − α)Λsn))P−1.

(E.4)

According to Eq. (E.4), the eigenvalue λappnp of APPNP aggregation
matrix Âappnp is:

λappnp =(1 − α)2uλ2u
sn ((1 − α)λsn + α)+

α

u−1∑
i=0

(1 − α)2iλ2i
sn(1 + (1 − α)λsn),

=(1 − α)2uλ2u
sn ((1 − α)λsn + α) + α(1+

(1 − α)λsn) + α

u−1∑
i=1

(1 − α)2iλ2i
sn(1+

(1 − α)λsn),

(E.5)

where (1 − α)λsn + α > −1 and 0 < 1 + (1 − α)λsn < 2, due to
α ∈ (0, 1) and |λsn| ≤ 1. Hence, λappnp may be equal to 0 to result
in the non-full rank matrix Âappnp, which does not ensure APPNP
aggregator to be injective.

Besides, if the aggregation matrix Âsn is not irreducible, we
can only get λ ≤ 1 based on Gershgorin circle theorem [25]
sn

13
and cannot ensure λappnp > 0, thereby, APPNP aggregator with
the reducible Âsn is not necessarily injective. □

Appendix F. Proof of Lemma 8

Proof. We use Eq. (C.1) to rewrite Eq. (13) as:

Âeappnp

=βIN + (1 − α)kÂ2k
sn + α

k−1∑
i=1

(1 − α)iÂ2i
sn,

=βPP−1
+ (1 − α)k(PΛsnP−1)2k+

α

k−1∑
i=1

(1 − α)i(PΛsnP−1)2i,

=βPP−1
+ (1 − α)kPΛ2k

snP
−1

+ (F.1)

α

k−1∑
i=1

(1 − α)iPΛ2i
snP

−1,

=P(βP−1
+ (1 − α)kΛ2k

snP
−1

+

α

k−1∑
i=1

(1 − α)iΛ2i
snP

−1),

=P(βIN + (1 − α)kΛ2k
sn + α

k−1∑
i=1

(1 − α)iΛ2i
sn)P

−1.

y virtue of Eq. (F.1), we obtain the eigenvalues of EP APPNP
ggregation matrix:

eappnp = β + (1 − α)kλ2k
sn + α

k−1∑
i=1

(1 − α)iλ2i
sn. (F.2)

hen α ∈ (0, 1], λsn ≤ 1 confirmed in Lemma 4, and β ∈ (0, 1],
hen λeappnp > 0. Hence, the aggregation matrix Âeappnp is full rank
nd its associated aggregator is injective according to Lemmas 2
nd 3. □

ppendix G. Proof of Lemma 10

roof. Let each GNN layer in the recursive process be a mapping
(l)

= E (l)
◦ F . According to Definition 1 and Lemma 2, we get:

E(l)◦F |F is injective > CE(l)◦F |F is not injective. (G.1)

q. (G.1) states that each aggregation layer of {Arec|F is injective}
an capture more representation capacity than its non-injective

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616

v

C

E

C

A

P
m
b
F

ersion {Arec|F is not injective}, i.e.,

Arec|F is injective > CArec|F is not injective. (G.2)

q. (G.2) hence means:

Arec|F is injective ≥ CArec . □ (G.3)

ppendix H. Proof of Lemma 11

roof. Let the aggregation pipeline in AE framework be the
apping Fagg = F ◦ · · · ◦F and the associated encoding pipeline
e the mapping Eenc = E (L)

◦ · · · ◦ E (1). Depended on Lemma 9,
agg is injective if F is injective, and Fagg is non-injective if F is

non-injective, i.e., CFagg|F is injective > CFagg|F is not injective by virtue
of Definition 1 and Lemma 2. Hence, there is:

CAae|F is injective ≥ CAae . □ (H.1)

Appendix I. Proof of Lemma 12

Proof. Similar to proving Lemma 11, we get CFagg|F is injective >

CFagg|F is not injective by virtue of Definition 1, Lemmas 2 and 9. We
hence obtain:

CAea|F is injective ≥ CAea . □ (I.1)

Appendix J. Dataset statistics

All dataset statistics are shown in Tables J.10 and J.11. Note
that the train/val/test splits of Cora, Citeseer, and Pubmed use the
splits of these corresponding datasets in Paper [20], in order to
run mini-batch experiments for AE framework conveniently.

References

[1] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
S Yu Philip, A comprehensive survey on graph neural networks, IEEE Trans.
Neural Netw. Learn. Syst. 32 (1) (2020) 4–24.

[2] Guotong Xue, Ming Zhong, Jianxin Li, Jia Chen, Chengshuai Zhai, Ruochen
Kong, Dynamic network embedding survey, Neurocomputing 472 (2022)
212–223.

[3] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai,
Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng,
Guoliang Chen, et al., Deep speech 2: End-to-end speech recognition in
english and mandarin, in: International Conference on Machine Learning,
PMLR, 2016, pp. 173–182.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, BERT: Pre-
training of deep bidirectional transformers for language understanding, in:
Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[5] Marcin Woźniak, Jakub Siłka, Michał Wieczorek, Mubarak Alrashoud,
Recurrent neural network model for IoT and networking malware threat
detection, IEEE Trans. Ind. Inform. 17 (8) (2020) 5583–5594.

[6] Shengjie Min, Zhan Gao, Jing Peng, Liang Wang, Ke Qin, Bo Fang, STGSN—A
spatial–temporal graph neural network framework for time-evolving social
networks, Knowl. Based Syst. 214 (2021) 106746.

[7] Ruiping Yin, Kan Li, Guangquan Zhang, Jie Lu, A deeper graph neural
network for recommender systems, Knowl. Based Syst. 185 (2019) 105020.

[8] Xiangyu Song, Jianxin Li, Yifu Tang, Taige Zhao, Yunliang Chen, Ziyu Guan,
Jkt: A joint graph convolutional network based deep knowledge tracing,
Inform. Sci. 580 (2021) 510–523.

[9] Xiangyu Song, Jianxin Li, Qi Lei, Wei Zhao, Yunliang Chen, Ajmal Mian, Bi-
CLKT: Bi-graph contrastive learning based knowledge tracing, 2022, arXiv
preprint arXiv:2201.09020.

[10] Dan Jiang, Ronggui Wang, Juan Yang, Lixia Xue, Kernel multi-attention neu-
ral network for knowledge graph embedding, Knowl.-Based Syst. (2021)

107188.

14
[11] Pengshuai Yin, Jiayong Ye, Guoshen Lin, Qingyao Wu, Graph neural
network for 6D object pose estimation, Knowl. Based Syst. 218 (2021)
106839.

[12] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, Yanwen Guo, Multi-label image
recognition with graph convolutional networks, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pp. 5177–5186.

[13] Thomas Kipf, Max Welling, Semi-supervised classification with graph
convolutional networks, in: International Conference on Learning Repre-
sentations, 2017.

[14] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, Maosong Sun, Graph neural networks: A
review of methods and applications, AI Open 1 (2020) 57–81.

[15] Shuiqiao Yang, Sunny Verma, Borui Cai, Jiaojiao Jiang, Kun Yu, Fang
Chen, Shui Yu, Variational co-embedding learning for attributed network
clustering, 2021, arXiv preprint arXiv:2104.07295.

[16] Hui Yin, Shuiqiao Yang, Xiangyu Song, Wei Liu, Jianxin Li, Deep fusion of
multimodal features for social media retweet time prediction, World Wide
Web 24 (4) (2021) 1027–1044.

[17] Jiexia Ye, Juanjuan Zhao, Kejiang Ye, Chengzhong Xu, How to build a graph-
based deep learning architecture in traffic domain: A survey, IEEE Trans.
Intell. Transp. Syst. (2020).

[18] Fan Zhou, Qing Yang, Ting Zhong, Dajiang Chen, Ning Zhang, Varia-
tional graph neural networks for road traffic prediction in intelligent
transportation systems, IEEE Trans. Ind. Inform. 17 (4) (2020) 2802–2812.

[19] William L. Hamilton, Rex Ying, Jure Leskovec, Inductive representa-
tion learning on large graphs, in: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, 2017, pp.
1025–1035.

[20] Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen, L2-gcn: Layer-
wise and learned efficient training of graph convolutional networks, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2127–2135.

[21] Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann, Predict
then propagate: Graph neural networks meet personalized pagerank, in:
International Conference on Learning Representations, 2019.

[22] Sergey Brin, The PageRank citation ranking: bringing order to the web,
Proc. ASIS 98 (1998) 161–172.

[23] Taher H. Haveliwala, Topic-sensitive pagerank: A context-sensitive ranking
algorithm for web search, IEEE Trans. Knowl. Data Eng. 15 (4) (2003)
784–796.

[24] Dénes Petz, Entropy, von Neumann and the von Neumann entropy,
Springer, 2001.

[25] Roger A. Horn, Charles R. Johnson, Matrix Analysis, Cambridge University
Press, 2012.

[26] Xavier Bresson, Thomas Laurent, Residual gated graph convnets, 2017,
ArXiv Preprint arXiv:1711.07553.

[27] Guohao Li, Matthias Muller, Ali Thabet, Bernard Ghanem, Deepgcns: Can
gcns go as deep as cnns? in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9267–9276.

[28] Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka, How powerful
are graph neural networks? in: International Conference on Learning
Representations, 2018.

[29] A.A. Leman, B. Weisfeiler, A reduction of a graph to a canonical form and an
algebra arising during this reduction, Nauchno-Techn. Inform. 2 (9) (1968)
12–16.

[30] László Babai, Ludik Kucera, Canonical labelling of graphs in linear average
time, in: 20th Annual Symposium on Foundations of Computer Science
(Sfcs 1979), IEEE, 1979, pp. 39–46.

[31] Roger A. Horn, Charles R. Johnson, Matrix Analysis, Cambridge University
Press, 2012.

[32] Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst, Convolutional
neural networks on graphs with fast localized spectral filtering, Adv. Neural
Inform. Process. Syst. 29 (2016) 3844–3852.

[33] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, Kilian
Weinberger, Simplifying graph convolutional networks, in: International
Conference on Machine Learning, PMLR, 2019, pp. 6861–6871.

[34] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, Federico Monti, Sign: Scalable inception graph neural networks,
2020, ArXiv Preprint arXiv:2004.11198.

[35] David A. Sprecher, Elements of Real Analysis, Courier Corporation, 2012.
[36] Jie Chen, Tengfei Ma, Cao Xiao, FastGCN: Fast learning with graph con-

volutional networks via importance sampling, in: International Conference
on Learning Representations, 2018.

[37] Jianfei Chen, Jun Zhu, Le Song, Stochastic training of graph convolutional
networks with variance reduction, in: International Conference on Machine
Learning, PMLR, 2018, pp. 942–950.

http://refhub.elsevier.com/S0950-7051(22)00815-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb7
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb7
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb7
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb8
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb8
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb8
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb8
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb8
http://arxiv.org/abs/2201.09020
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb10
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb10
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb10
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb10
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb10
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb13
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb13
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb13
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb13
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb13
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb14
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb14
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb14
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb14
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb14
http://arxiv.org/abs/2104.07295
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb16
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb16
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb16
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb16
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb16
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb17
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb17
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb17
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb17
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb17
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb18
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb18
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb18
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb18
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb18
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb21
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb21
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb21
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb21
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb21
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb22
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb22
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb22
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb23
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb23
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb23
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb23
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb23
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb24
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb24
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb24
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb25
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb25
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb25
http://arxiv.org/abs/1711.07553
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb30
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb30
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb30
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb30
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb30
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb31
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb31
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb31
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb33
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb33
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb33
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb33
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb33
http://arxiv.org/abs/2004.11198
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb35
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb36
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb36
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb36
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb36
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb36
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb37
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb37
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb37
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb37
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb37

W. Dong, J. Wu, X. Zhang et al. Knowledge-Based Systems 254 (2022) 109616
[38] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh,
Cluster-gcn: An efficient algorithm for training deep and large graph con-
volutional networks, in: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 257–266.

[39] Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen, Learning to optimize
in swarms, Adv. Neural Inform. Process. Syst. 32 (2019) 15044.

[40] Ronald J. Williams, Simple statistical gradient-following algorithms for
connectionist reinforcement learning, Mach. Learn. 8 (3) (1992) 229–256.

[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, Yoshua Bengio, Graph attention networks, in: International
Conference on Learning Representations, 2019.
15
[42] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan
Svoboda, Michael M Bronstein, Geometric deep learning on graphs
and manifolds using mixture model cnns, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
5115–5124.

[43] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, Stephan
Günnemann, Pitfalls of graph neural network evaluation, 2018, ArXiv
Preprint arXiv:1811.05868.

[44] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, Jure Leskovec, Open graph benchmark:
Datasets for machine learning on graphs, 2020, ArXiv Preprint arXiv:
2005.00687.

http://refhub.elsevier.com/S0950-7051(22)00815-2/sb39
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb39
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb39
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb40
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb40
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb40
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb41
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb41
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb41
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb41
http://refhub.elsevier.com/S0950-7051(22)00815-2/sb41
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2005.00687

	Improving performance and efficiency of Graph Neural Networks by injective aggregation
	Introduction
	Preliminary knowledge
	New injective feature aggregation functions
	Building injective aggregation functions
	Injectivity analysis for personalized PageRank's propagation schemes

	Composing GNNs by integrating injective aggregation functions and node encodings in different ways
	Composing GNNs under REC framework
	Composing GNNs under AE framework
	Composing GNNs under EA framework

	Complexity analysis for AE framework and performing it on the task of traffic state prediction
	Complexity analysis for GNNs under AE framework and the complexity comparison to state-of-the-art GNNs
	Performing AE framework on the task of traffic state prediction

	Experiments
	The experiments under AE framework
	The experiments under EA framework
	The experiments under REC framework
	The experiments of AE framework on the task of traffic state prediction

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Proof of Lemma 1
	Appendix B. Proof of Lemma 4
	Appendix C. Proof of Lemma 5
	Appendix D. Proof of Lemma 6
	Appendix E. Proof of Lemma 7
	Appendix F. Proof of Lemma 8
	Appendix G. Proof of Lemma 10
	Appendix H. Proof of Lemma 11
	Appendix I. Proof of Lemma 12
	Appendix J. Dataset Statistics
	References

