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Abstract

Game-playing agents like AlphaGo have achieved superhuman performance
through self-play, which is theoretically guaranteed to yield optimal policies in
competitive games. However, most language tasks are partially or fully cooperative,
so it is an open question whether techniques like self-play can effectively be used to
improve language models. We empirically investigate this question in a negotiation
game setting known as Deal or No Deal (DoND). Crucially, the objective in DoND
can be modified to produce a fully cooperative game, a strictly competitive one,
or anything in between. We finetune language models in self-play over multiple
rounds of filtered behavior cloning in DoND for each of these objectives and
evaluate them in self-play and in collaboration with humans. We find that language
models improve substantially in self-play, achieving 14-17× higher scores in task
reward after finetuning. Further, the trained models generalize to both cooperation
and competition with humans, scoring 2.5-6× higher than base models. We view
these results as an early promising sign for language model self-play in cooperative
settings, despite a lack of theoretical guarantees.

1 Introduction

Many of the greatest achievements in artificial intelligence have occurred in two-player zero-sum
(2p0s) games such as Go (Silver et al., 2016), chess (Silver et al., 2018), and heads-up poker (Brown
and Sandholm, 2018). One key technique enabling these breakthroughs has been self-play, in which
identical copies of a model are pitted against each other and used to generate new training data. By
iteratively training on their own data from games of self-play, models like AlphaGo were able to
continue improving long past the threshold of human performance. In certain types of 2p0s games,
self-play is theoretically guaranteed to produce optimal policies, given sufficient model capacity and
compute (Bai and Jin, 2020; Bai et al., 2020). However, in settings that involve collaboration with
humans, self-play is no longer guaranteed to yield optimal policies (Strouse et al., 2021).

In this work, we examine whether self-play can be used to improve language models, which are
typically used in collaborative settings. We run a series of experiments on a negotiation task known
as Deal or No Deal (Lewis et al., 2017) and train language models for multiple rounds of self-play
across three different objectives on this task, ranging from fully cooperative, to semi-competitive, to
strictly competitive. Contrary to expectations, we find that self-play leads to large improvements in
both the cooperative and semi-competitive settings. These results generalize to human experiments,
where scores improve by up to 2.5× in the cooperative setting and 6× in the semi-competitive setting.
In contrast, we find no improvements in the strictly competitive setting, where models tend to overfit.

We then investigate the reasons behind these improvements, finding that models trained with self-play
better follow task instructions, hallucinate less, and obtain a higher agreement rate with humans.
However, at the same time, self-play causes model dialogues to become less diverse and does not
appear to teach high-level strategic reasoning or negotiation tactics in our experiments. Although these
results highlight potential room for improvement, we view them as a promising initial signal for self-
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Figure 1: We ran experiments on a modified version of the Deal or No Deal negotiation game from
Lewis et al. (2017). In this game, two players are presented with a shared collection of items and
private value functions over those items. Players can send messages to each other and then each
submit private proposals describing the items they wish to receive.

play training of large language models and release all code for our environments, models, and human
data collection to support future research in this area: github.com/nickatomlin/lm-selfplay.

2 Cooperative and Competitive Games

Can language model self-play be effective under both cooperative and competitive objectives? To
address this question, we conducted experiments on Deal or No Deal (DoND; Lewis et al., 2017), a
two-player negotiation game in which players decide how to divide a shared pool of items through
natural language dialogue. Although introduced as a semi-competitive game, DoND has the special
property that it can be readily adapted into either a cooperative or strictly competitive (i.e., zero-sum)
game, with minimal modifications to its rules. Below, we describe the rules of DoND, how we modify
its objective, and how we convert it into an environment for evaluating language models.

Game Setup Following Lewis et al. (2017), we present two players with a shared collection of
books, hats, and balls (with 5-7 total objects). Each player is assigned their own private value function,
mapping each item type to an integer point value. Value functions are selected according to the
following criteria: (1) each item is valued by at least one player, (2) the maximum score either player
can receive is 10, and (3) at most one player can achieve the maximum score. Players must divide
the objects; if they fail to reach an agreement, they both receive zero points. These rules ensure
semi-competitiveness: players have conflicting objectives, but must to cooperate to earn any points.

Game Rules Players begin by exchanging messages discussing which items they would like to
receive. At any point, either player may submit a private proposal, delineating which items they
would like to claim from the shared collection. Following this, no additional messages can be sent,
and the other player must end the game by submitting a proposal of their own. If players submit
complementary proposals (i.e., adding up to the total number of objects in the shared collection), then
players receive rewards according to their respective objectives. Hence, players should aim both to
reach an agreement and to optimize the value of that agreement.

Game Objectives In the original formulation, players receive a reward equal to the inner product
of their value function and proposed set of objects. We observe that this objective can be modified
to convert DoND into a cooperative game, a strictly competitive one, or anything in between. If
players receive rewards R1 := X and R2 := Y in the original setting, setting the objective to
R1 = R2 = X + Y for both players results in a fully cooperative game. More generally, we can
define Player 1’s objective as R1 := X + λ · Y for λ ∈ [−1, 1], and vice versa for Player 2. In this
work, we experiment with λ = 0 (semi-competitive), λ = 1 (cooperative), and λ = −1 (strictly
competitive), although we note that in principle λ can be tuned to interpolate between these objectives.
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3 Methods

We begin by evaluating pretrained language models, prompted only with task instructions and the
current game context, as detailed in Appendix A. To avoid biasing models toward specific patterns of
behavior, we do not prompt our models with few-shot example dialogues (Gandhi et al., 2023) or
finetune them on task-specific data (Lewis et al., 2017) in the majority of our experiments. We then
finetune these models over many rounds of self-play.

We implement a straightforward algorithm for language model self-play based on filtered behavior
cloning (filtered BC; Chen et al., 2020, 2021; Zelikman et al., 2022). In this setting, two language
models with identical parameters but different prompts play K games and receive rewards according
to their (identical) objectives. Each game produces two dialogue histories, one from each player’s
perspective. The average score across games is computed and dialogues with above-average scores
are kept and used for finetuning the model. This procedure is repeated for N iterations or until early
stopping. We set K = 500 and N = 10 for the majority of our experiments.

We ran experiments on GPT-3.5 (gpt-3.5-turbo-0125; Chen et al., 2021; Ouyang et al., 2022),
using the OpenAI API for finetuning. At the time of experimentation, GPT-3.5 was the most capable
model for which finetuning was publicly available. We also ran a small-scale baseline experiment on
GPT-4 (gpt-4-turbo-2024-04-09; OpenAI, 2023).

Human Experiments To evaluate whether model improvements generalize beyond self-play, we
built a web interface which allows humans to play DoND against our trained models. We evaluated
models on both the cooperative and semi-competitive objectives across the timecourse of training.
More on crowdsourcing, including details on worker compensation, collection procedures, and
screenshots of our web interface, can be found in Appendix C.

4 Results

Baseline Models We first evaluated language models without any self-play training. Because
we did not provide few-shot example dialogues, GPT-3.5 performed relatively poorly, obtaining a
mean score of 0.4 in the original semi-competitive setting and 0.7 in the cooperative setting, and
reached a valid agreement with itself in self-play in only 6.8% of games across objectives. In contrast,
GPT-4 achieved mean scores of 4.3 in the semi-competitive setting and 8.8 in the cooperative setting.
Although we use GPT-4 as a reference point for model performance, we did not conduct further
experiments on it due to the lack of finetuning access at time of experimentation. In collaboration
with humans, GPT-3.5 obtained a much higher average score of 4.6. While errors tend to compound
in self-play, we observed that humans can help “guide” models to avoid common failure modes in the
cooperative setting, resulting in higher scores (e.g., by suggesting which objects to propose).

Self-Play Finetuned Models Despite weak performance of the initial models, language model
self-play was highly effective, as shown in Figure 2. When evaluated against another copy of the
same model, self-play finetuning increased scores by as much as 14× in the semi-competitive setting
(0.4 → 5.8) and 17× in the cooperative setting (0.7 → 12.1). Although these experiments were
conducted on GPT-3.5, these scores are significantly higher than those of a baseline GPT-4 model.
Improvements from self-play generalized to collaboration and competition with humans as well, with
scores increasing by 6× in the semi-competitive setting (0.8→ 4.9) and 2.5× in the cooperative
setting (4.6→ 11.6). In the cooperative setting, we note that human-LM scores peaked at 11.6, but
began to decline before the 10th iteration of self-play. We do not report scores for any model after
the 10th iteration, as they tended to stabilize or even decline. Additionally, results for the strictly
competitive setting, in which language models tend to overfit, are presented in Appendix D.

5 Analysis

Agreements and Pareto Optimality Models improved in their ability to achieve valid agreements
and Pareto-optimal game scores, both in self-play and in human experiments, as shown in Table 2 in
the appendix. Trained models achieved almost perfect agreement rates in self-play, with 96.4% of
games ending in an agreement in the semi-competitive setting. While the agreement rates are lower
in collaboration with humans, this can partially be attributed to human error.
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Figure 2: Left: Language model self-play significantly increased model performance in both co-
operative and semi-competitive games. Moreover, these results generalized to collaboration and
competition with humans, leading to 2.5-6× score improvements. Right: The rate of per-message
hallucinations or otherwise inconsistent messages declined over the course of self-play finetuning.

We found that model improvements after self-play can primarily be attributed to an increased rate of
agreement. To justify this claim, we calculated Pearson correlation coefficients between completed
iterations of self-play and scores achieved, before and after filtering out samples that failed to reach a
valid agreement. For our self-play data under the semi-competitive objective, this yielded ρ = 0.44
before filtering and ρ = 0.34 after. On human-LM data with the same objective, however, the
correlation drops from ρ = 0.29 to −0.04 after filtering out non-scoring games. In other words,
although self-play scores appear to rise after filtering out games which fail to reach a proposal, these
improvements do not generalize to humans. We note that even after self-play finetuning, models
routinely missed opportunities for better scores: only 49% of semi-competitive games with humans
resulted in Pareto-optimal outcomes, and only 38% of cooperative games did so.

Hallucinations and Grounding We observed that baseline models often failed to reach agreements
because they hallucinated items, lied about their point values, or made proposals which contradicted
their previous utterances; in contrast, self-play finetuned models rarely seemed to hallucinate. To
quantify this claim, we used a stronger language model (GPT-4) to annotate the rate at which
messages or proposals in self-play dialogues exhibited inconsistencies.1 We found that the rate of
inconsistent messages decreased from 27% to 6% in semi-competitive games and from 24% to 4%
in cooperative games. In contrast to prior work, which found that self-play increased the rate of
lying and deceptive behavior (Lewis et al., 2017), these results suggest that producing mostly honest
and accurate messages is a reasonable strategy, even in not-fully-cooperative scenarios. We provide
further details, including the prompt used to generate these results, in Figure 8 of Appendix E.

6 Conclusion

Our experiments showed that language model self-play can lead to significant performance improve-
ments in both semi-competitive and cooperative games. This finding contradicts existing wisdom
that self-play is ineffective in collaborative domains (Strouse et al., 2021), or that models need to be
trained on task-specific human data to avoid divergence from human-interpretable language (Lewis
et al., 2017; FAIR, 2022). Although game scores increased significantly after self-play, this increase
can be almost entirely attributed to an increase in the percentage of completed games, rather than
better strategic reasoning or negotiation tactics. We anticipate that future work may be able to obtain
even larger improvements by combining self-play with approaches other than filtered BC.

1In order to validate this method, the authors manually annotated 100 randomly selected messages across
iterations and compared their predictions with those of GPT-4, obtaining 92% agreement.
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A Environment Implementation

We implemented an environment for the task under which language models can play the game with
each other or against another human. For initializing a new instance of the game, we sample from a
list of 4,186 valid game contexts (shared item counts and private value functions for each player),
provided by Lewis et al. (2017). The environment then takes turns prompting each player to either
send a message (prepended by [message]) or submit a proposal (prepended by [propose]). After
detecting a submitted proposal, the environment forces the other player to submit a proposal of
their own. This is enforced by error correction, as described below. Once a game is completed, the
environment uses the game context and the submitted proposals to determine the final score of each
player, conditioned on the objective under which the players were instructed to play.

Error Correction This environment comes with comprehensive error-handling to correct models’
errant outputs. Specifically, the environment will reply with instructions for correcting errors when
errors are detected, providing the model with the opportunity to format its output correctly. The errors
that we check for, and their corresponding correction messages, can be found in Table 1. If a model
generates five errant outputs in a row, then the environment aborts the game, and both players receive
zero score.

Error Correction Prompt
Outputting text without a pre-
fix of either “[message]" or
“[propose]"

Your output should either begin with [message]
or a [propose].

Submitting proposals before
any messages have been sent

Please begin the dialogue by discussing how
you’ll divide the items before submitting a
private proposal.

Sending messages with mul-
tiple mentions of “[mes-
sage]" or “[propose]" (i.e.
outputting multiple messages
in a row)

Do not include any mentions of [message] or
[propose] after the initial prefix. Please
just send a single message, beginning with
[message].

Sending messages after a pro-
posal has been submitted

Opponent’s proposal must be followed by a
proposal of your own. Please send a proposal,
beginning with [propose].

Submitting proposals with in-
correctly sequenced items

Item counts must be sequenced in the following
order: books, hats, and then balls.

Submitting proposals with
more than three item counts

There should only be counts for three items in
your proposal: books, hats, and balls.

Submitting proposals with in-
valid item counts, based on
game context

Item counts suggested are invalid based on game
context; some of your proposal’s item counts
are greater than total items available.

Table 1: Our game environment sends error messages to language models if they produce ill-formed
outputs, e.g., sending a message after the discussion phase ends. The model then has an opportunity
to send a new message based on the correction. If the model repeatedly fails to produce well-formed
outputs, then the game aborts and both players receive zero score.

Zero-Shot Prompting Across every setting, the initial models are zero-shot prompted with the
game’s rules and the instructions for sending messages and submitting proposals with the correct
syntax. The choice of this approach over few-shot prompting was motivated by the concern that
few-shot examples might influence strategies chosen by the model during inference. Our preliminary
experiments found that models would closely match the negotiation techniques used in few-shot
examples; for example, if prompted with dialogues where players shared their exact value functions,
the model would consistently share its own values, whether doing so was advantageous or not.

Prompting with Conversation History Following the format recommended by the OpenAI API’s
chat completions endpoint, the prompt containing game instructions is sent under the system role;
for subsequent dialogue, any messages sent by the model itself are categorized with the assistant
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role, and messages from the other player are appended to a model’s input as messages from the user
role. The system prompt used for the semi-competitive objective can be found in Figure 3; other
prompts are available in our code release.

You are an expert in negotiation. You are about to play a game with another
player. In this game, you and your partner will divide a shared set of books,
hats, and balls. Each item has a point value for you, but you don’t know
your partner’s values. At the start of the game, you will be given the total
number of objects of each type, as well as your own private value function,
which tells you how many points each object is worth to you. Your points
will be equal to the sum of item values for all items you receive. Your
objective is to maximize your points.

On each turn, you can either send a message to the other player, or submit
a private proposal for how to divide the items. Your partner will do the
same, and both proposals will remain hidden from each other. Please push
back on any suggestions made by your partner that you believe would leave you
with an unsatisfactory point total. However, if the number of items in the
combined proposals don’t match the total number of items, both players score
0.

Messages should be formatted like this:
[message] Your message here.

Proposals should be formatted like this:
[propose] (x books, y hats, z balls)

The numbers x, y, and z should be your own item counts. The item counts
must be whole numbers; you cannot split singular items. For example, if you
want 1 book, 2 hats, and 0 balls, you would send:
[propose] (1 books, 2 hats, 0 balls)

When discussing, do not leave any of the items unclaimed. You and your
partner must submit proposals that collectively add up to the total item
counts. To achieve a nonzero score, your partner would need to write a
complementary proposal that adds up to the total number of items. For
example, if the total number of items is 3 books, 2 hats, and 1 ball, your
partner would need to send:
[propose] (2 books, 0 hats, 1 balls)

Any message that you send should begin with either "[message]" or "[propose]".
All proposals are final, so make sure that both players agree about which
items are being taken by which player before ending the discussion with a
proposal.

Each message should end with "[END]".

Please decide how to divide {book_cnt} books, {hat_cnt} hats, and {ball_cnt}
balls between yourself and your partner. This should be an open discussion;
you should only propose after exchanging a few messages.
To you, books are each worth {book_val}, hats are worth {hat_val}, and balls
are worth {ball_val}.
You don’t know your partner’s item values.
Remember, your goal is to maximize your own score while also ensuring that
your partner will agree to the deal.

Figure 3: System prompt used for the semi-competitive objective. Values in {brackets} are filled in
based on the game context (i.e., item counts and private value functions).
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B Model Training and Hyperparameters

All models were finetuned using the OpenAI API, with parameters n_epochs=3, batch_size=1, and
learning_rate_multiplier=8. For model inference, we generated outputs with temperature=1.
These parameters were all default values chosen by the OpenAI API, except for the learning rate
multiplier, which defaults to 2. Our preliminary experiments with default learning rate multipliers
yielded models that not only failed to improve but also devolved significantly in quality. We
hypothesize that this occurred because parameters are set dynamically based on the quantity of
finetuning data. Because language model self-play requires sequential rounds of finetuning, it may be
important to choose initial parameters based on the expectation of future finetuning rounds.

C Details of Human Experiments

C.1 Game Interface

We developed a web interface for human data collection, shown in Figure 11, Figure 12, and Figure 13.
The interface provides comprehensive instructions describing the different game modes, as well as an
explanation of the bonus pay structure and a running count of bonus pay earned so far. At the end of
each game, players see a popup with the number of points and bonus pay earned. If players receive
no points (e.g., due to game error or non-compatible proposals), they receive a small amount of bonus
pay and an explanation of what went wrong. During the main phase of data collection, players were
allowed to complete up to 40 games; after each game, players were given the option to end the HIT
and collect bonus play or keep playing.

C.2 Crowdsourcing

We ran human evaluation on Amazon Mechanical Turk. After a prescreening survey and three
pilot studies, we identified a group of 60 reputable English-speaking workers and invited them to
participate in our task. In order to incentivize high-quality dialogue, we primarily compensated
workers with bonus pay: each worker earned $1.00 for picking up the HIT, $0.10 for each game
played, and $0.20 for each point earned. In total, we collected 1,175 human-LM dialogues, with the
average worker receiving pay of $37.50.

We ran human evaluation through Amazon Mechanical Turk (MTurk). We restricted our task to
workers from the United States with a 98+% HIT approval rate and at least 500 completed HITs,
based on recommendations in Huang et al. (2023). In order to filter out bots and low-quality workers,
we ran a brief prescreening survey which asked workers to (1) to answer a question about text on a
linked, external website and (2) write a 2-3 sentence description of their favorite MTurk task. The
authors then manually reviewed responses to the prescreening survey and chose approximately 15%
to invite to the main task.

We ran three pilot studies before launching our main human evaluation, with 10 workers each. After
the initial pilots, we modified the interface and incentive structure to obtain higher-quality dialogues.
We reviewed data from each pilot and removed low-quality workers and spammers from later rounds
of data collection. In total, we invited 60 workers to our final round of data collection, although a
small number of workers declined the HIT. We include data from the third pilot in our results because
we did not modify the game after that point. Figure 4 provides additional statistics on the total number
of workers hired.

C.3 Incentive Structure

We paid $1.00 for picking up the HIT and $0.10 per game completed. The majority of pay was
distributed through bonuses. We paid a bonus of $0.20 per point earned in the semi-competitive
setting and $0.10 per point earned in the cooperative setting, since scores in the cooperative game
are on average twice as high. We also paid workers $0.25 in cases where models aborted due to
repeatedly generating ill-formed messages.

In contrast, Lewis et al. (2017) paid workers $0.10 per game and $0.05 in bonus pay only when
workers achieved the maximum score of ten points. We found that this approach incentivized workers
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to end the game as quickly as possible, as maximizing the number of games played was more lucrative
than attempting to achieve a high score.
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Figure 4: The majority of our workers played the maximum number of games, with a small handful
contributing data from both the pilot and the main study. The mean pay for workers was $37.50.

D Results for Strict Competition

When we applied LM self-play to Deal or No Deal under the strictly competitive objective, the model
failed to improve its performance, instead learning strategies that adversely impacted its ability to
perform outside of self-play. Since the mean score in self-play for every iteration will always be
zero (because the game is zero-sum), we instead evaluated the quality of model self-play through
agreement rates. As shown in Figure 5 and Figure 6, while agreement rate trends show that the
model’s performance in self-play improves, these models fail to generalize to competition with other
models, such as GPT-4. Our preliminary human experiments also showed that the model failed to
reach agreements in roughly 95% of games.

In our qualitative analysis of successive iterations of the model under the strictly competitive objective,
we found that it learned to replicate an inverted proposal strategy; specifically, the model learned
a strategy where it submits a proposal based on what the opposing player should receive, rather
than what the model itself should receive. While the model optimized this strategy in self-play well
enough to arrive at valid agreements at a competitive rate with itself, this strategy does not generalize
to competition with humans or GPT-4. We found this to be a consequence of the aggressive nature of
the strictly competitive objective leading to a smaller proportion of games ending in valid agreements
to derive reward signal from. With a smaller number of samples providing reward signal, we risk
an outcome where the few samples that are isolated for finetuning achieve their non-zero reward
through undesirable strategies (inverted proposals, in this instance) that do not generalize well to
human interaction.

Our experiments under this objective illustrate an important takeaway regarding the failure modes
of LM self-play. For this strategy to be effective, there must be confidence that the initial model
is capable of achieving high performance through desired strategies with significant probability.
Additionally, we speculate that this strategy is most effective in environments with continuous reward.

E Additional Details

E.1 Details of Hallucination Analysis

We used GPT-4 to analyze the frequency of hallucinations and inconsistent messages or proposals
in self-play dialogues. Our analysis prompt, provided in Figure 8, takes in an entire dialogue with
one player’s private value function masked out and returns a list of binary classifications describing
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Figure 5: We evaluated the strictly competitive model against GPT-4, since self-play scores are not
informative for zero-sum games. However, we determined that the model experienced no significant
improvement in generalization.
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Figure 6: Under the strictly competitive objective, self-play finetuning increased the frequency
of games reaching valid agreements in self-play, but the strategies learned generalized poorly to
interaction with other agents, such as GPT-4. Our preliminary experiments also indicated a low
agreement rate with human competitors.

whether each message or proposal was consistent with the game context or not. We ran this prompt
on 500 games from each iteration of self-play, for each of the semi-competitive and cooperative
objectives. For each dialogue, we ran the analysis prompt twice, once from each player’s perspective.
The results of this analysis are presented in Figure 2.

E.2 Model Errors

Prior to self-play finetuning, GPT-3.5 frequently made errors such as submitting invalid proposals
or sending messages and proposals at the same time. When this happened, the game environment
would provide an error message, as detailed in Appendix A, and the model would be given another
chance to generate a message. With the baseline model, errors were generated in 14% of semi-
competitive games and 56% of cooperative games. If the model received five error messages in a
row, the game aborted, and both players received a score of zero; this outcome occurred in just 1% of
semi-competitive games but in 22% of cooperative games. After self-play finetuning, errors occurred
in less than 1% of games, suggesting that models effectively learned the game rules. We present
additional results on error and abort frequencies in Figure 9.
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Figure 7: Mean dialogue lengths (left) and aggregate vocabulary sizes (right) for every model iteration,
for both semi-competitive and cooperative objectives. Dialogues under the semi-competitive objective
progressively shrank in length, while dialogues under the cooperative objective grew significantly
longer. Similarly, in the semi-competitive setting, vocabulary size trended downward, but the model
maintained and even expanded its vocabulary when trained with the cooperative objective.

E.3 Dialogue Length and Diversity

One natural question is whether self-play finetuning has any adverse effects on language quality. We
qualitatively observed that dialogues in the semi-competitive setting became less diverse over the
course of self-play finetuning. We quantified this in two ways: (1) by average dialogue length and (2)
by the number of unique words produced during each iteration, as reported in Figure 7.

We first compare how dialogue lengths evolve over the course of self-play in semi-competitive and
cooperative settings. We first computed the average dialogue length over 500 hundred games of
self-play during each iteration of model training in the semi-competitive and cooperative settings. We
found that self-play caused dialogues to become substantially longer in the cooperative setting but
shorter in the semi-competitive one. We hypothesize that this discrepancy may occur because agents
in the cooperative setting are incentivized to share all information; qualitatively, we often observed
models sharing exact details of their private value functions. Additionally, we found that models
which argue with each other for too long are more likely to “go off the rails” and fail to reach an
agreement at all; because these games receive scores of zero, this behavior may be filtered out over
the course of self-play under the semi-competitive objective. We first calculate the average dialogue
length for each model iteration’s 500 games of self-play and plot the results in Appendix E.3. These
findings suggest that self-play finetuning in the semi-competitive objective leads to the model’s policy
converging onto a very narrow set of strategies.

We also computed the vocabulary size of each iteration by counting the number of unique word
types produced during 500 games of self-play. We observed a similar trend of decreasing vocabulary
size over the course of self-play in the semi-competitive setting, supporting the hypothesis that the
semi-competitive objective leads to convergence in model behavior. However, as shown in Section 4,
these models performed well in both self-play and in human generalization experiments, suggesting
that they may not need very diverse communication strategies to achieve high scores. This notion of
convergence is further supported by an analysis of how vocabulary size changes over iterations as
well. We calculate aggregate vocabulary size across each model iteration’s 500 games of self-play for
semi-competitive and cooperative objectives, and we plot the results in Figure 7. To further quantify
the diversity of self-play finetuned models, we also fit n-gram models on the dialogues produced
during each iteration of self-play and report their results in Figure 10.

F Related Work

Grounded Dialogue Much prior work on goal-oriented dialogue has focused on collaborative
settings. In tasks such as Cards (Djalali et al., 2011; Potts, 2012), CerealBar (Suhr et al., 2019),
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OneCommon (Udagawa and Aizawa, 2019), and DialOp (Lin et al., 2024), two or more agents must
collaborate via natural language dialogue to achieve a shared goal within an environment. In many of
these tasks, models are often evaluated via self-play, which serves as a proxy for human evaluation.

Another line of work has focused on the case where agents have conflicting goals. A handful of
grounded dialogue tasks are focused on bartering or negotiation, including Deal or No Deal (DoND;
Lewis et al., 2017), CaSiNo (Chawla et al., 2021), and the fruit trading game from Gemp et al. (2024).
These games are all structurally similar and differ primarily in the number and types of objects they
use, as well as the public availability of human data. In the Craigslist Bargaining task (He et al.,
2018), agents negotiate on the price of a object for sale. Recently, several new game environments
have been proposed for benchmarking language model agents (Chalamalasetti et al., 2023; Qiao et al.,
2023; Li et al., 2023; Wu et al., 2024a; Gong et al., 2024). Fried et al. (2023) provides additional
discussion of grounded dialogue tasks and modeling approaches.

Self-Improving Language Models Lewis et al. (2017) trained GRU-based language models on
the Deal or No Deal task using REINFORCE (Williams, 1992). In contrast to our work, Lewis et al.
(2017) did not learn a model tabula rasa but instead interleaved reinforcement learning from self-play
with supervised learning on task-specific data to avoid divergence from human-interpretable language.
Divergence issues abound in other settings where models are trained via self-play, including in
emergent communication (Kottur et al., 2017; Lowe et al., 2019; Tomlin and Pavlick, 2019).

A wave of recent work has focused on methods for autonomously improving large language models
at training (Ouyang et al., 2022; Bai et al., 2022; Abdulhai et al., 2023) or inference (Shinn et al.,
2023; Yao et al., 2023; Wu et al., 2024b) time. Chen et al. (2024) propose a method called self-play
fine-tuning, but their usage of the term self-play differs from the traditional meaning, i.e., it does not
involve agents interacting within an environment; instead, Chen et al. (2024) proposes a preference
learning method akin to DPO (Rafailov et al., 2023) or PPO for reinforcement learning from human
feedback (Ouyang et al., 2022). More closely related to our work is Pan et al. (2024), which iteratively
trains models for device-control tasks using filtered behavior cloning; however, in contrast to our
work, Pan et al. (2024) studies a single agent interacting with an environment, rather than multiple
agents interacting with one another. Another closely related paper is Fu et al. (2023), which uses
self-play to refine language models for a distributive bargaining task; in contrast to our work, Fu et al.
(2023) use in-context learning rather than iterative finetuning, leading to less major performance
improvements. Finally, the recently proposed SOTOPIA-π (Wang et al., 2024) trains models via a
similar filtered BC method on a benchmark of social tasks (Zhou et al., 2024).

Multi-Agent Reinforcement Learning Training agents against copies of themselves is a longstand-
ing technique in reinforcement learning (Littman, 1994), popularized in the past decade by models
like AlphaGo (Silver et al., 2016) and AlphaZero (Silver et al., 2017). Experiments on games such as
Overcooked (Carroll et al., 2019) and Hanabi (Bard et al., 2020) have shown that policies learned via
self-play often fail to generalize to collaborative or imperfect information games. Methods such as
fictitious self-play and population play have been proposed to address these issues (Heinrich et al.,
2015; Strouse et al., 2021), but have primarily been applied in games without language components.
One notable exception to this is CICERO, which trained models for the game of Diplomacy via
self-play using a KL-regularization objective which prevented language from drifting too far from
human-written training data (FAIR, 2022).

G Limitations

One limitation of this work is that our experiments were all conducted on a single model, GPT-3.5.
Other models were either unable to complete the DoND task, were too expensive to finetune, or were
closed-source models without public finetuning access. Although weaker models could likely be
adapted to DoND via few-shot prompting or finetuning on domain-specific data, our goal was to
analyze the effect of self-play on tabula rasa pretrained language models. Additionally, we ran all
experiments on a single domain. We focus on the DoND environment because it can naturally be
converted into both cooperative and competitive domains with minimal modifications to the game
rules. This allows us to evaluate models on “minimal pairs” of games which differ only in their
objective structure and not in a multitude of other properties.
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Agreement Pareto-Optimality

Semi-Competitive Cooperative Semi-Competitive Cooperative

Self-Play Human Self-Play Human Self-Play Human Self-Play Human

Before 6.8 13.3 6.8 32.7 2.2 8.9 5.8 16.3
After 96.4 76.5 91.0 64.0 46.0 49.0 89.6 38.0

Table 2: Agreement and Pareto-optimality rates (%) before and after ten rounds of self-play finetuning.
Models show significant improvements across objectives in both self-play and human generalization.
We observe a relatively lower agreement rate for human performance in the cooperative setting, as
well as the remaining headroom in Pareto-optimality, especially in human collaboration.

This is a game where players with private value functions negotiate how to
divide a shared set of items and end the dialogue by making private proposals
about which items they will claim for themselves. The proposals are private
and final, meaning the model should submit proposals that are consistent with
what the players agreed upon. Analyze the following dialogue between LLMs
and determine if the messages of the dialogue from Player {player_to_analyze}
either:
- lies about the player’s point value for an item,
- makes an impossible proposal based on the item counts in the game context,
or
- makes a proposal explicitly contradicting what was agreed upon in the
discussion

Your output should be a structured JSON output, containing three things for
each message:
- "message": a repeat of the line (including the source, e.g. "Player
{player_to_analyze}")
- "analysis": a step-by-step analysis of whether the message violates any of
the conditions above
- "decision": a final [YES] or [NO] answer.

Dialogue:
{conversation_history}

Figure 8: Prompt used for computing the rate of hallucinations and inconsistent messages or proposals
in self-play dialogues. We used GPT-4 to classify whether each message or proposal was consistent
with the game context so far, finding that consistency increased over the course of self-play finetuning.
Values in {brackets} are filled in based on the game context.
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Figure 9: Rate of self-play games consisting of errors (left) or aborts (right) over the course of
self-play finetuning. When a model produces an invalid message or proposal, it receives an error
message from the environment and is given an opportunity to re-generate the message. If a model
makes five errors in a row, the game aborts. Errors and aborts decline over the course of training.
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(a) Semi-Competitive
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(b) Cooperative

Figure 10: We fit n-gram models on the semi-competitive (left) and cooperative (right) self-play
games and computed the entropy of their distributions. As with vocabulary size, the entropy decreased
in the semi-competitive setting but stayed roughly constant in the cooperative setting.
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Algorithm 1 Language Model Self-Play

1: Input: Language model M , number of games per iteration K, number of iterations N , function
exec which runs a game of self-play and returns dialogues and rewards.

2: Output: Finetuned language model M
3: for n = 1 to N do
4: Initialize an empty set of dialogues D
5: Initialize a list of rewardsR = []
6: for k = 1 to K do
7: ▷ Obtain dialogues and rewards:
8: (D1, D2, R1, R2)← exec(M)
9: Add (D1, R1) and (D2, R2) to D

10: Append R1 and R2 toR
11: end for
12: Compute the average reward R̄ = 1

2K

∑
r∈R r

13: Initialize an empty set Dfiltered
14: for each (D,R) ∈ D do
15: if R > R̄ then
16: Add D to Dfiltered
17: end if
18: end for
19: Finetune M using dialogues from Dfiltered
20: If early stopping criteria met then break
21: end for

Figure 11: The landing page for our human data collection site provides comprehensive game rules
and instructions and an explanation of the bonus pay structure.
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Figure 12: The game interface for human data collection shows the shared item pool, game mode,
item values, and a chat window, as well as the number of games played so far and a running count of
bonus pay earned.

Figure 13: At the end of each game, players see a popup with the number of points and bonus pay
earned. Players have the option to end the game and collect their bonus pay or keep playing, up to the
maximum of 40 games.
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