Under review as a conference paper at ICLR 2026

SHINKAEVOLVE: TOWARDS OPEN-ENDED AND
SAMPLE-EFFICIENT PROGRAM EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SHINKAEVOLVE: a new framework leveraging large language mod-
els (LLMs) to advance scientific discovery with state-of-the-art performance and
efficiency. The field of LLM-driven scientific discovery has seen significant
progress, but has yet to overcome a critical limitation: sample inefficiency, requir-
ing thousands of samples to identify effective solutions. SHINKAEVOLVE takes
a concrete step towards addressing this critical limitation by introducing three
key innovations: a parent sampling technique balancing exploration and exploita-
tion, code novelty rejection-sampling for efficient search space exploration, and
a bandit-based LLM ensemble selection strategy. When applied to the canonical
circle-packing optimization task, SHINKAEVOLVE discovers a new state-of-the-
art circle packing solution using only 150 samples, orders of magnitude fewer than
prior frameworks. Furthermore, applied to a broader set of engineering problems,
SHINKAEVOLVE designs robust agentic harnesses for AIME mathematical rea-
soning tasks, identifies improvements to ALE-Bench competitive programming
solutions, and discovers novel mixture-of-expert load balancing loss functions to
stabilize LLM training itself. We provide SHINKAEVOLVE’s full code together
with this submission, which will be open-sourced to accelerate open advance-
ments to open-ended automated discovery across diverse computational problems.

1 INTRODUCTION

$ Comparison of Methods on Circle Packing

Task LI e ¢ Y 2.63625
Evaluator i . ° mee 2.63600 ﬁ;mnk.swm MMsAD
| e ‘E 77
: g fi ::‘2.63575 i
\ \ 4 . ¥ 563550
o
LLM Sample £
. Feedback ¥ 263525
Offspring [«— Parent & |« Archivin E
Generator Context 9 © 263500
A [} £
: © 263475
v : g @ OpenEvolve
________ @ LLM4AD
i 1 263450 @
. ~—- AlphaEvolve
offspring I Novelty ! Evaluate - o Y Shinkakvolve
Program , Filtering , Program ' 0 0 0°
———————— 4 Number of Evaluated LLM Program Proposals

Figure 1: High-level overview of SHINKAEVOLVE. Left: SHINKAEVOLVE constructs an archive
of evaluated programs, rejection-samples new ones, and evaluates their fitness. Right: SHINKAE-
VOLVE outperforms AlphaEvolve’s circle packing solution in orders-of-magnitude fewer iterations.

The rapid advancement of large language models (LLMs) has transformed scientific discovery
through agentic systems that autonomously conduct experiments and test hypotheses (Lu et al.,
2024b; |Yamada et al., [2025; [Novikov et al., 2025; [Zhang et al.| [2025)). These frameworks leverage
LLMs as sophisticated mutation operators, iteratively refining candidate solutions with successful
variants propagating through successive generations. This methodology has proven effective across
domains such as competitive programming (Li et al.| [2022), mathematical optimization (Romera-
Paredes et al.,2024), and automated agentic design (Hu et al.,[2024)). However, current implementa-
tions face significant practical limitations. The primary challenge is substantial sample inefficiency
as existing approaches typically require thousands of evaluations, making them computationally ex-
pensive and time-consuming. This inefficiency stems from naive exploration strategies that fail to
effectively leverage accumulated knowledge from previous generations.

Under review as a conference paper at ICLR 2026

SHINKAEVOLVE addresses these challenges through three key algorithmic innovations that work
synergistically to enhance sample efficiency. Our adaptive parent and LLM sampling intelligently
balances exploration of novel regions with exploitation of known high-quality areas. Next, our code
proposal novelty rejection sampling ensures efficient program mutations. Finally, our bandit-based
LLM selection strategy dynamically adapts to the evolving state of the sampled archive parents
and inspiration programs. Experimental validation across diverse domains demonstrates substantial
improvements in both efficiency and solution quality, with SHINKAEVOLVE achieving state-of-the-
art results using orders of magnitude fewer evaluations than existing approaches.

SHINKAEVOLVE’s full code, provided with this submission, will be open-sourced to accelerate open
advancements to automated discovery across a broader range of problems. In summary:

1. We introduce SHINKAEVOLVE, an evolutionary framework with three key algorithmic in-
novations: a novel parent program sampling strategy, code novelty rejection-sampling, and
adaptive performance-based LLM ensemble selection.

2. We compare SHINKAEVOLVE with prior frameworks on the canonical circle-packing task,
achieving state-of-the-art results with orders-of-magnitude fewer iterations.

3. We demonstrate SHINKAEVOLVE’s ability to innovate beyond human and LLM-generated
solutions across three additional engineering domains: agentic scaffolding (AIME), com-
petitive programming (ALE-Bench), and LLM training design (mixture-of-expert loss).

2 RELATED WORK

Evolutionary Code Optimization with LLMs. One particular flavor of test-time compute is evolu-
tionary code optimization: the usage, mutation, and recombination of previously generated code to
produce new samples. This approach has been used to optimize reward and preference objectives (Lu
et al., 2024a; Ma et al.| 2023), mathematical science code (Romera-Paredes et al., 2024), and other
applications (Lehman et al.| 2022} [Lange et al., 2024; Meyerson et al., [2023; Berman, 2025} |[Lange
et al., [2025). Through prompting, LLMs are used as recombination engines (Lange et al., 2023;
Meyerson et al., [2023) capable of simulating crossover between diverse code snippets and the ratio-
nales that produced them. These types of program archive-building systems resemble a population-
based LLM-guided tree search (Jiang et al., 2025} [Inoue et al., |2025). Most closely related to our
work are AlphaEvolve (Novikov et al., 2025), OpenEvolve (Sharmal 2025)), and LLM4AD (Liu et al.}
2024al). We advance this line of work, demonstrating unprecedented sample efficiency with our com-
bination of rejection-sampling, LLM prioritization, and online meta-scratchpad drafting.

Open-Ended Agentic Discovery. The integration of LLMs with open-ended evolutionary princi-
ples enables agentic systems capable of continuous innovation (Stanley et al.| [2017} |[Zhang et al.,
20235). Unlike traditional novelty search that relies on explicit diversity metrics (Lehman et al.,
2008; Lehman & Stanley, 2011), LLM agents leverage learned representations to generate new so-
Iutions while maintaining semantic coherence (Faldor et al., [2024; [Hu et al.l 2024} Novikov et al.|
2025). These agents construct evolutionary trees of programs where LLM-guided mutations con-
nect related solutions across generations (Lehman et al. 2020). SHINKAEVOLVE systematically
combines stepping stones, suboptimal intermediate solutions that serve as building blocks for break-
through innovations, by employing LLM agents to both generate mutations and evaluate program
relationships, enabling successful patterns to propagate across search branches rapidly.

3 METHOD
Algorithm Overview. SHINKAEVOLVE’s control-flow entails three main phases:

1. Parent and inspiration sampling from an archive of island program subpopulations. Impor-
tantly, we emphasize the trade-off between exploration and exploitation in parent selection.

2. Program mutation via LLM-guided code edit proposals. We utilize novelty rejection-
sampling based on code embedding similarity and an LLM-as-a-novelty-judge assessment.

3. Program execution and world feedback guiding the LLM ensemble selection probabilities
and online meta-scratchpad drafting for documentation and knowledge diffusion.

Under review as a conference paper at ICLR 2026

3.1 PARENT AND INSPIRATION SAMPLING

Archive Maintenance, Island Populations & Mutation Context Construction. SHINKAEVOLVE
maintains a fixed-size archive of previously evaluated programs with fitness scores and meta infor-
mation, implementing an elite size constraint. The mutation context incorporates a primary parent
program alongside inspiration programs drawn from top-performing solutions and random archive
samples, providing the LLM with diverse exemplars for creative recombination. We follow Romera-
Paredes et al.| (2024); |Novikov et al.| (2025) and employ an island model approach with independent
subpopulations seeded from the same initial program. The islands evolve in parallel to enhance
diversity and prevent premature convergence. Island members can occasionally migrate between is-
lands to diffuse knowledge across “discovery substreams”. To protect the uniqueness of each island,
we prevent the island-specific best-performing program from migrating (Tanese, 1989} |Romera-
Paredes et al., [2024). Sampling occurs hierarchically: with the island ID first sampled uniformly
from the archive, later used as the origin for both parent and inspirations.

Balancing Exploration & Exploitation: Parent Program Selection. Given an island subpopula-
tion, SHINKAEVOLVE implements multiple different parent sampling strategies that balance explo-
ration and exploitation. First, we employ power law sampling where programs are ranked by fitness

with ranks 7; (r; = 1 for the best program). The selection probability follows p; = %, where
nr
« controls exploitation intensity. Setting o = 0 yields uniform sampling, while av — 0 ililplements

hill-climbing. Inspired by [Zhang et al.| (2025)), we contrast this with weighted sampling, incorpo-
rating performance and novelty. Given programs, P;, with offspring count N (P;), we first compute
the median fitness «g = median({F(Py), F(P), ..., F(P,)}). The performance component uses

sigmoid scaling: s; = (A - (F(P;) — ap)) where o(z) = H% and)\ controls selection pressure.

ﬁ@ favors programs with fewer offspring. The final probability

The novelty component h; =
combines these: p; = Zn’ — where w; = s; - h; balances performance and novelty. By default,
j=1Wj

we use SHINKAEVOLVE uses the weighted sampling strategy. We provide a visual comparison of
all these strategies in Figure|2|below:

Uniform (a=0) Hill Climbing (a -+ «) Power Law (o =1.0) Weighted (A =10)

>0.030
° °

0.6 q

e o e o ®
2 00 o0 H 0.025 ?
Sos 4 ° hd o ° =
ﬁozz :. 03.0 :. "o. o ed,3 }'o. 0 g
g °g80,° °g80, ° °g80, ° 0. g
£ °98tse, © °gitse, © °gitse,s © %o © 0015 &
B o3 895, ° g8 8 ° g8 3 o oa® ° o
£ e300 %50 o8g0 %50 o83g0 %50 el®g0 c
502 s, §% .: s, §% .= L §% .: ,i..' ® .= 0010 &
"5' ..." © .'.'| ° l"" °® gsefg o £
aoi{ee8e, 10080, 10080, 1e0e80, 0.005 ¥

° ° ° e ° ° ° °
0.0 8 i L s 0.000

0 é lb 0 é lb 0 é 1‘0 0 é lb
Number of Offsprings Number of Offsprings Number of Offsprings Number of Offsprings

Figure 2: SHINKAEVOLVE Parent Sampling. The strategies range from pure exploration (uniform
sampling) to pure exploitation (hill-climbing) to a combination of performance and novelty.

3.2 PROGRAM MUTATION AND NOVELTY ASSESSMENT

LLM-Guided Program Mutations. To generate new programs, SHINKAEVOLVE starts by sam-
pling a specific LLM and a set of sampling parameters (e.g., temperature or reasoning budget) from
a pre-specified pool. Our framework provides support for models from leading API providers, in-
cluding GPT, Gemini, Claude, and DeepSeek (OpenAl, 2023} [Team| 2025}, |Anthropic| 2024} |Guo
et al.| [2025). After sampling a model, SHINKAEVOLVE employs three distinct mutation approaches
to foster diversity and creativity in the LLM-generated program variants:

1. Diff-Based Edits. We implement diff edits using LLMs following the approach outlined
in Novikov et al.| (2025), utilizing SEARCH/REPLACE blocks for targeted modifications.

2. Full Rewrites. We enable full program rewrites to allow greater flexibility, programmati-
cally ensuring that non-mutable blocks remain unchanged during the LLM rewrite process.

3. Crossover Mutation. We leverage crossover mutations (Lehman et al.l 2022} Lange et al.}
2025) where an LLM is prompted to combine the parent and an additional archive program.

Under review as a conference paper at ICLR 2026

Following [Novikov et al| (2025), we use text markers (EVOLVE-BLOCK-START &
EVOLVE-BLOCK-END) to ensure that immutable code is not changed during LLM rewrites. After
a code change proposal, we enforce that the immutable code is not touched and resample a new pro-

posal if a patch is invalid, providing parsing feedback using Reflexion 2024).

Program Diversity via Novelty Rejection Sampling. To enhance the creativity of executed code
proposals, we leverage an LLM ensemble combined with temperature sampling. Additionally, we
introduce code novelty rejection sampling using an embedding model to embed mutable parts of
the program code. Afterwards, we compute cosine similarity scores across the island subpopulation
programs. If the maximal score exceeds a threshold (e.g., n = 0.95), we query an LLM to further
assess whether the program is meaningfully different. The approach is illustrated in Figure 3}

Resample new proposal program

Embed Similarity Thresh Max

LLM-as-a-code-
novelty-judge

i
l

Figure 3: SHINKAEVOLVE Program Novelty Rejection Sampling. SHINKAEVOLVE embeds
mutable code snippets, computes similarities across the archive; if the maximal score exceeds a
threshold, another LLM is queried to assess whether the program is meaningfully novel.

3.3 EXECUTION AND WORLD FEEDBACK

Multi-Objective Optimization & Textual Feedback. After a program obtained with the above
steps is executed, SHINKAEVOLVE performs multi-objective assessment yielding both its scalar fit-
ness value r; together with a set of exposed “public metrics” and textual feedback. SHINKAEVOLVE
then stores this full multi-objective assessment in the population archive to provide an informative
context for future generations of language model mutations using a simple prompting format:

Example of Diff Edit Prompt with Textual Feedback

Current program
Here is the current program we are trying to improve (you will need to propose a modification to it below)|:
‘*‘{language}
{code_content}

Here are the performance metrics of the program:
{performance_metrics}{text_feedback_section}

Instructions
Task

IMPORTANT: Do not rewrite the entire program - focus on targeted improvements.

Adaptive LLM sampling evolution. The performance of different LLMs to propose mutations
can vary across problem domains and based on the current state of the sampled archive par-
ents and inspiration programs. SHINKAEVOLVE dynamically adapts to this non-stationarity by
evolving the LLM sampling probability throughout at the end of each generation. Our approach
is based on the UCBI algorithm (Auer et al} 2002), associating each LLM with a visitation
counter and an estimate of the expected score updated with the performance of its sampled mu-
tations. We introduce changes tailored to the domain of LLM-driven discovery. In particular,
rather than the absolute fitness of each mutation F'(P;), we update the LLM distribution using:
F(P)" = exp(max(F(P;) — F(P;)",0)) — 1, where F'(P;)" is the baseline reward for program i
computed as the maximum between its parent program and the initial program in the database, ensur-
ing each LLM is evaluated based on its relative improvement to account for the non-stationarity of
the program archive. At the same time, the exp(-) and max(+, 0) operations help precisely promote
LLMs able to come up with bold, high-risk, high-reward mutations, over “safer” minor improve-
ments. We use the tracked statistics over the observed rewards to normalize F'(P;)" and ensure
invariance to the fitness scale of each domain.

Under review as a conference paper at ICLR 2026

Meta-Scratchpad & Online Refinement. SHINKAEVOLVE implements a meta-scratchpad sys-
tem that periodically analyzes successful solutions. Every T' generations, we summarize the re-
cent program evaluations and identify common optimization strategies and design principles. The
meta-agent synthesizes insights into actionable recommendations appended to the mutation prompt,
providing high-level guidance from accumulated evolutionary experience.

4 RESULTS

In this Section, we demonstrate how SHINKAEVOLVE’s innovations lead to concrete breakthroughs
across four relevant scientific and engineering domains. Furthermore, we conclude by providing an
in-depth ablation analysis quantifying the significance of each of SHINKAEVOLVE’s main compo-
nents. To complement the shared code, we also refer the interested readers to Appendix [B|for full
implementation details and hyperparameter configurations together with Appendix [D] for program
listings representing each of SHINKAEVOLVE’s final solutions.

4.1 CIRCLE PACKING: REPRODUCING & IMPROVING ALPHAEVOLVE RESULTS

Task Description. The circle packing optimization problem requires placing 26 circles within a
unit square such that the sum of their radii is maximized while ensuring no circles overlap and all
circles remain fully contained within the square boundary. This constrained optimization challenge
combines discrete placement decisions with continuous radius optimization, making it a complex
benchmark for evolutionary algorithms. The problem exhibits multiple local optima and requires so-
phisticated strategies to discover high-quality solutions without suboptimal space allocation.

SHINKAEVOLVE’s Discovery Dynamics. SHINKAEVOLVE was executed for only 150 evolution-
ary generations before finding a state-of-the-art solution, in contrast to existing approaches using at
least thousands of evaluations (Figure [T). Figure [(left) shows the improvement trajectory ex-
hibits three distinct phases: an initial rapid improvement phase where the algorithm quickly discov-
ers fundamental radii optimization strategies, a sustained exploration phase with incremental gains
as more sophisticated techniques emerge (constraint-based optimization), and a final convergence
phase where the best solutions are refined through restarts. The tree structure in Figure [(right) re-
veals how successful innovations propagate through the population, with high-performing solutions
(green and yellow) serving as parents for subsequent generations. Notably, the algorithm demon-
strates sophisticated exploration patterns, with multiple evolutionary branches exploring different
algorithmic approaches before converging toward the optimal solution path shown in black.

ShinkaEvolve - Circle Packing: Program Evolution Tree
Best Score

+ Diff Edit

= Full Edit

... ShinkaEvolve - Circle Packing: Improvements

+ Initial
+ Cross-Over
X Incorrect

Evolved Performance Score

—— Best Score
» Individual Evals

—=+- Path to Best Node

£

oXHO00PXD0 G O

D000 0 +XTC Ie0w X

omo 8 ¢XOo0 4

Combined Fitness Score

> Cumulative Cost 10

20

a0

60

Number of Evalu

80
ated LLM Pro

160

120

140

gram Proposals

160

Figure 4: SHINKAEVOLVE on Circle Packing Task. Left: SHINKAEVOLVE outperforms AlphaE-
volve’s solution in less than 150 program evaluations. Right: SHINKAEVOLVE’s program evolution
tree demonstrates the iterative composition of stepping stones into high-performing solutions.

SHINKAEVOLVE’s Discovered Solution. The final program (Section |D.1]) combines three key
innovations: (1) a sophisticated initialization that places circles in a structured golden-angle spiral
pattern with strategic corner and edge positioning, (2) a hybrid optimization approach integrating
SLSQP gradient-based refinement with simulated annealing for global exploration, and (3) intel-
ligent perturbation mechanisms that alternate between local circle movements and global ring ro-
tations to escape local optima. The discovered solution employs adaptive temperature scheduling
with reheating strategies to prevent premature convergence, while maintaining feasibility through
constraint-aware radius computation. This multi-level approach, from structured initialization

Under review as a conference paper at ICLR 2026

through meta-heuristic exploration to gradient-based polishing, exemplifies how SHINKAEVOLVE
can discover effective algorithmic compositions that outperform hand-designed baselines.

4.2 AIME: EVOLVING AGENT SCAFFOLDS FOR MATH REASONING

Task Description. We evaluate SHINKAEVOLVE on AIME 2024 mathematical rea-
soning problems, consisting of 30 challenging competition-level questions requiring sophisticated
problem-solving strategies 2024). The task involves evolving agent scaffold designs
constrained to a maximum of 10 LLM queries per problem for computational efficiency. Using
gpt-4.1-nano as the base model, we discover scaffold designs for 75 generations, with each
candidate evaluated across three independent runs on the complete question set.

SHINKAEVOLVE’s Discovery Dynamics. SHINKAEVOLVE discovers scaffold designs that sig-
nificantly outperform hand-designed baselines, including simple single-query agents and sophisti-
cated majority-voting approaches. The search reveals a Pareto frontier between efficiency and per-
formance (Figure 3] left), with 7 LLM queries yielding maximum performance while an alternative
scaffold achieves comparable results using the full 10-query budget. We evaluate generalization by
testing on 2023 and 2025 AIME problems, displaying different transfer patterns (Figure[5] middle):
smaller improvements on 2023 problems suggest potential saturation due to training data contam-
ination, while larger gains on 2025 problems indicate successful generalization to recent, unseen
challenges. Cross-LLM model transfer experiments validate robustness, with successful adaptation
togpt—-4.1-mini,gpt—-4.1,and o4-mini demonstrating that discovered architectures capture
generalizable strategies rather than model-specific optimizations (Figure [3] right).

AIME Agent Scaffold Design: Pareto Front Analysis AIME Agent Scaffold Design: Transfer Across Years AIME Agent Scaffold Design: Transfer Across LLMs

= Majority@5
= ShinkaEvolve

(%)

\cy/Performa
cy/Performance

AIME 2024 Accurag
AIME 2024 Accura

= Dominated/Other
2| @ Pareto Optimal

Figure 5: SHINKAEVOLVE for Agent Scaffold Design. Left: SHINKAEVOLVE discovers a Pareto
frontier between performance and query budget. Middle: The discovered scaffold generalizes to
unseen AIME problems. Right: The scaffold boosts performance regardless of the underlying LLM.
SHINKAEVOLVE’s Discovered Solution. The evolved agent implements a three-stage architec-
ture leveraging diverse expert personas, critical peer review, and synthesis mechanisms. Three spe-
cialized experts generate independent solutions using distinct approaches: a meticulous step-by-step
reasoner, an intuitive pattern-recognition specialist, and an algorithmic computer science-oriented
mathematician, each operating at 0.7 temperature. The second stage introduces critical peer review,
where each solution undergoes rigorous scrutiny from a skeptical reviewer at low temperature (0.1).
The reviewer validates pattern-based reasoning by testing patterns on multiple examples, identi-
fies logical flaws, and provides corrections when necessary, significantly improving solution quality.
The final synthesis stage employs an editor-in-chief persona operating at zero temperature to analyze
all solutions and critiques, identify the most reliable approach, and construct a canonical solution.
Robust fallback mechanisms resort to majority voting among reviewed solutions, then original so-
lutions, ensuring reliable output when components fail. This architecture effectively utilizes 7 LLM
calls (3 generation + 3 review + 1 synthesis) even less than the specified 10-call constraint.

4.3 ALE-BENCH: EVOLVING PROGRAMS FOR COMBINATORIAL OPTIMIZATION

Task Description. We apply SHINKAEVOLVE to ALE-Bench LITE (Imajuku et al.} [2025), a col-
lection of 10 competitive programming contests hosted by AtCoder to test the performance of LLMs
on heuristic problems. We explore SHINKAEVOLVE’s ability to improve high-performing solutions
using the best programming solution from ALE-Agent (Imajuku et all,[2025) as an initial program.
We run SHINKAEVOLVE for 50 generations, using the public set score as the fitness function. We
then submit and report the score of our final solution to the private test set.

SHINKAEVOLVE’s Discovery Dynamics. SHINKAEVOLVE is able to improve the solutions dis-
covered by ALE-Agent by approximately 2.3% across the 10 tasks on average (Figure [6). Fur-
thermore, on task ahc039, SHINKAEVOLVE'’s final solution even outperformed the second place

Under review as a conference paper at ICLR 2026

submission on the AtCoder leaderboard. These notable gains came from fine-grained refinements
that preserved the high-level algorithmic structure to ALE-Agent’s solutions.

Impr on Top of ALE-Agent i Shi Private Performance Score (10 ALE-Bench Tasks)

10321 I ALE-Agent Best
1927.9 < B ShinkaEvolve (Max Public Top-1)
27501 B ShinkaEvolve (Max Public Top-5)
I ShinkaEvolve (Max Private)

)
w
S
8
S

Mean Score (10 ALE-Bench LITE Tasks)
ALE-Bench Score across Tasks (
N
S
3
3

ALE-Agent Shinka Shinka
Best Public [Top-1] Public [Top-5] Private

Shinka

o g N @ @b @ g g P o
a“"° a“"o a“"“ a“"“ a“"“ a“"“ a“"s a“°° a“‘p a“°°

Figure 6: SHINKAEVOLVE for Improving ALE-Bench solutions. Left: SHINKAEVOLVE im-
proves ALE-Agent’s solution by ~ 2.3%. Right: On one task, ahc039, the solution improved
from 5th to 2nd place submission on the AtCoder leaderboard if it had participated in the contest.

SHINKAEVOLVE’s Discovered Solution. We focus on two tasks to illustrate the discovered im-
provements of SHINKAEVOLVE, ahc039 and ahc025. The objective of ahc039 is to find an
optimal, axis-aligned polygon to maximize the number of mackerels it contains minus the number
of sardines, subject to given constraints. The base solution by ALE-Agent applies simulated an-
nealing with kd-tree data structure (5th, 2880 performance). SHINKAEVOLVE further improved the
solution (2nd, 3140 performance) by introducing modifications such as caching the validation pro-
cess and enhancing neighborhood operators. For the caching, the kd-tree was augmented to cache
subtree statistics, including bounding boxes and fish counts, at each node. For the neighborhood
operators, a novel “targeted edge move” was introduced, which heuristically identifies a misclassi-
fied fish (e.g., a mackerel outside the polygon) and greedily moves the nearest edge to correct its
state. These changes strengthened the directionality of the search. For ahc025, the task is to use a
balance scale to compare the total weights of any two subsets of items, aiming, after a fixed number
of weighings, to partition the items into groups with as equal total weights as possible. SHINKAE-
VOLVE improved the ALE-Agent’s simulated annealing baseline by introducing faster caching, re-
fining fallback weight estimation, and ultimately replacing simulated annealing with a more focused
optimization combining greedy moves and targeted local search. Comparison with top human solu-
tions suggests that for many tasks, there is ample room for improvement. Furthermore, often times
SHINKAEVOLVE tended to explore modifications staying close to the ALE-Agent’s solution. This
indicates the potential of overfitting to the initialization solution.

4.4 LLM TRAINING: EVOLVING LOSSES FOR BALANCED AND EFFECTIVE EXPERTS
Task Description. The Mixture-of-Expert (MoE) architecture (Szymanski & Lemmon) [1993}

Shazeer et al, 2017}, [Lepikhin et al, 2020} [Fedus et all, [2022) has been a critical advancement,
ubiquitous amongst modern open and closed-source flagship models (Google AT Blog, [2024}; (Guo
et alll 2025} Meta-All 2025}, [Yang et al.} 2023} [Team|, [2025). The basic idea is simple: replace tradi-

tional large feed-forward residual blocks with ensembles of efficient smaller modules (the “experts”)
that can each specialize in distinct problem domains (Fedus et al., [2022). For each MoE layer and
token, only the outputs of the top-K experts selected by a router classifier are computed, effectively
splitting the computation and making both training and inference cheaper and faster. However, due
to the non-differentiability of the top-K expert selection operation, it is critical to provide the router
with an auxiliary load balancing loss (LBL), which serves to avoid early collapse toward uneven
expert distribution of the token load. We deploy SHINKAEVOLVE precisely to tackle this open
architectural design challenge, which has been one core focus driving recent MoE advancements
2017} [Fedus et al, 2022} Du et all 2022} [Zoph et al., [2022; Xue et al., [2024;
et al.,[2024; |Qiu et al.| 2025}; Muennighoff et al.,[2024): Devising an effective load balancing loss to
incentivize efficiency and specialization, without hindering the model’s expressivity.

SHINKAEVOLVE’s Discovery Dynamics. We ground the problem of LBL design by pretraining
a MoE model with 556M parameters, N = 64 total experts of which only K = 8 active for any
given token. This results in only 82M parameters sparsely activated in each forward pass, excluding
the token embeddings. We train this small model on over 2B tokens from fineweb
by minimizing the MoE loss function, computed by adding the LBL, weighted by A = 0.01,
to the model’s cross-entropy loss (CE). The fitness function of each program then measures a simple

Under review as a conference paper at ICLR 2026

objective: minimize the sum of the final CE together with the model’s overall “load imbalance”
as measured by the L1 deviation from a uniform distribution of tokens between the MoE experts.
Given the cost of pretraining, we run SHINKAEVOLVE for only 30 iterations. We evaluate the
generality of SHINKAEVOLVE’s best-performing solutions by training a much larger MoE with 2.7B
parameters on slightly under 30B fineweb tokens across three LBL coefficients A € 0.001,0.01, 0.1,
yielding different levels of regularization. We compare this solution against the “global-batch LBL”
used to train some of the most popular open LLMs (Yang et al.,|2025), in terms of final perplexity
(Figure[7] left) and end task performance (Figure[7] center) as evaluated across different downstream
benchmarks (Talmor et al., 2018}, Zellers et al., 2019; Mihaylov et al., 2018; [Bisk et al., 2020; |Sap
et al. |2019; Sakaguchi et al.| 2021} |Clark et al.,|2018). We provide our results below as a function
of load imbalance, showing that SHINKAEVOLVE’s new loss achieves a consistent edge across our
training configurations, growing larger with the value of the \ coefficient.

Task Performance vs. Token Routing Model Perplexity vs. Token Routing Loss Gradient Comparison
1.4550;
0.370 Relative Improvement (%)

14525

IS

0368

1.4500
0366

w
EJ

14475
0364

1.4450
0362

1.4425
0360

Reasoning Task Accuracy
-

Perplexity (lower is better)
Loss Gradient (d loss / d x)
N
&
Relative Improvement (%)

0.358{ —8— Global-batch LBL 14400

ShinkaEvolve LBL

=)

1.4375 0
3X107 2x107 0.01 §x107 4x107 4x107 6x 107 0.01 X107 3x107 05 06 07 08 09 10

Missrouted Token Fraction (log scale, inverted) Missrouted Token Fraction (log scale) Expert 1 Token Allocation

o

Figure 7: SHINKAEVOLVE for discovering Mixture-of-Experts Load Balancing Loss Func-
tions. Left: Downstream task performance across seven benchmarks. Middle: Final perplexity
across missroute fraction levels. Right: Load imbalance gradient as a function of token allocation.

SHINKAEVOLVE’s Discovered Solution. The discovered LBL is a new twist on the established
global-batch LBL, which was used for seeding the evolutionary search. SHINKAEVOLVE comple-
ments this popular LBL with a new term, specifically targeted toward regularizing the MoE layers
with individual under-specialized experts. Concretely, let f,; and P ; correspond to the selection
frequency and the average router probabilities for each expert 7 located in layer /. SHINKAEVOLVE’s

LBL uses a normalized complement to the entropy in each layer s(P;) = 0.5 + (1-— ggg?}l) and a

minimum usage threshold target 7 = 0.064/ N to compute:

1 L Ng 0.1 L Ng
LLBL =]\«*E . Z Z Z f(z Pg‘i + T Z S(P/> ZHIHX(()A T — /(,) . (1)
(=1 i=1 =1 i=1
Global-batch LBL SHINKAEVOLVE new regularization

The effects of SHINKAEVOLVE’s new regularization term can be seen through its induced gradients
acting on the router’s token allocation in a simplified two-expert scenario (Figure [/ right). Intu-
itively, this term affects the MoE router of any layer where experts are allocated a fraction of tokens
less than 7. The multiplier s(P;) strengthens this push when the layer’s routing entropy H(P) is
low and the router concentrates on a few dominating experts. This closes a blind spot of the global-
batch LBL: the dot product f- P can look “balanced” even if few experts are barely touched. Thus,
this term can be seen as a safety net that adaptively activates and vanishes once an expert crosses
the floor, preventing dead experts and avoiding over-regularizing well-balanced layers. We refer to
Appendix [B] for further results and an extended discussion on how SHINKAEVOLVE’s differ’s from
prior approaches.

5 ABLATIONS & ANALYSIS

Impact of Parent Selection Strategies. To understand the importance of parent selection, we
compare different strategies for choosing which programs to evolve. The Best-of-N baseline ignores
the evolutionary history, always using the initial program as parent without feedback. In contrast,
Hill Climbing represents a greedy approach that only selects the highest-performing program as the
parent for mutations. Our proposed Weighted Sampling strategy balances exploration and exploita-
tion by probabilistically selecting parents based on their fitness and number of offspring.

Under review as a conference paper at ICLR 2026

Ablation: Parent Selection Strategy 27 Ablation: LLM Ensemble Prioritization 27 Ablation: Novelty Rejection Sampling

2.6

~
»n

25

Ingd
IS

2.4

~
W

23

~N
N

2.2

Evolved Performance Score

—— Best-of-N —— Single LLM Model —— No Rejection
Hill Climbing 21 LLM Model Ensemble 21 Threshold Rejection
—— Novelty Weighted —— + Bandit Prioritization —— + LLM-Novelty-Judge

N
B

20 0 20 40 60 80 100 120 140 2 0 20 40 60 80 100 120 140 20 [20 40 60 80 100 120 140

Number of Evaluated LLM Program Proposals Number of Evaluated LLM Program Proposals Number of Evaluated LLM Program Proposals

Figure 8: SHINKAEVOLVE Method Ablation Studies on Circle Packing. Left: Weighted parent
sampling outperforms random search and hill climbing. Middle: Bandit-based LLM ensembling
improves the performance over a fixed uniform ensemble distribution. Right: Embedding-based
rejection sampling with LLM as a novelty judge strongly outperforms no rejection sampling.

Takeaways. Weighted sampling consistently outperforms random search and hill climbing across
all tasks. Hill climbing shows strong initial performance but plateaus quickly, while weighted sam-
pling maintains steady improvement throughout evolution. Random search demonstrates the poorest
convergence, highlighting the importance of leveraging fitness-based parent selection.

Impact of LLM Ensembling and Prioritization. Evolutionary agents can benefit from diverse
coding capabilities by leveraging multiple LLMs. We investigate this hypothesis by comparing a
Single LLM baseline (GPT-5-nano) against ensemble approaches. The Fixed LLM Ensemble pro-
vides diversity by sampling uniformly from a predetermined set of models, while our Bandit-Based
LLM Ensemble adaptively learns which models contribute most effectively to fitness improvements,
balancing exploration of underutilized models with exploitation of high-performing ones.

Takeaways. The bandit-based LLM ensemble outperforms both single LLM and fixed ensemble
approaches. While the fixed ensemble shows moderate improvements over single LLM usage, the
adaptive bandit strategy achieves the highest performance by dynamically prioritizing more effective
models based on their contribution to fitness improvements. We provide a more detailed analysis in

Figure[19

Impact of Code Embedding-Based Rejection Sampling. Similar code variants can waste com-
putational resources without advancing the search frontier. To address this challenge, we examine
different novelty filtering mechanisms. The No Rejection Sampling baseline accepts any LLM pro-
posal, potentially allowing near-duplicate programs to proliferate. Our Embedding-Based Rejection
Sampling approach leverages text embeddings to identify and reject proposals with similarity scores
exceeding 0.95. We also explore an Additional LLM-as-a-novelty-judge variant that supplements
embedding-based filtering with explicit LLM assessment of program novelty.

Takeaways. Code embedding-based rejection sampling provides substantial performance gains over
no rejection sampling by preventing redundant mutations. The additional LLM-as-a-novelty-judge
offers marginal improvements, suggesting that embedding similarity is already an effective proxy
for novelty assessment without requiring additional computational overhead. We provide a more
detailed analysis in Figure [I§]

6 DISCUSSION

Contributions. This work introduces SHINKAEVOLVE, an evolutionary framework tackling the
inefficiency of LLM-driven scientific discovery. SHINKAEVOLVE achieves state-of-the-art results
across four domains: circle packing with 150 evaluations (orders of magnitude improvement over
prior baselines), sophisticated AIME reasoning scaffolds, ALE-Bench algorithmic improvements,
and novel mixture-of-expert load balancing. By sharing its full code, we hope to remove barriers
and accelerate community-driven open advancements.

Limitations. While SHINKAEVOLVE makes significant strides toward improving sample efficiency
and reducing costs, it still shares some of the other limitations of prior approaches (Novikov et al.,
2025)). In particular, our framework still requires manual task specification, relying on human ex-
pertise in the target domain for providing objective functions. Furthermore, SHINKAEVOLVE is still

Under review as a conference paper at ICLR 2026

constrained to problems with well-defined, implemented numerical objectives, making its wider
applicability to arbitrary human preferences and heuristics an open problem.

Extensions. Automated task specification through LLM task generation could enable greater auton-
omy and unlock applications in unexplored domains. Transitioning to true open-endedness, where
systems generate their own objectives, represents a new compelling future frontier.

ETHICS STATEMENT

SHINKAEVOLVE’s aims to further advance the field of evolutionary optimization and make it acces-
sible to researchers and practitioners previously lacking access to proprietary frameworks, following
on the same path as|Sharmal(2025). Given its purpose and objective, we thus do not expect additional
specific issues regarding fairness, privacy, or security, or any other harmful societal implications that
are not already inherent to the field. However, we still want to highlight that our framework relies on
closed-source models, and API costs from large-scale LLM usage could create economic barriers,
potentially constraining democratization goals. We provide a more detailed analysis of the API cost
breakdown in Figure

REPRODUCIBILITY STATEMENT

We provide the full anonymized SHINKAEVOLVE code in the supplementary material uploaded with
this submission. Moreover, we provide full implementation details and hyperparameter configura-
tions in Appendix[B] together with program listings representing each of SHINKAEVOLVE’s final so-
lutions in Appendix [D] We will also open-source a fully-documented version of SHINKAEVOLVE’s
code to facilitate open reproducibility and accelerate advancements to open-ended automated dis-
covery across diverse computational problems.

LLM USAGE DISCLOSURE

The authors would like to acknowledge the use of LLMs to improve the grammar, clarity, and
overall presentation of this manuscript. The authors reviewed, edited, and take full responsibility for
the final content.

REFERENCES

American invitational mathematics examination, 2023. Problems and solutions, 2023. Published by
the Mathematical Association of America/ AMC contests.

American invitational mathematics examination, 2024. Problems and solutions, 2024. Published by
the Mathematical Association of America / AMC contests.

American invitational mathematics examination, 2025. Problems and solutions, 2025. Published by
the Mathematical Association of America/ AMC contests.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www—-cdn.a
nthropic.com/de8ba9%b01lc9ab7cbabf5c33b80b7bbc618857627/Model_Card
_Claude_3.pdf.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235-256, 2002.

Jeremy Berman. How i got a record 53.6% on arc-agi. https://jeremyberman. substac
k.com/p/how-i-got—-a-record-536-on-arc—agi, 2025. Accessed: 2025-02-08.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and

Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agi
https://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agi

Under review as a conference paper at ICLR 2026

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International conference on machine learning, pp. 5547—
5569. PMLR, 2022.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via
models of human notions of interestingness with environments programmed in code, 2024. URL
https://arxiv.org/abs/2405.15568.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

Google Al Blog. Our next-generation model: Gemini 1.5. https://blog.google/tech
nology/ai/google—gemini—-next—-generation-model-february-2024/,
February 2024. Accessed: 2025-07-13.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Yuki Imajuku, Kohki Horie, Yoichi Iwata, Kensho Aoki, Naohiro Takahashi, and Takuya Akiba.
Ale-bench: A benchmark for long-horizon objective-driven algorithm engineering. arXiv preprint
arXiv:2506.09050, 2025.

Yuichi Inoue, Kou Misaki, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or
deeper? scaling llm inference-time compute with adaptive branching tree search. arXiv preprint
arXiv:2503.04412, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Robert Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu, Satinder Singh,
and Sebastian Flennerhag. Discovering evolution strategies via meta-black-box optimization. In

Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 29-30,
2023.

Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies.
arXiv preprint arXiv:2402.18381, 2024.

Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. The ai
cuda engineer: Agentic cuda kernel discovery, optimization and composition. Technical report,
Technical report, Sakana Al, 02 2025, 2025.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189-223, 2011.

Joel Lehman, Kenneth O Stanley, et al. Exploiting open-endedness to solve problems through the
search for novelty. In ALIFE, pp. 329-336, 2008.

11

https://arxiv.org/abs/2405.15568
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/

Under review as a conference paper at ICLR 2026

Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie Beaulieu, Peter J
Bentley, Samuel Bernard, Guillaume Beslon, David M Bryson, et al. The surprising creativity of
digital evolution: A collection of anecdotes from the evolutionary computation and artificial life
research communities. Artificial life, 26(2):274-306, 2020.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution through large models, 2022. URL https://arxiv.org/abs/2206.08896,

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

Fei Liu, Rui Zhang, Zhuoliang Xie, Rui Sun, Kai Li, Xi Lin, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Llm4ad: A platform for algorithm design with large language model. arXiv
preprint arXiv:2412.17287, 2024a.

Liyuan Liu, Young Jin Kim, Shuohang Wang, Chen Liang, Yelong Shen, Hao Cheng, Xiaodong
Liu, Masahiro Tanaka, Xiaoxia Wu, Wenxiang Hu, et al. Grin: Gradient-informed moe. arXiv
preprint arXiv:2409.12136, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex James Chan, Jakob Nicolaus Foerster, Mihaela
van der Schaar, and Robert Tjarko Lange. Discovering preference optimization algorithms with
and for large language models. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a. URL https://openreview.net/forum?id=erjQDJ0z
9L.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024b.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Meta-Al. The Llama 4 herd: The beginning of a new era of natively multimodal Al innovation, 2025.
URLhttps://ai.meta.com/blog/llama-4-multimodal-intelligence/l

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
language models. arXiv preprint arXiv:2409.02060, 2024.

Alexander Novikov, Ngan Vii, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

OpenAl. Gpt-4 technical report, 2023.

12

https://arxiv.org/abs/2206.08896
https://openreview.net/forum?id=erjQDJ0z9L
https://openreview.net/forum?id=erjQDJ0z9L
https://ai.meta.com/blog/llama-4-multimodal-intelligence/

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811-30849, 2024.

Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss for
training specialized mixture-of-expert models. arXiv preprint arXiv:2501.11873, 2025.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiga: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/codelion/openevolvel

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Kenneth O Stanley, Joel Lehman, and Lisa Soros. Open-endedness: The last grand challenge you’ve
never heard of. While open-endedness could be a force for discovering intelligence, it could also
be a component of Al itself, 2017.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomput., 568(C), February 2024. ISSN
0925-2312. doi: 10.1016/j.neucom.2023.127063. URL https://doi.org/10.1016/7.
neucom.2023.127063.

Peter T Szymanski and Michael D Lemmon. Adaptive mixtures of local experts are source coding
solutions. In IEEE International Conference on Neural Networks, pp. 1391-1396. IEEE, 1993.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937,2018.

Reiko Tanese. Distributed genetic algorithms for function optimization. University of Michigan,
1989.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Gemini Team. Google deepmind. gemini 2.5: Pushing the frontier with advanced reasoning, mul-
timodality, long context, and next generation agentic capabilities. Technical report, Technical
Report v2. 5, Google DeepMind, 2025.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
search. arXiv preprint arXiv:2504.08066, 2025.

13

https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, and Jeff Clune. Darwin godel machine: Open-
ended evolution of self-improving agents. arXiv preprint arXiv:2505.22954, 2025.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

APPENDIX

A SHINKA IMPLEMENTATION DETAILS

* SHINKAEVOLVE uses a queue based implementation where LLMs generate program pro-
posals sequentially. Afterwards, they are added to a job evaluation queue. Each proposal is
based on all jobs that have completed so far and are stored in the database.

* Throughout development, we experimented with a fully asynchronous implementation that
leverages both a job and a proposal queue. This allows for higher throughput but introduces
a degree of “off-archiveness” in the sense that new code proposals are generated in advance
and not based on all the previously submitted jobs. Furthermore, jobs from faster to query
models will be executed earlier since their proposal jobs will be processed earlier. Many
open research questions remain regarding the optimal trade-off between throughput, sample
efficiency, and off-archiveness.

* Below we provide an overview of the Python API. It roughly adopts the high-level interface
of OpenEvolve (Sharmal 2025):

from shinka.core import EvolutionRunner, EvolutionConfig
from shinka.database import DatabaseConfig
from shinka.launch import LocalJobConfig

Minimal config - only specify what’s required
job_config = LocalJobConfig(eval_program_path="evaluate.py")
db_config = DatabaseConfig(
evo_config = EvolutionConfig(init_program_path="initial.py",)
Run evolution with defaults
runner = EvolutionRunner (
evo_config=evo_config,
job_config=job_config,
db_config=db_config,
)

runner.run ()

Listing 1: Minimal SHINKAEVOLVE configuration and usage example.

14

Under review as a conference paper at ICLR 2026

evaluate.py - Evaluation Script

from shinka.core import run_shinka_eval

def main (program_path: str,
results_dir: str):
metrics, correct, err = run_shinka_eval (
program_path=program_path,
results_dir=results_dir,
experiment_fn_name="run_experiment",
num_runs=3, # Multi-evals to aggreg.
get_experiment_kwargs=get_kwargs,
aggregate_metrics_fn=aggregate_fn,
validate_fn=validate_fn, # Optional

def get_kwargs (run_idx: int) -> dict:
return {"paraml": "value", "param2": 42}

def aggregate_fn(results: list) -> di
score = results[0]
text = results[1l]
return {

"combined_score": float (score),
Uploli@”s {ccolig # shinka-visible
"private": {...}, # shinka-invisible

"extra_data": {...}, # store as pkl
"text_feedback": text, # str fb

if _ name__ == "_ _main__ ":
argparse program path & dir

main (program_path, results_dir)

initial.py - Starting Solution

EVOLVE-BLOCK-START

def advanced_algo () :
This will be evolved
return solution

EVOLVE-BLOCK-END

def run_experiment (xxkwargs) :
"""Main called by evaluator"""
result = solve_problem(kwargs)
return result

def solve_problem(params) :
solution = advanced_algo (
return solution

15

Under review as a conference paper at ICLR 2026

B TASK IMPLEMENTATION DETAILS

B.1 CIRCLE PACKING PROBLEM

Detailed Task Description. The circle packing task requires placing 26 circles within a unit square
such that the sum of their radii is maximized while ensuring no circles overlap and all circles remain
fully contained within the square boundary.

Circle Packing (n=26, sum=2.635983)

Verification Methodology with Slack. For the . .) "

main SHINKAEVOLVE run presented in the paper,

we employed the verification script provided by »

OpenEvolve (Sharma, 2025), which allows for 1 x L o 15

1075 numerical slack. To ensure the robustness of . ,

our results, we additionally validated our solutions us-

ing AlphaEvolve’s (Novikov et al.,[2025) exact ver-

ification code. We found that our discovered solu- °

tion can be made trivially exact by reducing each cir- . . i e

cle’s radius by 1 x 108, demonstrating the high pre- »

cision of our approach. The adjustment from the re-

laxed to exact formulation reduces the sum of radii for @

our discovered solution by a negligible amount, from oo} - - - - 4

2.635983099011548 to 2. 6359828390115476, repre-

senting a relative change of less than 1075, Figure 9: Discovered Circle Pack-
ing solution by SHINKAEVOLVE.

Verification Methodology with Exact Constraint. Additionally, we replicated the solution using
the exact verification code from AlphaEvolve Figure [I0] with a score of 2.63597770931127.
The discovery of the solution requires more samples to be evaluated. This illustrates an important
principle: surrogate relaxed tasks can be effectively used during evolution and subsequently post-
processed to discover exact state-of-the-art solutions.

,, ShinkaEvolve - Circle Packing: Discoveries

2.6
25
2.4

2.3

2.2

Evolved Performance Score

]
]
|
|
]
|| —— Best Score
21 i « Individual Evals
]
]
I
]
i

-+~ Path to Best Node
Cumulative Cost 0

20 0 400 500

100 200 300
Number of Evaluated LLM Program Proposals

Figure 10: Circle packing asynchronous evolution results for exact circle packing verification show-
ing convergence behavior and solution quality over time.

Baseline Comparisons. Our performance benchmarks are established against solutions from three
primary sources. The AlphaEvolve sum of radii is taken from their paper (Novikov et al.,[2025). The
OpenEvolve baseline scores are derived from their jofficial implementation and examples| avail-
able in their repository. Additionally, we compare against LLM4AD results, specifically their circle
packing implementations| and |[Evolution of Heuristics (EoH) experimental configurations. These

16

https://github.com/codelion/openevolve/tree/main/examples/circle_packing
https://github.com/Optima-CityU/LLM4AD/blob/main/example/circle_packing/circle_packing_result.ipynb
https://github.com/Optima-CityU/LLM4AD/blob/main/example/circle_packing/circle_packing_result.ipynb
https://github.com/Optima-CityU/LLM4AD/blob/main/example/circle_packing/EoH_settings%26logs/run_eoh.py

Under review as a conference paper at ICLR 2026

baselines provide comprehensive coverage of existing automated algorithm design approaches, en-
abling fair and thorough performance evaluation of our method.

SHINKAEVOLVE’s Hyperparameter Configuration.

Parameter Value Parameter Value
Database configuration

Archive size 40 Elite selection ratio 0.3
Archive inspirations 4 Top-k inspirations 2
Migration interval 10 Migration rate 0.0
Island elitism true Parent selection strategy weighted
Parent selection A 10.0 Number of islands 2

Evolution configuration

Patch types [diff, full, cross] Patch type probs [0.45,0.45,0.1]
Generations 150 Max parallel jobs 5
Max patch resamples 3 Max patch attempts 3
Meta recommendation interval 10 Max meta recommendations 5
Embedding model text-embedding-3-small Max novelty attempts None
Code embed sim threshold 0.95 Problem implementation Python
LLM dynamic selection ucbl Exploration coefficient 1.0
LLM models

gemini-2.5-pro X gemini-2.5-flash X
claude-sonnet-4 v 04-mini v
gpt-5 X gpt-4.1-nano v
gpt-4.1 v gpt-4.1-mini v
LLM settings

Temperatures [0.0, 0.5, 1.0] Max tokens 16,384
Meta models [gpt-5-nano] Meta temperatures [0.0]
Novelty models [gpt-5-nano] Novelty temperatures [0.0]

Table 1: SHINKAEVOLVE hyperparameter configuration for the Circle Packing task.

17

Under review as a conference paper at ICLR 2026

B.2 AIME MATH REASONING AGENTIC HARNESS
Detailed Task Description. For the agent
scaffold design task, we evaluate SHINKAE-

VOLVE on AIME 2024 mathematical rea-
soning problems, consisting of 30 chal-
lenging competition-level questions requir-
ing sophisticated problem-solving strategies
(AIM| 2024). We limit the maximum num-
ber of LLM queries per problem to 10 for
computational and cost efficiency. Using
gpt-4.1-nano as the base model, we
evolve scaffold designs over 75 generations.
Additionally and to combat stochasticity in
LLM queries, we evaluated each candidate 2
evaluated across three independent runs on

Evolved Performance Score

—— Best Score 1
Individual Evals

—=- Path to Best Node
Cumulative Cost 0

the complete question set. After evolution,
we evaluate the discovered scaffold designs
on 2023 and 2025 AIME problems (AIM,
20235 2025) to assess generalization as well
as robustness to different base agent lan-
guage models.

SHINKAEVOLVE’s Hyperparameter Configuration.

Figure 11:

1 20 30 40 50 0
Number of Evaluated LLM Program Proposals

70

SHINKAEVOLVE’s Discovery
Trajectory for Math Agent Scaffold Design.

Parameter Value Parameter Value
Database configuration

Archive size 40 Elite selection ratio 0.3
Archive inspirations 4 Top-k inspirations 2
Migration interval 10 Migration rate 0.1
Island elitism true Parent selection strategy weighted
Parent selection A 10.0 Number of islands 4
Evolution configuration

Patch types [diff, full, cross] Patch type probs [0.6,0.3, 0.1]
Generations 75 Max parallel jobs 1
Max patch resamples 3 Max patch attempts 3
Meta recommendation interval 10 Max meta recommendations 5
Embedding model text-embedding-3-small ~ Max novelty attempts 3
Code embed sim threshold 0.95 Problem implementation Python
LLM dynamic selection null Exploration coefficient 0.0
LLM models

gemini-2.5-pro v gemini-2.5-flash X
claude-sonnet-4 v 04-mini v
gpt-5 X gpt-5-nano X
ept-4.1 X gpt-4.1-mini X
LLM settings

Temperatures [0.0, 0.5, 1.0] Max tokens 16,384
Meta models [gpt-4.1] Meta temperatures [0.0]
Novelty models [gpt-4.1] Novelty temperatures [0.0]

Table 2: SHINKAEVOLVE Hyperparameter Configuration for the Math Reasoning Agentic Harness.

18

Under review as a conference paper at ICLR 2026

B.3 ALE-BENCH PROBLEMS

Detailed Task Description. The ALE-Bench benchmark (Imajuku et al., 2025) is a collection of
heuristic programming problems previously used in competitive programming contests (AtCoder).
We evaluate SHINKAEVOLVE on the LITE subset of problems, which consists of 10 problems. We
follow the evaluation protocol of the benchmark and use the score calculated on the 50 public test
cases as the fitness function following ALE-Agent (Imajuku et al.,2025)). Afterwards, we submit the
best solution to the private test set and report the score. Additionally, in Figure [6] we provide scores
for evaluating the top-5 publicly scored solutions and taking their maximum score on the private test
set. While this does not resemble the traditional competitive programming setting, it allows us to
assess the generalization ability of the discovered solutions. The average solution score improves
by a negligible amount from 1923.5 to 1927.0. Hence, we do not observe significant evidence for
overfitting to the public test cases.

SHINKAEVOLVE’s Hyperparameter Configuration.

Parameter Value Parameter Value
Database configuration

Archive size 50 Elite selection ratio 0.3
Archive inspirations 2 Top-k inspirations 2
Migration interval 10 Migration rate 0.1
Island elitism true Parent selection strategy weighted
Parent selection A 10.0 Number of islands 2
Evolution configuration

Patch types [diff, full, cross] Patch type probs [0.6,0.3,0.1]
Generations 50 Max parallel jobs 1
Max patch resamples 3 Max patch attempts 3
Meta recommendation interval 5 Max meta recommendations 5
Embedding model None Max novelty attempts None
Code embed sim threshold None Problem implementation C++
LLM dynamic selection ucbl Exploration coefficient 1.0
LLM models

gemini-2.5-pro v gemini-2.5-flash v
claude-sonnet-4 v 04-mini v
gpt-5 v gpt-5-mini v
gpt-4.1 X gpt-4.1-mini X
LLM settings

Temperatures [0.0, 0.5, 1.0] Max tokens 16,384
Meta models [gpt-5-mini] Meta temperatures [0.0]
Novelty models None Novelty temperatures None

Table 3: SHINKAEVOLVE Hyperparameter Configuration for the ALE-Bench Problems.

19

Under review as a conference paper at ICLR 2026

B.4 MIXTURE-OF-EXPERTS LOAD BALANCING LOSS

Hyperparameter Small MoE (evolution) Large MoE (evaluation)

Model architecture

Model parameters 556M 2.7B
Model parameters 82M 404M
Number of experts (Ng) / active per token (K) 64/8 64/8
Hidden size 512 1024
Hidden size in each MoE expert 384 768
Number of hidden layers 12 16
Number of attention heads 8 16
Number of key—value heads 8 8
Head dimension 128 128
Attention bias false false
Attention dropout 0.0 0.0
Initializer range 0.02 0.02
RoPE 0 1,000,000 1,000,000
Tied word embeddings true true
Output router logits true true
Decoder sparse step 1 1
Router auxiliary loss coefficient (\) 0.01 0.001, 0.01, 0.1
Computation dtype bfloat16 bfloat16
Training setup

Optimizer AdamW AdamW
Learning rate 1.0x 1073 3.0x 1074
Weight decay 0.1 0.1

Adam parameters (81, B2, €)
Learning rate scheduler

(0.9,0.95,1x107%)
Cosine decay

(0.9,0.95,1x107%)
Cosine decay

Warmup steps 70 490
Maximum sequence length 1024 1024
Global train batch size (sequences) 1024 2048
Tokens per training step 1,048,576 2,097,152
Maximum steps 2000 14,000
Total tokens 2.10B 29.36B
Dataset fineweb fineweb

Table 4: MoE architectures and training setup.

Detailed Task Description. The Mixture-of-Expert (MoE) architecture (Szymanski & Lemmon,
1993} [Shazeer et al., 2017} [Lepikhin et al., [2020; |Fedus et al., 2022) has been a critical advance-
ment, enabling scaling breakthroughs in large language model training. MoEs are currently ubiqui-
tous amongst modern open and closed-source flagship models (Google Al Blog, [2024; |Guo et al.,
2025 Meta-Al |2025; [Yang et al., 2025} [Team)| 2025)). The core principle behind the MoE design
is to replace traditional large feed-forward residual blocks with ensembles of smaller modules (the
“experts”), which can be efficiently sharded during training and only partially activated during in-
ference (Fedus et al.,|2022). Each expert is itself a small feed-forward network F; ; located within
a larger ensemble of size Ny at layer £. The router, a layer-specific linear classifier hy, selects the
top-K most relevant experts for each token, computing only their outputs:

N it e Tr(x
Je@) = S g0a(@) Bea(e), gua(e) = 4 S THETRE
i=1 0, otherwise

where Tk () denotes the set of indices corresponding to the top-K router logits hy;(x). This
sparsely activated design allows different experts to specialize in distinct problem domains, enabling
greater efficiency, scalability, and adaptability in handling diverse prompts.

However, due to the non-differentiability of the top-K expert selection operation, it is critical to
provide the router with an auxiliary load balancing loss (LBL). The LBL prevents collapse toward
uneven token distributions and under-specialized experts. Devising an effective load balancing loss

20

Under review as a conference paper at ICLR 2026

that simultaneously encourages efficiency and expert specialization, without hindering expressivity,
remains an open design challenge that has driven much of the recent progress in MoEs (Shazeer
et al., 2017} |[Fedus et al.| 2022; Du et al., |2022; |[Zoph et al.,|2022; | Xue et al., 2024; Dai et al., 2024;
Qiu et al.| 2025} Muennighoff et al.,|2024). Minor design variations have been shown to significantly
affect both efficiency and specialization ability (Dai et al., 2024} Jiang et al., 2024; Team| [2024; |Liu
et al.,[2024b; |Q1u et al.| 2025).

One of the most widely adopted designs is the “global-batch” LBL introduced by [Shazeer et al.
(2017), which underpins several state-of-the-art open models such as Qwen 3 (Yang et al., |2025).
For a layer ¢ with Ng experts, it is defined as:

| L. Nk
Lip =Np- 3> > fui Pui 3)
{=1 i=1
where
o= Tokens routed to expert i Y he(x)
“"™ "Total tokens in layer £ ’ b >uy hej(x)

This formulation encourages token usage across experts to align with the router’s average soft as-
signment probabilities.

We evaluate SHINKAEVOLVE by pretraining a MoE model with 556M parameters, Np = 64 ex-
perts of which only K = 8 are active for each token, corresponding to 82M sparsely activated
parameters per forward pass (excluding embeddings). Training is performed on 2B tokens from
fineweb (Penedo et al., |2024). For each program, we define a fitness function consisting of the
cross-entropy (CE) loss together with an LBL term weighted by A = 0.01. To additionally measure
load imbalance, we track the L1 deviation from a uniform distribution of token allocations:

NEg

1
Liwp = 5 > fei— =

i=1

. 4)

with lower values indicating more even load distribution. This grounding provides SHINKAEVOLVE
a two-fold search objective: minimize CE while improving load balance. To avoid local noise
affecting the cross-entropy calculations, we average it over the last 10M tokens. The final fitness
score used during evolution is then the negated sum of the two:

r = —(Lcg + Limb)-)

Given the expense of pretraining, we run SHINKAEVOLVE for only 30 iterations, focusing on
gpt-4.1, gemini-2.5-pro, and claude-sonnet—4. To evaluate generality, we scale to
a larger 2.7B-parameter MoE of which 404M active (excluding embeddings), trained on slightly
under 30B fineweb tokens, and compare across three LBL coefficients A € {0.001,0.01,0.1}. We
used AdamW (Loshchilov & Hutter, [2017)) as the optimizer with cosine decay, and linear warmup.
As common practice in modern training regimes, we used rotary positional embeddings (Su et al.,
2024])), SwiGLU MLPs (Shazeer, 2020), and half-precision bfloat16 to efficiently keep our model’s
weights on device. For the small model used during SHINKAEVOLVE’s evolution, we use a batch
size of slightly over 1M tokens, for 2K steps. For the larger MoE used double the batch size and
seven times the total number of steps. After training, we benchmark against the global-batch LBL
baseline in terms of perplexity (Figure[/| left) and downstream performance across seven standard
evaluations: CommonSense QA (Talmor et al., 2018)), HellaSwag (Zellers et al.| 2019), OpenBook
QA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), WinoGrande (Sak-
aguchi et al |2021), and ARC (Clark et al., 2018), truncating the number of questions to 1000 for
large benchmarks as done by (Penedo et al., 2024).

As described in Section @] and detailed in Appendix [D] .| T Shatenisomesn ,
SHINKAEVOLVE discovers a new twist on the global-batch LBL [Fopee
from Equation which was used for seeding evolutionary
search. SHINKAEVOLVE discovers an augmentation of this loss
with an additional regularization term to target under-specialized
experts. As defined in Equation let f¢,; and P, ; denote the se-
lection frequency and average router probabilities for expert ¢

! = H(P,) 107 eettt .
n layer é Furtherm()re’ deﬁne S(PZ) - 05 + <1 - log Np 0.5 0.6 0.7 0.8 0.9 1.0
fraction of tokens routed to expert 1

)
»

o
.
-

4

auxiliary load balancing loss
o

N
°o
o

21 Figure 12: LBL loss comparison.

Under review as a conference paper at ICLR 2026

as a normalized complement of the routing entropy, and 7 =
0.064/Ng as a minimum usage threshold. The final discovered

LBL is:
L Ng . L NEg
1 0.1 ,
LigL, = Ng - — E E foi Poi+— E s(Pr) E nmx((),T — f[‘,') .
L — L — (6)
(=1 i=1 /=1 1=1
Global-batch LBL SHINKAEVOLVE new regularization
Reasoning tasks accuracy vs. LBL coefficient A Fineweb: final perplexity vs. LBL coefficient A 035 Fineweb: missrouted tokens vs. LBL coefficient A

1.4550
0.370

1.4525 1.030

.. 0.368

0366 1.4500 1.025

1.4475

0.364 1.020

1.4450
0.362 1.015

1.4425

Mean downstream accurac
Perplexity, lower is better

0.360
1.010

1.4400

0.358 1 —e— Global-batch LBL

ShinkaEvolve discovered LBL

—e— Global-batch LBL
ShinkaEvolve discovered LBL

—e— Global-batch LBL
1.005 ShinkaEvolve discovered LBL

Fraction of missrouted tokens (log scale)

1.4375
0.001 0.01 0.1 0.1 0.01 0.001 0.001 0.01 0.1
Auxiliary loss coefficient A (log scale) Auxiliary loss coefficient A (log scale, inverted) Auxiliary loss coefficient A (log scale, inverted)

0.356

Figure 13: Mixture-of-Experts LBL design additional results.

Task Global LBL. ShinkaEvolve Loss Type A CELoss Accuracy
HellaSwag 0.391 0.379 Global LBL 01 0.375 0.357
CQA 0.192 0.192 ShinkaEvolve : 0.373 0.366
PIQA 0.688 0.684

Winogrande 0.524 0.549 Global LBL o 0.367 0.362
ARC 0.207 0214 ShinkaEvolve ’ 0.365 0.368
OpenBookQA 0.170 0.192 Global LBL . 0.363 0.367
Mean 0.362 0.368 ShinkaEvolve ’ 0.363 0.37

Figure 14: Comparison of load balancing loss variants across downstream tasks with A = 0.01 (left)
and across LBL coefficients (right).

In addition to the results from Section 4] in Figure[I3] we provide additional results comparing the
global-batch LBL and SHINKAEVOLVE’s discovered LBL. In particular, we report the average task
performance, final perplexity, and the fraction of missrouted tokens, as a function of the LBL co-
efficient A used for training the MoEs. Consistent with our previous analysis, SHINKAEVOLVE’s
LBL appears to improve from the original LBL across both axes. Moreover, in the tables shown in
Figure[T4] we provide tables with details for the downstream task performance across our over con-
sidered benchmarks, as summarized in the center subplot of Figure T3] However, we also note that
the architecture used for evolving and testing the employed LBL was quite similar, and the training
budget was still limited. However, the consistent generalization results across training budgets and
coefficients A provide an optimistic outlook for future extensions to much longer training regimes,
where even small efficiency gains could scale to significant cost savings.

22

Under review as a conference paper at ICLR 2026

SHINKAEVOLVE’s Hyperparameter Configuration.

Parameter Value Parameter Value
Database configuration

Archive size 20 Elite selection ratio 0.3
Archive inspirations 4 Top-k inspirations 2
Migration interval 10 Migration rate 0.1
Island elitism true Parent selection strategy weighted
Parent selection A 10.0 Number of islands 2
Evolution configuration

Patch types [diff, full] Patch type probs [0.5, 0.5]
Generations 20 Max parallel jobs 1
Max patch resamples 10 Max patch attempts 10
Meta recommendation interval 10 Max meta recommendations 5
Embedding model text-embedding-3-small Max novelty attempts 3
Code embed sim threshold 0.95 Problem implementation Python
LLM dynamic selection ucbl Exploration coefficient 1.0
LLM models

gemini-2.5-pro v gemini-2.5-flash X
claude-sonnet-4 v 04-mini X
gpt-5 X gpt-5-nano X
gpt-4.1 v gpt-4.1-mini X
LLM settings

Temperatures [0.0, 0.5, 1.0] Max tokens 16,384
Meta models [gpt-4.1] Meta temperatures [0.0]
Novelty models [gpt-4.1] Novelty temperatures [0.0]

Table 5: SHINKAEVOLVE Hyperparameter Configuration for the MoE LBL Discovery.

23

Under review as a conference paper at ICLR 2026

C ADDITIONAL RESULTS

C.1 CIRCLE PACKING: ROBUSTNESS ACROSS 3 INDEPENDENT RUNS

Circle Packing: # Programs Circle Packing: API Cost Circle Packing: Runtime
264 264 264
i L
o / o f o
]] H
S 262 S 262 / S 262
w n = n
o ‘ o | o ‘
S I o
H | g I g
£ 260 | £ 260 / E 260 ‘
£ g 4 g
£ t £
@ r o o
a a | a
o 258 o 258 7 o 258
[o Il o
> [—— 5 proposal 5 eval workers | > | —— 5 proposal 5 eval workers | > ~—— 5 proposal 5 eval workers
9 10 proposal 10 eval workers ‘ 10 proposal 10 eval workers 9 10 proposal 10 eval workers
[P ~—— 20 proposal 20 eval workers W, ¢ ‘ ~—— 20 proposal 20 eval workers W ;¢ ~—— 20 proposal 20 eval workers
rrrrr Alphakvolve Bound | ‘ -~ AlphaEvolve Bound ‘ -~ AlphaEvolve Bound
3 Eg %0 3 % G 1aam 2em 432 T7h

160 150 260 5 0 75 % & m 576m 1 Lin
Evaluated Programs Cumulative Total Cost ($) Elapsed ShinkaEvolve Runtime

Figure 15: Circle Packing results across 3 independent runs. Two out of three runs discover solutions
that outperform or perform on par with AlphaEvolve, demonstrating the reliability and effectiveness
of our approach. We also compare different settings of asynchronous evaluation and program pro-
posal workers for ShinkaEvolve.

C.2 CIRCLE PACKING: API COST BREAKDOWN

Cost Breakdown: 5 Proposal 5 Eval Cost Breakdown: 10 Proposal 10 Eval Cost Breakdown: 20 Proposal 20 Evaﬂlg

—— Total Cost ($21.84, 100%)

20{ — Program Costs ($21.27, 97.4%) 0.5

-~ Embedding Costs ($0.01, 0.1%)

-- Novelty Costs ($0.02, 0.1%)
Meta Costs ($0.54, 2.5%)

—— Total Cost ($25.08, 100%)

—— Program Costs ($24.58, 98.0%)
-~ Embedding Costs ($0.01, 0.1%) 04
- Novelty Costs ($0.01, 0.0%)

Meta Costs ($0.48, 1.9%)

—— Total Cost ($22.67, 100%)

—— Program Costs ($22.08, 97.4%)
-~ Embedding Costs ($0.01, 0.1%)
- Novelty Costs ($0.02, 0.1%)

Meta Costs ($0.56, 2.5%)

Cum. Cost - Embedding, Novelty & Meta ($)

Total & Program Generation ($)
Cum. Cost - Embedding, Novelty & Meta ($)
Total & Program Generation ($)
Cum. Cost - Embedding, Novelty & Meta ($)

Total & Program Generation ($)

250

0 160 150 260 EJ 100 50 260
Evaluated Programs # Evaluated Programs

Figure 16: API cost breakdown for Circle Packing across different parallelization configurations.
Approximately 97% of the budget is used on program generation, while embedding, novelty check-
ing, and meta-recommendation generation take up the remaining 3%.

C.3 CIRCLE PACKING: ASYNCHRONOUS THROUGHPUT SCALING

Number of Evaluated Programs Over Time

0

% 250

-

)]

o

1S

o 200

T

Q

I

3 150

©

&

o 100

o

1

[}

'g 50 —— 5 proposal 5 eval workers

s 10 proposal 10 eval workers
z 0 —— 20 proposal 20 eval workers

0s 14.4m 28.8m 43.2m 57.6m 1.2h 1.4h 1.7h
Elapsed ShinkaEvolve Runtime

Figure 17: Throughput scaling for Circle Packing with different numbers of proposal and evaluation

workers. The speedup is almost linear for fast-to-evaluate problems like Circle Packing, demon-
strating efficient parallelization.

24

Under review as a conference paper at ICLR 2026

C.4 CIRCLE PACKING: ROBUSTNESS ACROSS CODE EMBEDDING THRESHOLDS

Circle Packing: # Programs Circle Packing: API Cost Circle Packing: Runtime

—— No rejection Threshold

—— No rejection Threshold
‘ Embedding Treshold 0.5

Embedding Treshold 0.5
—— Embedding Treshold 0.9
—— Embedding Treshold 0.995
————— AlphaEvolve Bound

—— No rejection Threshold

Embedding Treshold 0.5
~—— Embedding Treshold 0.9
—— Embedding Treshold 0.995
| AlphaEvolve Bound

Evolved Performance Score
Evolved Performance Score
Evolved Performance Score

—— Embedding Treshold 0.9
—— Embedding Treshold 0.995
————— AlphaEvolve Bound

75 05 1aam 288m 43 Tan 17

250 360 3 a B 2m 576m 120
Elapsed ShinkaEvolve Runtime

150 50 200 3 70 75 %
Evaluated Programs Cumulative Total Cost ($)

Figure 18: Performance comparison of different code embedding thresholds for Circle Packing. We
compare thresholds of 1.0 (no rejection), 0.995, 0.9, and 0.5 (heavily rejecting similar programs).
The larger values perform better, indicating that conservatively rejecting similar programs performs
well for this domain.

C.5 CIRCLE PACKING: ROBUSTNESS ACROSS LLM PRIORITIZATION APPROACHES

Circle Packing: # Programs Circle Packing: API Cost Circle Packing: Runtime

—— Fixed

~—— Fixed
Thompson Sampling Thompson Sampling Thompson Sampling
2.56 —— UCB1 256 —— UCB1 256 —— UCB1

————— AlphaEvolve Bound - AlphaEvolve Bound - AlphaEvolve Bound

—— Fixed

Evolved Performance Score
Evolved Performance Score
Evolved Performance Score

250 360 3

160 50 260 B 0 15 20 (3 1aam 288m a32m 57%6m
Evaluated Programs Cumulative Total Cost ($) Elapsed ShinkaEvolve Runtime

Figure 19: Performance comparison of different LLM prioritization approaches for Circle Pack-
ing. We compare UCB1 (our proposed approach), Thompson sampling, fixed (uniformly sampling
models) strategies. While all approaches show similar asymptotic performance, UCB1 performs the
most sample efficient.

25

Under review as a conference paper at ICLR 2026

D SHINKAEVOLVE DISCOVERED SOLUTIONS

D.1 CIRCLE PACKING PROBLEM

EVOLVE-BLOCK-START
import numpy as np
from scipy.optimize import minimize, Bounds

def construct_packing() :
nun
Constructs an arrangement of 26 circles by combining a meta-heuristic
search with a powerful SLSQP optimizer for refinement.

nn

n = 26

—-—- Helper functions for the optimizer ---

def objective_func(x):
"""The function to be minimized: the negative sum of radii."""
return -np.sum(x[:n])

def constraints_func(x):

Computes constraint violations. For SLSQP, each value must be >= 0.
wn

radii = x[:n]

centers = x[n:].reshape((n, 2))

containment = np.concatenate (
[
centers[:, 0] - radii,
centers[:, 1] - radii,
1 - centers[:, 0] - radii,
1 - centers[:, 1] - radii,

overlap = []
for i in range(n):
for j in range(i + 1, n):
dist = np.linalg.norm(centers[i] - centers[j])
overlap.append (dist - (radii[i] + radii[j]))

return np.concatenate ([containment, np.array(overlap)])
def _compute_initial_radii (centers):

Computes a valid set of initial radii for a given set of centers

to create a feasible starting point (x0) for the optimizer.
W

radii = np.min(

[centers[:, 0], centers[:, 1], 1 - centers[:, 0], 1 - centers[:, 1]], axis=0
)
for _ in range(100):

improved = False
for i in range(n):
for j in range(i + 1, n):

dist = np.linalg.norm(centers[i] - centers[Jj])
if radii[i] + radii[j] > dist:
excess = (radii[i] + radii[j] - dist) =+ 0.501
1

total_r = radiil[i

if total_r > le-9:
radii[i] excess x (radii[i] / total_r)
radii[j] excess * (radii[j] / total_r)
improved = True

if not improved:
break
return np.maximum(radii, le-6)

+ radii[j]

-—— 1. Generate a single high-quality initial guess ---
centers_init = np.zeros((n, 2))
inset = 0.06
centers_init[0:4] = [
[inset, inset],
[1 - inset, inset],
[inset, 1 - inset],
[1 - inset, 1 - inset],
1
centers_init[4:8] = [[0.5, inset], [0.5, 1 - inset], [inset, 0.5], [l - inset, 0.5]]
centers_init[8] = [0.5, 0.5]

golden_angle = np.pi » (3 - np.sqgrt(5))

cx, cy = 0.5, 0.5

inner_r, outer_r = 0.23, 0.48

inner_idx, outer_idx = np.arange(9, 15), np.arange(l5, 26)

for i, idx in enumerate (inner_idx) :

angle = i x golden_angle

centers_init[idx] = [cx + inner_r x np.cos(angle), cy + inner_r % np.sin(angle)]
for i, idx in enumerate (outer_idx):

angle = i x golden_angle * 1.003

26

Under review as a conference paper at ICLR 2026

centers_init[idx] = [cx + outer_r = np.cos(angle), cy + outer_r x np.sin(angle)]

centers_init += np.random.uniform(
-0.01, 0.01, size=(n, 2)
) # Increased initial jitter
centers_init = np.clip(centers_init, 0.01, 0.99

-—- 2. Define bounds and constraints for the solver --—-
bounds = Bounds ([0.0] * n + [0.0] * (2 » n), [0.5] * n + [1.0] = (2 * n))
constraints = {"type": "ineq", "fun": constraints_func}

——— 3. Initial baseline optimization ---
radii_init = _compute_initial_radii (centers_init)
x0 = np.concatenate([radii_init, centers_init.flatten()])

result = minimize (

objective_func,

x0,

method="SLSQP",

bounds=bounds,

constraints=constraints,

options={"maxiter": 600, "ftol": le-8, "disp": False},
) # Increased initial maxiter

Initialize current and best solutions for SA
best_x = result.x.copy ()
current_x = result.x.copy ()

best_score = -result.fun

current_score = -result.fun

—— 4. Simulated Annealing loop: Perturb and refine with acceptance criterion ---
sa_iterations = 250 # Significantly increased iterations for SA

temperature = 0.05 # Initial temperature for SA

initial_temperature = temperature # Preserve for potential reheating

cooling_rate = 0.995 # Slower cooling rate for broader search

perturb_step = 0.04 # Initial step size for perturbations

initial_perturb_step = perturb_step # Preserve for potential reheating
step_decay = 0.999 # Decay rate for step size

last_improve = 0 # Iteration of last best improvement

stagnation_limit = sa_iterations // 4 # Iterations before triggering reheating

for iter_idx in range(sa_iterations):
candidate_centers = (
current_x[n:].reshape ((n, 2)).copy (
) # Start from current state

Select a move type: 70% local, 30% global ring rotation
if np.random.rand() < 0.7:
Local move: perturb a few circles
num_to_move = np.random.randint (2, 6)
indices = np.random.choice(n, num_to_move, replace=False)
candidate_centers[indices] += np.random.normal (
0, perturb_step, size=(num_to_move, 2)

)

else:
Global move: rotate one of the rings
idx_to_rotate = inner_idx if np.random.rand() < 0.5 else outer_idx
center_point = candidate_centers[8] # Center of the overall pattern
angle = np.random.normal (
0, 0.15
) # Angular perturbation (can be fixed or scaled)
rel_pos = candidate_centers[idx_to_rotate] - center_point

cos_a, sin_a = np.cos(angle), np.sin(angle)
rotated = np.column_stack(
[
cos_a * rel_pos[:, 0] - sin_a x rel_pos[:, 1],
sin_a % rel_pos[:, 0] + cos_a x rel_pos[:, 1],

)

candidate_centers[idx_to_rotate] = center_point + rotated

candidate_centers = np.clip(
candidate_centers, 0.01, 0.99
) # Clip to stay within bounds

Create a new starting point and run a shorter refinement optimization
x0_candidate = np.concatenate (

[_compute_initial_radii (candidate_centers), candidate_centers.flatten()]
)
refine_result = minimize(

objective_func,

x0_candidate,

method="SLSQP",

bounds=bounds,

constraints=constraints,

options={"maxiter": 150, "ftol": le-6, "disp": False},
) # Reduced maxiter, looser ftol

new_score = -refine_result.fun

Simulated Annealing Acceptance Criterion
Accept if better, or with probability if worse (based on temperature)

27

Under review as a conference paper at ICLR 2026

if new_score > current_score or (
temperature > le-7
and np.random.rand() < np.exp ((new_score - current_score) / temperature)

current_score = new_score
current_x = refine_result.x.copy() # Update current state
if new_score > best_score:
best_score = new_score
best_x = refine_result.x.copy() # Update global best
last_improve = iter_idx # Reset stagnation counter on improvement
If not accepted, current_x remains unchanged for the next iteration (implicit)

Cool down temperature and decay perturbation step size
temperature x= cooling_rate

perturb_step »= step_decay

if temperature < le-7:

temperature = le-7 # Prevent division by zero
if perturb_step < le-5:
perturb_step = le-5 # Prevent step from becoming too small

Reheat if stagnated beyond stagnation_limit
if iter_idx - last_improve > stagnation_limit:

temperature = initial_ temperature
perturb_step = initial_perturb_step
last_improve = iter_idx
——— 5. Final Polishing Run on the best found solution ---—

final_result = minimize (

objective_func,

best_x,

method="SLSQP",

bounds=bounds,

constraints=constraints,

options={"maxiter": 1000, "ftol": le-9, "disp": False},
) # Increased maxiter for final polish

Check if the final polishing improved the best_x from SA
if —-final_result.fun > best_score:
best_x = final_result.x.copy () # Make sure to copy

——— 6. Unpack and return the best result ---
final_radii = best_x[:n]

final centers = best_x[n:].reshape((n, 2))
return final_ centers, final_ radii

def compute_max_radii (centers) :
nun
This function is retained for structural compatibility with the evaluation
framework but is not used by the new ‘construct_packing' logic.
It computes maximum radii for a fixed set of centers.
nun
n = centers.shape[0]
radii = np.empty (n)
for i in range(n):
X, y = centers[i]
radiif[i] = min(x, y, 1 - x, 1 - y)

for _ in range(60):
improved = False
for i in range(n):
for j in range(i + 1, n):

dist = np.linalg.norm(centers[i] - centers[j])
if radii[i] + radii[j] > dist:
excess = (radii[i] + radii[j] - dist) * 0.5
total = radii[i] + radii[j]

if total > 0:
reduce_i = excess x (radii[i] / total)

reduce_j = excess * (radii[j] / total)
radii[i] = max(0.001, radii[i] - reduce_i)
radii[j] = max(0.001, radii[]j] - reduce_j)

improved = True
if not improved:
break
return radii

EVOLVE-BLOCK-END

This part remains fixed (not evolved)
def run_packing() :
"""Run the circle packing constructor for n=26"""
np.random.seed (7)
centers, radii = construct_packing/()
Calculate the sum of radii
sum_radii = np.sum(radii)
return centers, radii, sum_radii

centers, radii, sum_radii = run_packing/()

28

Under review as a conference paper at ICLR 2026

Listing 2: SHINKAEVOLVE Discovered Circle Packing Solution.

29

Under review as a conference paper at ICLR 2026

D.2 AIME MATH REASONING AGENTIC HARNESS

"""Agent design evaluation on math tasks."""

import re

from typing import Callable, List, Optional, Tuple, Dict
from collections import Counter, defaultdict

from math_eval import agent_evaluation

EVOLVE-BLOCK-START
import re
from collections import Counter

class Agent:
def __init__ (
self,
query_llm: Callable,
temperature=0.0,

self.query_llm = query_llm
self.output_format_instructions = "On the final line output only the digits of the answer (0-999).
Provide your final answer enclosed in a LaTeX \\boxed{{...}} command."

Parameters

self.generation_temperature =
self.review_temperature = 0.1
self.synthesis_temperature = 0.0

0.7

Use 3 experts to stay within a 10-call limit (3 gen + 3 review + 1 synth = 7 calls)
self.num_experts = 3
self.expert_personas = [

"You are a meticulous and cautious mathematician. Your guiding principle is ’slow and steady wins
the race’. You solve problems by breaking them down into the smallest possible steps based on
fundamental principles. You avoid leaps of logic and verify each step before proceeding.",

"You are a brilliant and intuitive mathematician, known for finding elegant, non-obvious solutions

You look for symmetries, invariants, or a change of perspective that radically simplifies the problem.
You trust your insights but explain them clearly.",

"You are a mathematician with a strong background in computer science. You approach problems by
trying to frame them algorithmically. You think in terms of states, transitions, and recurrence
relations, and you analyze the behavior of these systems to find the solution.",

]

def _extract_answer (self, text: str) -> Optional[str]:
"""Extracts the final answer from a \\boxed{} environment."""
if not text:
return None
matches = re.findall (r"\\boxed\{ (\d{1,3})\}", text)
if matches:
return matches[-1]
return None

def forward(self, problem: str) -> tuple[str, float]:
wn

Solves a problem using a multi-persona ensemble with peer review and synthesis.

ww

total_cost = 0.0

STAGE 1: Generate Diverse Solutions with Expert Personas

solutions = []
for i in range (self.num_experts) :
persona = self.expert_personas[i % len(self.expert_personas)]

prompt = f"Solve the following AIME problem by thinking step-by-step. {self.
output_format_instructions}\n\nPROBLEM:\n{problem}\n\nSOLUTION:"
try:
response, cost = self.query_llm(
prompt=prompt,
system=persona,
temperature=self.generation_temperature,
)
solutions.append (response)
total_cost += cost
except Exception:
If a query fails, we proceed with fewer solutions.
solutions.append (f"Expert {i + 1} failed to generate a solution.")

STAGE 2: Independent Peer Review & Self-Correction ===

critiques = []

reviewer_system_prompt = "You are a skeptical peer reviewer examining a proposed solution to an AIME
problem. Your task is to be extremely critical. Do not accept any statement at face value. Re-read the
original problem carefully. Check calculations. Scrutinize the logical flow. xxPattern Verification:xx
If the solution relies on a pattern, you MUST test it on several new examples. If you find an error,
clearly explain the flaw and provide a corrected line of reasoning and a final corrected answer. If the
solution is completely sound, state that and re-state the final answer."

for sol in solutions:

prompt = f"Original Problem:\n{problem}\n\nProposed Solution to Review:\n{sol}\n\nYour Critical
Review and Corrected Solution:"
try:

review, cost = self.query_llm(
prompt=prompt,
system=reviewer_system_prompt,

30

Under review as a conference paper at ICLR 2026

temperature=self.review_temperature,
)
critiques.append (review)
total_cost += cost
except Exception:
critiques.append("Reviewer failed to provide a critique.")

=== STAGE 3: Synthesize Final Answer ===
synthesis_prompt_parts = [
f"You are the Editor-in-Chief of a prestigious mathematics journal, responsible for publishing the
final, canonical solution to this AIME problem. You have received {self.num_experts} independent
attempts and their corresponding critical reviews. Your task is to produce the definitive solution.\n\
nProblem:\n{problem}"
]
for i, (sol, crit) in enumerate(zip(solutions, critiques)):
synthesis_prompt_parts.append (
£f"\n-—- ATTEMPT {i + 1} —-—-\nSolution: {sol}\nCritique: {crit}\n—-—-"
)

synthesis_prompt_parts.append (
f"\nSYNTHESIS AND FINAL JUDGEMENT:\nl. First, briefly state the final numerical answer proposed by
each of the reviewed attempts.\n2. Based on the critiques, determine which approach is the most
reliable, or if all are flawed. Explain your reasoning.\n3. Construct the final, clear, step-by-step,
correct solution. Leverage insights from the valid parts of the attempts and correct any identified
errors. {self.output_format_instructions}"

)

synthesizer_prompt = "\n".join(synthesis_prompt_parts)
synthesizer_system _prompt = "You are a master mathematician and editor, synthesizing multiple reviewed
solutions into one canonical, correct answer."

final_response = ""
try:
final_response, cost = self.query_llm(
prompt=synthesizer_prompt,
system=synthesizer_system_prompt,
temperature=self.synthesis_temperature,
)
total_cost += cost
except Exception:
pass # Fallback logic will handle this.

=== Fallback Logic ===
if self._extract_answer (final_response) is None:
First, trust the reviewed answers
reviewed_answers = [self._extract_answer(c) for c in critiques]
valid_reviewed_answers = [
ans for ans in reviewed_answers if ans is not None

if valid_reviewed_answers:
most_common_answer = Counter (valid_reviewed_answers) .most_common (1) [0] [
0
]
final_response += f"\n\n[Fallback to Majority Vote on Reviewed Solutions]\n\\boxed{{{
most_common_answer}}}"

else:
If reviews didn’t produce answers, check original solutions
original_answers = [self._extract_answer(s) for s in solutions]
valid_original_answers = [

ans for ans in original_answers if ans is not None
]
if valid_original_answers:
most_common_answer = Counter(valid_original_answers) .most_common (1) [
0
11001
final_response += f"\n\n[Fallback to Majority Vote on Original Solutions]\n\\boxed{{{
most_common_answer}}}"
else:
Ultimate fallback
final_response += "\n\n[Fallback] Could not determine a final answer from any stage.\n\\
boxed{000}"

return final_response, total_cost
EVOLVE-BLOCK-END

def run_experiment (x+xkwargs) :
from utils import query_llm, create_call_limited_query_llm
from functools import partial

Create base query_llm function
base_query_llm = partial (query_llm, model_name=kwargs["model_name"])

Wrap it with call limiting (max 10 calls per forward pass
limited_query_llm = create_call_limited_query_l1lm(
base_query_11lm,
max_calls=kwargs["max_calls"],

31

Under review as a conference paper at ICLR 2026

accuracy, cost_total, processed, num_llm_calls, df = agent_evaluation(
Agent, limited_query_llm, year=kwargs|["year"]

)

return accuracy, cost_total, processed, num_llm calls, df

Listing 3: SHINKAEVOLVE Discovered AIME Agent Scaffold Design.

32

Under review as a conference paper at ICLR 2026

D.3 ALE-BENCH PROBLEMS
D.3.1 ALE-BENCH LITE TASK: auc039

// EVOLVE-BLOCK-START
#include <iostream>
#include <vector>
#include <algorithm>
#include <chrono>
#include <random>
#include <set>

#include <unordered_set>
#include <cmath>
#include <iomanip>
#include <numeric> // For std::iota
#include <string>
#include <map>

// === MACROS AND CONSTANTS ===

const int MAX_COORD_VAL 100000;

const int MAX_VERTICES 1000;

const int MAX_PERIMETER = 400000;

const double TIME_LIMIT_SECONDS_SAFETY_ MARGIN
double ACTUAL_TIME_LIMIT_SECONDS = 2.0;

= 0.1; // Increa

// RANDOM NUMBER GENERATION
struct XorShift {
uint64_t x;

XorShift () x (std::chrono::steady_clock: :now() .time_since_epoch () .count ()
() () << 32) std::random_device() ()) {}
uint64_t next () {
X "= x << 13;
X x >> 7;
x "= x << 17;
return x;
}
int next_int (int n) { if (n <= 0) return 0; return next ()
int next_int (int a, int b) { if (a > b) return a; return a

double next_double() { return next() / (double)UINT64_MAX;

i
XorShift rng;

// TIMER
struct Timer {
std::chrono::steady_clock::time_point start_time;
Timer () { reset(); }
void reset() { start_time
double elapsed() const {
auto now std: :chrono::steady_clock: :now() ;
return std::chrono::duration_cast<std::chrono::duratio

}i
Timer global_timer;

// GEOMETRIC STRUCTURES
struct Point {
int x, y;
bool operator<(const Pointé& other) const {
if (x != other.x) return x < other.x;
return y < other.y;

}

bool operator==(const Point& other) const {
return x other.x && y == other.y;
}
Point operator-(const Point& other) const {
return {x - other.x, y - other.y};
}
}i
struct PointHash {
std::size_t operator () (const Pointé& p) const {
auto hl = std::hash<int>{}(p.x);
auto h2 = std::hash<int>{}(p.y);

// Combining hashes: simple XOR might not be best, but
// For Point, a common way is boost::hash_combine.
// hl (h2 << 1) is a common way that’s okay.

return hl ° (h2 << 1)
i

Point b) {
(long long)a.y * b.x;

long long cross_product (Point a,
return (long long)a.x * b.y -

}

struct Fish {
Point p;
int type; // 1 for mackerel, -1 for sardine

}i

std::vector<Fish> all_fish_structs;

/7

KD-TREE

33

std::chrono::steady_clock: :now() ;

sed safety margin

((uint64_t) std: :random_device

% n; }
+ next_int(b - a + 1)

}

}

}

n<double>>(now - start_time) .count();

often good enough.

Under review as a conference paper at ICLR 2026

struct KDNode {

i

Point pt;

int axis;

KDNode «xleft = nullptr, *right = nullptr;
int fish_struct_idx = -1;

// Subtree bounding box

int min_x, max_x, min_y, max_y;

// Subtree counts

int m_cnt = 0, s_cnt = 0;

KDNode* fish_kdtree_root = nullptr;

KDNode* build_kdtree (std::vector<int>& point_indices, int 1, int r,

void delete_kdtree (KDNode* node)

//

if (1 > r) return nullptr;
int mid = 1 + (r - 1) / 2;

int axis) {

std::nth_element (point_indices.begin() + 1, point_indices.begin() + mid, point_indices.begin(

[&] (int a_idx, int b_idx) {
const Point& pa = all_fish_structs[a_idx].p;
const Point& pb = all_fish_structs[b_idx].p;
if (axis == 0) return pa.x < pb.x;
return pa.y < pb.y;

i

KDNode* node = new KDNode () ;

node->fish_struct_idx = point_indices[mid];

node->pt = all_fish_structs[node->fish_struct_idx].p;
node->axis = axis;

// Recurse
node->left = build_kdtree (point_indices, 1, mid - 1, 1 - axis);

node->right = build_kdtree (point_indices, mid + 1, r, 1 - axis);

// Initialize subtree bbox to this point
node->min_x = node->max_x = node->pt.x;
node->min_y = node->max_y = node->pt.y;

// Initialize counts with this node’s fish

if (all_fish_structs[node->fish_struct_idx].type == 1) node->m_cnt = 1;

else node->s_cnt = 1;

// Merge children
if (node->left) {
node->min_x = std::min(node->min_x, node->left->min_x);
node->max_x = std::max (node->max_x, node->left->max_x);
()
)

node->min_y = std::min(node->min_y, node->left->min_y);

node->max_y = std::max(node->max_y, node->left->max_y);
node->m_cnt += node->left->m_cnt;

node->s_cnt += node->left->s_cnt;

if (node->right) {
node->min_x = std::min(node->min_x, node->right->min_x);
node—>max_x = std::max(node->max_x, node->right->max_x);
()
)

;

node->min_y = std::min(node->min_y, node->right->min_y
node->max_y = std::max(node->max_y, node->right->max_y
node->m_cnt += node->right->m_cnt;
node->s_cnt += node->right->s_cnt;

;

}

return node;

if (!node) return;
delete_kdtree (node->left) ;
delete_kdtree (node->right) ;
delete node;

=== POLYGON UTILITIES ===

long long calculate_perimeter (const std::vector<Point>& poly) {

if (poly.size() < 2) return 0;
long long perimeter = 0;
for (size_t 1 = 0; i < poly.size(); ++i) {

const Point& pl = polyl[i];

const Point& p2 = poly[(i + 1) % poly.size()];

perimeter += std::abs(pl.x - p2.x) + std::abs(pl.y - p2.y);
}

return perimeter;

bool is_on_segment (Point p, Point seg_a, Point seg_b) {

if (cross_product(seg_b - seg_a, p - seg_a) != 0) return false;
return std::min(seg_a.x, seg_b.x)
std

A

= p.Xx && p.xX <= std::max (seg_:
n(seg_a.y, seg_b.y) <= p.y && p.y <= std::max(seg_a.y, seg_b.y);

{ // Recursively delete KD-tree nodes

// Not collinear
a.x, seg_b.x) &&

bool is_inside_polygon_wn (Point p, const std::vector<Point>& polygon) {

int n = polygon.size();
if (n < 3) return false;

// Check if on boundary first

34

+r+ 1,

Under review as a conference paper at ICLR 2026

for (int i = 0; i < n; ++1i) {
if (is_on_segment (p, polygon[i], polygon[(i + 1) % n])) return true;

int wn = 0; // Winding number
for (int i = 0; i < n; ++1i) {
Point pl = polygon[il;
Point p2 = polygon[(i + 1) % n];
if (pl.y <= p.y) { // Start y <= P.y
if (p2.y > p.y && cross_product (p2 - pl, p - pl) > 0) { // An upward crossing, P is left of edge
wn++;
}
} else { // Start y > P.y
if (p2.y <= p.y && cross_product (p2 - pl, p - pl) < 0) { // A downward crossing, P is right of
edge
wn-—;

}
return wn != 0; // wn != 0 means inside; wn == 0 means outside.

}

// Calculate score from scratch by checking all fish
long long point_segment_dist_sq_ortho (Point p, Point a, Point b) {
long long dx, dy;
if (a.x == b.x) { // Vertical segment
dx = p.x - a.x;
if (p.y < std::min(a.y, b.y)) {
dy = p.y - std::min(a.y, b.y);
} else if (p.y > std::max(a.y, b.y)) {

dy = p.y - std::max(a.y, b.y);
} else {
dy = 0;

}
} else { // Horizontal segment
dy = p.y - a.y;
if (p.x < std::min(a.x, b.x)) {
dx = p.x - std::min(a.x, b.x);
} else if (p.x > std::max(a.x, b.x)) {
dx = p.x - std::max(a.x, b.x);
} else {
dx = 0;
}
return dx * dx + dy * dy;

void calculate_score_from_scratch(const std::vector<Point>& poly, int& m_count, inté& s_count) {
m_count = 0; s_count = 0;

if (poly.size() < 3) return; // Not a valid polygon for containment
for (const auto& fish_s : all_fish_structs) {
if (is_inside_polygon_wn (fish_s.p, poly)) {
if (fish_s.type == 1) m_count++;

else s_count++;

}

// Calculate fish counts in a given rectangle using KD-tree
void calculate_score_delta_for_rectangle (KDNodex node, int r_min_x, int r_max_x, int r_min y, int r_max_y,
int& delta_m, inté& delta_s) {
delta_m = 0; delta_s = 0;

if (!node || r_min_x > r_max_x || r_min_y > r_max_y) { // Invalid rectangle
return;

}

// Iterative KD-tree traversal with subtree bbox pruning and whole-subtree aggregation.
std: :vector<KDNodex*> stack;

stack.reserve (64); // Reasonable reserve size for typical KD-tree depth
stack.push_back (node) ;

while (!stack.empty()) {
KDNode* current_node = stack.back();
stack.pop_back () ;
if (!current_node) continue;

// Disjoint?
if (current_node->max_x < r_min_x || current_node->min_x > r_max_x || current_node->max_y < r_min_y |
current_node->min_y > r_max_y) {
continue;

}
// Fully inside?
if (r_min_x <= current_node->min_x && current_node->max_x <= r_max_xX && r_min_y <= current_node->min_y
&& current_node->max_y <= r_max_y) {
delta_m += current_node->m_cnt;
delta_s += current_node->s_cnt;
continue;
}
// Partial overlap: account this node’s point, then traverse children
const Point& pt = current_node->pt;
if (pt.x >= r_min_x && pt.x <= r_max_x && pt.y >= r_min y && pt.y <= r_max_y) {

35

Under review as a conference paper at ICLR 2026

if (all_fish_structs[current_node->fish_struct_idx].type == 1) ++delta_m;
else ++delta_s;

if (current_node->left) stack.push_back (current_node->left);
if (current_node->right) stack.push_back (current_node->right);

// Check intersection between two orthogonal segments pls-ple and p2s-p2e
bool segments_intersect (Point pls, Point ple, Point p2s, Point p2e) {
// Normalize segments (sort endpoints to simplify overlap checks
if (pls.x ple.x) { if (pls.y > ple.y) std::swap(pls.y, ple.y); } // Vertical, sort by y
else { if (pls.x > ple.x) std::swap(pls.x, ple.x); } // Horizontal, sort by x
if (p2s.x == p2e.x) { if (p2s.y > p2e.y) std::swap(p2s.y, p2e.y); }
else { if (p2s.x > p2e.x) std::swap(p2s.x, p2e.x); }

bool segl_is_H = (pls.y ple.y);
bool seg2_is_H = (p2s.y p2e.y);
if (segl_is_H == seg2_is_H) { // Both horizontal or both vertical

if (segl_is_H) { // Both horizontal
// Check for y-alignment and x-overlap
return pls.y == p2s.y && std::max(pls.x, p2s.x) <= std::min(ple.x, p2e.x);
} else { // Both vertical
// Check for x-alignment and y-overlap
return pls.x == p2s.x && std::max(pls.y, p2s.y) <= std::min(ple.y, p2e.y);
}
} else { // One horizontal, one vertical (potential T-junction or cross)
Point h_s = segl_is_H ? pls : p2s; Point h_e = segl_is_H ? ple : p2e;
Point v_s = segl_is_H ? p2s : pls; Point v_e = segl_is_H ? p2e : ple;
// Check if intersection point (v_s.x, h_s.y) lies on both segments
return v_s.x >= h_s.x && v_s.x <= h_e.x && // x_intersect within horizontal segment’s x-range
h_s.y >= v_s.y && h_s.y <= v_e.y; // y_intersect within vertical segment’s y-range

bool check_self_intersection_full (const std::vector<Point>& poly) {
int M = poly.size();
if (M < 4) return false;
for (int i = 0; i < M; ++1i) {
Point pls = poly[i];
Point ple = poly[(i + 1) % M];
for (int j = 1i + 2; j < M; ++3) {
// Skip checking adjacent edges.
// Edge i is (poly[il, poly[(i+1)%M]). Edge j is (poly[j]l, polyl[(j+1)3M
// If i=0 and Jj=M-1, then edge i is (polyl[0], poly[l]) and edge j is (p
are adjacent.
if (i == 0 & j == M - 1) continue;

1).
oly[M-1], poly[0]). These

Point p2s = poly[jl;
Point p2e = poly[(j + 1) % M];
if (segments_intersect (pls, ple, p2s, p2e)) return true;

}

return false;

}

// Local self-intersection check: checks edges starting at critical_edge_start_indices_const against all
others
bool has_self_intersection_locally (const std::vector<Point>& poly, const std::vector<int>s&
critical_edge_start_indices_const) {
int M = poly.size();
if (M < 4) return false;

std::vector<int> critical_indices = critical_edge_start_indices_const; // Make a copy to modify
if (critical_indices.empty()) {
return false;

std::sort (critical_indices.begin(), critical_indices.end());
critical_indices.erase (std::unique(critical_indices.begin(), critical_indices.end()), critical_indices.end
)i

for (int edgel_s_idx_val orig : critical_indices) {
int edgel_s_idx_val = (edgel_s_idx val orig $ M + M) % M; // Ensure positive modulo
// No need to check edgel_s_idx_val bounds, it will be in [0, M-1]

Point pls = poly[edgel_s_idx_vall;
Point ple = poly[(edgel_s_idx_val + 1) % M];

for (int edge2_s_idx = 0; edge2_s_idx < M; ++edge2_s_idx) {
bool is_adj_or_same_to_pls_ple = (edge2_s_idx == edgel_s_idx_val || //
Same edge
edge2_s_idx == (edgel_s_idx_val + 1) $ M || // edge2 starts
where edgel ends
(edge2_s_idx + 1) %
if (is_adj_or_same_to_pls_ple) continue;

edgel_s_idx_val); // edge2 ends where edgel starts

Point p2s = poly[edge2_s_idx];

Point p2e = poly[(edge2_s_idx + 1) % M];

if (segments_intersect (pls, ple, p2s, p2e)) {
return true;

36

Under review as a conference paper at ICLR 2026

}

return false;

bool has_distinct_vertices_unordered(const std::vector<Point>& poly) {
if (poly.empty()) return true;
std::unordered_set<Point, PointHash> distinct_pts;
distinct_pts.reserve (poly.size()); // Pre-allocate for efficiency
for (const auto& p : poly) {
if (!distinct_pts.insert (p).second) return false; // Insertion failed, duplicate found
}
return true;

}

// Check basic structural validity of the polygon, uses cached perimeter

bool is_polygon_structurally_sound(const std::vector<Point>& poly, long long cached_perimeter) {
int m = poly.size();
if (m ! 0 && (m < 4 || m > MAX_VERTICES)) return false;
if (m == 0) return true;

if (cached_perimeter > MAX_PERIMETER) return false;

for (size_t i = 0; 1 < m; ++i) {
const Point& pl = poly[i];
const Point& p2 = poly[(i + 1) % m];
// Check coordinate bounds for pl
if (pl.x < 0 || pl.x > MAX_COORD_VAL || pl.y < 0 || pl.y > MAX_COORD_VAL) return false;
// The endpoint poly[(i+l)%m] will be checked as pl in its own iteration,
// but an explicit check here is also fine for robustness, though slightly redundant.
if (poly[(i+1)%m].x < O || poly[(i+1l)%m].x > MAX_COORD_VAL || poly[(i+1l)%m].y < 0 || poly[(i+1)%m].y >
MAX_COORD_VAL) return false;

// Check axis-parallel and non-zero length edges
if (pl.x != p2.x && pl.y != p2.y) return false; // Not axis-parallel
if (pl.x == p2.x && pl.y p2.y) return false; // Zero-length edge (duplicate consecutive vertices)

}
return true;
}

// Initial polygon generation using Kadane’s algorithm on a coarse grid
std::vector<Point> create_initial_polygon_kadane () {
const int GRID_SIZE_KADANE = 350; // Tunable parameter
const int NUM_VALUES_KADANE = MAX_COORD_VAL + 1;
// Ensure ACTUAL_CELL_DIM KADANE is at least 1
const int ACTUAL_CELL_DIM_KADANE = std::max(l, (NUM_VALUES_KADANE + GRID_SIZE_KADANE - 1) /
GRID_SIZE_KADANE) ;

std::vector<std::vector<long long>> grid_scores (GRID_SIZE_KADANE, std::vector<long long>(GRID_SIZE_KADANE,
0));
for (const auto& fish_s : all_fish_structs) {
int r = fish_s.p.y / ACTUAL_CELL_DIM_KADANE;
int ¢ = fish_s.p.x / ACTUAL_CELL_DIM_KADANE;
r = st min(r, GRID_SIZE_KADANE - 1); r = std::max(r,0);
c = std::min(c, GRID_SIZE_KADANE - 1); c = std::max(c,0);
grid_scores([r][c] += fish_s.type; // Mackerel +1, Sardine -1

long long max_so_far = -3el8; // Sufficiently small number
int best_rl = 0, best_cl = 0, best_r2 = -1, best_c2 = -1;

// 2D Kadane’s algorithm
for (int cl_idx = 0; cl_idx < GRID_SIZE_KADANE; ++cl_idx) {
std::vector<long long> col_strip_sum(GRID_SIZE_KADANE, O0);
for (int c2_idx = cl_idx; c2_idx < GRID_SIZE_KADANE; ++c2_idx) {
for (int r_idx = 0; r_idx < GRID_SIZE_KADANE; ++r_idx) {
col_strip_sum[r_idx] += grid_scores[r_idx] [c2_idx];

}

// 1D Kadane’s on col_strip_sum
long long current_strip_val = 0;
int current_rl_1d = 0;
for (int r2_idx_1d = 0; r2_idx_1d < GRID_SIZE_KADANE; ++r2_idx_1d) {
long long val_here = col_strip_sum[r2_idx_1d];
if (current_strip val > 0 && current_strip val + val_here > 0) { // Extend if sum remains
positive
current_strip_val += val_here;
} else { // Start new subarray
current_strip_val = val_here;
current_rl_1d = r2_idx_1d;

if (current_strip_val > max_so_far) {
max_so_far = current_strip_val;
best_rl = current_rl_1d;
best_r2 = r2_idx_1d;
best_cl = cl_idx;
best_c2 = c2_idx;

37

Under review as a conference paper at ICLR 2026

std::vector<Point> default_poly = {{0,0}, {1,0}, {1,1}, {0,1}}; // Minimal valid polygon

// If no positive sum found, or issue, find best single cell
if (best_r2 == -1 || max_so_far <=0) {
max_so_far = -3el8; // Reset search for single best cell
bool found_cell = false;
for (int r=0; r<GRID_SIZE_KADANE; ++r) for(int c=0; c<GRID_SIZE_KADANE; ++c) {
if (grid_scores[r][c] > max_so_far) {
max_so_far = grid_scores([r][c];
best_rl = r; best_r2 = r; // Single cell
best_cl = c; best_c2 = c;
found_cell = true;

}
if (!found_cell || max_so_far <=0) return default_poly; // Still no good cell, return default

}

// Convert grid cell indices to actual coordinates

int x_start = best_cl » ACTUAL_CELL_DIM_KADANE;

int y_start = best_rl x ACTUAL_CELL_DIM KADANE;

int x_end = (best_c2 + 1) % ACTUAL_CELL_DIM_KADANE -1;
int y_end = (best_r2 + 1) % ACTUAL_CELL_DIM KADANE -1;

// Clamp coordinates to valid range

x_start = std::max(0, std::min(MAX_COORD_VAL, x_start));

y_start = std::max(0, std::min(MAX_COORD_VAL, y_start));

%x_end = std::max(x_start, std::min(MAX_COORD_VAL, x_end)); // Ensure x_end >= x_start
y_end = std::max(y_start, std::min(MAX_COORD_VAL, y_end)); // Ensure y_end >= y_start

// Ensure non-zero dimensions for the polygon, minimum 1x1 actual area

if (x_start == x_end) {
if (x_start < MAX_COORD_VAL) x_end = x_start + 1;
else if (x_start > 0) x_start = x_start -1; // Can’t expand right, try expand left
else return default_poly; // Single point at MAX_COORD_VAL, cannot form 1x1

if (y_start == y_end) {
if (y_start < MAX COORD_VAL) y_end = y_start + 1;
else if (y_start > 0) y_start = y_start - 1;
else return default_poly;
}
// After adjustment, if still degenerate, use default. This is rare.
if (x_start == x_end || y_start == y_end) return default_poly;

std::vector<Point> initial_poly = {

{x_start, y_start}, {x_end, y_start}, {x_end, y_end}, {x_start, y_end}
i
return initial_poly;

}

// === SIMULATED ANNEALING ===
struct SAState {
std::vector<Point> poly;
int m_count;
int s_count;
long long perimeter_cache; // Added cache for perimeter

SAState() : m_count(0), s_count(0), perimeter_cache(0) {} // Initialize perimeter_cache

long long get_objective_score() const {
return std::max (0LL, (long long)m_count - s_count + 1)
}
double get_raw_objective_score() const { // Used for SA acceptance probability
return (double)m_count - s_count;
}
}i

// Calculates signed area * 2 of a polygon (shoelace formula
long long polygon_signed_area_times_2 (const std::vector<Point>& poly) {
if (poly.size() < 3) return 0;
long long area_sum = 0;
for (size_t i1 = 0; i < poly.size(); ++i) {
const Point& pl = polyl[i];
const Point& p2 = poly[(i + 1) % poly.size()];
area_sum += (long long) (pl.x - p2.x) x (pl.y + p2.y); // (x1-x2) (yl+y2) variant
}
return area_sum; // Positive for CCW, negative for CW

std::vector<int> sa_critical_edge_indices_cache; // Cache for local intersection check

// Guide coordinates for SA moves
std::vector<int> static_x_guides;
std::vector<int> static_y_guides;
std::vector<int> best_poly_x_guides;
std::vector<int> best_poly_y_guides;

void update_best_poly_guides (const SAState& new_best_state) {
best_poly_x_guides.clear ()

38

Under review as a conference paper at ICLR 2026

best_poly_y_guides.clear();
if (new_best_state.poly.empty()) return;

std::set<int> temp_x_set, temp_y_set;

for (const auto& p : new_best_state.poly) {
temp_x_set.insert (p.x);
temp_y_set.insert (p.y);

}

best_poly_x_guides.assign(temp_x_set.begin(), temp_x_set.end());
best_poly_y_guides.assign(temp_y_set.begin(), temp_y_set.end());
}
void simulated_annealing_main() {

SAState current_state;

current_state.poly = create_initial_polygon_kadane();

calculate_score_from_scratch (current_state.poly, current_state.m_count, current_state.s_count);
current_state.perimeter_cache = calculate_perimeter (current_state.poly); // Calculate initial perimeter

std::vector<Point> default_tiny_poly = {{0,0}, {1,0}, {1,1}, {0,1}};

// Ensure initial polygon is valid, otherwise use default
bool current_poly initial_valid = is_polygon_structurally_sound(current_state.poly, current_state.
perimeter_cache) &&
current_state.poly.size() >= 4 &&
has_distinct_vertices_unordered(current_state.poly) &&
!check_self_intersection_full (current_state.poly);

if (!current_poly_initial_valid) {
current_state.poly = default_tiny_poly;
calculate_score_from_scratch (current_state.poly, current_state.m_count, current_state.s_count);
current_state.perimeter_cache = calculate_perimeter (current_state.poly); // Update perimeter for
default

SAState best_state = current_state;
update_best_poly_guides (best_state) ;

// Prepare static guide coordinates from fish locations
std::set<int> sx_set, sy_set;
for (const auto& f_s : all_fish_structs) {
sx_set.insert (f_s.p.x); sx_set.insert (std::max(0,f_s.p.x-1)); sx_set.insert (std::min (MAX_ COORD_VAL,
f_s.p.x+1));
sy_set.insert (f_s.p.y); sy_set.insert (std::max(0,f_s.p.y-1)); sy_set.insert (std::min (MAX_ COORD_VAL,
f_s.p.y+1));
}
sx_set.insert (0); sx_set.insert (MAX_COORD_VAL); // Boundary guides
sy_set.insert (0); sy_set.insert (MAX_COORD_VAL) ;

static_x_guides.assign(sx_set.begin(), sx_set.end());
static_y_guides.assign(sy_set.begin(), sy_set.end());

double start_temp = 150.0;
double end_temp = 0.01;

long long current_signed_area = polygon_signed_area_times_2 (current_state.poly);
if (current_signed_area 0 && current_state.poly.size() >=3) {
current_signed_area 1; // Avoid issues with zero area for sign logic

sa_critical_edge_indices_cache.reserve (10); // Max expected critical edges for current moves

while (global_timer.elapsed() < ACTUAL_TIME_LIMIT_SECONDS) {
double time_ratio = global_timer.elapsed() / ACTUAL_TIME_LIMIT_SECONDS;
double temperature = start_temp » std::pow(end_temp / start_temp, time_ratio);
// Fine-tune temperature near end or if it drops too fast
if (temperature < end_temp && time_ratio < 0.95) temperature = end_temp;
if (time_ratio > 0.95 && temperature > end_temp » 0.l1) temperature = end_temp * 0.1; // Lower temp
aggressively at the very end

if (current_state.poly.size() < 4) { // Should not happen if logic is correct, but as a safeguard
current_state.poly = default_tiny_poly;
calculate_score_from_scratch (current_state.poly, current_state.m_count, current_state.s_count);
current_state.perimeter_cache = calculate_perimeter (current_state.poly); // Update perimeter
current_signed_area = polygon_signed_area_times_2 (current_state.poly);
if (current_signed_area == 0 && current_state.poly.size() >=3) current_signed_area = 1;

SAState candidate_state = current_state; // Copy current state
sa_critical_edge_indices_cache.clear();

int move_type_roll = rng.next_int (100);

// Base probabilities for moves
int targeted_move_prob = 35;
int move_edge_prob = 35;

int add_bulge_prob = 10;
// simplify gets 20%

bool near_vertex_limit = candidate_state.poly.size() + 2 > MAX_ VERTICES;
bool near_perimeter_limit = false;

39

Under review as a conference paper at ICLR 2026

// Check perimeter using candidate_state’s cached value
if (candidate_state.poly.size() > 200 && candidate_state.perimeter_cache > MAX_PERIMETER * 0.9) {
near_perimeter_limit = true;

}

// Adjust move probabilities based on polygon size/perimeter
if (near_vertex_limit || near_perimeter_ limit) {
add_bulge_prob = 0;
targeted_move_prob = 40;
move_edge_prob = 40; // simplify is 20
} else if (candidate_state.poly.size() > 400) {
add_bulge_prob = 5;
targeted_move_prob = 35;
move_edge_prob = 35; // simplify is 25

int p_targeted = targeted_move_prob;
int p_move_edge = p_targeted + move_edge_prob;
int p_add_bulge = p_move_edge + add_bulge_prob;

bool move_made = false;

// Probabilities for snapping to guide coordinates
double prob_dynamic_guide_snap = 0.20 + 0.20 % time_ratio;
double prob_static_guide_snap_if not_dynamic = 0.75;

if (move_type_roll < p_targeted && candidate_state.poly.size() >= 4) { // Targeted Edge Move
bool target_mackerel = rng.next_double() < 0.7;
int n_fish_half = all_fish_structs.size() / 2;
int fish_idx = target_mackerel ? rng.next_int (n_fish_half) : n_fish_half + rng.next_int(
n_fish_half);
const auto& target_fish = all_fish_structs[fish_idx];

bool is_inside = is_inside_polygon_wn (target_fish.p, candidate_state.poly);
if ((target_fish.type == 1) == is_inside) {
move_made = false; goto end_move_attempt_label;
}
long long min_dist_sq = -1;
int best_edge_idx = -1;
for (size_t i = 0; i < candidate_state.poly.size(); ++i) {

long long d_sq = point_segment_dist_sq_ortho(target_fish.p, candidate_state.poly[i],
candidate_state.poly[(i+l)%$candidate_state.poly.size()]);
if (best_edge_idx == -1 || d_sq < min_dist_sq) {
min_dist_sq = d_sgqg;
best_edge_idx = i;

}
if (best_edge_idx == -1) { move_made = false; goto end_move_attempt_label; }

int edge_idx = best_edge_idx;
Point pl_orig = candidate_state.poly[edge_idx];
Point p2_orig = candidate_state.poly|[(edge_idx + 1) % candidate_state.poly.size()];

int new_coord_val;
if (pl_orig.x == p2_orig.x) { new_coord_val = target_fish.p.x; }
else { new_coord_val = target_fish.p.y; }

new_coord_val = std::max (0, std::min(MAX_COORD_VAL, new_coord_val))

int cur_delta _m=0, cur_delta_s=0;
if (pl_orig.x == p2_orig.x) { // Vertical edge
if (new_coord_val == pl_orig.x) {move_made = false; goto end _move_attempt_label;}

int query_min_x, query_max_x;
if (new_coord_val > pl_orig.x) { query_min_x = pl_orig.x + 1; query_max_x = new_coord_val;
else { query_min_x = new_coord_val; query_max_x = pl_orig.x - 1; }

calculate_score_delta_for_rectangle (
fish_kdtree_root, query_min_x, query_max_x,
std::min(pl_orig.y, p2_orig.y), std::max(pl_orig.y, p2_orig.y),
cur_delta_m, cur_delta_s);

int sign = (new_coord_val > pl_orig.x) ? 1 : -1;
if (pl_orig.y > p2_orig.y) sign x= -1;
if (current_signed_area < 0) sign *= -1;

candidate_state.poly[edge_idx].x = new_coord_val;
candidate_state.poly|[(edge_idx + 1) % candidate_state.poly.size()].x = new_coord_val;
candidate_state.m_count += sign » cur_delta_m;
candidate_state.s_count += sign » cur_delta_s;
} else { // Horizontal edge
if (new_coord_val == pl_orig.y) {move_made = false; goto end_move_attempt_label;}

int query_min_y, query_max_y;
if (new_coord_val > pl_orig.y) { query_min_y = pl_orig.y + 1; query_max_y = new_coord_val;
else { query_min_y = new_coord_val; query_max_y = pl_orig.y - 1; }

calculate_score_delta_for_rectangle (
fish_kdtree_root, std::min(pl_orig.x, p2_orig.x), std::max(pl_orig.x, p2_orig.x),
query_min_y, query_max_y,
cur_delta_m, cur_delta_s);

40

Under review as a conference paper at ICLR 2026

int sign = (new_coord_val < pl_orig.y) 2 1 : -1;
if (pl_orig.x > p2_orig.x) sign x= -1;
if (current_signed_area < 0) sign *= -1;

candidate_state.poly[edge_idx].y = new_coord_val;
candidate_state.poly|[(edge_idx + 1) % candidate_state.poly.size()].y = new_coord_val;
candidate_state.m_count += sign » cur_delta_m;
candidate_state.s_count += sign * cur_delta_s;
}
int M_cand = candidate_state.poly.size();
sa_critical_edge_indices_cache.push_back((edge_idx - 1 + M_cand) % M_cand);
sa_critical_edge_indices_cache.push_back (edge_idx) ;
sa_critical_edge_indices_cache.push_back ((edge_idx + 1) % M_cand);
move_made = true;

} else if (move_type_roll < p_move_edge && candidate_state.poly.size() >= 4) { // Move Edge
int edge_idx = rng.next_int (candidate_state.poly.size());
Point pl_orig = candidate_state.poly[edge_idx];
Point p2_orig = candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()];

int new_coord_val = -1;
int cur_delta_m=0, cur_delta_s=0;
bool coord_selected_successfully = false;

// Determine which guides are relevant (X or Y)

const std::vector<int>x relevant_dyn_guides = (pl_orig.x == p2_orig.x) ? &best_poly_x_guides : &
best_poly_y_guides;
const std::vector<int>x relevant_static_guides = (pl_orig.x == p2_orig.x) ? &static_x_guides : &

static_y_guides;

// Try snapping to dynamic (best poly) guides

if (!relevant_dyn_guides->empty () && rng.next_double() < prob_dynamic_guide_snap) {
new_coord_val = (xrelevant_dyn_guides) [rng.next_int (relevant_dyn_guides->size())];
coord_selected_successfully = true;

}

// If not, try snapping to static (fish) guides

if (!coord_selected_successfully) {

if (!relevant_static_guides->empty() && rng.next_double() <
prob_static_guide_snap_if not_dynamic) {
new_coord_val = (xrelevant_static_guides) [rng.next_int (relevant_static_guides->size())];

coord_selected_successfully = true;

}
// If still not selected, use random displacement
if (!coord_selected_successfully) {
double step_factor = std::max (0.1, 1.0 - time_ratio % 0.95); // Step size decreases over time
int base_step_max = std::max(l, (int) ((MAX_COORD_VAL/150.0) * step_factor + 1));
int random_displacement = rng.next_int (-base_step_max, base_step_max);
if (time_ratio > 0.75 && rng.next_double() < 0.7) { // Very small steps near end

random_displacement = rng.next_int (-2,2);
}
if (random_displacement == 0) random_displacement = (rng.next_double() < 0.5) ? -1:1;
if (pl_orig.x == p2_orig.x) new_coord_val = pl_orig.x + random_displacement; // Vertical edge,

move X
else new_coord_val = pl_orig.y + random_displacement; // Horizontal edge, move Y

new_coord_val = std::max(0, std::min(MAX_COORD_VAL, new_coord_val)); // Clamp to bounds

if (pl_orig.x == p2_orig.x) { // Vertical edge: (X_orig, Y_s) to (X_orig, Y_e)
if (new_coord_val == pl_orig.x) {move_made = false; goto end_move_attempt_label;} // No change

int query_min_x, query_max_x;

if (new_coord_val > pl_orig.x) { // Moved right
query_min_x = pl_orig.x + 1;
query_max_x = new_coord_val;

} else { // Moved left (new_coord_val < pl_orig.x)
query_min_x = new_coord_val;
query_max_x = pl_orig.x - 1;

calculate_score_delta_for_rectangle(
fish_kdtree_root, query min_x, query_max_x,
std::min (pl_orig.y, p2_orig.y), std::max(pl_orig.y, p2_orig.y),
cur_delta m, cur_delta_s);

int sign = (new_coord_val > pl_orig.x) ? 1 : -1; // Moving right is positive X change
if (pl_orig.y > p2_orig.y) sign x= -1; // Correct for edge Y-direction (pl_orig.y to p2_orig.y

if (current_signed_area < 0) sign *= -1; // Correct for CW polygon (area < 0)

candidate_state.poly[edge_idx].x = new_coord_val;
candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()].x = new_coord_val;
candidate_state.m_count += sign * cur_delta_m;
candidate_state.s_count += sign * cur_delta_s;
} else { // Horizontal edge: (X_s, Y_orig) to (X_e, Y_orig)
if (new_coord_val == pl_orig.y) {move_made = false; goto end_move_attempt_label;} // No change

int query_min_y, query_max_y;
if (new_coord_val > pl_orig.y) { // Moved up (Y increases)

41

Under review as a conference paper at ICLR 2026

query_min_y = pl_orig.y + 1;
query_max_y = new_coord_val;
} else { // Moved down (Y decreases, new_coord_val < pl_orig.y)
query_min_y = new_coord_val;
query_max_y = pl_orig.y - 1;

calculate_score_delta_for_rectangle (
fish_kdtree_root, std::min(pl_orig.x, p2_orig.x), std::max(pl_orig.x, p2_orig.x),
query_min_y, query_max_y,
cur_delta m, cur_delta_s);

int sign = (new_coord_val < pl_orig.y) ? 1 : -1; // Moving "down" (Y decreases) means positive
sign if it expands area
if (pl_orig.x > p2_orig.x) sign *= -1; // Correct for edge X-direction (pl_orig.x to p2_orig.x

if (current_signed_area < 0) sign *= -1; // Correct for CW polygon

candidate_state.poly[edge_idx].y = new_coord_val;
candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()].y = new_coord_val;
candidate_state.m_count += sign * cur_delta_m;
candidate_state.s_count += sign x cur_delta_s;
}
int M_cand = candidate_state.poly.size();
sa_critical_edge_indices_cache.push_back((edge_idx - 1 + M_cand) % M_cand);
sa_critical_edge_indices_cache.push_back (edge_idx) ;
sa_critical_edge_indices_cache.push_back ((edge_idx + 1) % M_cand);
move_made = true;

} else if (move_type_roll < p_add _bulge && candidate_state.poly.size() + 2 <= MAX_VERTICES &&
candidate_state.poly.size() >=4) { // Add Bulge
int edge_idx = rng.next_int (candidate_state.poly.size());
Point p_s = candidate_state.poly[edge_idx]; // Start point of edge

°

Point p_e = candidate_state.poly|[(edge_idx + 1) % candidate_state.poly.size()]; // End point of

edge

int new_coord_val = -1;

bool coord_selected_successfully = false;

const std::vector<int>x relevant_dyn_guides = (p_s.x == p_e.x) ? &best_poly x_guides : &
best_poly_y_guides;

const std::vector<int>x relevant_static_guides = (p_s.x == p_e.x) ? &static_x_guides : &

static_y_guides;

// Try snapping bulge coord

if (!relevant_dyn_guides->empty () && rng.next_double() < prob_dynamic_guide_snap) {
new_coord_val = (xrelevant_dyn_guides) [rng.next_int (relevant_dyn_guides->size())];
coord_selected_successfully = true;

}

if (!coord_selected_successfully) {

if (!relevant_static_guides—>empty () && rng.next_double() <
prob_static_guide_snap_if_not_dynamic) {
new_coord_val = (xrelevant_static_guides) [rng.next_int (relevant_static_guides->size())];

coord_selected_successfully = true;

}
// If not snapped, random depth for bulge
if (!coord_selected_successfully) {
double depth_factor = std::max(0.1, 1.0 - time_ratio » 0.9);
int base_depth_max = std::max(l, (int) ((MAX_COORD_VAL/300.0) depth_factor + 1));
int random_abs_depth = rng.next_int (1, base_depth_max);
if (time_ratio > 0.75 && rng.next_double() < 0.7) {
random_abs_depth = rng.next_int(1,2);
}

int bulge_dir_sign = (rng.next_double() < 0.5) ? 1 : -1; // Randomly outwards or inwards
relative to edge line
if (p_s.x == p_e.x) new_coord_val = p_s.x + bulge_dir_sign * random_abs_depth; // Vertical

edge, bulge in X
else new_coord_val = p_s.y + bulge_dir_sign » random_abs_depth; // Horizontal edge, bulge in Y

new_coord_val = std::max (0, std::min (MAX_COORD_VAL, new_coord_val));

Point vl_mod, v2_mod; // New vertices for the bulge
int cur_delta_m=0, cur_delta_s=0;

if (p_s.x == p_e.x) { // Original edge is vertical
if (new_coord_val == p_s.x) {move_made = false; goto end _move_attempt_label;} // Bulge is flat
vl_mod = {new_coord_val, p_s.y}; v2_mod = {new_coord_val, p_e.y};
// Rectangle for delta score is between X=p_s.x and X=new_coord_val, over Y-span of original

edge
calculate_score_delta_for_rectangle (
fish_kdtree_root, std::min(p_s.x, new_coord_val), std::max(p_s.x, new_coord_val),
std::min(p_s.y,p_e.y), std::max(p_s.y,p_e.y),
cur_delta_m, cur_delta_s);
int sign = (new_coord_val > p_s.x) ? 1 : -1; // Bulge to the right of edge is positive X
change
if (p_s.y > p_e.y) sign »= -1; // Correct for edge Y-direction
if (current_signed_area < 0) sign »= -1; // Correct for CW polygon

candidate_state.m_count += sign x cur_delta_m;
candidate_state.s_count += sign x cur_delta_s;
} else { // Original edge is horizontal

42

Under review as a conference paper at ICLR 2026

if (new_coord_val == p_s.y) {move_made = false; goto end_move_attempt_label;} // Bulge is flat
vl_mod = {p_s.x, new_coord_val}; v2_mod = {p_e.x, new_coord_val};
// Rectangle for delta score is between Y=p_s.y and Y=new_coord_val, over X-span of original
edge
calculate_score_delta_for_rectangle(
fish_kdtree_root, std::min(p_s.x,p_e.x), std::max(p_s.x,p_e.x),
std::min(p_s.y, new_coord_val), std::max(p_s.y, new_coord_val)
cur_delta_m, cur_delta_s);
int sign = (new_coord val < p_s.y) ? 1 : -1; // Bulge "downwards" (Y decreases) means positive
sign if it expands area
if (p_s.x > p_e.x) sign »= -1; // Correct for edge X-direction
if (current_signed_area < 0) sign = -1; // Correct for CW polygon
candidate_state.m_count += sign * cur_delta_m;
candidate_state.s_count += sign * cur_delta_s;

}

// Insert new vertices into polygon

auto insert_pos_iter = candidate_state.poly.begin() + (edge_idx + 1);
insert_pos_iter = candidate_state.poly.insert (insert_pos_iter, vl_mod);
candidate_state.poly.insert (insert_pos_iter + 1, v2_mod);

// Mark affected edges/vertices as critical for local intersection check
sa_critical_edge_indices_cache.push_back (edge_idx) ;
sa_critical_edge_indices_cache.push_back (edge_idx + 1);
sa_critical_edge_indices_cache.push_back (edge_idx + 2);

move_made = true;

} else if (candidate_state.poly.size() > 4) { // Simplify Polygon (remove collinear vertex)
int R_start_idx = rng.next_int (candidate_state.poly.size()); // Random start for search
bool simplified_this_turn = false;
for(int k_offset=0; k_offset < candidate_state.poly.size() ; ++k_offset) ({

int current_poly_size_before_erase = candidate_state.poly.size();
if (current_poly_size_before_erase <= 4) break; // Cannot simplify further

int pl_idx = (R_start_idx + k_offset) % current_poly_size_before_erase;

int pO_idx_old = (pl_idx - 1 + current_poly_size_before_erase) $%
current_poly_size_before_erase;

int p2_idx_old = (pl_idx + 1) % current_poly_size_before_erase;

const Point& p0 = candidate_state.poly[p0_idx_old];
const Point& pl = candidate_state.poly[pl_idx];
const Pointé& p2 = candidate_state.poly[p2_idx_old];

bool collinear x = (p0.x == pl.x && pl.x =
bool collinear y = (pO0.y == pl.y && pl.y =

p2.x);
p2.y);

if (collinear_x || collinear_y) {
candidate_state.poly.erase (candidate_state.poly.begin() + pl_idx);
simplified_this_turn = true;

int M_cand = candidate_state.poly.size();

int critical_vertex_idx_in_new_poly;

// Vertex p0 (at pO_idx_old) forms the new corner. Its index in new poly:

if (pl_idx == 0) { // If pl was poly[0], p0O was poly[last]. pO is now poly[new_last]
critical_vertex_idx_in_new_poly = M_cand -1;

} else { // Otherwise, p0’s index pl_idx-1 is preserved.
critical_vertex_idx_in_new_poly = pl_idx - 1;

if (!candidate_state.poly.empty()) {
sa_critical_edge_indices_cache.push_back ((critical_vertex_idx_in_new_poly - 1 + M_cand
) % M_cand);
sa_critical_edge_indices_cache.push_back (critical_vertex_idx_in_new_poly);
sa_critical_edge_indices_cache.push_back ((critical_vertex_idx_in_new_poly + 1) %

M_cand) ;
}
break; // Simplified one vertex, enough for this turn
}
}
if (!simplified_this_turn) {move_made = false; goto end_move_attempt_label;} // No simplification
found/possible

move_made = true;

// After any move, recalculate perimeter for the candidate_state. This occurs only once per candidate.
candidate_state.perimeter_cache = calculate_perimeter (candidate_state.poly);

end_move_attempt_label:; // Label for goto if a move is aborted (e.g. no change)
if (!move_made) continue; // No valid move attempted or made

// Validate candidate polygon using the cached perimeter

if (!is_polygon_structurally_sound(candidate_state.poly, candidate_state.perimeter_cache) ||
candidate_state.poly.size() < 4 ||
'has_distinct_vertices_unordered (candidate_state.poly)) {
continue; // Invalid basic structure or duplicate vertices

if (has_self_intersection_locally(candidate_state.poly, sa_critical_edge_indices_cache)) {
continue; // Self-intersection found

// Accept or reject candidate based on SA criteria

43

Under review as a conference paper at ICLR 2026

double candidate_raw_obj_score = candidate_state.get_raw_objective_score();
double current_raw_obj_score = current_state.get_raw_objective_score();
double score_diff = candidate_raw_obj_score - current_raw_obj_score;
if (score_diff >= 0 || (temperature > le-9 && rng.next_double() < std::exp(score_diff / temperature)))
{
current_state = std::move (candidate_state); // Accept move (perimeter_cache is moved as well
current_signed_area = polygon_signed_area_times_2 (current_state.poly); // Update signed area
if (current_signed_area == 0 && !current_state.poly.empty() && current_state.poly.size() >=3

current_signed_area = 1; // Handle degenerate

if (current_state.get_objective_score() > best_state.get_objective_score()) {
best_state = current_state; // New best solution found (perimeter_cache is copied here)
update_best_poly_guides (best_state); // Update dynamic guides

}

}
} // End SA loop

// Final validation of the best found state: Recalculate perimeter explicitly for safety
bool needs_reset_to_default = false;
if (!is_polygon_structurally_sound(best_state.poly, calculate_perimeter (best_state.poly)) ||
best_state.poly.size() < 4 ||
'has_distinct_vertices_unordered (best_state.poly) ||
check_self_intersection_full (best_state.poly)) { // Full intersection check on best
needs_reset_to_default = true;

if (needs_reset_to_default) { // If best state is invalid, revert to default
best_state.poly = default_tiny_poly;
calculate_score_from_scratch (best_state.poly, best_state.m_count, best_state.s_count);
best_state.perimeter_cache = calculate_perimeter (best_state.poly); // Update for default

// 1If best score is 0, check if default polygon gives >0. (max(0, val+l)
if (best_state.get_objective_score() == 0) {
SAState temp_default_state; // Create a temporary default state to calculate its score
temp_default_state.poly = default_tiny_poly;
calculate_score_from_scratch (temp_default_state.poly, temp_default_state.m count, temp_default_state.
s_count) ;
temp_default_state.perimeter_cache = calculate_perimeter (temp_default_state.poly); // Update for
default

if (best_state.get_objective_score() < temp_default_state.get_objective_score()) {
best_state = temp_default_state;

// Output the best polygon

std::cout << best_state.poly.size() << "\n";
for (const auto& p : best_state.poly) {
std::cout << p.x << " " << p.y << "\n";
}
}
int main(int argc, char xargv[]) {

std::ios_base::sync_with_stdio (false);
std::cin.tie(NULL) ;

// Allow overriding time limit via command line arg, for local testing
if (arge > 1) {

try {

ACTUAL_TIME_LIMIT_SECONDS = std::stod(argv([1]);

} catch (const std::exception& e) { /+ keep default if parse fails =/ }
}
ACTUAL_TIME_LIMIT_SECONDS —-= TIME_LIMIT_SECONDS_SAFETY_MARGIN;
if (ACTUAL_TIME_LIMIT_SECONDS < 0.2) ACTUAL_TIME_LIMIT_SECONDS = 0.2; // Minimum sensible time limit

// query_rect_indices_cache_kdtree.reserve (2 « 5000 + 500); // Removed: unused
sa_critical_edge_indices_cache.reserve (10); // Small, for a few critical edges

int N_half; // Number of mackerels (and sardines)
std::cin >> N_half;

all_fish_structs.resize(2 * N_half);
std::vector<int> fish_indices_for_kdtree(2 * N_half);
if (2 % N_half > 0) {
std::iota(fish_indices_for_kdtree.begin(), fish_indices_for_kdtree.end(), 0);

// Read mackerels

for (int i = 0; i < N_half; ++i) {
std::cin >> all_fish_structs[i].p.x >> all_fish_structs[i].p.y;
all_fish_structs[i].type = 1;

}

// Read sardines

for (int i = 0; i < N_half; ++1i) {
std::cin >> all_fish_structs[N_half + i].p.x >> all_fish structs[N_half + i].p.y;
all_fish_structs[N_half + i].type = -1;

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

// Build KD-tree if there are fish
if (lall_fish_structs.empty()) {

fish_kdtree_root = build_kdtree(fish_indices_for_kdtree,

}
simulated_annealing_main();

// Clean up KD-tree memory

if (fish_kdtree_root) delete_kdtree (fish_kdtree_root);

return 0;

// EVOLVE-BLOCK-END

0, (int)all_fish_structs.size() - 1,

0);

Listing 4: SHINKAEVOLVE Discovered ahc039 Solution.

45

Under review as a conference paper at ICLR 2026

D.3.2 ALE-BENCH LITE TASK: auc025

// EVOLVE-BLOCK-START
#include <iostream>
#include <vector>
#include <string>
#include <numeric>
#include <algorithm>
#include <iomanip>
#include <cmath>
#include <set>
#include <map>
#include <chrono>
#include <random>
#include <unordered_map>

// Timer
std::chrono::steady_clock::time_point program_start_time;
std::chrono::milliseconds time_limit_ms (1850);

// Global problem parameters
int N_items_global, D_groups_global, Q_total_global;
int queries_made = 0;

std::mt19937 rng_engine;

// Query Manager with optimized caching

class QueryManager {

private:
int N, Q;
int& queries_made_ref;
std::vector<char> cmpl_flat; // flat NxN storage for 1lvl comparisons
std: :unordered_map<uint32_t, char> cmplv2; // for 1lv2 comparisons
std::mt19937& rng;

inline uint32_t keylv2(int a, int b, int c) const {
int mn = std::min(b, c), mx = std::max(b, c);
return (static_cast<uint32_t>(a) << 16) | (static_cast<uint32_t>(mn) << 8) | static_cast<uint32_t> (mx)

char perform_query_actual (const std::vector<int>& L_items, const std::vector<int>& R_items) {
queries_made_ref++;

std::cout << L_items.size() << " " << R_items.size();
for (int item_idx : L_items) {
std::cout << " " << item_idx;

}

for (int item_idx : R_items) {
std::cout << " " << item_idx;

}

std::cout << std::endl;

char result_char;
std::cin >> result_char;
return result_char;

public:
QueryManager (int N_, int Q_, int& gm, std::mt19937& r) : N(N_), Q(Q_), queries_made_ref(gm), rng(r) {
cmpl_flat.assign(N x N, 0);
cmplv2.reserve (N = N / 4 + 10);

char comparel (int a, int b) {
if (a b) return '=’;
int mn std::min(a, b), mx = std::max(a, b);
char cached cmpl_flat[mn * N + mx];
if (cached 0) {
if (a == mn) return cached;
return (cached == "<’ 2?2 ’>’ : (cached == '>" 2?2 <" : ’'="'));

}

if (queries_made_ref >= Q) return '=’;

char res = perform_query_actual ({a}, {b});

if (a == mn) {
cmpl_flat[mn = N + mx] = res;

} else {
if (res == ’<’) cmpl_flat[mn = N + mx] = ’>';
else if (res == '>’) cmpl_flat[mn * N + mx] = ’'<’
else cmpl_flat[mn * N + mx] = ’'=';

}

return res;

char comparelv2(int item_curr, int item_prev, int item_s_aux) {

if (item_curr == item_prev || item_curr == item_s_aux || item_prev == item_s_aux) {
if (item_prev == item_s_aux) return comparel (item_curr, item_prev);
if (item_curr == item_prev) return comparel (item_curr, item_s_aux);

return comparel (item_curr, item_prev);
}
uint32_t key = keylv2(item_curr, item_prev, item_s_aux);
auto it = cmplv2.find(key);
if (it != cmplv2.end()) return it->second;

46

Under review as a conference paper at ICLR 2026

if (queries_made_ref >= Q) return 8

char res = perform_query_actual ({item_curr}, {item_prev,

cmplv2.emplace (key, res);
return res;

void exhaust_queries () {
if (N >= 2) {
int a =0, b = 1;
while (queries_made_ref < Q) {
perform_query_actual ({a}, {b});
Hop
if (b a
if (b >=N) {
b
a
1

bi

// Weight estimation module
class WeightEstimator ({
private:
static constexpr long long BASE_WEIGHT = 100000;
static constexpr int FACTOR_GT = 200;
static constexpr int FACTOR_LT = 50;
static constexpr int FACTOR_XJ_FALLBACK = 100;

QueryManageré& qm;
int N, D, Q;

double estimate_log2 (double val) {
return (val <= 1.0) ? 0.0 : std::log2(val);

int calculate_gquery_cost (int N_val, int k_pivots) {
if (k_pivots <= 0) return 0;
if (k_pivots == 1) return std::max(0, N_val - 1);
double cost = 0;
cost += k_pivots » estimate_log2 (k_pivots);
for (int j = 2; j < k_pivots; ++3j) {
if (j - 1 > 0) cost += estimate_log2(j - 1);
}
cost += (N_val - k_pivots) » estimate_log2(k_pivots);
return static_cast<int>(std::ceil (cost));

item_s_aux});

void merge_sort_pivots (std::vector<int>& pivots, int left, int right) {

if (left >= right) return;

int mid = (left + right) / 2;
merge_sort_pivots (pivots, left, mid);
merge_sort_pivots (pivots, mid + 1, right);

int nl = mid - left + 1, n2 = right - mid;
std::vector<int> L(nl), R(n2);

for (int i = 0; 1 < nl; ++i) L[i] = pivots[left + i];
for (int j = 0; j < n2; ++j) R[J] = pivots[mid + 1 + jI;

int 1 = 0, j =0, k = left;

while (1 < nl && j < n2) {
char cmp = gm.comparel (L[i], R[J]);
if (cmp == "<’ || cmp == '=') pivots[k++] = L[i++];
else pivots[k++] = R[j++];

}

while (i < nl) pivots[k++] = L[i++];

while (j < n2) pivots[k++] = R[j++];

public:
WeightEstimator (QueryManager& gm_, int N_, int D_, int Q_)

std::vector<long long> estimate_weights() {
std::vector<long long> weights (N, BASE_WEIGHT) ;

// Determine pivot count

int k_pivots = (N > 0) 2 1 : 0;
if (N> 1) {
for (int k = N; k >= 1; --k) {

if (calculate_gquery_cost (N, k) <= Q) {
k_pivots = k;
break;

}
k_pivots = std::min(k_pivots, N);

if (k_pivots == 0) return weights;

// Select and sort pivots

47

am(gm_), N(N_), D(D_), Q(Q_)

Under review as a conference paper at ICLR 2026

:vector<int> pivots (k_pivots);

vector<int> indices(N);

iota(indices.begin(), indices.end(), 0);
::shuffle(indices.begin(), indices.end(), rng_engine);

for (int i = 0; i < k_pivots; ++i) pivots[i] = indices[i]

if (k_pivots >= 2) {
merge_sort_pivots (pivots, 0, k_pivots - 1);

// Estimate pivot weights

if (k_pivots == 1) {
weights[pivots[0]] = BASE_WEIGHT;
for (int i = 0; i < N; ++i) {

if (i == pivots[0]) continue;
char res = gm.comparel (i, pivots[0]);
if (res == ’=’) weights[i] = BASE_WEIGHT;
else if (res == ’<’) weights[i] = std::max(1LL, BASE_WEIGHT » FACTOR_LT / 100);
else weights[i] = std::max(1LL, BASE_WEIGHT » FACTOR_GT / 100);
}
} else {

// Multi-pivot estimation
weights[pivots[0]] = BASE_WEIGHT;

// Handle pl

char res_pl gm.comparel (pivots[1], pivots([0]);

if (res_pl ’=") weights[pivots[1]] = weights[pivots([0]];
else 1f (res_pl == ’'<’) weights[pivots[1l]] = std::max(1LL, weights([pivots[0]] x FACTOR_LT / 100);
else weights[pivots[1l]] = std::max(1LL, weights[pivots[0]] * FACTOR_GT / 100);
if (res_pl == ’>’ && weights[pivots[1l]] == weights[pivots[0]]) {
weights[pivots[1l]] = weights[pivots[0]] + 1;

}

// Handle remaining pivots with binary search bracketing
long long max_bound = BASE_WEIGHT (N / std::max(1l, D) + 10);
for (int j = 2; j < k_pivots; ++3) {

int cur = pivots[j], prev = pivots[j-1];

char res = gm.comparel (cur, prev);
if (res == "=") {
weights[cur] = weights[prev];
} else if (res == ’'<’') {
weights[cur] = std::max(1LL, weights[prev] x FACTOR_LT / 100);
} else {

// Binary search to bracket X_j
long long X_low = 1, X_high = max_bound;
bool low_set = false, high_set = false;

int low_idx = 0, high_idx = j - 2;
int tries = std::max(l, static_cast<int>(std::ceil(estimate_log2 (std::max(l, high_idx -
low_idx + 1)))));

for (int t = 0; t < tries && low_idx <= high_idx && queries_made < Q; ++t) {
int mid_idx = (low_idx + high_idx) / 2;
int s = pivots[mid_idx];
char res_lv2 = gm.comparelv2(cur, prev, s);

if (res_1lv2 == '=") {

X_low = X_high = weights([s];
low_set = high_set = true;
break;

} else if (res_1lv2 == ’'<’') {
X_high = weights([s];
high_set = true;
high_idx = mid_idx - 1;

} else {
X_low = weights([s];
low_set = true;

low_idx = mid_idx + 1;

long long est_X;

if (low_set && 'high_set) est_X = X_low » FACTOR_GT / 100;

else if (!low_set && high_set) est_X = X_high x FACTOR_LT / 100;
else if (low_set && high_set) est_X = (X_low + X_high) / 2;

else est_X = weights[prev] FACTOR_XJ_FALLBACK / 100;

est_X = std::max(1LL, est_X);
weights[cur] = weights[prev] + est_X;

// Ensure monotonicity

if (weights[cur] < weights[prev]) weights[cur] = weights|[prev];
if (res == ’>’ && weights[cur] weights[prev]) weights[cur] = weights[prev] + 1;
}
// Estimate non-pivot weights
std::vector<bool> is_pivot (N, false);
for (int p : pivots) is_pivot[p] = true;

48

Under review as a conference paper at ICLR 2026

for (int 1 = 0; i < N; ++i) {

if (is_pivot[i]) continue;
int low = 0, high = k_pivots - 1, found = -1;
while (low <= high && queries_made < Q) {
int mid = (low + high) / 2;
char res qm.comparel (i, pivots[mid]);
if (res ’=') { found = mid; break; }

else if (res == '<’) high = mid - 1;
else low = mid + 1;

if (found != -1) {
weights[i] = weights[pivots[found]];
continue;

int pos
if (pos =
long long w0 = weights[pivots[0]];
if (k_pivots >= 2) {
long long wl = weights[pivots[1l]];

if (wl > w0 && wO > 0) weights[i] = std::max(lLL,
else weights[i] = std::max(1LL, w0 / 2);
} else {
weights[i] = std::max(1LL, w0 / 2);
}
} else if (pos == k_pivots) {

long long wkl = weights[pivots[k_pivots - 1]1;
if (k_pivots >= 2) {
long long wk2 = weights[pivots[k_pivots - 2]];

long long wl = weights[pivots[pos - 1]];
long long wr = weights[pivots[pos]];
if (wl > 0 && wr > 0) {

} else {
weights[i] = (wl + wr) / 2;
}
weights[i] = std::max(weights[i], wl);
weights[i] = std::min(weights[i], wr);
}
weights[i] = std::max(1LL, weights[i]);

}

// Final validation
for (int i = 0; i < N; ++i) {
if (weights[i] <= 0) weights[i] = BASE_WEIGHT;

return weights;
i

// Assignment optimizer

class AssignmentOptimizer {

private:
int N, D;
std::vector<long long>& weights;
std::mt19937& rng;

if (D <= 0) return 1lel8;

double mean = static_cast<double> (total) / D;
double sum_sqg = 0;
for (long long s : sums) sum_sqg += static_cast<double>(s) * s;

double var = sum_sq / D - mean * mean;
return std::max (0.0, var);

public:
N(N_), D(D_), weights(w), rng(r) {}

std::vector<int> optimize () {
std::vector<int> assignment (N, 0);
std::vector<long long> group_sums (D, 0);
std::vector<std::vector<int>> group_items (D) ;
std::vector<int> item_pos(N);

// Greedy initialization

std::vector<std::pair<long long, int>> sorted_items;

for (int i = 0; i < N; ++i) {
sorted_items.emplace_back (-weights[i], 1);

}

std::sort (sorted_items.begin(), sorted_items.end());

49

w0 * w0 / wl);

if (wkl > wk2 && wk2 > 0) weights[i] = std::max(1LL, wkl x wkl / wk2);
else weights[i] = std::max(1LL, wkl * 2);
} else {
weights[i] = std::max (1LL, wkl x 2);
}
} else {

weights[i] = static_cast<long long>(std::sqrt (static_cast<double> (wl)

double calc_variance (const std::vector<long long>& sums, long long total) {

AssignmentOptimizer (int N_, int D_, std::vector<long long>& w, std::mtl19937& r)

* Wr));

Under review as a conference paper at ICLR 2026

long long total_sum = 0;
for (auto [neg_w, item]
int best_group = 0;
for (int g = 1; g < D; ++g) {
if (group_sums[g] < group_sums[best_group]) best_group = g;

sorted_items) {

}

assignment [item] = best_group;

item_pos[item] = group_items[best_group].size();
group_items [best_group] .push_back (item) ;
group_sums [best_group] += weights[item];
total_sum += weights[item];

double current_var = calc_variance (group_sums, total_sum);

// Enhanced local search with best-of-K
if (D > 1) {
const int MAX_ITERS = 400;
const int K_ITEMS = 8;
for (int iter = 0; iter < MAX_ITERS; ++iter) {
if ((iter & 31) == 0) {
auto now = std::chrono::steady_clock::now();
if (std::chrono::duration_cast<std::chrono::milliseconds>(now - program_start_time) >=
time_limit_ms) break;

}

int max_g = 0, min_g = 0;
for (int g = 1; g < D; ++g) {
if (group_sums[g] > group_sums[max_g]) max_g = g;
if (group_sums[g] < group_sums[min_g]) min_g = g;
}

if (max_g == min_g || group_items[max_g].empty()) break;

// Find best relocate from max_g to min_g among top-K heaviest
std::vector<std::pair<long long, int>> candidates;
for (int item : group_items[max_g]) {
candidates.emplace_back (weights[item], item);
}
if (candidates.empty()) break;
std::sort (candidates.begin(), candidates.end(), [](const auto& a, const auto& b) { return a.
first > b.first; });
if ((int)candidates.size() > K_ITEMS) candidates.resize (K_ITEMS);

double best_var = current_var;

int best_item = -1;
for (auto [w, item] : candidates) {
long long new_max = group_sums[max_g] - w;

long long new_min = group_sums[min_g] + w;
double new_var = calc_variance ({new_max, new_min}, group_sums[max_g] + group_sums[min_g]);
if (new_var + le-12 < best_var) {

best_var new_var;

best_item = item;

if (best_item == -1) break;

// Apply move

long long w = weights[best_item];

group_sums [max_g] -= w;

group_sums [min_g] += w;

current_var = calc_variance (group_sums, total_sum);

// Update tracking

int pos = item_pos[best_item];

int last = group_items[max_g] .back();

if (best_item != last) {
group_items[max_g] [pos] = last;
item_pos[last] = pos;

}

group_items [max_g] .pop_back () ;
item_pos[best_item] = group_items[min_g].size();
group_items[min_g] .push_back (best_item) ;
assignment [best_item] = min_g;

// Targeted Simulated Annealing

if (D > 1) {
double T = std::max (1.0, current_var x 0.25);
double cool_rate = 0.99985;
std::uniform_real_distribution<double> unif (0.0, 1.0);
int iterations = 0, no_imp = 0;

while (true) {
++iterations;
if ((iterations & 255) == 0) {
auto now = std::chrono::steady_clock::now();
if (std::chrono::duration_cast<std::chrono::milliseconds>(now - program_start_time) >=
time_limit_ms) break;

50

Under review as a conference paper at ICLR 2026

T %= cool_rate;
if (T < le-12) break;
}

// Targeted moves: 75% heavy-to-light relocate, 25% swap

if ((rng() % 4) != 0) {
// Targeted relocate
int max_g = 0, min_g = 0;

for (int g = 1; g < D; ++g) {
if (group_sums[g] > group_sums[max_g]) max_g = g;
if (group_sums([g] < group_sums[min_g]) min_g g;

}
if (group_items([max_g].empty()) { ++no_imp; continue; }

// Pick heavy item from max group (best of 3 samples)

int item = group_items[max_g] [rng() % group_items[max_g].size()];

for (int s = 0; s < 2; ++s) {
int cand = group_items[max_g][rng() % group_items[max_g].size()];
if (weights[cand] > weights[item]) item = cand;

}

long long w = weights[item];
long long new_max = group_sums[max_g] - w;
long long new_min = group_sums[min_g] + w;

double new_var = current_var;
new_var -= (static_cast<double> (group_sums[max_g]) * group_sums[max_g]) / D;
new_var -= (static_cast<double>(group_sums[min_g]) * group_sums[min_g]) / D;

new_var += (static_cast<double>(new_max) * new_max) / D;
new_var += (static_cast<double>(new_min) * new_min) / D;

double delta = new_var - current_var;

if (delta < O || unif(rng) < std::exp(-delta / T)) {
// Accept move
current_var = new_var;

group_sums [max_g] = new_max;

group_sums [min_g] = new_min;

int pos = item_pos[item];

int last = group_items[max_g] .back();

if (item != last) {
group_items[max_g] [pos] = last;
item_pos[last] = pos;

}
group_items [max_g] .pop_back () ;

item_pos[item] = group_items[min_g].size();
group_items [min_g] .push_back (item);
assignment [item] = min_g;
if (delta < -le-12) no_imp = 0; else ++no_imp;
} else ++no_imp;
} else {

// Random swap

int gl = rng() % D, g2 = rng() % D;

while (g2 == gl) g2 = rng() % D;

if (group_items[gl].empty() || group_items[g2].empty()) { ++no_imp; continue; }

int a = group_items[gl][rng() % group_items[gl].size()];
int b = group_items[g2][rng() % group_items[g2].size()];
long long wa = weights[a], wb = weights[b];

long long new_gl = group_sums[gl] - wa + wb;
long long new_g2 = group_sums[g2] - wb + wa;

double new_var = current_var;

new_var —= (static_cast<double>(group_sums[gl]) x group_sums[gl]
new_var —= (static_cast<double>(group_sums[g2]) x group_sums[g2]
new_var += (static_cast<double>(new_gl) * new_gl) / D;

new_var += (static_cast<double>(new_g2) * new_g2) / D;

==}

)/
)/

double delta = new_var - current_var;

if (delta < 0 || unif(rng) < std::exp(-delta / T)) {
current_var = new_var;
group_sums [gl] = new_gl;
group_sums [g2] = new_g2;

// Swap items

int pos_a = item_pos[a], pos_b = item pos[b];

int back_a = group_items[gl].back(), back_b = group_items[g2].back();

if (a != back_a) { group_items[gl][pos_a] = back_a; item_pos[back_a] = pos_a; }
group_items[gl] .pop_back();

if (b != back_b) { group_items[g2] [pos_b] = back_b; item_pos[back_b] = pos_b; }
group_items [g2] .pop_back () ;

item_pos[b] = group_items[gl].size(); group_items[gl].push_back (b); assignment [b]
i

item_pos[a] = group_items[g2].size(); group_items[g2].push_back(a); assignment[a]
i

if (delta < -le-12) no_imp = 0; else ++no_imp;

} else ++no_imp;

51

gl

g2

Under review as a conference paper at ICLR 2026

i

}
if (no_imp > N % 12) break;
}

return assignment;

int main() {

}

std::ios_base::sync_with_stdio(false);
std::cin.tie (NULL) ;

program_start_time = std::chrono::steady_clock ow();

uint64_t seed = std::chrono::duration_cast<std::chrono::nanoseconds> (
std::chrono::steady_clock: :now() .time_since_epoch()) .count () ;

rng_engine.seed (seed);

std::cin >> N_items_global >> D_groups_global >> Q_total_global;

QueryManager gm(N_items_global, Q_total_global, queries_made, rng_engine);
WeightEstimator estimator(gm, N_items_global, D_groups_global, Q_total_global);

std::vector<long long> weights = estimator.estimate_weights();
gm.exhaust_queries () ;

AssignmentOptimizer optimizer (N_items_global, D_groups_global, weights, rng_engine);

std::vector<int> assignment = optimizer.optimize();
for (int i = 0; i < N_items_global; ++i) {
std::cout << assignment[i] << (i + 1 == N_items_global ? "\n’ : ' ’);

}

return 0;

// EVOLVE-BLOCK-END

Listing 5: SHINKAEVOLVE Discovered ahc025 Solution.

52

Under review as a conference paper at ICLR 2026

D.4 MIXTURE-OF-EXPERTS LOAD BALANCING LOSS

def load_balancing_loss(

gate_logits: tuple[torch.Tensor],

num_experts: int,

top_k: int = 2,

attention_mask: Optional[torch.Tensor] = None,
) —> torch.Tensor:

nn

Load balancing loss for Mixture-of-Experts models.

parameters
layer_logits:

list with shape (B, T, total_experts) per layer.
total_experts:

number of experts inside the moe feed-forward sub-block.
top_k_experts:

number of experts chosen per token (k in top-k gating).
attention_mask:

optional mask (B, T) where 0 marks padded tokens.

returns
torch.Tensor:
scalar loss to be added to the training objective.
nun
determine device & flat token count
device = gate_logits[0].device
num_layers = len(gate_logits)
bsz, seglen = attention_mask.shape
n_tokens = bsz * seqglen

merge layers into (tokens, layers, experts
stacked = torch.stack(gate_logits, dim=-2).to(device)
logits = stacked.view(n_tokens, num_layers, num_experts)

obtain routing information
_, routing_probs, sel_idx = route_logits_to_scores(logits, top_k)
sel_mask = F.one_hot (sel_idx, num_experts)

if attention_mask is None:
average over all tokens

avg_sel = sel_mask.float () .mean (dim=0

avg_prob = routing_probs.mean (dim=0
else:

expand & apply mask

m_exp = (

attention_mask.unsqueeze (-1
.unsqueeze (-1)
.unsqueeze (-1)
.expand (bsz, seqlen, num_layers, top_k, num_experts
.reshape (-1, num_layers, top_k, num_experts)
)
avg_sel = sel_mask.float () .mul (m_exp) .sum(dim=0) / m_exp.sum(dim=0)

p_mask = (
attention_mask.unsqueeze (-1)
.unsqueeze (-1)
.expand (bsz, seglen, num_layers, num_experts)
.reshape (-1, num_layers, num_experts
)
avg_prob = routing_probs.mul (p_mask) .sum(dim=0) / p_mask.sum(dim=0)

mismatch penalty
per_layer = avg_sel % avg_prob.unsqueeze (-2)
main_loss = per_layer.mean(0).sum() * num_experts

——— Minimum usage regularizer: softly penalize underused experts --—-—

avg_sel: (layers, top_k, experts)

For each expert, sum over top_k to get total selection per expert per layer
avg_sel_sum = avg_sel.sum(dim=-2) # (layers, experts)

Normalize so that sum over experts = 1 per layer

avg_sel_norm = avg_sel_sum / (avg_sel_sum.sum(dim=-1, keepdim=True) + le-8)

Compute entropy of avg_prob per layer (routing distribution)

entropy = -(avg_prob » torch.log(avg_prob + 1le-8)).sum(dim=-1) # (layers,)
max_entropy = torch.log(torch.tensor (num_experts, dtype=avg_prob.dtype, device=avg_prob.device))
entropy_scale = 1.5 - entropy / (max_entropy + le-8) # ranges from 0.5 (uniform) to 1.5 (concentrated)

Penalty: encourage each expert to be used at least min_threshold
min_threshold = 0.01 * (64.0 / num_experts)

min_usage_penalty = torch.relu(min_threshold - avg_sel norm).sum(dim=-1) # (layers,)
penalty_coeff = 0.1

Final loss: main + entropy-scaled min usage penalty

return main_loss + penalty_coeff x (min_usage_penalty * entropy_scale) .mean (

Listing 6: SHINKAEVOLVE Discovered Mixture of Experts Load Balancing Loss.

53

	Introduction
	Related Work
	Method
	Parent and inspiration sampling
	Program mutation and novelty assessment
	Execution and world feedback

	Results
	Circle Packing: Reproducing & Improving AlphaEvolve Results
	AIME: Evolving Agent Scaffolds for Math Reasoning
	ALE-Bench: Evolving Programs for Combinatorial Optimization
	LLM Training: Evolving Losses for Balanced and Effective Experts

	Ablations & Analysis
	Discussion
	Shinka Implementation Details
	Task Implementation Details
	Circle Packing Problem
	AIME Math Reasoning Agentic Harness
	ALE-Bench Problems
	Mixture-of-Experts Load Balancing Loss

	Additional Results
	Circle Packing: Robustness across 3 independent runs
	Circle Packing: API Cost Breakdown
	Circle Packing: Asynchronous Throughput Scaling
	Circle Packing: Robustness across Code Embedding Thresholds
	Circle Packing: Robustness across LLM Prioritization Approaches

	ShinkaEvolve Discovered Solutions
	Circle Packing Problem
	AIME Math Reasoning Agentic Harness
	ALE-Bench Problems
	ALE-Bench LITE task: ahc039
	ALE-Bench LITE task: ahc025

	Mixture-of-Experts Load Balancing Loss

