
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHINKAEVOLVE: TOWARDS OPEN-ENDED AND
SAMPLE-EFFICIENT PROGRAM EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SHINKAEVOLVE: a new framework leveraging large language mod-
els (LLMs) to advance scientific discovery with state-of-the-art performance and
efficiency. The field of LLM-driven scientific discovery has seen significant
progress, but has yet to overcome a critical limitation: sample inefficiency, requir-
ing thousands of samples to identify effective solutions. SHINKAEVOLVE takes
a concrete step towards addressing this critical limitation by introducing three
key innovations: a parent sampling technique balancing exploration and exploita-
tion, code novelty rejection-sampling for efficient search space exploration, and
a bandit-based LLM ensemble selection strategy. When applied to the canonical
circle-packing optimization task, SHINKAEVOLVE discovers a new state-of-the-
art circle packing solution using only 150 samples, orders of magnitude fewer than
prior frameworks. Furthermore, applied to a broader set of engineering problems,
SHINKAEVOLVE designs robust agentic harnesses for AIME mathematical rea-
soning tasks, identifies improvements to ALE-Bench competitive programming
solutions, and discovers novel mixture-of-expert load balancing loss functions to
stabilize LLM training itself. We provide SHINKAEVOLVE’s full code together
with this submission, which will be open-sourced to accelerate open advance-
ments to open-ended automated discovery across diverse computational problems.

1 INTRODUCTION

Figure 1: High-level overview of SHINKAEVOLVE. Left: SHINKAEVOLVE constructs an archive
of evaluated programs, rejection-samples new ones, and evaluates their fitness. Right: SHINKAE-
VOLVE outperforms AlphaEvolve’s circle packing solution in orders-of-magnitude fewer iterations.

The rapid advancement of large language models (LLMs) has transformed scientific discovery
through agentic systems that autonomously conduct experiments and test hypotheses (Lu et al.,
2024b; Yamada et al., 2025; Novikov et al., 2025; Zhang et al., 2025). These frameworks leverage
LLMs as sophisticated mutation operators, iteratively refining candidate solutions with successful
variants propagating through successive generations. This methodology has proven effective across
domains such as competitive programming (Li et al., 2022), mathematical optimization (Romera-
Paredes et al., 2024), and automated agentic design (Hu et al., 2024). However, current implementa-
tions face significant practical limitations. The primary challenge is substantial sample inefficiency
as existing approaches typically require thousands of evaluations, making them computationally ex-
pensive and time-consuming. This inefficiency stems from naive exploration strategies that fail to
effectively leverage accumulated knowledge from previous generations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

SHINKAEVOLVE addresses these challenges through three key algorithmic innovations that work
synergistically to enhance sample efficiency. Our adaptive parent and LLM sampling intelligently
balances exploration of novel regions with exploitation of known high-quality areas. Next, our code
proposal novelty rejection sampling ensures efficient program mutations. Finally, our bandit-based
LLM selection strategy dynamically adapts to the evolving state of the sampled archive parents
and inspiration programs. Experimental validation across diverse domains demonstrates substantial
improvements in both efficiency and solution quality, with SHINKAEVOLVE achieving state-of-the-
art results using orders of magnitude fewer evaluations than existing approaches.

SHINKAEVOLVE’s full code, provided with this submission, will be open-sourced to accelerate open
advancements to automated discovery across a broader range of problems. In summary:

1. We introduce SHINKAEVOLVE, an evolutionary framework with three key algorithmic in-
novations: a novel parent program sampling strategy, code novelty rejection-sampling, and
adaptive performance-based LLM ensemble selection.

2. We compare SHINKAEVOLVE with prior frameworks on the canonical circle-packing task,
achieving state-of-the-art results with orders-of-magnitude fewer iterations.

3. We demonstrate SHINKAEVOLVE’s ability to innovate beyond human and LLM-generated
solutions across three additional engineering domains: agentic scaffolding (AIME), com-
petitive programming (ALE-Bench), and LLM training design (mixture-of-expert loss).

2 RELATED WORK

Evolutionary Code Optimization with LLMs. One particular flavor of test-time compute is evolu-
tionary code optimization: the usage, mutation, and recombination of previously generated code to
produce new samples. This approach has been used to optimize reward and preference objectives (Lu
et al., 2024a; Ma et al., 2023), mathematical science code (Romera-Paredes et al., 2024), and other
applications (Lehman et al., 2022; Lange et al., 2024; Meyerson et al., 2023; Berman, 2025; Lange
et al., 2025). Through prompting, LLMs are used as recombination engines (Lange et al., 2023;
Meyerson et al., 2023) capable of simulating crossover between diverse code snippets and the ratio-
nales that produced them. These types of program archive-building systems resemble a population-
based LLM-guided tree search (Jiang et al., 2025; Inoue et al., 2025). Most closely related to our
work are AlphaEvolve (Novikov et al., 2025), OpenEvolve (Sharma, 2025), and LLM4AD (Liu et al.,
2024a). We advance this line of work, demonstrating unprecedented sample efficiency with our com-
bination of rejection-sampling, LLM prioritization, and online meta-scratchpad drafting.

Open-Ended Agentic Discovery. The integration of LLMs with open-ended evolutionary princi-
ples enables agentic systems capable of continuous innovation (Stanley et al., 2017; Zhang et al.,
2025). Unlike traditional novelty search that relies on explicit diversity metrics (Lehman et al.,
2008; Lehman & Stanley, 2011), LLM agents leverage learned representations to generate new so-
lutions while maintaining semantic coherence (Faldor et al., 2024; Hu et al., 2024; Novikov et al.,
2025). These agents construct evolutionary trees of programs where LLM-guided mutations con-
nect related solutions across generations (Lehman et al., 2020). SHINKAEVOLVE systematically
combines stepping stones, suboptimal intermediate solutions that serve as building blocks for break-
through innovations, by employing LLM agents to both generate mutations and evaluate program
relationships, enabling successful patterns to propagate across search branches rapidly.

3 METHOD

Algorithm Overview. SHINKAEVOLVE’s control-flow entails three main phases:

1. Parent and inspiration sampling from an archive of island program subpopulations. Impor-
tantly, we emphasize the trade-off between exploration and exploitation in parent selection.

2. Program mutation via LLM-guided code edit proposals. We utilize novelty rejection-
sampling based on code embedding similarity and an LLM-as-a-novelty-judge assessment.

3. Program execution and world feedback guiding the LLM ensemble selection probabilities
and online meta-scratchpad drafting for documentation and knowledge diffusion.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.1 PARENT AND INSPIRATION SAMPLING

Archive Maintenance, Island Populations & Mutation Context Construction. SHINKAEVOLVE
maintains a fixed-size archive of previously evaluated programs with fitness scores and meta infor-
mation, implementing an elite size constraint. The mutation context incorporates a primary parent
program alongside inspiration programs drawn from top-performing solutions and random archive
samples, providing the LLM with diverse exemplars for creative recombination. We follow Romera-
Paredes et al. (2024); Novikov et al. (2025) and employ an island model approach with independent
subpopulations seeded from the same initial program. The islands evolve in parallel to enhance
diversity and prevent premature convergence. Island members can occasionally migrate between is-
lands to diffuse knowledge across “discovery substreams”. To protect the uniqueness of each island,
we prevent the island-specific best-performing program from migrating (Tanese, 1989; Romera-
Paredes et al., 2024). Sampling occurs hierarchically: with the island ID first sampled uniformly
from the archive, later used as the origin for both parent and inspirations.

Balancing Exploration & Exploitation: Parent Program Selection. Given an island subpopula-
tion, SHINKAEVOLVE implements multiple different parent sampling strategies that balance explo-
ration and exploitation. First, we employ power law sampling where programs are ranked by fitness

with ranks ri (ri = 1 for the best program). The selection probability follows pi =
r−α
i∑n

j=1 r−α
j

, where

α controls exploitation intensity. Setting α = 0 yields uniform sampling, while α → ∞ implements
hill-climbing. Inspired by Zhang et al. (2025), we contrast this with weighted sampling, incorpo-
rating performance and novelty. Given programs, Pi, with offspring count N(Pi), we first compute
the median fitness α0 = median({F (P1), F (P2), ..., F (Pn)}). The performance component uses
sigmoid scaling: si = σ(λ · (F (Pi)− α0)) where σ(x) = 1

1+e−x and λ controls selection pressure.
The novelty component hi =

1
1+N(Pi)

favors programs with fewer offspring. The final probability
combines these: pi = wi∑n

j=1 wj
where wi = si · hi balances performance and novelty. By default,

we use SHINKAEVOLVE uses the weighted sampling strategy. We provide a visual comparison of
all these strategies in Figure 2 below:

0 5 10
Number of Offsprings

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rf

or
m

an
ce

 S
co

re

Uniform (= 0)

0 5 10
Number of Offsprings

Hill Climbing ()

0 5 10
Number of Offsprings

Power Law (= 1.0)

0 5 10
Number of Offsprings

Weighted (= 10)

0.000

0.005

0.010

0.015

0.020

0.025

>0.030

Sa
m

pl
in

g
Pr

ob
ab

ilit
y

Figure 2: SHINKAEVOLVE Parent Sampling. The strategies range from pure exploration (uniform
sampling) to pure exploitation (hill-climbing) to a combination of performance and novelty.

3.2 PROGRAM MUTATION AND NOVELTY ASSESSMENT

LLM-Guided Program Mutations. To generate new programs, SHINKAEVOLVE starts by sam-
pling a specific LLM and a set of sampling parameters (e.g., temperature or reasoning budget) from
a pre-specified pool. Our framework provides support for models from leading API providers, in-
cluding GPT, Gemini, Claude, and DeepSeek (OpenAI, 2023; Team, 2025; Anthropic, 2024; Guo
et al., 2025). After sampling a model, SHINKAEVOLVE employs three distinct mutation approaches
to foster diversity and creativity in the LLM-generated program variants:

1. Diff-Based Edits. We implement diff edits using LLMs following the approach outlined
in Novikov et al. (2025), utilizing SEARCH/REPLACE blocks for targeted modifications.

2. Full Rewrites. We enable full program rewrites to allow greater flexibility, programmati-
cally ensuring that non-mutable blocks remain unchanged during the LLM rewrite process.

3. Crossover Mutation. We leverage crossover mutations (Lehman et al., 2022; Lange et al.,
2025) where an LLM is prompted to combine the parent and an additional archive program.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Following Novikov et al. (2025), we use text markers (EVOLVE-BLOCK-START &
EVOLVE-BLOCK-END) to ensure that immutable code is not changed during LLM rewrites. After
a code change proposal, we enforce that the immutable code is not touched and resample a new pro-
posal if a patch is invalid, providing parsing feedback using Reflexion (Shinn et al., 2024).

Program Diversity via Novelty Rejection Sampling. To enhance the creativity of executed code
proposals, we leverage an LLM ensemble combined with temperature sampling. Additionally, we
introduce code novelty rejection sampling using an embedding model to embed mutable parts of
the program code. Afterwards, we compute cosine similarity scores across the island subpopulation
programs. If the maximal score exceeds a threshold (e.g., η = 0.95), we query an LLM to further
assess whether the program is meaningfully different. The approach is illustrated in Figure 3:

Figure 3: SHINKAEVOLVE Program Novelty Rejection Sampling. SHINKAEVOLVE embeds
mutable code snippets, computes similarities across the archive; if the maximal score exceeds a
threshold, another LLM is queried to assess whether the program is meaningfully novel.

3.3 EXECUTION AND WORLD FEEDBACK

Multi-Objective Optimization & Textual Feedback. After a program obtained with the above
steps is executed, SHINKAEVOLVE performs multi-objective assessment yielding both its scalar fit-
ness value ri together with a set of exposed “public metrics” and textual feedback. SHINKAEVOLVE
then stores this full multi-objective assessment in the population archive to provide an informative
context for future generations of language model mutations using a simple prompting format:

Example of Diff Edit Prompt with Textual Feedback

Current program
Here is the current program we are trying to improve (you will need to propose a modification to it below):
‘‘‘{language}
{code_content}
‘‘‘
Here are the performance metrics of the program:
{performance_metrics}{text_feedback_section}

Instructions
...
Task
...
IMPORTANT: Do not rewrite the entire program - focus on targeted improvements.

Adaptive LLM sampling evolution. The performance of different LLMs to propose mutations
can vary across problem domains and based on the current state of the sampled archive par-
ents and inspiration programs. SHINKAEVOLVE dynamically adapts to this non-stationarity by
evolving the LLM sampling probability throughout at the end of each generation. Our approach
is based on the UCB1 algorithm (Auer et al., 2002), associating each LLM with a visitation
counter and an estimate of the expected score updated with the performance of its sampled mu-
tations. We introduce changes tailored to the domain of LLM-driven discovery. In particular,
rather than the absolute fitness of each mutation F (Pi), we update the LLM distribution using:
F (Pi)

u = exp
(
max(F (Pi)− F (Pi)

b, 0)
)
− 1, where F (Pi)

b is the baseline reward for program i
computed as the maximum between its parent program and the initial program in the database, ensur-
ing each LLM is evaluated based on its relative improvement to account for the non-stationarity of
the program archive. At the same time, the exp(·) and max(·, 0) operations help precisely promote
LLMs able to come up with bold, high-risk, high-reward mutations, over “safer” minor improve-
ments. We use the tracked statistics over the observed rewards to normalize F (Pi)

u and ensure
invariance to the fitness scale of each domain.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Meta-Scratchpad & Online Refinement. SHINKAEVOLVE implements a meta-scratchpad sys-
tem that periodically analyzes successful solutions. Every T generations, we summarize the re-
cent program evaluations and identify common optimization strategies and design principles. The
meta-agent synthesizes insights into actionable recommendations appended to the mutation prompt,
providing high-level guidance from accumulated evolutionary experience.

4 RESULTS

In this Section, we demonstrate how SHINKAEVOLVE’s innovations lead to concrete breakthroughs
across four relevant scientific and engineering domains. Furthermore, we conclude by providing an
in-depth ablation analysis quantifying the significance of each of SHINKAEVOLVE’s main compo-
nents. To complement the shared code, we also refer the interested readers to Appendix B for full
implementation details and hyperparameter configurations together with Appendix D for program
listings representing each of SHINKAEVOLVE’s final solutions.

4.1 CIRCLE PACKING: REPRODUCING & IMPROVING ALPHAEVOLVE RESULTS

Task Description. The circle packing optimization problem requires placing 26 circles within a
unit square such that the sum of their radii is maximized while ensuring no circles overlap and all
circles remain fully contained within the square boundary. This constrained optimization challenge
combines discrete placement decisions with continuous radius optimization, making it a complex
benchmark for evolutionary algorithms. The problem exhibits multiple local optima and requires so-
phisticated strategies to discover high-quality solutions without suboptimal space allocation.

SHINKAEVOLVE’s Discovery Dynamics. SHINKAEVOLVE was executed for only 150 evolution-
ary generations before finding a state-of-the-art solution, in contrast to existing approaches using at
least thousands of evaluations (Figure 1). Figure 4 (left) shows the improvement trajectory ex-
hibits three distinct phases: an initial rapid improvement phase where the algorithm quickly discov-
ers fundamental radii optimization strategies, a sustained exploration phase with incremental gains
as more sophisticated techniques emerge (constraint-based optimization), and a final convergence
phase where the best solutions are refined through restarts. The tree structure in Figure 4 (right) re-
veals how successful innovations propagate through the population, with high-performing solutions
(green and yellow) serving as parents for subsequent generations. Notably, the algorithm demon-
strates sophisticated exploration patterns, with multiple evolutionary branches exploring different
algorithmic approaches before converging toward the optimal solution path shown in black.

0 20 40 60 80 100 120 140 160
Number of Evaluated LLM Program Proposals

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

ShinkaEvolve - Circle Packing: Improvements

Best Score
Individual Evals
Path to Best Node
Cumulative Cost

corner_circles_and_v
ariable_edge_density

iterative_radi
us_optimization

simulated_annea
ling_acceptance

add_global_ring_rotation_
move_and_adjust_annealing

use_golden_inn
er_outer_rings

enhanced_golden_
angle_sa_packing

enhanced_golde
n_sa_crossover

adaptive_multi
phase_annealing

hybrid_sa_local
_search_packing

slsqp_meta
_optimizer

sa_metaheuris
tic_refinement

stagnation
_reheating

0

1 2 3 4 5

6 79 8 10 11

12

13

1415

16

17

18

19

20

21 22

23

2425 26

27

28 29

30 31 3233 343536

37

39

38

40

42

43 46

48

41 47

45 50

51

49

52 4454

57

59

53

56

55

60

5864 63 6268 69

70

61

65 67

71

7273

75

66

7477

76

80

78

81 8279

83

87

89 8485

91

86

88

92

93

97

90

95

96

94

99 98

99 102 100 103 106 101 104 105 107 112 113 108 109 110 111 114

115

116114

121

117

120122 118 119

125

126 124127

128

129

131

132

133

136135

134

137 139 138

142

140

144

143

123

145

146

147

149

148

ShinkaEvolve - Circle Packing: Program Evolution Tree
Best Score
Diff Edit
Full Edit

Initial
Cross-Over
Incorrect

0

2

4

6

8

10

12

Cu
m

ul
at

iv
e

AP
I C

os
t

($
)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Co
m

bi
ne

d
Fi

tn
es

s
Sc

or
e

Figure 4: SHINKAEVOLVE on Circle Packing Task. Left: SHINKAEVOLVE outperforms AlphaE-
volve’s solution in less than 150 program evaluations. Right: SHINKAEVOLVE’s program evolution
tree demonstrates the iterative composition of stepping stones into high-performing solutions.

SHINKAEVOLVE’s Discovered Solution. The final program (Section D.1) combines three key
innovations: (1) a sophisticated initialization that places circles in a structured golden-angle spiral
pattern with strategic corner and edge positioning, (2) a hybrid optimization approach integrating
SLSQP gradient-based refinement with simulated annealing for global exploration, and (3) intel-
ligent perturbation mechanisms that alternate between local circle movements and global ring ro-
tations to escape local optima. The discovered solution employs adaptive temperature scheduling
with reheating strategies to prevent premature convergence, while maintaining feasibility through
constraint-aware radius computation. This multi-level approach, from structured initialization

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

through meta-heuristic exploration to gradient-based polishing, exemplifies how SHINKAEVOLVE
can discover effective algorithmic compositions that outperform hand-designed baselines.

4.2 AIME: EVOLVING AGENT SCAFFOLDS FOR MATH REASONING

Task Description. We evaluate SHINKAEVOLVE on AIME 2024 (AIM, 2024) mathematical rea-
soning problems, consisting of 30 challenging competition-level questions requiring sophisticated
problem-solving strategies (Hu et al., 2024). The task involves evolving agent scaffold designs
constrained to a maximum of 10 LLM queries per problem for computational efficiency. Using
gpt-4.1-nano as the base model, we discover scaffold designs for 75 generations, with each
candidate evaluated across three independent runs on the complete question set.

SHINKAEVOLVE’s Discovery Dynamics. SHINKAEVOLVE discovers scaffold designs that sig-
nificantly outperform hand-designed baselines, including simple single-query agents and sophisti-
cated majority-voting approaches. The search reveals a Pareto frontier between efficiency and per-
formance (Figure 5, left), with 7 LLM queries yielding maximum performance while an alternative
scaffold achieves comparable results using the full 10-query budget. We evaluate generalization by
testing on 2023 and 2025 AIME problems, displaying different transfer patterns (Figure 5, middle):
smaller improvements on 2023 problems suggest potential saturation due to training data contam-
ination, while larger gains on 2025 problems indicate successful generalization to recent, unseen
challenges. Cross-LLM model transfer experiments validate robustness, with successful adaptation
to gpt-4.1-mini, gpt-4.1, and o4-mini demonstrating that discovered architectures capture
generalizable strategies rather than model-specific optimizations (Figure 5, right).

246810
Average Number of LLM Calls Per Problem

20

22

24

26

28

30

32

34

AI
M

E
20

24
 A

cc
ur

ac
y/

Pe
rf

or
m

an
ce

 (
%

)

AIME Agent Scaffold Design: Pareto Front Analysis

initial
_program

multi_step_re
flection_agent

two_stage_v
erification

expert_ensemble_wi
th_self_correction

systematic_er
ror_detection

Dominated/Other
Pareto Optimal

2023 2024 2025
AIME Problem Set Year

0

5

10

15

20

25

30

35

AI
M

E
Ac

cu
ra

cy
/P

er
fo

rm
an

ce
 (

%
)

18.4

24.4

11.1

21.8

32.2

25.6

23.0

34.4

20.0

AIME Agent Scaffold Design: Transfer Across Years

Base Agent
Majority@5
ShinkaEvolve

gpt-4.1-mini gpt-4.1 o4-mini
Agent Language Model

0

20

40

60

80

AI
M

E
20

24
 A

cc
ur

ac
y/

Pe
rf

or
m

an
ce

 (
%

)
44.4 46.7

80.0

60.0 60.0

88.9

65.6 65.6

94.4

AIME Agent Scaffold Design: Transfer Across LLMs

Figure 5: SHINKAEVOLVE for Agent Scaffold Design. Left: SHINKAEVOLVE discovers a Pareto
frontier between performance and query budget. Middle: The discovered scaffold generalizes to
unseen AIME problems. Right: The scaffold boosts performance regardless of the underlying LLM.
SHINKAEVOLVE’s Discovered Solution. The evolved agent implements a three-stage architec-
ture leveraging diverse expert personas, critical peer review, and synthesis mechanisms. Three spe-
cialized experts generate independent solutions using distinct approaches: a meticulous step-by-step
reasoner, an intuitive pattern-recognition specialist, and an algorithmic computer science-oriented
mathematician, each operating at 0.7 temperature. The second stage introduces critical peer review,
where each solution undergoes rigorous scrutiny from a skeptical reviewer at low temperature (0.1).
The reviewer validates pattern-based reasoning by testing patterns on multiple examples, identi-
fies logical flaws, and provides corrections when necessary, significantly improving solution quality.
The final synthesis stage employs an editor-in-chief persona operating at zero temperature to analyze
all solutions and critiques, identify the most reliable approach, and construct a canonical solution.
Robust fallback mechanisms resort to majority voting among reviewed solutions, then original so-
lutions, ensuring reliable output when components fail. This architecture effectively utilizes 7 LLM
calls (3 generation + 3 review + 1 synthesis) even less than the specified 10-call constraint.

4.3 ALE-BENCH: EVOLVING PROGRAMS FOR COMBINATORIAL OPTIMIZATION

Task Description. We apply SHINKAEVOLVE to ALE-Bench LITE (Imajuku et al., 2025), a col-
lection of 10 competitive programming contests hosted by AtCoder to test the performance of LLMs
on heuristic problems. We explore SHINKAEVOLVE’s ability to improve high-performing solutions
using the best programming solution from ALE-Agent (Imajuku et al., 2025) as an initial program.
We run SHINKAEVOLVE for 50 generations, using the public set score as the fitness function. We
then submit and report the score of our final solution to the private test set.

SHINKAEVOLVE’s Discovery Dynamics. SHINKAEVOLVE is able to improve the solutions dis-
covered by ALE-Agent by approximately 2.3% across the 10 tasks on average (Figure 6). Fur-
thermore, on task ahc039, SHINKAEVOLVE’s final solution even outperformed the second place

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

submission on the AtCoder leaderboard. These notable gains came from fine-grained refinements
that preserved the high-level algorithmic structure to ALE-Agent’s solutions.

ALE-Agent
Best

Shinka
Public [Top-1]

Shinka
Public [Top-5]

Shinka
Private

1800

1820

1840

1860

1880

1900

1920

1940

M
ea

n
Sc

or
e

(1
0

AL
E-

Be
nc

h
LI

TE
 T

as
ks

)

1879.3

1923.5
1927.9

1932.1

ShinkaEvolve Improvements on Top of ALE-Agent Solutions

ahc008
ahc011

ahc015
ahc016

ahc024
ahc025

ahc026
ahc027

ahc039
ahc046

1000

1250

1500

1750

2000

2250

2500

2750

3000

AL
E-

Be
nc

h
Sc

or
e

ac
ro

ss
 T

as
ks

 (
)

ShinkaEvolve Private Performance Score (10 ALE-Bench Tasks)
ALE-Agent Best
ShinkaEvolve (Max Public Top-1)
ShinkaEvolve (Max Public Top-5)
ShinkaEvolve (Max Private)

Figure 6: SHINKAEVOLVE for Improving ALE-Bench solutions. Left: SHINKAEVOLVE im-
proves ALE-Agent’s solution by ∼ 2.3%. Right: On one task, ahc039, the solution improved
from 5th to 2nd place submission on the AtCoder leaderboard if it had participated in the contest.
SHINKAEVOLVE’s Discovered Solution. We focus on two tasks to illustrate the discovered im-
provements of SHINKAEVOLVE, ahc039 and ahc025. The objective of ahc039 is to find an
optimal, axis-aligned polygon to maximize the number of mackerels it contains minus the number
of sardines, subject to given constraints. The base solution by ALE-Agent applies simulated an-
nealing with kd-tree data structure (5th, 2880 performance). SHINKAEVOLVE further improved the
solution (2nd, 3140 performance) by introducing modifications such as caching the validation pro-
cess and enhancing neighborhood operators. For the caching, the kd-tree was augmented to cache
subtree statistics, including bounding boxes and fish counts, at each node. For the neighborhood
operators, a novel “targeted edge move” was introduced, which heuristically identifies a misclassi-
fied fish (e.g., a mackerel outside the polygon) and greedily moves the nearest edge to correct its
state. These changes strengthened the directionality of the search. For ahc025, the task is to use a
balance scale to compare the total weights of any two subsets of items, aiming, after a fixed number
of weighings, to partition the items into groups with as equal total weights as possible. SHINKAE-
VOLVE improved the ALE-Agent’s simulated annealing baseline by introducing faster caching, re-
fining fallback weight estimation, and ultimately replacing simulated annealing with a more focused
optimization combining greedy moves and targeted local search. Comparison with top human solu-
tions suggests that for many tasks, there is ample room for improvement. Furthermore, often times
SHINKAEVOLVE tended to explore modifications staying close to the ALE-Agent’s solution. This
indicates the potential of overfitting to the initialization solution.

4.4 LLM TRAINING: EVOLVING LOSSES FOR BALANCED AND EFFECTIVE EXPERTS

Task Description. The Mixture-of-Expert (MoE) architecture (Szymanski & Lemmon, 1993;
Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022) has been a critical advancement,
ubiquitous amongst modern open and closed-source flagship models (Google AI Blog, 2024; Guo
et al., 2025; Meta-AI, 2025; Yang et al., 2025; Team, 2025). The basic idea is simple: replace tradi-
tional large feed-forward residual blocks with ensembles of efficient smaller modules (the “experts”)
that can each specialize in distinct problem domains (Fedus et al., 2022). For each MoE layer and
token, only the outputs of the top-K experts selected by a router classifier are computed, effectively
splitting the computation and making both training and inference cheaper and faster. However, due
to the non-differentiability of the top-K expert selection operation, it is critical to provide the router
with an auxiliary load balancing loss (LBL), which serves to avoid early collapse toward uneven
expert distribution of the token load. We deploy SHINKAEVOLVE precisely to tackle this open
architectural design challenge, which has been one core focus driving recent MoE advancements
(Shazeer et al., 2017; Fedus et al., 2022; Du et al., 2022; Zoph et al., 2022; Xue et al., 2024; Dai
et al., 2024; Qiu et al., 2025; Muennighoff et al., 2024): Devising an effective load balancing loss to
incentivize efficiency and specialization, without hindering the model’s expressivity.

SHINKAEVOLVE’s Discovery Dynamics. We ground the problem of LBL design by pretraining
a MoE model with 556M parameters, NE = 64 total experts of which only K = 8 active for any
given token. This results in only 82M parameters sparsely activated in each forward pass, excluding
the token embeddings. We train this small model on over 2B tokens from fineweb (Penedo et al.,
2024) by minimizing the MoE loss function, computed by adding the LBL, weighted by λ = 0.01,
to the model’s cross-entropy loss (CE). The fitness function of each program then measures a simple

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

objective: minimize the sum of the final CE together with the model’s overall “load imbalance”
as measured by the L1 deviation from a uniform distribution of tokens between the MoE experts.
Given the cost of pretraining, we run SHINKAEVOLVE for only 30 iterations. We evaluate the
generality of SHINKAEVOLVE’s best-performing solutions by training a much larger MoE with 2.7B
parameters on slightly under 30B fineweb tokens across three LBL coefficients λ ∈ 0.001, 0.01, 0.1,
yielding different levels of regularization. We compare this solution against the “global-batch LBL”
used to train some of the most popular open LLMs (Yang et al., 2025), in terms of final perplexity
(Figure 7, left) and end task performance (Figure 7, center) as evaluated across different downstream
benchmarks (Talmor et al., 2018; Zellers et al., 2019; Mihaylov et al., 2018; Bisk et al., 2020; Sap
et al., 2019; Sakaguchi et al., 2021; Clark et al., 2018). We provide our results below as a function
of load imbalance, showing that SHINKAEVOLVE’s new loss achieves a consistent edge across our
training configurations, growing larger with the value of the λ coefficient.

0.01 4 × 10 36 × 10 32 × 10 23 × 10 2

Missrouted Token Fraction (log scale, inverted)
0.356

0.358

0.360

0.362

0.364

0.366

0.368

0.370

Re
as

on
in

g
Ta

sk
 A

cc
ur

ac
y

Task Performance vs. Token Routing

Global-batch LBL
ShinkaEvolve LBL

0.014 × 10 3 6 × 10 3 2 × 10 2 3 × 10 2

Missrouted Token Fraction (log scale)

1.4375

1.4400

1.4425

1.4450

1.4475

1.4500

1.4525

1.4550

Pe
rp

le
xi

ty
 (

lo
w

er
 is

 b
et

te
r)

Model Perplexity vs. Token Routing

0.5 0.6 0.7 0.8 0.9 1.0
Expert 1 Token Allocation

0

1

2

3

4

Lo
ss

 G
ra

di
en

t
(d

 lo
ss

 /
d

x)

Loss Gradient Comparison
Relative Improvement (%)

0

2

4

6

8

10

12

Re
la

ti
ve

 Im
pr

ov
em

en
t

(%
)

Figure 7: SHINKAEVOLVE for discovering Mixture-of-Experts Load Balancing Loss Func-
tions. Left: Downstream task performance across seven benchmarks. Middle: Final perplexity
across missroute fraction levels. Right: Load imbalance gradient as a function of token allocation.

SHINKAEVOLVE’s Discovered Solution. The discovered LBL is a new twist on the established
global-batch LBL, which was used for seeding the evolutionary search. SHINKAEVOLVE comple-
ments this popular LBL with a new term, specifically targeted toward regularizing the MoE layers
with individual under-specialized experts. Concretely, let fℓ,i and Pℓ,i correspond to the selection
frequency and the average router probabilities for each expert i located in layer ℓ. SHINKAEVOLVE’s
LBL uses a normalized complement to the entropy in each layer s(Pℓ) = 0.5 +

(
1− H(Pℓ)

logNE

)
and a

minimum usage threshold target τ = 0.064/NE to compute:

LLBL = NE · 1
L

L∑
ℓ=1

NE∑
i=1

fℓ,i Pℓ,i︸ ︷︷ ︸
Global-batch LBL

+
0.1

L

L∑
ℓ=1

s(Pℓ)

NE∑
i=1

max
(
0, τ − fℓ,i

)
︸ ︷︷ ︸

SHINKAEVOLVE new regularization

.
(1)

The effects of SHINKAEVOLVE’s new regularization term can be seen through its induced gradients
acting on the router’s token allocation in a simplified two-expert scenario (Figure 7, right). Intu-
itively, this term affects the MoE router of any layer where experts are allocated a fraction of tokens
less than τ . The multiplier s(Pℓ) strengthens this push when the layer’s routing entropy H(Pℓ) is
low and the router concentrates on a few dominating experts. This closes a blind spot of the global-
batch LBL: the dot product f ·P can look “balanced” even if few experts are barely touched. Thus,
this term can be seen as a safety net that adaptively activates and vanishes once an expert crosses
the floor, preventing dead experts and avoiding over-regularizing well-balanced layers. We refer to
Appendix B, for further results and an extended discussion on how SHINKAEVOLVE’s differ’s from
prior approaches.

5 ABLATIONS & ANALYSIS

Impact of Parent Selection Strategies. To understand the importance of parent selection, we
compare different strategies for choosing which programs to evolve. The Best-of-N baseline ignores
the evolutionary history, always using the initial program as parent without feedback. In contrast,
Hill Climbing represents a greedy approach that only selects the highest-performing program as the
parent for mutations. Our proposed Weighted Sampling strategy balances exploration and exploita-
tion by probabilistically selecting parents based on their fitness and number of offspring.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140
Number of Evaluated LLM Program Proposals

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Ablation: Parent Selection Strategy

Best-of-N
Hill Climbing
Novelty Weighted

0 20 40 60 80 100 120 140
Number of Evaluated LLM Program Proposals

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7 Ablation: LLM Ensemble Prioritization

Single LLM Model
LLM Model Ensemble
+ Bandit Prioritization

0 20 40 60 80 100 120 140
Number of Evaluated LLM Program Proposals

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7 Ablation: Novelty Rejection Sampling

No Rejection
Threshold Rejection
+ LLM-Novelty-Judge

Figure 8: SHINKAEVOLVE Method Ablation Studies on Circle Packing. Left: Weighted parent
sampling outperforms random search and hill climbing. Middle: Bandit-based LLM ensembling
improves the performance over a fixed uniform ensemble distribution. Right: Embedding-based
rejection sampling with LLM as a novelty judge strongly outperforms no rejection sampling.

Takeaways. Weighted sampling consistently outperforms random search and hill climbing across
all tasks. Hill climbing shows strong initial performance but plateaus quickly, while weighted sam-
pling maintains steady improvement throughout evolution. Random search demonstrates the poorest
convergence, highlighting the importance of leveraging fitness-based parent selection.

Impact of LLM Ensembling and Prioritization. Evolutionary agents can benefit from diverse
coding capabilities by leveraging multiple LLMs. We investigate this hypothesis by comparing a
Single LLM baseline (GPT-5-nano) against ensemble approaches. The Fixed LLM Ensemble pro-
vides diversity by sampling uniformly from a predetermined set of models, while our Bandit-Based
LLM Ensemble adaptively learns which models contribute most effectively to fitness improvements,
balancing exploration of underutilized models with exploitation of high-performing ones.

Takeaways. The bandit-based LLM ensemble outperforms both single LLM and fixed ensemble
approaches. While the fixed ensemble shows moderate improvements over single LLM usage, the
adaptive bandit strategy achieves the highest performance by dynamically prioritizing more effective
models based on their contribution to fitness improvements. We provide a more detailed analysis in
Figure 19.

Impact of Code Embedding-Based Rejection Sampling. Similar code variants can waste com-
putational resources without advancing the search frontier. To address this challenge, we examine
different novelty filtering mechanisms. The No Rejection Sampling baseline accepts any LLM pro-
posal, potentially allowing near-duplicate programs to proliferate. Our Embedding-Based Rejection
Sampling approach leverages text embeddings to identify and reject proposals with similarity scores
exceeding 0.95. We also explore an Additional LLM-as-a-novelty-judge variant that supplements
embedding-based filtering with explicit LLM assessment of program novelty.

Takeaways. Code embedding-based rejection sampling provides substantial performance gains over
no rejection sampling by preventing redundant mutations. The additional LLM-as-a-novelty-judge
offers marginal improvements, suggesting that embedding similarity is already an effective proxy
for novelty assessment without requiring additional computational overhead. We provide a more
detailed analysis in Figure 18.

6 DISCUSSION

Contributions. This work introduces SHINKAEVOLVE, an evolutionary framework tackling the
inefficiency of LLM-driven scientific discovery. SHINKAEVOLVE achieves state-of-the-art results
across four domains: circle packing with 150 evaluations (orders of magnitude improvement over
prior baselines), sophisticated AIME reasoning scaffolds, ALE-Bench algorithmic improvements,
and novel mixture-of-expert load balancing. By sharing its full code, we hope to remove barriers
and accelerate community-driven open advancements.

Limitations. While SHINKAEVOLVE makes significant strides toward improving sample efficiency
and reducing costs, it still shares some of the other limitations of prior approaches (Novikov et al.,
2025). In particular, our framework still requires manual task specification, relying on human ex-
pertise in the target domain for providing objective functions. Furthermore, SHINKAEVOLVE is still

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

constrained to problems with well-defined, implemented numerical objectives, making its wider
applicability to arbitrary human preferences and heuristics an open problem.

Extensions. Automated task specification through LLM task generation could enable greater auton-
omy and unlock applications in unexplored domains. Transitioning to true open-endedness, where
systems generate their own objectives, represents a new compelling future frontier.

ETHICS STATEMENT

SHINKAEVOLVE’s aims to further advance the field of evolutionary optimization and make it acces-
sible to researchers and practitioners previously lacking access to proprietary frameworks, following
on the same path as Sharma (2025). Given its purpose and objective, we thus do not expect additional
specific issues regarding fairness, privacy, or security, or any other harmful societal implications that
are not already inherent to the field. However, we still want to highlight that our framework relies on
closed-source models, and API costs from large-scale LLM usage could create economic barriers,
potentially constraining democratization goals. We provide a more detailed analysis of the API cost
breakdown in Figure 16.

REPRODUCIBILITY STATEMENT

We provide the full anonymized SHINKAEVOLVE code in the supplementary material uploaded with
this submission. Moreover, we provide full implementation details and hyperparameter configura-
tions in Appendix B, together with program listings representing each of SHINKAEVOLVE’s final so-
lutions in Appendix D. We will also open-source a fully-documented version of SHINKAEVOLVE’s
code to facilitate open reproducibility and accelerate advancements to open-ended automated dis-
covery across diverse computational problems.

LLM USAGE DISCLOSURE

The authors would like to acknowledge the use of LLMs to improve the grammar, clarity, and
overall presentation of this manuscript. The authors reviewed, edited, and take full responsibility for
the final content.

REFERENCES

American invitational mathematics examination, 2023. Problems and solutions, 2023. Published by
the Mathematical Association of America / AMC contests.

American invitational mathematics examination, 2024. Problems and solutions, 2024. Published by
the Mathematical Association of America / AMC contests.

American invitational mathematics examination, 2025. Problems and solutions, 2025. Published by
the Mathematical Association of America / AMC contests.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.a
nthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card
_Claude_3.pdf.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Jeremy Berman. How i got a record 53.6% on arc-agi. https://jeremyberman.substac
k.com/p/how-i-got-a-record-536-on-arc-agi, 2025. Accessed: 2025-02-08.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agi
https://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agi

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International conference on machine learning, pp. 5547–
5569. PMLR, 2022.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via
models of human notions of interestingness with environments programmed in code, 2024. URL
https://arxiv.org/abs/2405.15568.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Google AI Blog. Our next-generation model: Gemini 1.5. https://blog.google/tech
nology/ai/google-gemini-next-generation-model-february-2024/,
February 2024. Accessed: 2025-07-13.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Yuki Imajuku, Kohki Horie, Yoichi Iwata, Kensho Aoki, Naohiro Takahashi, and Takuya Akiba.
Ale-bench: A benchmark for long-horizon objective-driven algorithm engineering. arXiv preprint
arXiv:2506.09050, 2025.

Yuichi Inoue, Kou Misaki, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or
deeper? scaling llm inference-time compute with adaptive branching tree search. arXiv preprint
arXiv:2503.04412, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Robert Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu, Satinder Singh,
and Sebastian Flennerhag. Discovering evolution strategies via meta-black-box optimization. In
Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 29–30,
2023.

Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies.
arXiv preprint arXiv:2402.18381, 2024.

Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. The ai
cuda engineer: Agentic cuda kernel discovery, optimization and composition. Technical report,
Technical report, Sakana AI, 02 2025, 2025.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189–223, 2011.

Joel Lehman, Kenneth O Stanley, et al. Exploiting open-endedness to solve problems through the
search for novelty. In ALIFE, pp. 329–336, 2008.

11

https://arxiv.org/abs/2405.15568
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie Beaulieu, Peter J
Bentley, Samuel Bernard, Guillaume Beslon, David M Bryson, et al. The surprising creativity of
digital evolution: A collection of anecdotes from the evolutionary computation and artificial life
research communities. Artificial life, 26(2):274–306, 2020.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution through large models, 2022. URL https://arxiv.org/abs/2206.08896.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Fei Liu, Rui Zhang, Zhuoliang Xie, Rui Sun, Kai Li, Xi Lin, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Llm4ad: A platform for algorithm design with large language model. arXiv
preprint arXiv:2412.17287, 2024a.

Liyuan Liu, Young Jin Kim, Shuohang Wang, Chen Liang, Yelong Shen, Hao Cheng, Xiaodong
Liu, Masahiro Tanaka, Xiaoxia Wu, Wenxiang Hu, et al. Grin: Gradient-informed moe. arXiv
preprint arXiv:2409.12136, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex James Chan, Jakob Nicolaus Foerster, Mihaela
van der Schaar, and Robert Tjarko Lange. Discovering preference optimization algorithms with
and for large language models. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a. URL https://openreview.net/forum?id=erjQDJ0z
9L.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024b.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Meta-AI. The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation, 2025.
URL https://ai.meta.com/blog/llama-4-multimodal-intelligence/.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
language models. arXiv preprint arXiv:2409.02060, 2024.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

OpenAI. Gpt-4 technical report, 2023.

12

https://arxiv.org/abs/2206.08896
https://openreview.net/forum?id=erjQDJ0z9L
https://openreview.net/forum?id=erjQDJ0z9L
https://ai.meta.com/blog/llama-4-multimodal-intelligence/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss for
training specialized mixture-of-expert models. arXiv preprint arXiv:2501.11873, 2025.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/codelion/openevolve.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Kenneth O Stanley, Joel Lehman, and Lisa Soros. Open-endedness: The last grand challenge you’ve
never heard of. While open-endedness could be a force for discovering intelligence, it could also
be a component of AI itself, 2017.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomput., 568(C), February 2024. ISSN
0925-2312. doi: 10.1016/j.neucom.2023.127063. URL https://doi.org/10.1016/j.
neucom.2023.127063.

Peter T Szymanski and Michael D Lemmon. Adaptive mixtures of local experts are source coding
solutions. In IEEE International Conference on Neural Networks, pp. 1391–1396. IEEE, 1993.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Reiko Tanese. Distributed genetic algorithms for function optimization. University of Michigan,
1989.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Gemini Team. Google deepmind. gemini 2.5: Pushing the frontier with advanced reasoning, mul-
timodality, long context, and next generation agentic capabilities. Technical report, Technical
Report v2. 5, Google DeepMind, 2025.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
search. arXiv preprint arXiv:2504.08066, 2025.

13

https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, and Jeff Clune. Darwin godel machine: Open-
ended evolution of self-improving agents. arXiv preprint arXiv:2505.22954, 2025.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

APPENDIX

A SHINKA IMPLEMENTATION DETAILS

• SHINKAEVOLVE uses a queue based implementation where LLMs generate program pro-
posals sequentially. Afterwards, they are added to a job evaluation queue. Each proposal is
based on all jobs that have completed so far and are stored in the database.

• Throughout development, we experimented with a fully asynchronous implementation that
leverages both a job and a proposal queue. This allows for higher throughput but introduces
a degree of ”off-archiveness” in the sense that new code proposals are generated in advance
and not based on all the previously submitted jobs. Furthermore, jobs from faster to query
models will be executed earlier since their proposal jobs will be processed earlier. Many
open research questions remain regarding the optimal trade-off between throughput, sample
efficiency, and off-archiveness.

• Below we provide an overview of the Python API. It roughly adopts the high-level interface
of OpenEvolve (Sharma, 2025):

from shinka.core import EvolutionRunner, EvolutionConfig
from shinka.database import DatabaseConfig
from shinka.launch import LocalJobConfig

Minimal config - only specify what’s required
job_config = LocalJobConfig(eval_program_path="evaluate.py")
db_config = DatabaseConfig()
evo_config = EvolutionConfig(init_program_path="initial.py",)

Run evolution with defaults
runner = EvolutionRunner(

evo_config=evo_config,
job_config=job_config,
db_config=db_config,

)
runner.run()

Listing 1: Minimal SHINKAEVOLVE configuration and usage example.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

evaluate.py - Evaluation Script
from shinka.core import run_shinka_eval

def main(program_path: str,
results_dir: str):

metrics, correct, err = run_shinka_eval(
program_path=program_path,
results_dir=results_dir,
experiment_fn_name="run_experiment",
num_runs=3, # Multi-evals to aggreg.
get_experiment_kwargs=get_kwargs,
aggregate_metrics_fn=aggregate_fn,
validate_fn=validate_fn, # Optional

)

def get_kwargs(run_idx: int) -> dict:
return {"param1": "value", "param2": 42}

def aggregate_fn(results: list) -> dict:
score = results[0]
text = results[1]
return {

"combined_score": float(score),
"public": {...}, # shinka-visible
"private": {...}, # shinka-invisible
"extra_data": {...}, # store as pkl
"text_feedback": text, # str fb

}

if __name__ == "__main__":
argparse program path & dir
main(program_path, results_dir)

initial.py - Starting Solution
EVOLVE-BLOCK-START
def advanced_algo():

This will be evolved
return solution

EVOLVE-BLOCK-END

def run_experiment(**kwargs):
"""Main called by evaluator"""
result = solve_problem(kwargs)
return result

def solve_problem(params):
solution = advanced_algo()
return solution

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B TASK IMPLEMENTATION DETAILS

B.1 CIRCLE PACKING PROBLEM

Detailed Task Description. The circle packing task requires placing 26 circles within a unit square
such that the sum of their radii is maximized while ensuring no circles overlap and all circles remain
fully contained within the square boundary.

Verification Methodology with Slack. For the
main SHINKAEVOLVE run presented in the paper,
we employed the verification script provided by
OpenEvolve (Sharma, 2025), which allows for 1 ×
10−6 numerical slack. To ensure the robustness of
our results, we additionally validated our solutions us-
ing AlphaEvolve’s (Novikov et al., 2025) exact ver-
ification code. We found that our discovered solu-
tion can be made trivially exact by reducing each cir-
cle’s radius by 1 × 10−8, demonstrating the high pre-
cision of our approach. The adjustment from the re-
laxed to exact formulation reduces the sum of radii for
our discovered solution by a negligible amount, from
2.635983099011548 to 2. 6359828390115476, repre-
senting a relative change of less than 10−6.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0
1

2
3

4

5

6

78

9

10

11

12

13

14

1516

17

18

19 20

21

22

23

24

25

Circle Packing (n=26, sum=2.635983)

Figure 9: Discovered Circle Pack-
ing solution by SHINKAEVOLVE.

Verification Methodology with Exact Constraint. Additionally, we replicated the solution using
the exact verification code from AlphaEvolve Figure 10 with a score of 2.63597770931127.
The discovery of the solution requires more samples to be evaluated. This illustrates an important
principle: surrogate relaxed tasks can be effectively used during evolution and subsequently post-
processed to discover exact state-of-the-art solutions.

0 100 200 300 400 500
Number of Evaluated LLM Program Proposals

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

ShinkaEvolve - Circle Packing: Discoveries

Best Score
Individual Evals
Path to Best Node
Cumulative Cost

lp_radii_
with_highs

multi_start_
lp_anneal_knn

knn_lp_anneal_with_full_vali
dation_and_improved_fallback

mm_trust_
region_lp

parametric_
seeding_mmtr

expand_determin
istic_seed_bank

surrogate_
knn_gating

gamm_hybr
id_packing

density_awa
re_mutationscorner_nudge_br

ief_and_mutation

hybrid_ga_mmtr_with_cach
e_and_corner_optimization

0

10

20

30

40

Cu
m

ul
at

iv
e

AP
I C

os
t

($
)

Figure 10: Circle packing asynchronous evolution results for exact circle packing verification show-
ing convergence behavior and solution quality over time.

Baseline Comparisons. Our performance benchmarks are established against solutions from three
primary sources. The AlphaEvolve sum of radii is taken from their paper (Novikov et al., 2025). The
OpenEvolve baseline scores are derived from their official implementation and examples avail-
able in their repository. Additionally, we compare against LLM4AD results, specifically their circle
packing implementations and Evolution of Heuristics (EoH) experimental configurations. These

16

https://github.com/codelion/openevolve/tree/main/examples/circle_packing
https://github.com/Optima-CityU/LLM4AD/blob/main/example/circle_packing/circle_packing_result.ipynb
https://github.com/Optima-CityU/LLM4AD/blob/main/example/circle_packing/circle_packing_result.ipynb
https://github.com/Optima-CityU/LLM4AD/blob/main/example/circle_packing/EoH_settings%26logs/run_eoh.py

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

baselines provide comprehensive coverage of existing automated algorithm design approaches, en-
abling fair and thorough performance evaluation of our method.

SHINKAEVOLVE’s Hyperparameter Configuration.

Parameter Value Parameter Value

Database configuration

Archive size 40 Elite selection ratio 0.3
Archive inspirations 4 Top-k inspirations 2
Migration interval 10 Migration rate 0.0
Island elitism true Parent selection strategy weighted
Parent selection λ 10.0 Number of islands 2

Evolution configuration

Patch types [diff, full, cross] Patch type probs [0.45, 0.45, 0.1]
Generations 150 Max parallel jobs 5
Max patch resamples 3 Max patch attempts 3
Meta recommendation interval 10 Max meta recommendations 5
Embedding model text-embedding-3-small Max novelty attempts None
Code embed sim threshold 0.95 Problem implementation Python
LLM dynamic selection ucb1 Exploration coefficient 1.0

LLM models

gemini-2.5-pro × gemini-2.5-flash ×
claude-sonnet-4 ✓ o4-mini ✓
gpt-5 × gpt-4.1-nano ✓
gpt-4.1 ✓ gpt-4.1-mini ✓

LLM settings

Temperatures [0.0, 0.5, 1.0] Max tokens 16,384
Meta models [gpt-5-nano] Meta temperatures [0.0]
Novelty models [gpt-5-nano] Novelty temperatures [0.0]

Table 1: SHINKAEVOLVE hyperparameter configuration for the Circle Packing task.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 AIME MATH REASONING AGENTIC HARNESS
Detailed Task Description. For the agent
scaffold design task, we evaluate SHINKAE-
VOLVE on AIME 2024 mathematical rea-
soning problems, consisting of 30 chal-
lenging competition-level questions requir-
ing sophisticated problem-solving strategies
(AIM, 2024). We limit the maximum num-
ber of LLM queries per problem to 10 for
computational and cost efficiency. Using
gpt-4.1-nano as the base model, we
evolve scaffold designs over 75 generations.
Additionally and to combat stochasticity in
LLM queries, we evaluated each candidate
evaluated across three independent runs on
the complete question set. After evolution,
we evaluate the discovered scaffold designs
on 2023 and 2025 AIME problems (AIM,
2023; 2025) to assess generalization as well
as robustness to different base agent lan-
guage models.

0 10 20 30 40 50 60 70
Number of Evaluated LLM Program Proposals

20

22

24

26

28

30

32

34

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

ShinkaEvolve - AIME Scaffold Design: Discoveries

Best Score
Individual Evals
Path to Best Node
Cumulative Cost

initial_program

two_stage_v
erification

expert_ensem
ble_synthesis

adaptive_t
ree_search

refined_exp
ert_ensemble

systematic_er
ror_detection

0

1

2

3

4

5

6

Cu
m

ul
at

iv
e

AP
I C

os
t

($
)

Figure 11: SHINKAEVOLVE’s Discovery
Trajectory for Math Agent Scaffold Design.

SHINKAEVOLVE’s Hyperparameter Configuration.

Parameter Value Parameter Value

Database configuration

Archive size 40 Elite selection ratio 0.3
Archive inspirations 4 Top-k inspirations 2
Migration interval 10 Migration rate 0.1
Island elitism true Parent selection strategy weighted
Parent selection λ 10.0 Number of islands 4

Evolution configuration

Patch types [diff, full, cross] Patch type probs [0.6, 0.3, 0.1]
Generations 75 Max parallel jobs 1
Max patch resamples 3 Max patch attempts 3
Meta recommendation interval 10 Max meta recommendations 5
Embedding model text-embedding-3-small Max novelty attempts 3
Code embed sim threshold 0.95 Problem implementation Python
LLM dynamic selection null Exploration coefficient 0.0

LLM models

gemini-2.5-pro ✓ gemini-2.5-flash ×
claude-sonnet-4 ✓ o4-mini ✓
gpt-5 × gpt-5-nano ×
gpt-4.1 × gpt-4.1-mini ×
LLM settings

Temperatures [0.0, 0.5, 1.0] Max tokens 16,384
Meta models [gpt-4.1] Meta temperatures [0.0]
Novelty models [gpt-4.1] Novelty temperatures [0.0]

Table 2: SHINKAEVOLVE Hyperparameter Configuration for the Math Reasoning Agentic Harness.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.3 ALE-BENCH PROBLEMS

Detailed Task Description. The ALE-Bench benchmark (Imajuku et al., 2025) is a collection of
heuristic programming problems previously used in competitive programming contests (AtCoder).
We evaluate SHINKAEVOLVE on the LITE subset of problems, which consists of 10 problems. We
follow the evaluation protocol of the benchmark and use the score calculated on the 50 public test
cases as the fitness function following ALE-Agent (Imajuku et al., 2025). Afterwards, we submit the
best solution to the private test set and report the score. Additionally, in Figure 6, we provide scores
for evaluating the top-5 publicly scored solutions and taking their maximum score on the private test
set. While this does not resemble the traditional competitive programming setting, it allows us to
assess the generalization ability of the discovered solutions. The average solution score improves
by a negligible amount from 1923.5 to 1927.0. Hence, we do not observe significant evidence for
overfitting to the public test cases.

SHINKAEVOLVE’s Hyperparameter Configuration.

Parameter Value Parameter Value

Database configuration

Archive size 50 Elite selection ratio 0.3
Archive inspirations 2 Top-k inspirations 2
Migration interval 10 Migration rate 0.1
Island elitism true Parent selection strategy weighted
Parent selection λ 10.0 Number of islands 2

Evolution configuration

Patch types [diff, full, cross] Patch type probs [0.6, 0.3, 0.1]
Generations 50 Max parallel jobs 1
Max patch resamples 3 Max patch attempts 3
Meta recommendation interval 5 Max meta recommendations 5
Embedding model None Max novelty attempts None
Code embed sim threshold None Problem implementation C++
LLM dynamic selection ucb1 Exploration coefficient 1.0

LLM models

gemini-2.5-pro ✓ gemini-2.5-flash ✓
claude-sonnet-4 ✓ o4-mini ✓
gpt-5 ✓ gpt-5-mini ✓
gpt-4.1 × gpt-4.1-mini ×
LLM settings

Temperatures [0.0, 0.5, 1.0] Max tokens 16,384
Meta models [gpt-5-mini] Meta temperatures [0.0]
Novelty models None Novelty temperatures None

Table 3: SHINKAEVOLVE Hyperparameter Configuration for the ALE-Bench Problems.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.4 MIXTURE-OF-EXPERTS LOAD BALANCING LOSS

Hyperparameter Small MoE (evolution) Large MoE (evaluation)

Model architecture

Model parameters 556M 2.7B
Model parameters 82M 404M
Number of experts (NE) / active per token (K) 64 / 8 64 / 8
Hidden size 512 1024
Hidden size in each MoE expert 384 768
Number of hidden layers 12 16
Number of attention heads 8 16
Number of key–value heads 8 8
Head dimension 128 128
Attention bias false false
Attention dropout 0.0 0.0
Initializer range 0.02 0.02
RoPE θ 1,000,000 1,000,000
Tied word embeddings true true
Output router logits true true
Decoder sparse step 1 1
Router auxiliary loss coefficient (λ) 0.01 0.001, 0.01, 0.1
Computation dtype bfloat16 bfloat16

Training setup

Optimizer AdamW AdamW
Learning rate 1.0× 10−3 3.0× 10−4

Weight decay 0.1 0.1
Adam parameters (β1, β2, ϵ) (0.9, 0.95, 1×10−8) (0.9, 0.95, 1×10−8)
Learning rate scheduler Cosine decay Cosine decay
Warmup steps 70 490

Maximum sequence length 1024 1024
Global train batch size (sequences) 1024 2048
Tokens per training step 1,048,576 2,097,152
Maximum steps 2000 14,000
Total tokens 2.10B 29.36B
Dataset fineweb fineweb

Table 4: MoE architectures and training setup.

Detailed Task Description. The Mixture-of-Expert (MoE) architecture (Szymanski & Lemmon,
1993; Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022) has been a critical advance-
ment, enabling scaling breakthroughs in large language model training. MoEs are currently ubiqui-
tous amongst modern open and closed-source flagship models (Google AI Blog, 2024; Guo et al.,
2025; Meta-AI, 2025; Yang et al., 2025; Team, 2025). The core principle behind the MoE design
is to replace traditional large feed-forward residual blocks with ensembles of smaller modules (the
“experts”), which can be efficiently sharded during training and only partially activated during in-
ference (Fedus et al., 2022). Each expert is itself a small feed-forward network Eℓ,i located within
a larger ensemble of size NE at layer ℓ. The router, a layer-specific linear classifier hℓ, selects the
top-K most relevant experts for each token, computing only their outputs:

yℓ(x) =

NE∑
i=1

gℓ,i(x)Eℓ,i(x), gℓ,i(x) =

 ehℓ,i(x)∑
j∈TK (x) e

hℓ,j(x) , if i ∈ TK(x)

0, otherwise
(2)

where TK(x) denotes the set of indices corresponding to the top-K router logits hℓ,i(x). This
sparsely activated design allows different experts to specialize in distinct problem domains, enabling
greater efficiency, scalability, and adaptability in handling diverse prompts.

However, due to the non-differentiability of the top-K expert selection operation, it is critical to
provide the router with an auxiliary load balancing loss (LBL). The LBL prevents collapse toward
uneven token distributions and under-specialized experts. Devising an effective load balancing loss

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

that simultaneously encourages efficiency and expert specialization, without hindering expressivity,
remains an open design challenge that has driven much of the recent progress in MoEs (Shazeer
et al., 2017; Fedus et al., 2022; Du et al., 2022; Zoph et al., 2022; Xue et al., 2024; Dai et al., 2024;
Qiu et al., 2025; Muennighoff et al., 2024). Minor design variations have been shown to significantly
affect both efficiency and specialization ability (Dai et al., 2024; Jiang et al., 2024; Team, 2024; Liu
et al., 2024b; Qiu et al., 2025).

One of the most widely adopted designs is the “global-batch” LBL introduced by Shazeer et al.
(2017), which underpins several state-of-the-art open models such as Qwen 3 (Yang et al., 2025).
For a layer ℓ with NE experts, it is defined as:

LLB = NE · 1
L

L∑
ℓ=1

NE∑
i=1

fℓ,i · Pℓ,i, (3)

where

fℓ,i =
Tokens routed to expert i

Total tokens in layer ℓ
, Pℓ,i =

∑
x hℓ,i(x)∑
x,j hℓ,j(x)

.

This formulation encourages token usage across experts to align with the router’s average soft as-
signment probabilities.

We evaluate SHINKAEVOLVE by pretraining a MoE model with 556M parameters, NE = 64 ex-
perts of which only K = 8 are active for each token, corresponding to 82M sparsely activated
parameters per forward pass (excluding embeddings). Training is performed on 2B tokens from
fineweb (Penedo et al., 2024). For each program, we define a fitness function consisting of the
cross-entropy (CE) loss together with an LBL term weighted by λ = 0.01. To additionally measure
load imbalance, we track the L1 deviation from a uniform distribution of token allocations:

Limb =
1

2

NE∑
i=1

∣∣fℓ,i − 1
NE

∣∣ , (4)

with lower values indicating more even load distribution. This grounding provides SHINKAEVOLVE
a two-fold search objective: minimize CE while improving load balance. To avoid local noise
affecting the cross-entropy calculations, we average it over the last 10M tokens. The final fitness
score used during evolution is then the negated sum of the two:

r = −(LCE + Limb). (5)

Given the expense of pretraining, we run SHINKAEVOLVE for only 30 iterations, focusing on
gpt-4.1, gemini-2.5-pro, and claude-sonnet-4. To evaluate generality, we scale to
a larger 2.7B-parameter MoE of which 404M active (excluding embeddings), trained on slightly
under 30B fineweb tokens, and compare across three LBL coefficients λ ∈ {0.001, 0.01, 0.1}. We
used AdamW (Loshchilov & Hutter, 2017) as the optimizer with cosine decay, and linear warmup.
As common practice in modern training regimes, we used rotary positional embeddings (Su et al.,
2024), SwiGLU MLPs (Shazeer, 2020), and half-precision bfloat16 to efficiently keep our model’s
weights on device. For the small model used during SHINKAEVOLVE’s evolution, we use a batch
size of slightly over 1M tokens, for 2K steps. For the larger MoE used double the batch size and
seven times the total number of steps. After training, we benchmark against the global-batch LBL
baseline in terms of perplexity (Figure 7, left) and downstream performance across seven standard
evaluations: CommonSense QA (Talmor et al., 2018), HellaSwag (Zellers et al., 2019), OpenBook
QA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), and ARC (Clark et al., 2018), truncating the number of questions to 1000 for
large benchmarks as done by (Penedo et al., 2024).

Figure 12: LBL loss comparison.

As described in Section 4 and detailed in Appendix D,
SHINKAEVOLVE discovers a new twist on the global-batch LBL
from Equation 3, which was used for seeding evolutionary
search. SHINKAEVOLVE discovers an augmentation of this loss
with an additional regularization term to target under-specialized
experts. As defined in Equation 3, let fℓ,i and Pℓ,i denote the se-
lection frequency and average router probabilities for expert i
in layer ℓ. Furthermore, define s(Pℓ) = 0.5 +

(
1 − H(Pℓ)

logNE

)
21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

as a normalized complement of the routing entropy, and τ =
0.064/NE as a minimum usage threshold. The final discovered
LBL is:

LLBL = NE · 1
L

L∑
ℓ=1

NE∑
i=1

fℓ,i Pℓ,i︸ ︷︷ ︸
Global-batch LBL

+
0.1

L

L∑
ℓ=1

s(Pℓ)

NE∑
i=1

max
(
0, τ − fℓ,i

)
︸ ︷︷ ︸

SHINKAEVOLVE new regularization

.
(6)

Figure 13: Mixture-of-Experts LBL design additional results.

Task Global LBL ShinkaEvolve

HellaSwag 0.391 0.379
CQA 0.192 0.192
PIQA 0.688 0.684
Winogrande 0.524 0.549
ARC 0.207 0.214
OpenBookQA 0.170 0.192

Mean 0.362 0.368

Loss Type λ CE Loss Accuracy

Global LBL 0.1 0.375 0.357
ShinkaEvolve 0.373 0.366

Global LBL 0.01 0.367 0.362
ShinkaEvolve 0.365 0.368

Global LBL 0.001 0.363 0.367
ShinkaEvolve 0.363 0.37

Figure 14: Comparison of load balancing loss variants across downstream tasks with λ = 0.01 (left)
and across LBL coefficients (right).

In addition to the results from Section 4, in Figure 13, we provide additional results comparing the
global-batch LBL and SHINKAEVOLVE’s discovered LBL. In particular, we report the average task
performance, final perplexity, and the fraction of missrouted tokens, as a function of the LBL co-
efficient λ used for training the MoEs. Consistent with our previous analysis, SHINKAEVOLVE’s
LBL appears to improve from the original LBL across both axes. Moreover, in the tables shown in
Figure 14, we provide tables with details for the downstream task performance across our over con-
sidered benchmarks, as summarized in the center subplot of Figure 13. However, we also note that
the architecture used for evolving and testing the employed LBL was quite similar, and the training
budget was still limited. However, the consistent generalization results across training budgets and
coefficients λ provide an optimistic outlook for future extensions to much longer training regimes,
where even small efficiency gains could scale to significant cost savings.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

SHINKAEVOLVE’s Hyperparameter Configuration.

Parameter Value Parameter Value

Database configuration

Archive size 20 Elite selection ratio 0.3
Archive inspirations 4 Top-k inspirations 2
Migration interval 10 Migration rate 0.1
Island elitism true Parent selection strategy weighted
Parent selection λ 10.0 Number of islands 2

Evolution configuration

Patch types [diff, full] Patch type probs [0.5, 0.5]
Generations 20 Max parallel jobs 1
Max patch resamples 10 Max patch attempts 10
Meta recommendation interval 10 Max meta recommendations 5
Embedding model text-embedding-3-small Max novelty attempts 3
Code embed sim threshold 0.95 Problem implementation Python
LLM dynamic selection ucb1 Exploration coefficient 1.0

LLM models

gemini-2.5-pro ✓ gemini-2.5-flash ×
claude-sonnet-4 ✓ o4-mini ×
gpt-5 × gpt-5-nano ×
gpt-4.1 ✓ gpt-4.1-mini ×
LLM settings

Temperatures [0.0, 0.5, 1.0] Max tokens 16,384
Meta models [gpt-4.1] Meta temperatures [0.0]
Novelty models [gpt-4.1] Novelty temperatures [0.0]

Table 5: SHINKAEVOLVE Hyperparameter Configuration for the MoE LBL Discovery.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C ADDITIONAL RESULTS

C.1 CIRCLE PACKING: ROBUSTNESS ACROSS 3 INDEPENDENT RUNS

0 50 100 150 200 250
Evaluated Programs

2.56

2.58

2.60

2.62

2.64

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Circle Packing: # Programs

5 proposal 5 eval workers
10 proposal 10 eval workers
20 proposal 20 eval workers
AlphaEvolve Bound

0 5 10 15 20 25
Cumulative Total Cost ($)

2.56

2.58

2.60

2.62

2.64

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Circle Packing: API Cost

5 proposal 5 eval workers
10 proposal 10 eval workers
20 proposal 20 eval workers
AlphaEvolve Bound

0s 14.4m 28.8m 43.2m 57.6m 1.2h 1.4h 1.7h
Elapsed ShinkaEvolve Runtime

2.56

2.58

2.60

2.62

2.64

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Circle Packing: Runtime

5 proposal 5 eval workers
10 proposal 10 eval workers
20 proposal 20 eval workers
AlphaEvolve Bound

Figure 15: Circle Packing results across 3 independent runs. Two out of three runs discover solutions
that outperform or perform on par with AlphaEvolve, demonstrating the reliability and effectiveness
of our approach. We also compare different settings of asynchronous evaluation and program pro-
posal workers for ShinkaEvolve.

C.2 CIRCLE PACKING: API COST BREAKDOWN

0 50 100 150 200 250
Evaluated Programs

0

5

10

15

20

To
ta

l &
 P

ro
gr

am
 G

en
er

at
io

n
($

)

Cost Breakdown: 5 Proposal 5 Eval
Total Cost ($22.67, 100%)
Program Costs ($22.08, 97.4%)
Embedding Costs ($0.01, 0.1%)
Novelty Costs ($0.02, 0.1%)
Meta Costs ($0.56, 2.5%)

0 50 100 150 200 250
Evaluated Programs

0

5

10

15

20

To
ta

l &
 P

ro
gr

am
 G

en
er

at
io

n
($

)

Cost Breakdown: 10 Proposal 10 Eval
Total Cost ($21.84, 100%)
Program Costs ($21.27, 97.4%)
Embedding Costs ($0.01, 0.1%)
Novelty Costs ($0.02, 0.1%)
Meta Costs ($0.54, 2.5%)

0 50 100 150 200 250
Evaluated Programs

0

5

10

15

20

25

To
ta

l &
 P

ro
gr

am
 G

en
er

at
io

n
($

)

Cost Breakdown: 20 Proposal 20 Eval
Total Cost ($25.08, 100%)
Program Costs ($24.58, 98.0%)
Embedding Costs ($0.01, 0.1%)
Novelty Costs ($0.01, 0.0%)
Meta Costs ($0.48, 1.9%)

0.0

0.1

0.2

0.3

0.4

0.5

Cu
m

. C
os

t
- E

m
be

dd
in

g,
 N

ov
el

ty
 &

 M
et

a
($

)

0.0

0.1

0.2

0.3

0.4

0.5

Cu
m

. C
os

t
- E

m
be

dd
in

g,
 N

ov
el

ty
 &

 M
et

a
($

)

0.0

0.1

0.2

0.3

0.4

0.5

Cu
m

. C
os

t
- E

m
be

dd
in

g,
 N

ov
el

ty
 &

 M
et

a
($

)

Figure 16: API cost breakdown for Circle Packing across different parallelization configurations.
Approximately 97% of the budget is used on program generation, while embedding, novelty check-
ing, and meta-recommendation generation take up the remaining 3%.

C.3 CIRCLE PACKING: ASYNCHRONOUS THROUGHPUT SCALING

0s 14.4m 28.8m 43.2m 57.6m 1.2h 1.4h 1.7h
Elapsed ShinkaEvolve Runtime

0

50

100

150

200

250

N
um

be
r

of
 E

va
lu

at
ed

 P
ro

gr
am

s

Number of Evaluated Programs Over Time

5 proposal 5 eval workers
10 proposal 10 eval workers
20 proposal 20 eval workers

Figure 17: Throughput scaling for Circle Packing with different numbers of proposal and evaluation
workers. The speedup is almost linear for fast-to-evaluate problems like Circle Packing, demon-
strating efficient parallelization.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.4 CIRCLE PACKING: ROBUSTNESS ACROSS CODE EMBEDDING THRESHOLDS

0 50 100 150 200 250 300
Evaluated Programs

2.56

2.58

2.60

2.62

2.64

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Circle Packing: # Programs

No rejection Threshold
Embedding Treshold 0.5
Embedding Treshold 0.9
Embedding Treshold 0.995
AlphaEvolve Bound

0 5 10 15 20 25
Cumulative Total Cost ($)

2.56

2.58

2.60

2.62

2.64

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Circle Packing: API Cost

No rejection Threshold
Embedding Treshold 0.5
Embedding Treshold 0.9
Embedding Treshold 0.995
AlphaEvolve Bound

0s 14.4m 28.8m 43.2m 57.6m 1.2h 1.4h 1.7h
Elapsed ShinkaEvolve Runtime

2.56

2.58

2.60

2.62

2.64

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Circle Packing: Runtime

No rejection Threshold
Embedding Treshold 0.5
Embedding Treshold 0.9
Embedding Treshold 0.995
AlphaEvolve Bound

Figure 18: Performance comparison of different code embedding thresholds for Circle Packing. We
compare thresholds of 1.0 (no rejection), 0.995, 0.9, and 0.5 (heavily rejecting similar programs).
The larger values perform better, indicating that conservatively rejecting similar programs performs
well for this domain.

C.5 CIRCLE PACKING: ROBUSTNESS ACROSS LLM PRIORITIZATION APPROACHES

0 50 100 150 200 250 300
Evaluated Programs

2.56

2.58

2.60

2.62

2.64

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Circle Packing: # Programs

Fixed
Thompson Sampling
UCB1
AlphaEvolve Bound

0 5 10 15 20
Cumulative Total Cost ($)

2.56

2.58

2.60

2.62

2.64

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Circle Packing: API Cost

Fixed
Thompson Sampling
UCB1
AlphaEvolve Bound

0s 14.4m 28.8m 43.2m 57.6m
Elapsed ShinkaEvolve Runtime

2.56

2.58

2.60

2.62

2.64

Ev
ol

ve
d

Pe
rf

or
m

an
ce

 S
co

re

Circle Packing: Runtime

Fixed
Thompson Sampling
UCB1
AlphaEvolve Bound

Figure 19: Performance comparison of different LLM prioritization approaches for Circle Pack-
ing. We compare UCB1 (our proposed approach), Thompson sampling, fixed (uniformly sampling
models) strategies. While all approaches show similar asymptotic performance, UCB1 performs the
most sample efficient.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D SHINKAEVOLVE DISCOVERED SOLUTIONS

D.1 CIRCLE PACKING PROBLEM

EVOLVE-BLOCK-START
import numpy as np
from scipy.optimize import minimize, Bounds

def construct_packing():
"""
Constructs an arrangement of 26 circles by combining a meta-heuristic
search with a powerful SLSQP optimizer for refinement.
"""
n = 26

--- Helper functions for the optimizer ---
def objective_func(x):

"""The function to be minimized: the negative sum of radii."""
return -np.sum(x[:n])

def constraints_func(x):
"""
Computes constraint violations. For SLSQP, each value must be >= 0.
"""
radii = x[:n]
centers = x[n:].reshape((n, 2))

containment = np.concatenate(
[

centers[:, 0] - radii,
centers[:, 1] - radii,
1 - centers[:, 0] - radii,
1 - centers[:, 1] - radii,

]
)

overlap = []
for i in range(n):

for j in range(i + 1, n):
dist = np.linalg.norm(centers[i] - centers[j])
overlap.append(dist - (radii[i] + radii[j]))

return np.concatenate([containment, np.array(overlap)])

def _compute_initial_radii(centers):
"""
Computes a valid set of initial radii for a given set of centers
to create a feasible starting point (x0) for the optimizer.
"""
radii = np.min(

[centers[:, 0], centers[:, 1], 1 - centers[:, 0], 1 - centers[:, 1]], axis=0
)

for _ in range(100):
improved = False
for i in range(n):

for j in range(i + 1, n):
dist = np.linalg.norm(centers[i] - centers[j])
if radii[i] + radii[j] > dist:

excess = (radii[i] + radii[j] - dist) * 0.501
total_r = radii[i] + radii[j]
if total_r > 1e-9:

radii[i] -= excess * (radii[i] / total_r)
radii[j] -= excess * (radii[j] / total_r)
improved = True

if not improved:
break

return np.maximum(radii, 1e-6)

--- 1. Generate a single high-quality initial guess ---
centers_init = np.zeros((n, 2))
inset = 0.06
centers_init[0:4] = [

[inset, inset],
[1 - inset, inset],
[inset, 1 - inset],
[1 - inset, 1 - inset],

]
centers_init[4:8] = [[0.5, inset], [0.5, 1 - inset], [inset, 0.5], [1 - inset, 0.5]]
centers_init[8] = [0.5, 0.5]

golden_angle = np.pi * (3 - np.sqrt(5))
cx, cy = 0.5, 0.5
inner_r, outer_r = 0.23, 0.48
inner_idx, outer_idx = np.arange(9, 15), np.arange(15, 26)

for i, idx in enumerate(inner_idx):
angle = i * golden_angle
centers_init[idx] = [cx + inner_r * np.cos(angle), cy + inner_r * np.sin(angle)]

for i, idx in enumerate(outer_idx):
angle = i * golden_angle * 1.003

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

centers_init[idx] = [cx + outer_r * np.cos(angle), cy + outer_r * np.sin(angle)]

centers_init += np.random.uniform(
-0.01, 0.01, size=(n, 2)

) # Increased initial jitter
centers_init = np.clip(centers_init, 0.01, 0.99)

--- 2. Define bounds and constraints for the solver ---
bounds = Bounds([0.0] * n + [0.0] * (2 * n), [0.5] * n + [1.0] * (2 * n))
constraints = {"type": "ineq", "fun": constraints_func}

--- 3. Initial baseline optimization ---
radii_init = _compute_initial_radii(centers_init)
x0 = np.concatenate([radii_init, centers_init.flatten()])

result = minimize(
objective_func,
x0,
method="SLSQP",
bounds=bounds,
constraints=constraints,
options={"maxiter": 600, "ftol": 1e-8, "disp": False},

) # Increased initial maxiter

Initialize current and best solutions for SA
best_x = result.x.copy()
current_x = result.x.copy()
best_score = -result.fun
current_score = -result.fun

--- 4. Simulated Annealing loop: Perturb and refine with acceptance criterion ---
sa_iterations = 250 # Significantly increased iterations for SA
temperature = 0.05 # Initial temperature for SA
initial_temperature = temperature # Preserve for potential reheating
cooling_rate = 0.995 # Slower cooling rate for broader search
perturb_step = 0.04 # Initial step size for perturbations
initial_perturb_step = perturb_step # Preserve for potential reheating
step_decay = 0.999 # Decay rate for step size
last_improve = 0 # Iteration of last best improvement
stagnation_limit = sa_iterations // 4 # Iterations before triggering reheating

for iter_idx in range(sa_iterations):
candidate_centers = (

current_x[n:].reshape((n, 2)).copy()
) # Start from current state

Select a move type: 70% local, 30% global ring rotation
if np.random.rand() < 0.7:

Local move: perturb a few circles
num_to_move = np.random.randint(2, 6)
indices = np.random.choice(n, num_to_move, replace=False)
candidate_centers[indices] += np.random.normal(

0, perturb_step, size=(num_to_move, 2)
)

else:
Global move: rotate one of the rings
idx_to_rotate = inner_idx if np.random.rand() < 0.5 else outer_idx
center_point = candidate_centers[8] # Center of the overall pattern
angle = np.random.normal(

0, 0.15
) # Angular perturbation (can be fixed or scaled)
rel_pos = candidate_centers[idx_to_rotate] - center_point
cos_a, sin_a = np.cos(angle), np.sin(angle)
rotated = np.column_stack(

[
cos_a * rel_pos[:, 0] - sin_a * rel_pos[:, 1],
sin_a * rel_pos[:, 0] + cos_a * rel_pos[:, 1],

]
)
candidate_centers[idx_to_rotate] = center_point + rotated

candidate_centers = np.clip(
candidate_centers, 0.01, 0.99

) # Clip to stay within bounds

Create a new starting point and run a shorter refinement optimization
x0_candidate = np.concatenate(

[_compute_initial_radii(candidate_centers), candidate_centers.flatten()]
)
refine_result = minimize(

objective_func,
x0_candidate,
method="SLSQP",
bounds=bounds,
constraints=constraints,
options={"maxiter": 150, "ftol": 1e-6, "disp": False},

) # Reduced maxiter, looser ftol

new_score = -refine_result.fun

Simulated Annealing Acceptance Criterion
Accept if better, or with probability if worse (based on temperature)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

if new_score > current_score or (
temperature > 1e-7
and np.random.rand() < np.exp((new_score - current_score) / temperature)

):
current_score = new_score
current_x = refine_result.x.copy() # Update current state
if new_score > best_score:

best_score = new_score
best_x = refine_result.x.copy() # Update global best
last_improve = iter_idx # Reset stagnation counter on improvement

If not accepted, current_x remains unchanged for the next iteration (implicit)

Cool down temperature and decay perturbation step size
temperature *= cooling_rate
perturb_step *= step_decay
if temperature < 1e-7:

temperature = 1e-7 # Prevent division by zero
if perturb_step < 1e-5:

perturb_step = 1e-5 # Prevent step from becoming too small
Reheat if stagnated beyond stagnation_limit
if iter_idx - last_improve > stagnation_limit:

temperature = initial_temperature
perturb_step = initial_perturb_step
last_improve = iter_idx

--- 5. Final Polishing Run on the best found solution ---
final_result = minimize(

objective_func,
best_x,
method="SLSQP",
bounds=bounds,
constraints=constraints,
options={"maxiter": 1000, "ftol": 1e-9, "disp": False},

) # Increased maxiter for final polish

Check if the final polishing improved the best_x from SA
if -final_result.fun > best_score:

best_x = final_result.x.copy() # Make sure to copy

--- 6. Unpack and return the best result ---
final_radii = best_x[:n]
final_centers = best_x[n:].reshape((n, 2))
return final_centers, final_radii

def compute_max_radii(centers):
"""
This function is retained for structural compatibility with the evaluation
framework but is not used by the new ‘construct_packing‘ logic.
It computes maximum radii for a fixed set of centers.
"""
n = centers.shape[0]
radii = np.empty(n)
for i in range(n):

x, y = centers[i]
radii[i] = min(x, y, 1 - x, 1 - y)

for _ in range(60):
improved = False
for i in range(n):

for j in range(i + 1, n):
dist = np.linalg.norm(centers[i] - centers[j])
if radii[i] + radii[j] > dist:

excess = (radii[i] + radii[j] - dist) * 0.5
total = radii[i] + radii[j]
if total > 0:

reduce_i = excess * (radii[i] / total)
reduce_j = excess * (radii[j] / total)
radii[i] = max(0.001, radii[i] - reduce_i)
radii[j] = max(0.001, radii[j] - reduce_j)
improved = True

if not improved:
break

return radii

EVOLVE-BLOCK-END

This part remains fixed (not evolved)
def run_packing():

"""Run the circle packing constructor for n=26"""
np.random.seed(7)
centers, radii = construct_packing()
Calculate the sum of radii
sum_radii = np.sum(radii)
return centers, radii, sum_radii

centers, radii, sum_radii = run_packing()

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Listing 2: SHINKAEVOLVE Discovered Circle Packing Solution.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D.2 AIME MATH REASONING AGENTIC HARNESS

"""Agent design evaluation on math tasks."""

import re
from typing import Callable, List, Optional, Tuple, Dict
from collections import Counter, defaultdict
from math_eval import agent_evaluation

EVOLVE-BLOCK-START
import re
from collections import Counter

class Agent:
def __init__(

self,
query_llm: Callable,
temperature=0.0,

):
self.query_llm = query_llm
self.output_format_instructions = "On the final line output only the digits of the answer (0-999).

Provide your final answer enclosed in a LaTeX \\boxed{{...}} command."

Parameters
self.generation_temperature = 0.7
self.review_temperature = 0.1
self.synthesis_temperature = 0.0

Use 3 experts to stay within a 10-call limit (3 gen + 3 review + 1 synth = 7 calls)
self.num_experts = 3
self.expert_personas = [

"You are a meticulous and cautious mathematician. Your guiding principle is ’slow and steady wins
the race’. You solve problems by breaking them down into the smallest possible steps based on
fundamental principles. You avoid leaps of logic and verify each step before proceeding.",

"You are a brilliant and intuitive mathematician, known for finding elegant, non-obvious solutions
. You look for symmetries, invariants, or a change of perspective that radically simplifies the problem.
You trust your insights but explain them clearly.",

"You are a mathematician with a strong background in computer science. You approach problems by
trying to frame them algorithmically. You think in terms of states, transitions, and recurrence
relations, and you analyze the behavior of these systems to find the solution.",

]

def _extract_answer(self, text: str) -> Optional[str]:
"""Extracts the final answer from a \\boxed{} environment."""
if not text:

return None
matches = re.findall(r"\\boxed\{(\d{1,3})\}", text)
if matches:

return matches[-1]
return None

def forward(self, problem: str) -> tuple[str, float]:
"""
Solves a problem using a multi-persona ensemble with peer review and synthesis.
"""
total_cost = 0.0

=== STAGE 1: Generate Diverse Solutions with Expert Personas ===
solutions = []
for i in range(self.num_experts):

persona = self.expert_personas[i % len(self.expert_personas)]
prompt = f"Solve the following AIME problem by thinking step-by-step. {self.

output_format_instructions}\n\nPROBLEM:\n{problem}\n\nSOLUTION:"
try:

response, cost = self.query_llm(
prompt=prompt,
system=persona,
temperature=self.generation_temperature,

)
solutions.append(response)
total_cost += cost

except Exception:
If a query fails, we proceed with fewer solutions.
solutions.append(f"Expert {i + 1} failed to generate a solution.")

=== STAGE 2: Independent Peer Review & Self-Correction ===
critiques = []
reviewer_system_prompt = "You are a skeptical peer reviewer examining a proposed solution to an AIME

problem. Your task is to be extremely critical. Do not accept any statement at face value. Re-read the
original problem carefully. Check calculations. Scrutinize the logical flow. **Pattern Verification:**
If the solution relies on a pattern, you MUST test it on several new examples. If you find an error,
clearly explain the flaw and provide a corrected line of reasoning and a final corrected answer. If the
solution is completely sound, state that and re-state the final answer."

for sol in solutions:
prompt = f"Original Problem:\n{problem}\n\nProposed Solution to Review:\n{sol}\n\nYour Critical

Review and Corrected Solution:"
try:

review, cost = self.query_llm(
prompt=prompt,
system=reviewer_system_prompt,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

temperature=self.review_temperature,
)
critiques.append(review)
total_cost += cost

except Exception:
critiques.append("Reviewer failed to provide a critique.")

=== STAGE 3: Synthesize Final Answer ===
synthesis_prompt_parts = [

f"You are the Editor-in-Chief of a prestigious mathematics journal, responsible for publishing the
final, canonical solution to this AIME problem. You have received {self.num_experts} independent

attempts and their corresponding critical reviews. Your task is to produce the definitive solution.\n\
nProblem:\n{problem}"

]
for i, (sol, crit) in enumerate(zip(solutions, critiques)):

synthesis_prompt_parts.append(
f"\n--- ATTEMPT {i + 1} ---\nSolution: {sol}\nCritique: {crit}\n---"

)

synthesis_prompt_parts.append(
f"\nSYNTHESIS AND FINAL JUDGEMENT:\n1. First, briefly state the final numerical answer proposed by

each of the reviewed attempts.\n2. Based on the critiques, determine which approach is the most
reliable, or if all are flawed. Explain your reasoning.\n3. Construct the final, clear, step-by-step,
correct solution. Leverage insights from the valid parts of the attempts and correct any identified
errors. {self.output_format_instructions}"

)

synthesizer_prompt = "\n".join(synthesis_prompt_parts)
synthesizer_system_prompt = "You are a master mathematician and editor, synthesizing multiple reviewed

solutions into one canonical, correct answer."

final_response = ""
try:

final_response, cost = self.query_llm(
prompt=synthesizer_prompt,
system=synthesizer_system_prompt,
temperature=self.synthesis_temperature,

)
total_cost += cost

except Exception:
pass # Fallback logic will handle this.

=== Fallback Logic ===
if self._extract_answer(final_response) is None:

First, trust the reviewed answers
reviewed_answers = [self._extract_answer(c) for c in critiques]
valid_reviewed_answers = [

ans for ans in reviewed_answers if ans is not None
]

if valid_reviewed_answers:
most_common_answer = Counter(valid_reviewed_answers).most_common(1)[0][

0
]
final_response += f"\n\n[Fallback to Majority Vote on Reviewed Solutions]\n\\boxed{{{

most_common_answer}}}"
else:

If reviews didn’t produce answers, check original solutions
original_answers = [self._extract_answer(s) for s in solutions]
valid_original_answers = [

ans for ans in original_answers if ans is not None
]
if valid_original_answers:

most_common_answer = Counter(valid_original_answers).most_common(1)[
0

][0]
final_response += f"\n\n[Fallback to Majority Vote on Original Solutions]\n\\boxed{{{

most_common_answer}}}"
else:

Ultimate fallback
final_response += "\n\n[Fallback] Could not determine a final answer from any stage.\n\\

boxed{000}"

return final_response, total_cost

EVOLVE-BLOCK-END

def run_experiment(**kwargs):
from utils import query_llm, create_call_limited_query_llm
from functools import partial

Create base query_llm function
base_query_llm = partial(query_llm, model_name=kwargs["model_name"])

Wrap it with call limiting (max 10 calls per forward pass)
limited_query_llm = create_call_limited_query_llm(

base_query_llm,
max_calls=kwargs["max_calls"],

)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

accuracy, cost_total, processed, num_llm_calls, df = agent_evaluation(
Agent, limited_query_llm, year=kwargs["year"]

)
return accuracy, cost_total, processed, num_llm_calls, df

Listing 3: SHINKAEVOLVE Discovered AIME Agent Scaffold Design.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

D.3 ALE-BENCH PROBLEMS

D.3.1 ALE-BENCH LITE TASK: AHC039
// EVOLVE-BLOCK-START
#include <iostream>
#include <vector>
#include <algorithm>
#include <chrono>
#include <random>
#include <set>
#include <unordered_set>
#include <cmath>
#include <iomanip>
#include <numeric> // For std::iota
#include <string>
#include <map>

// === MACROS AND CONSTANTS ===
const int MAX_COORD_VAL = 100000;
const int MAX_VERTICES = 1000;
const int MAX_PERIMETER = 400000;
const double TIME_LIMIT_SECONDS_SAFETY_MARGIN = 0.1; // Increased safety margin
double ACTUAL_TIME_LIMIT_SECONDS = 2.0;

// === RANDOM NUMBER GENERATION ===
struct XorShift {

uint64_t x;
XorShift() : x(std::chrono::steady_clock::now().time_since_epoch().count() ˆ ((uint64_t)std::random_device
()() << 32) ˆ std::random_device()()) {}

uint64_t next() {
x ˆ= x << 13;
x ˆ= x >> 7;
x ˆ= x << 17;
return x;

}
int next_int(int n) { if (n <= 0) return 0; return next() % n; }
int next_int(int a, int b) { if (a > b) return a; return a + next_int(b - a + 1); }
double next_double() { return next() / (double)UINT64_MAX; }

};
XorShift rng;

// === TIMER ===
struct Timer {

std::chrono::steady_clock::time_point start_time;
Timer() { reset(); }
void reset() { start_time = std::chrono::steady_clock::now(); }
double elapsed() const {

auto now = std::chrono::steady_clock::now();
return std::chrono::duration_cast<std::chrono::duration<double>>(now - start_time).count();

}
};
Timer global_timer;

// === GEOMETRIC STRUCTURES ===
struct Point {

int x, y;
bool operator<(const Point& other) const {

if (x != other.x) return x < other.x;
return y < other.y;

}
bool operator==(const Point& other) const {

return x == other.x && y == other.y;
}
Point operator-(const Point& other) const {

return {x - other.x, y - other.y};
}

};

struct PointHash {
std::size_t operator()(const Point& p) const {

auto h1 = std::hash<int>{}(p.x);
auto h2 = std::hash<int>{}(p.y);
// Combining hashes: simple XOR might not be best, but often good enough.
// For Point, a common way is boost::hash_combine.
// h1 ˆ (h2 << 1) is a common way that’s okay.
return h1 ˆ (h2 << 1);

}
};

long long cross_product(Point a, Point b) {
return (long long)a.x * b.y - (long long)a.y * b.x;

}

struct Fish {
Point p;
int type; // 1 for mackerel, -1 for sardine

};
std::vector<Fish> all_fish_structs;

// === KD-TREE ===

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

struct KDNode {
Point pt;
int axis;
KDNode *left = nullptr, *right = nullptr;
int fish_struct_idx = -1;
// Subtree bounding box
int min_x, max_x, min_y, max_y;
// Subtree counts
int m_cnt = 0, s_cnt = 0;

};
KDNode* fish_kdtree_root = nullptr;

KDNode* build_kdtree(std::vector<int>& point_indices, int l, int r, int axis) {
if (l > r) return nullptr;
int mid = l + (r - l) / 2;

std::nth_element(point_indices.begin() + l, point_indices.begin() + mid, point_indices.begin() + r + 1,
[&](int a_idx, int b_idx) {

const Point& pa = all_fish_structs[a_idx].p;
const Point& pb = all_fish_structs[b_idx].p;
if (axis == 0) return pa.x < pb.x;
return pa.y < pb.y;

});

KDNode* node = new KDNode();
node->fish_struct_idx = point_indices[mid];
node->pt = all_fish_structs[node->fish_struct_idx].p;
node->axis = axis;

// Recurse
node->left = build_kdtree(point_indices, l, mid - 1, 1 - axis);
node->right = build_kdtree(point_indices, mid + 1, r, 1 - axis);

// Initialize subtree bbox to this point
node->min_x = node->max_x = node->pt.x;
node->min_y = node->max_y = node->pt.y;
// Initialize counts with this node’s fish
if (all_fish_structs[node->fish_struct_idx].type == 1) node->m_cnt = 1;
else node->s_cnt = 1;

// Merge children
if (node->left) {

node->min_x = std::min(node->min_x, node->left->min_x);
node->max_x = std::max(node->max_x, node->left->max_x);
node->min_y = std::min(node->min_y, node->left->min_y);
node->max_y = std::max(node->max_y, node->left->max_y);
node->m_cnt += node->left->m_cnt;
node->s_cnt += node->left->s_cnt;

}
if (node->right) {

node->min_x = std::min(node->min_x, node->right->min_x);
node->max_x = std::max(node->max_x, node->right->max_x);
node->min_y = std::min(node->min_y, node->right->min_y);
node->max_y = std::max(node->max_y, node->right->max_y);
node->m_cnt += node->right->m_cnt;
node->s_cnt += node->right->s_cnt;

}
return node;

}

void delete_kdtree(KDNode* node) { // Recursively delete KD-tree nodes
if (!node) return;
delete_kdtree(node->left);
delete_kdtree(node->right);
delete node;

}

// === POLYGON UTILITIES ===
long long calculate_perimeter(const std::vector<Point>& poly) {

if (poly.size() < 2) return 0;
long long perimeter = 0;
for (size_t i = 0; i < poly.size(); ++i) {

const Point& p1 = poly[i];
const Point& p2 = poly[(i + 1) % poly.size()];
perimeter += std::abs(p1.x - p2.x) + std::abs(p1.y - p2.y);

}
return perimeter;

}

bool is_on_segment(Point p, Point seg_a, Point seg_b) {
if (cross_product(seg_b - seg_a, p - seg_a) != 0) return false; // Not collinear
return std::min(seg_a.x, seg_b.x) <= p.x && p.x <= std::max(seg_a.x, seg_b.x) &&

std::min(seg_a.y, seg_b.y) <= p.y && p.y <= std::max(seg_a.y, seg_b.y);
}

bool is_inside_polygon_wn(Point p, const std::vector<Point>& polygon) {
int n = polygon.size();
if (n < 3) return false;

// Check if on boundary first

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

for (int i = 0; i < n; ++i) {
if (is_on_segment(p, polygon[i], polygon[(i + 1) % n])) return true;

}

int wn = 0; // Winding number
for (int i = 0; i < n; ++i) {

Point p1 = polygon[i];
Point p2 = polygon[(i + 1) % n];
if (p1.y <= p.y) { // Start y <= P.y

if (p2.y > p.y && cross_product(p2 - p1, p - p1) > 0) { // An upward crossing, P is left of edge
wn++;

}
} else { // Start y > P.y

if (p2.y <= p.y && cross_product(p2 - p1, p - p1) < 0) { // A downward crossing, P is right of
edge

wn--;
}

}
}
return wn != 0; // wn != 0 means inside; wn == 0 means outside.

}

// Calculate score from scratch by checking all fish
long long point_segment_dist_sq_ortho(Point p, Point a, Point b) {

long long dx, dy;
if (a.x == b.x) { // Vertical segment

dx = p.x - a.x;
if (p.y < std::min(a.y, b.y)) {

dy = p.y - std::min(a.y, b.y);
} else if (p.y > std::max(a.y, b.y)) {

dy = p.y - std::max(a.y, b.y);
} else {

dy = 0;
}

} else { // Horizontal segment
dy = p.y - a.y;
if (p.x < std::min(a.x, b.x)) {

dx = p.x - std::min(a.x, b.x);
} else if (p.x > std::max(a.x, b.x)) {

dx = p.x - std::max(a.x, b.x);
} else {

dx = 0;
}

}
return dx * dx + dy * dy;

}

void calculate_score_from_scratch(const std::vector<Point>& poly, int& m_count, int& s_count) {
m_count = 0; s_count = 0;
if (poly.size() < 3) return; // Not a valid polygon for containment
for (const auto& fish_s : all_fish_structs) {

if (is_inside_polygon_wn(fish_s.p, poly)) {
if (fish_s.type == 1) m_count++;
else s_count++;

}
}

}

// Calculate fish counts in a given rectangle using KD-tree
void calculate_score_delta_for_rectangle(KDNode* node, int r_min_x, int r_max_x, int r_min_y, int r_max_y,

int& delta_m, int& delta_s) {
delta_m = 0; delta_s = 0;

if (!node || r_min_x > r_max_x || r_min_y > r_max_y) { // Invalid rectangle
return;

}

// Iterative KD-tree traversal with subtree bbox pruning and whole-subtree aggregation.
std::vector<KDNode*> stack;
stack.reserve(64); // Reasonable reserve size for typical KD-tree depth
stack.push_back(node);

while (!stack.empty()) {
KDNode* current_node = stack.back();
stack.pop_back();
if (!current_node) continue;

// Disjoint?
if (current_node->max_x < r_min_x || current_node->min_x > r_max_x || current_node->max_y < r_min_y ||

current_node->min_y > r_max_y) {
continue;

}
// Fully inside?
if (r_min_x <= current_node->min_x && current_node->max_x <= r_max_x && r_min_y <= current_node->min_y

&& current_node->max_y <= r_max_y) {
delta_m += current_node->m_cnt;
delta_s += current_node->s_cnt;
continue;

}
// Partial overlap: account this node’s point, then traverse children
const Point& pt = current_node->pt;
if (pt.x >= r_min_x && pt.x <= r_max_x && pt.y >= r_min_y && pt.y <= r_max_y) {

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

if (all_fish_structs[current_node->fish_struct_idx].type == 1) ++delta_m;
else ++delta_s;

}
if (current_node->left) stack.push_back(current_node->left);
if (current_node->right) stack.push_back(current_node->right);

}
}

// Check intersection between two orthogonal segments p1s-p1e and p2s-p2e
bool segments_intersect(Point p1s, Point p1e, Point p2s, Point p2e) {

// Normalize segments (sort endpoints to simplify overlap checks)
if (p1s.x == p1e.x) { if (p1s.y > p1e.y) std::swap(p1s.y, p1e.y); } // Vertical, sort by y
else { if (p1s.x > p1e.x) std::swap(p1s.x, p1e.x); } // Horizontal, sort by x
if (p2s.x == p2e.x) { if (p2s.y > p2e.y) std::swap(p2s.y, p2e.y); }
else { if (p2s.x > p2e.x) std::swap(p2s.x, p2e.x); }

bool seg1_is_H = (p1s.y == p1e.y);
bool seg2_is_H = (p2s.y == p2e.y);

if (seg1_is_H == seg2_is_H) { // Both horizontal or both vertical
if (seg1_is_H) { // Both horizontal

// Check for y-alignment and x-overlap
return p1s.y == p2s.y && std::max(p1s.x, p2s.x) <= std::min(p1e.x, p2e.x);

} else { // Both vertical
// Check for x-alignment and y-overlap
return p1s.x == p2s.x && std::max(p1s.y, p2s.y) <= std::min(p1e.y, p2e.y);

}
} else { // One horizontal, one vertical (potential T-junction or cross)

Point h_s = seg1_is_H ? p1s : p2s; Point h_e = seg1_is_H ? p1e : p2e;
Point v_s = seg1_is_H ? p2s : p1s; Point v_e = seg1_is_H ? p2e : p1e;
// Check if intersection point (v_s.x, h_s.y) lies on both segments
return v_s.x >= h_s.x && v_s.x <= h_e.x && // x_intersect within horizontal segment’s x-range

h_s.y >= v_s.y && h_s.y <= v_e.y; // y_intersect within vertical segment’s y-range
}

}

bool check_self_intersection_full(const std::vector<Point>& poly) {
int M = poly.size();
if (M < 4) return false;
for (int i = 0; i < M; ++i) {

Point p1s = poly[i];
Point p1e = poly[(i + 1) % M];
for (int j = i + 2; j < M; ++j) {

// Skip checking adjacent edges.
// Edge i is (poly[i], poly[(i+1)%M]). Edge j is (poly[j], poly[(j+1)%M]).
// If i=0 and j=M-1, then edge i is (poly[0], poly[1]) and edge j is (poly[M-1], poly[0]). These

are adjacent.
if (i == 0 && j == M - 1) continue;

Point p2s = poly[j];
Point p2e = poly[(j + 1) % M];
if (segments_intersect(p1s, p1e, p2s, p2e)) return true;

}
}
return false;

}

// Local self-intersection check: checks edges starting at critical_edge_start_indices_const against all
others

bool has_self_intersection_locally(const std::vector<Point>& poly, const std::vector<int>&
critical_edge_start_indices_const) {

int M = poly.size();
if (M < 4) return false;

std::vector<int> critical_indices = critical_edge_start_indices_const; // Make a copy to modify
if (critical_indices.empty()) {

return false;
}

std::sort(critical_indices.begin(), critical_indices.end());
critical_indices.erase(std::unique(critical_indices.begin(), critical_indices.end()), critical_indices.end
());

for (int edge1_s_idx_val_orig : critical_indices) {
int edge1_s_idx_val = (edge1_s_idx_val_orig % M + M) % M; // Ensure positive modulo
// No need to check edge1_s_idx_val bounds, it will be in [0, M-1]

Point p1s = poly[edge1_s_idx_val];
Point p1e = poly[(edge1_s_idx_val + 1) % M];

for (int edge2_s_idx = 0; edge2_s_idx < M; ++edge2_s_idx) {
bool is_adj_or_same_to_p1s_p1e = (edge2_s_idx == edge1_s_idx_val || //

Same edge
edge2_s_idx == (edge1_s_idx_val + 1) % M || // edge2 starts

where edge1 ends
(edge2_s_idx + 1) % M == edge1_s_idx_val); // edge2 ends where edge1 starts

if (is_adj_or_same_to_p1s_p1e) continue;

Point p2s = poly[edge2_s_idx];
Point p2e = poly[(edge2_s_idx + 1) % M];
if (segments_intersect(p1s, p1e, p2s, p2e)) {

return true;

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

}
}

}
return false;

}

bool has_distinct_vertices_unordered(const std::vector<Point>& poly) {
if (poly.empty()) return true;
std::unordered_set<Point, PointHash> distinct_pts;
distinct_pts.reserve(poly.size()); // Pre-allocate for efficiency
for(const auto& p : poly) {

if (!distinct_pts.insert(p).second) return false; // Insertion failed, duplicate found
}
return true;

}

// Check basic structural validity of the polygon, uses cached perimeter
bool is_polygon_structurally_sound(const std::vector<Point>& poly, long long cached_perimeter) {

int m = poly.size();
if (m != 0 && (m < 4 || m > MAX_VERTICES)) return false;
if (m == 0) return true;

if (cached_perimeter > MAX_PERIMETER) return false;

for (size_t i = 0; i < m; ++i) {
const Point& p1 = poly[i];
const Point& p2 = poly[(i + 1) % m];
// Check coordinate bounds for p1
if (p1.x < 0 || p1.x > MAX_COORD_VAL || p1.y < 0 || p1.y > MAX_COORD_VAL) return false;
// The endpoint poly[(i+1)%m] will be checked as p1 in its own iteration,
// but an explicit check here is also fine for robustness, though slightly redundant.
if (poly[(i+1)%m].x < 0 || poly[(i+1)%m].x > MAX_COORD_VAL || poly[(i+1)%m].y < 0 || poly[(i+1)%m].y >

MAX_COORD_VAL) return false;

// Check axis-parallel and non-zero length edges
if (p1.x != p2.x && p1.y != p2.y) return false; // Not axis-parallel
if (p1.x == p2.x && p1.y == p2.y) return false; // Zero-length edge (duplicate consecutive vertices)

}
return true;

}

// Initial polygon generation using Kadane’s algorithm on a coarse grid
std::vector<Point> create_initial_polygon_kadane() {

const int GRID_SIZE_KADANE = 350; // Tunable parameter
const int NUM_VALUES_KADANE = MAX_COORD_VAL + 1;
// Ensure ACTUAL_CELL_DIM_KADANE is at least 1
const int ACTUAL_CELL_DIM_KADANE = std::max(1, (NUM_VALUES_KADANE + GRID_SIZE_KADANE - 1) /
GRID_SIZE_KADANE);

std::vector<std::vector<long long>> grid_scores(GRID_SIZE_KADANE, std::vector<long long>(GRID_SIZE_KADANE,
0));

for (const auto& fish_s : all_fish_structs) {
int r = fish_s.p.y / ACTUAL_CELL_DIM_KADANE;
int c = fish_s.p.x / ACTUAL_CELL_DIM_KADANE;
r = std::min(r, GRID_SIZE_KADANE - 1); r = std::max(r,0);
c = std::min(c, GRID_SIZE_KADANE - 1); c = std::max(c,0);
grid_scores[r][c] += fish_s.type; // Mackerel +1, Sardine -1

}

long long max_so_far = -3e18; // Sufficiently small number
int best_r1 = 0, best_c1 = 0, best_r2 = -1, best_c2 = -1;

// 2D Kadane’s algorithm
for (int c1_idx = 0; c1_idx < GRID_SIZE_KADANE; ++c1_idx) {

std::vector<long long> col_strip_sum(GRID_SIZE_KADANE, 0);
for (int c2_idx = c1_idx; c2_idx < GRID_SIZE_KADANE; ++c2_idx) {

for (int r_idx = 0; r_idx < GRID_SIZE_KADANE; ++r_idx) {
col_strip_sum[r_idx] += grid_scores[r_idx][c2_idx];

}

// 1D Kadane’s on col_strip_sum
long long current_strip_val = 0;
int current_r1_1d = 0;
for (int r2_idx_1d = 0; r2_idx_1d < GRID_SIZE_KADANE; ++r2_idx_1d) {

long long val_here = col_strip_sum[r2_idx_1d];
if (current_strip_val > 0 && current_strip_val + val_here > 0) { // Extend if sum remains

positive
current_strip_val += val_here;

} else { // Start new subarray
current_strip_val = val_here;
current_r1_1d = r2_idx_1d;

}

if (current_strip_val > max_so_far) {
max_so_far = current_strip_val;
best_r1 = current_r1_1d;
best_r2 = r2_idx_1d;
best_c1 = c1_idx;
best_c2 = c2_idx;

}
}

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

}
}

std::vector<Point> default_poly = {{0,0}, {1,0}, {1,1}, {0,1}}; // Minimal valid polygon

// If no positive sum found, or issue, find best single cell
if (best_r2 == -1 || max_so_far <=0) {

max_so_far = -3e18; // Reset search for single best cell
bool found_cell = false;
for(int r=0; r<GRID_SIZE_KADANE; ++r) for(int c=0; c<GRID_SIZE_KADANE; ++c) {

if(grid_scores[r][c] > max_so_far) {
max_so_far = grid_scores[r][c];
best_r1 = r; best_r2 = r; // Single cell
best_c1 = c; best_c2 = c;
found_cell = true;

}
}
if (!found_cell || max_so_far <=0) return default_poly; // Still no good cell, return default

}

// Convert grid cell indices to actual coordinates
int x_start = best_c1 * ACTUAL_CELL_DIM_KADANE;
int y_start = best_r1 * ACTUAL_CELL_DIM_KADANE;
int x_end = (best_c2 + 1) * ACTUAL_CELL_DIM_KADANE -1;
int y_end = (best_r2 + 1) * ACTUAL_CELL_DIM_KADANE -1;

// Clamp coordinates to valid range
x_start = std::max(0, std::min(MAX_COORD_VAL, x_start));
y_start = std::max(0, std::min(MAX_COORD_VAL, y_start));
x_end = std::max(x_start, std::min(MAX_COORD_VAL, x_end)); // Ensure x_end >= x_start
y_end = std::max(y_start, std::min(MAX_COORD_VAL, y_end)); // Ensure y_end >= y_start

// Ensure non-zero dimensions for the polygon, minimum 1x1 actual area
if (x_start == x_end) {

if (x_start < MAX_COORD_VAL) x_end = x_start + 1;
else if (x_start > 0) x_start = x_start -1; // Can’t expand right, try expand left
else return default_poly; // Single point at MAX_COORD_VAL, cannot form 1x1

}
if (y_start == y_end) {

if (y_start < MAX_COORD_VAL) y_end = y_start + 1;
else if (y_start > 0) y_start = y_start - 1;
else return default_poly;

}
// After adjustment, if still degenerate, use default. This is rare.
if (x_start == x_end || y_start == y_end) return default_poly;

std::vector<Point> initial_poly = {
{x_start, y_start}, {x_end, y_start}, {x_end, y_end}, {x_start, y_end}

};
return initial_poly;

}

// === SIMULATED ANNEALING ===
struct SAState {

std::vector<Point> poly;
int m_count;
int s_count;
long long perimeter_cache; // Added cache for perimeter

SAState() : m_count(0), s_count(0), perimeter_cache(0) {} // Initialize perimeter_cache

long long get_objective_score() const {
return std::max(0LL, (long long)m_count - s_count + 1);

}
double get_raw_objective_score() const { // Used for SA acceptance probability

return (double)m_count - s_count;
}

};

// Calculates signed area * 2 of a polygon (shoelace formula)
long long polygon_signed_area_times_2(const std::vector<Point>& poly) {

if (poly.size() < 3) return 0;
long long area_sum = 0;
for (size_t i = 0; i < poly.size(); ++i) {

const Point& p1 = poly[i];
const Point& p2 = poly[(i + 1) % poly.size()];
area_sum += (long long)(p1.x - p2.x) * (p1.y + p2.y); // (x1-x2)(y1+y2) variant

}
return area_sum; // Positive for CCW, negative for CW

}

std::vector<int> sa_critical_edge_indices_cache; // Cache for local intersection check

// Guide coordinates for SA moves
std::vector<int> static_x_guides;
std::vector<int> static_y_guides;
std::vector<int> best_poly_x_guides;
std::vector<int> best_poly_y_guides;

void update_best_poly_guides(const SAState& new_best_state) {
best_poly_x_guides.clear();

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

best_poly_y_guides.clear();
if (new_best_state.poly.empty()) return;

std::set<int> temp_x_set, temp_y_set;
for (const auto& p : new_best_state.poly) {

temp_x_set.insert(p.x);
temp_y_set.insert(p.y);

}
best_poly_x_guides.assign(temp_x_set.begin(), temp_x_set.end());
best_poly_y_guides.assign(temp_y_set.begin(), temp_y_set.end());

}

void simulated_annealing_main() {
SAState current_state;
current_state.poly = create_initial_polygon_kadane();
calculate_score_from_scratch(current_state.poly, current_state.m_count, current_state.s_count);
current_state.perimeter_cache = calculate_perimeter(current_state.poly); // Calculate initial perimeter

std::vector<Point> default_tiny_poly = {{0,0}, {1,0}, {1,1}, {0,1}};

// Ensure initial polygon is valid, otherwise use default
bool current_poly_initial_valid = is_polygon_structurally_sound(current_state.poly, current_state.
perimeter_cache) &&

current_state.poly.size() >= 4 &&
has_distinct_vertices_unordered(current_state.poly) &&
!check_self_intersection_full(current_state.poly);

if (!current_poly_initial_valid) {
current_state.poly = default_tiny_poly;
calculate_score_from_scratch(current_state.poly, current_state.m_count, current_state.s_count);
current_state.perimeter_cache = calculate_perimeter(current_state.poly); // Update perimeter for

default
}

SAState best_state = current_state;
update_best_poly_guides(best_state);

// Prepare static guide coordinates from fish locations
std::set<int> sx_set, sy_set;
for(const auto& f_s : all_fish_structs) {

sx_set.insert(f_s.p.x); sx_set.insert(std::max(0,f_s.p.x-1)); sx_set.insert(std::min(MAX_COORD_VAL,
f_s.p.x+1));

sy_set.insert(f_s.p.y); sy_set.insert(std::max(0,f_s.p.y-1)); sy_set.insert(std::min(MAX_COORD_VAL,
f_s.p.y+1));

}
sx_set.insert(0); sx_set.insert(MAX_COORD_VAL); // Boundary guides
sy_set.insert(0); sy_set.insert(MAX_COORD_VAL);

static_x_guides.assign(sx_set.begin(), sx_set.end());
static_y_guides.assign(sy_set.begin(), sy_set.end());

double start_temp = 150.0;
double end_temp = 0.01;

long long current_signed_area = polygon_signed_area_times_2(current_state.poly);
if (current_signed_area == 0 && current_state.poly.size() >=3) {

current_signed_area = 1; // Avoid issues with zero area for sign logic
}

sa_critical_edge_indices_cache.reserve(10); // Max expected critical edges for current moves

while (global_timer.elapsed() < ACTUAL_TIME_LIMIT_SECONDS) {
double time_ratio = global_timer.elapsed() / ACTUAL_TIME_LIMIT_SECONDS;
double temperature = start_temp * std::pow(end_temp / start_temp, time_ratio);
// Fine-tune temperature near end or if it drops too fast
if (temperature < end_temp && time_ratio < 0.95) temperature = end_temp;
if (time_ratio > 0.95 && temperature > end_temp * 0.1) temperature = end_temp * 0.1; // Lower temp

aggressively at the very end

if (current_state.poly.size() < 4) { // Should not happen if logic is correct, but as a safeguard
current_state.poly = default_tiny_poly;
calculate_score_from_scratch(current_state.poly, current_state.m_count, current_state.s_count);
current_state.perimeter_cache = calculate_perimeter(current_state.poly); // Update perimeter
current_signed_area = polygon_signed_area_times_2(current_state.poly);
if (current_signed_area == 0 && current_state.poly.size() >=3) current_signed_area = 1;

}

SAState candidate_state = current_state; // Copy current state
sa_critical_edge_indices_cache.clear();

int move_type_roll = rng.next_int(100);

// Base probabilities for moves
int targeted_move_prob = 35;
int move_edge_prob = 35;
int add_bulge_prob = 10;
// simplify gets 20%

bool near_vertex_limit = candidate_state.poly.size() + 2 > MAX_VERTICES;
bool near_perimeter_limit = false;

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

// Check perimeter using candidate_state’s cached value
if (candidate_state.poly.size() > 200 && candidate_state.perimeter_cache > MAX_PERIMETER * 0.9) {

near_perimeter_limit = true;
}

// Adjust move probabilities based on polygon size/perimeter
if (near_vertex_limit || near_perimeter_limit) {

add_bulge_prob = 0;
targeted_move_prob = 40;
move_edge_prob = 40; // simplify is 20

} else if (candidate_state.poly.size() > 400) {
add_bulge_prob = 5;
targeted_move_prob = 35;
move_edge_prob = 35; // simplify is 25

}

int p_targeted = targeted_move_prob;
int p_move_edge = p_targeted + move_edge_prob;
int p_add_bulge = p_move_edge + add_bulge_prob;

bool move_made = false;

// Probabilities for snapping to guide coordinates
double prob_dynamic_guide_snap = 0.20 + 0.20 * time_ratio;
double prob_static_guide_snap_if_not_dynamic = 0.75;

if (move_type_roll < p_targeted && candidate_state.poly.size() >= 4) { // Targeted Edge Move
bool target_mackerel = rng.next_double() < 0.7;
int n_fish_half = all_fish_structs.size() / 2;
int fish_idx = target_mackerel ? rng.next_int(n_fish_half) : n_fish_half + rng.next_int(

n_fish_half);
const auto& target_fish = all_fish_structs[fish_idx];
bool is_inside = is_inside_polygon_wn(target_fish.p, candidate_state.poly);

if ((target_fish.type == 1) == is_inside) {
move_made = false; goto end_move_attempt_label;

}

long long min_dist_sq = -1;
int best_edge_idx = -1;
for (size_t i = 0; i < candidate_state.poly.size(); ++i) {

long long d_sq = point_segment_dist_sq_ortho(target_fish.p, candidate_state.poly[i],
candidate_state.poly[(i+1)%candidate_state.poly.size()]);

if (best_edge_idx == -1 || d_sq < min_dist_sq) {
min_dist_sq = d_sq;
best_edge_idx = i;

}
}
if (best_edge_idx == -1) { move_made = false; goto end_move_attempt_label; }

int edge_idx = best_edge_idx;
Point p1_orig = candidate_state.poly[edge_idx];
Point p2_orig = candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()];

int new_coord_val;
if (p1_orig.x == p2_orig.x) { new_coord_val = target_fish.p.x; }
else { new_coord_val = target_fish.p.y; }

new_coord_val = std::max(0, std::min(MAX_COORD_VAL, new_coord_val));

int cur_delta_m=0, cur_delta_s=0;
if (p1_orig.x == p2_orig.x) { // Vertical edge

if (new_coord_val == p1_orig.x) {move_made = false; goto end_move_attempt_label;}

int query_min_x, query_max_x;
if (new_coord_val > p1_orig.x) { query_min_x = p1_orig.x + 1; query_max_x = new_coord_val; }
else { query_min_x = new_coord_val; query_max_x = p1_orig.x - 1; }

calculate_score_delta_for_rectangle(
fish_kdtree_root, query_min_x, query_max_x,
std::min(p1_orig.y, p2_orig.y), std::max(p1_orig.y, p2_orig.y),
cur_delta_m, cur_delta_s);

int sign = (new_coord_val > p1_orig.x) ? 1 : -1;
if (p1_orig.y > p2_orig.y) sign *= -1;
if (current_signed_area < 0) sign *= -1;

candidate_state.poly[edge_idx].x = new_coord_val;
candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()].x = new_coord_val;
candidate_state.m_count += sign * cur_delta_m;
candidate_state.s_count += sign * cur_delta_s;

} else { // Horizontal edge
if (new_coord_val == p1_orig.y) {move_made = false; goto end_move_attempt_label;}

int query_min_y, query_max_y;
if (new_coord_val > p1_orig.y) { query_min_y = p1_orig.y + 1; query_max_y = new_coord_val; }
else { query_min_y = new_coord_val; query_max_y = p1_orig.y - 1; }

calculate_score_delta_for_rectangle(
fish_kdtree_root, std::min(p1_orig.x, p2_orig.x), std::max(p1_orig.x, p2_orig.x),
query_min_y, query_max_y,
cur_delta_m, cur_delta_s);

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

int sign = (new_coord_val < p1_orig.y) ? 1 : -1;
if (p1_orig.x > p2_orig.x) sign *= -1;
if (current_signed_area < 0) sign *= -1;

candidate_state.poly[edge_idx].y = new_coord_val;
candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()].y = new_coord_val;
candidate_state.m_count += sign * cur_delta_m;
candidate_state.s_count += sign * cur_delta_s;

}
int M_cand = candidate_state.poly.size();
sa_critical_edge_indices_cache.push_back((edge_idx - 1 + M_cand) % M_cand);
sa_critical_edge_indices_cache.push_back(edge_idx);
sa_critical_edge_indices_cache.push_back((edge_idx + 1) % M_cand);
move_made = true;

} else if (move_type_roll < p_move_edge && candidate_state.poly.size() >= 4) { // Move Edge
int edge_idx = rng.next_int(candidate_state.poly.size());
Point p1_orig = candidate_state.poly[edge_idx];
Point p2_orig = candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()];

int new_coord_val = -1;
int cur_delta_m=0, cur_delta_s=0;
bool coord_selected_successfully = false;

// Determine which guides are relevant (X or Y)
const std::vector<int>* relevant_dyn_guides = (p1_orig.x == p2_orig.x) ? &best_poly_x_guides : &

best_poly_y_guides;
const std::vector<int>* relevant_static_guides = (p1_orig.x == p2_orig.x) ? &static_x_guides : &

static_y_guides;

// Try snapping to dynamic (best poly) guides
if (!relevant_dyn_guides->empty() && rng.next_double() < prob_dynamic_guide_snap) {

new_coord_val = (*relevant_dyn_guides)[rng.next_int(relevant_dyn_guides->size())];
coord_selected_successfully = true;

}
// If not, try snapping to static (fish) guides
if (!coord_selected_successfully) {

if (!relevant_static_guides->empty() && rng.next_double() <
prob_static_guide_snap_if_not_dynamic) {

new_coord_val = (*relevant_static_guides)[rng.next_int(relevant_static_guides->size())];
coord_selected_successfully = true;

}
}
// If still not selected, use random displacement
if (!coord_selected_successfully) {

double step_factor = std::max(0.1, 1.0 - time_ratio * 0.95); // Step size decreases over time
int base_step_max = std::max(1, (int)((MAX_COORD_VAL/150.0) * step_factor + 1));
int random_displacement = rng.next_int(-base_step_max, base_step_max);
if (time_ratio > 0.75 && rng.next_double() < 0.7) { // Very small steps near end

random_displacement = rng.next_int(-2,2);
}
if (random_displacement == 0) random_displacement = (rng.next_double() < 0.5) ? -1:1;

if (p1_orig.x == p2_orig.x) new_coord_val = p1_orig.x + random_displacement; // Vertical edge,
move X

else new_coord_val = p1_orig.y + random_displacement; // Horizontal edge, move Y
}

new_coord_val = std::max(0, std::min(MAX_COORD_VAL, new_coord_val)); // Clamp to bounds

if (p1_orig.x == p2_orig.x) { // Vertical edge: (X_orig, Y_s) to (X_orig, Y_e)
if (new_coord_val == p1_orig.x) {move_made = false; goto end_move_attempt_label;} // No change

int query_min_x, query_max_x;
if (new_coord_val > p1_orig.x) { // Moved right

query_min_x = p1_orig.x + 1;
query_max_x = new_coord_val;

} else { // Moved left (new_coord_val < p1_orig.x)
query_min_x = new_coord_val;
query_max_x = p1_orig.x - 1;

}

calculate_score_delta_for_rectangle(
fish_kdtree_root, query_min_x, query_max_x,
std::min(p1_orig.y, p2_orig.y), std::max(p1_orig.y, p2_orig.y),
cur_delta_m, cur_delta_s);

int sign = (new_coord_val > p1_orig.x) ? 1 : -1; // Moving right is positive X change
if (p1_orig.y > p2_orig.y) sign *= -1; // Correct for edge Y-direction (p1_orig.y to p2_orig.y

)
if (current_signed_area < 0) sign *= -1; // Correct for CW polygon (area < 0)

candidate_state.poly[edge_idx].x = new_coord_val;
candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()].x = new_coord_val;
candidate_state.m_count += sign * cur_delta_m;
candidate_state.s_count += sign * cur_delta_s;

} else { // Horizontal edge: (X_s, Y_orig) to (X_e, Y_orig)
if (new_coord_val == p1_orig.y) {move_made = false; goto end_move_attempt_label;} // No change

int query_min_y, query_max_y;
if (new_coord_val > p1_orig.y) { // Moved up (Y increases)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

query_min_y = p1_orig.y + 1;
query_max_y = new_coord_val;

} else { // Moved down (Y decreases, new_coord_val < p1_orig.y)
query_min_y = new_coord_val;
query_max_y = p1_orig.y - 1;

}

calculate_score_delta_for_rectangle(
fish_kdtree_root, std::min(p1_orig.x, p2_orig.x), std::max(p1_orig.x, p2_orig.x),
query_min_y, query_max_y,
cur_delta_m, cur_delta_s);

int sign = (new_coord_val < p1_orig.y) ? 1 : -1; // Moving "down" (Y decreases) means positive
sign if it expands area

if (p1_orig.x > p2_orig.x) sign *= -1; // Correct for edge X-direction (p1_orig.x to p2_orig.x
)

if (current_signed_area < 0) sign *= -1; // Correct for CW polygon

candidate_state.poly[edge_idx].y = new_coord_val;
candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()].y = new_coord_val;
candidate_state.m_count += sign * cur_delta_m;
candidate_state.s_count += sign * cur_delta_s;

}
int M_cand = candidate_state.poly.size();
sa_critical_edge_indices_cache.push_back((edge_idx - 1 + M_cand) % M_cand);
sa_critical_edge_indices_cache.push_back(edge_idx);
sa_critical_edge_indices_cache.push_back((edge_idx + 1) % M_cand);
move_made = true;

} else if (move_type_roll < p_add_bulge && candidate_state.poly.size() + 2 <= MAX_VERTICES &&
candidate_state.poly.size() >=4) { // Add Bulge

int edge_idx = rng.next_int(candidate_state.poly.size());
Point p_s = candidate_state.poly[edge_idx]; // Start point of edge
Point p_e = candidate_state.poly[(edge_idx + 1) % candidate_state.poly.size()]; // End point of

edge

int new_coord_val = -1;
bool coord_selected_successfully = false;

const std::vector<int>* relevant_dyn_guides = (p_s.x == p_e.x) ? &best_poly_x_guides : &
best_poly_y_guides;

const std::vector<int>* relevant_static_guides = (p_s.x == p_e.x) ? &static_x_guides : &
static_y_guides;

// Try snapping bulge coord
if (!relevant_dyn_guides->empty() && rng.next_double() < prob_dynamic_guide_snap) {

new_coord_val = (*relevant_dyn_guides)[rng.next_int(relevant_dyn_guides->size())];
coord_selected_successfully = true;

}
if (!coord_selected_successfully) {

if (!relevant_static_guides->empty() && rng.next_double() <
prob_static_guide_snap_if_not_dynamic) {

new_coord_val = (*relevant_static_guides)[rng.next_int(relevant_static_guides->size())];
coord_selected_successfully = true;

}
}
// If not snapped, random depth for bulge
if (!coord_selected_successfully) {

double depth_factor = std::max(0.1, 1.0 - time_ratio * 0.9);
int base_depth_max = std::max(1, (int)((MAX_COORD_VAL/300.0) * depth_factor + 1));
int random_abs_depth = rng.next_int(1, base_depth_max);
if (time_ratio > 0.75 && rng.next_double() < 0.7) {

random_abs_depth = rng.next_int(1,2);
}
int bulge_dir_sign = (rng.next_double() < 0.5) ? 1 : -1; // Randomly outwards or inwards

relative to edge line
if (p_s.x == p_e.x) new_coord_val = p_s.x + bulge_dir_sign * random_abs_depth; // Vertical

edge, bulge in X
else new_coord_val = p_s.y + bulge_dir_sign * random_abs_depth; // Horizontal edge, bulge in Y

}

new_coord_val = std::max(0, std::min(MAX_COORD_VAL, new_coord_val));

Point v1_mod, v2_mod; // New vertices for the bulge
int cur_delta_m=0, cur_delta_s=0;

if (p_s.x == p_e.x) { // Original edge is vertical
if (new_coord_val == p_s.x) {move_made = false; goto end_move_attempt_label;} // Bulge is flat
v1_mod = {new_coord_val, p_s.y}; v2_mod = {new_coord_val, p_e.y};
// Rectangle for delta score is between X=p_s.x and X=new_coord_val, over Y-span of original

edge
calculate_score_delta_for_rectangle(

fish_kdtree_root, std::min(p_s.x, new_coord_val), std::max(p_s.x, new_coord_val),
std::min(p_s.y,p_e.y), std::max(p_s.y,p_e.y),
cur_delta_m, cur_delta_s);

int sign = (new_coord_val > p_s.x) ? 1 : -1; // Bulge to the right of edge is positive X
change

if (p_s.y > p_e.y) sign *= -1; // Correct for edge Y-direction
if (current_signed_area < 0) sign *= -1; // Correct for CW polygon
candidate_state.m_count += sign * cur_delta_m;
candidate_state.s_count += sign * cur_delta_s;

} else { // Original edge is horizontal

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

if (new_coord_val == p_s.y) {move_made = false; goto end_move_attempt_label;} // Bulge is flat
v1_mod = {p_s.x, new_coord_val}; v2_mod = {p_e.x, new_coord_val};
// Rectangle for delta score is between Y=p_s.y and Y=new_coord_val, over X-span of original

edge
calculate_score_delta_for_rectangle(

fish_kdtree_root, std::min(p_s.x,p_e.x), std::max(p_s.x,p_e.x),
std::min(p_s.y, new_coord_val), std::max(p_s.y, new_coord_val),
cur_delta_m, cur_delta_s);

int sign = (new_coord_val < p_s.y) ? 1 : -1; // Bulge "downwards" (Y decreases) means positive
sign if it expands area

if (p_s.x > p_e.x) sign *= -1; // Correct for edge X-direction
if (current_signed_area < 0) sign *= -1; // Correct for CW polygon
candidate_state.m_count += sign * cur_delta_m;
candidate_state.s_count += sign * cur_delta_s;

}

// Insert new vertices into polygon
auto insert_pos_iter = candidate_state.poly.begin() + (edge_idx + 1);
insert_pos_iter = candidate_state.poly.insert(insert_pos_iter, v1_mod);
candidate_state.poly.insert(insert_pos_iter + 1, v2_mod);

// Mark affected edges/vertices as critical for local intersection check
sa_critical_edge_indices_cache.push_back(edge_idx);
sa_critical_edge_indices_cache.push_back(edge_idx + 1);
sa_critical_edge_indices_cache.push_back(edge_idx + 2);
move_made = true;

} else if (candidate_state.poly.size() > 4) { // Simplify Polygon (remove collinear vertex)
int R_start_idx = rng.next_int(candidate_state.poly.size()); // Random start for search
bool simplified_this_turn = false;
for(int k_offset=0; k_offset < candidate_state.poly.size() ; ++k_offset) {

int current_poly_size_before_erase = candidate_state.poly.size();
if (current_poly_size_before_erase <= 4) break; // Cannot simplify further

int p1_idx = (R_start_idx + k_offset) % current_poly_size_before_erase;
int p0_idx_old = (p1_idx - 1 + current_poly_size_before_erase) %

current_poly_size_before_erase;
int p2_idx_old = (p1_idx + 1) % current_poly_size_before_erase;

const Point& p0 = candidate_state.poly[p0_idx_old];
const Point& p1 = candidate_state.poly[p1_idx];
const Point& p2 = candidate_state.poly[p2_idx_old];

bool collinear_x = (p0.x == p1.x && p1.x == p2.x);
bool collinear_y = (p0.y == p1.y && p1.y == p2.y);

if (collinear_x || collinear_y) {
candidate_state.poly.erase(candidate_state.poly.begin() + p1_idx);
simplified_this_turn = true;

int M_cand = candidate_state.poly.size();
int critical_vertex_idx_in_new_poly;
// Vertex p0 (at p0_idx_old) forms the new corner. Its index in new poly:
if (p1_idx == 0) { // If p1 was poly[0], p0 was poly[last]. p0 is now poly[new_last]

critical_vertex_idx_in_new_poly = M_cand -1;
} else { // Otherwise, p0’s index p1_idx-1 is preserved.

critical_vertex_idx_in_new_poly = p1_idx - 1;
}

if (!candidate_state.poly.empty()) {
sa_critical_edge_indices_cache.push_back((critical_vertex_idx_in_new_poly - 1 + M_cand

) % M_cand);
sa_critical_edge_indices_cache.push_back(critical_vertex_idx_in_new_poly);
sa_critical_edge_indices_cache.push_back((critical_vertex_idx_in_new_poly + 1) %

M_cand);
}
break; // Simplified one vertex, enough for this turn

}
}
if (!simplified_this_turn) {move_made = false; goto end_move_attempt_label;} // No simplification

found/possible
move_made = true;

}

// After any move, recalculate perimeter for the candidate_state. This occurs only once per candidate.
candidate_state.perimeter_cache = calculate_perimeter(candidate_state.poly);

end_move_attempt_label:; // Label for goto if a move is aborted (e.g. no change)
if (!move_made) continue; // No valid move attempted or made

// Validate candidate polygon using the cached perimeter
if (!is_polygon_structurally_sound(candidate_state.poly, candidate_state.perimeter_cache) ||

candidate_state.poly.size() < 4 ||
!has_distinct_vertices_unordered(candidate_state.poly)) {
continue; // Invalid basic structure or duplicate vertices

}

if (has_self_intersection_locally(candidate_state.poly, sa_critical_edge_indices_cache)) {
continue; // Self-intersection found

}

// Accept or reject candidate based on SA criteria

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

double candidate_raw_obj_score = candidate_state.get_raw_objective_score();
double current_raw_obj_score = current_state.get_raw_objective_score();
double score_diff = candidate_raw_obj_score - current_raw_obj_score;

if (score_diff >= 0 || (temperature > 1e-9 && rng.next_double() < std::exp(score_diff / temperature)))
{

current_state = std::move(candidate_state); // Accept move (perimeter_cache is moved as well)
current_signed_area = polygon_signed_area_times_2(current_state.poly); // Update signed area
if (current_signed_area == 0 && !current_state.poly.empty() && current_state.poly.size() >=3)

current_signed_area = 1; // Handle degenerate

if (current_state.get_objective_score() > best_state.get_objective_score()) {
best_state = current_state; // New best solution found (perimeter_cache is copied here)
update_best_poly_guides(best_state); // Update dynamic guides

}
}

} // End SA loop

// Final validation of the best found state: Recalculate perimeter explicitly for safety
bool needs_reset_to_default = false;
if (!is_polygon_structurally_sound(best_state.poly, calculate_perimeter(best_state.poly)) ||

best_state.poly.size() < 4 ||
!has_distinct_vertices_unordered(best_state.poly) ||
check_self_intersection_full(best_state.poly)) { // Full intersection check on best
needs_reset_to_default = true;

}

if (needs_reset_to_default) { // If best state is invalid, revert to default
best_state.poly = default_tiny_poly;
calculate_score_from_scratch(best_state.poly, best_state.m_count, best_state.s_count);
best_state.perimeter_cache = calculate_perimeter(best_state.poly); // Update for default

}

// If best score is 0, check if default polygon gives >0. (max(0, val+1))
if (best_state.get_objective_score() == 0) {

SAState temp_default_state; // Create a temporary default state to calculate its score
temp_default_state.poly = default_tiny_poly;
calculate_score_from_scratch(temp_default_state.poly, temp_default_state.m_count, temp_default_state.

s_count);
temp_default_state.perimeter_cache = calculate_perimeter(temp_default_state.poly); // Update for

default

if (best_state.get_objective_score() < temp_default_state.get_objective_score()) {
best_state = temp_default_state;

}
}

// Output the best polygon
std::cout << best_state.poly.size() << "\n";
for (const auto& p : best_state.poly) {

std::cout << p.x << " " << p.y << "\n";
}

}

int main(int argc, char *argv[]) {
std::ios_base::sync_with_stdio(false);
std::cin.tie(NULL);

// Allow overriding time limit via command line arg, for local testing
if (argc > 1) {

try {
ACTUAL_TIME_LIMIT_SECONDS = std::stod(argv[1]);

} catch (const std::exception& e) { /* keep default if parse fails */ }
}
ACTUAL_TIME_LIMIT_SECONDS -= TIME_LIMIT_SECONDS_SAFETY_MARGIN;
if (ACTUAL_TIME_LIMIT_SECONDS < 0.2) ACTUAL_TIME_LIMIT_SECONDS = 0.2; // Minimum sensible time limit

// query_rect_indices_cache_kdtree.reserve(2 * 5000 + 500); // Removed: unused
sa_critical_edge_indices_cache.reserve(10); // Small, for a few critical edges

int N_half; // Number of mackerels (and sardines)
std::cin >> N_half;

all_fish_structs.resize(2 * N_half);
std::vector<int> fish_indices_for_kdtree(2 * N_half);
if (2 * N_half > 0) {

std::iota(fish_indices_for_kdtree.begin(), fish_indices_for_kdtree.end(), 0);
}

// Read mackerels
for (int i = 0; i < N_half; ++i) {

std::cin >> all_fish_structs[i].p.x >> all_fish_structs[i].p.y;
all_fish_structs[i].type = 1;

}
// Read sardines
for (int i = 0; i < N_half; ++i) {

std::cin >> all_fish_structs[N_half + i].p.x >> all_fish_structs[N_half + i].p.y;
all_fish_structs[N_half + i].type = -1;

}

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

// Build KD-tree if there are fish
if (!all_fish_structs.empty()) {

fish_kdtree_root = build_kdtree(fish_indices_for_kdtree, 0, (int)all_fish_structs.size() - 1, 0);
}

simulated_annealing_main();

// Clean up KD-tree memory
if (fish_kdtree_root) delete_kdtree(fish_kdtree_root);

return 0;
}
// EVOLVE-BLOCK-END

Listing 4: SHINKAEVOLVE Discovered ahc039 Solution.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

D.3.2 ALE-BENCH LITE TASK: AHC025
// EVOLVE-BLOCK-START
#include <iostream>
#include <vector>
#include <string>
#include <numeric>
#include <algorithm>
#include <iomanip>
#include <cmath>
#include <set>
#include <map>
#include <chrono>
#include <random>
#include <unordered_map>

// Timer
std::chrono::steady_clock::time_point program_start_time;
std::chrono::milliseconds time_limit_ms(1850);

// Global problem parameters
int N_items_global, D_groups_global, Q_total_global;
int queries_made = 0;

std::mt19937 rng_engine;

// Query Manager with optimized caching
class QueryManager {
private:

int N, Q;
int& queries_made_ref;
std::vector<char> cmp1_flat; // flat N*N storage for 1v1 comparisons
std::unordered_map<uint32_t, char> cmp1v2; // for 1v2 comparisons
std::mt19937& rng;

inline uint32_t key1v2(int a, int b, int c) const {
int mn = std::min(b, c), mx = std::max(b, c);
return (static_cast<uint32_t>(a) << 16) | (static_cast<uint32_t>(mn) << 8) | static_cast<uint32_t>(mx)

;
}

char perform_query_actual(const std::vector<int>& L_items, const std::vector<int>& R_items) {
queries_made_ref++;
std::cout << L_items.size() << " " << R_items.size();
for (int item_idx : L_items) {

std::cout << " " << item_idx;
}
for (int item_idx : R_items) {

std::cout << " " << item_idx;
}
std::cout << std::endl;

char result_char;
std::cin >> result_char;
return result_char;

}

public:
QueryManager(int N_, int Q_, int& qm, std::mt19937& r) : N(N_), Q(Q_), queries_made_ref(qm), rng(r) {

cmp1_flat.assign(N * N, 0);
cmp1v2.reserve(N * N / 4 + 10);

}

char compare1(int a, int b) {
if (a == b) return ’=’;
int mn = std::min(a, b), mx = std::max(a, b);
char cached = cmp1_flat[mn * N + mx];
if (cached != 0) {

if (a == mn) return cached;
return (cached == ’<’ ? ’>’ : (cached == ’>’ ? ’<’ : ’=’));

}
if (queries_made_ref >= Q) return ’=’;

char res = perform_query_actual({a}, {b});
if (a == mn) {

cmp1_flat[mn * N + mx] = res;
} else {

if (res == ’<’) cmp1_flat[mn * N + mx] = ’>’;
else if (res == ’>’) cmp1_flat[mn * N + mx] = ’<’;
else cmp1_flat[mn * N + mx] = ’=’;

}
return res;

}

char compare1v2(int item_curr, int item_prev, int item_s_aux) {
if (item_curr == item_prev || item_curr == item_s_aux || item_prev == item_s_aux) {

if (item_prev == item_s_aux) return compare1(item_curr, item_prev);
if (item_curr == item_prev) return compare1(item_curr, item_s_aux);
return compare1(item_curr, item_prev);

}
uint32_t key = key1v2(item_curr, item_prev, item_s_aux);
auto it = cmp1v2.find(key);
if (it != cmp1v2.end()) return it->second;

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

if (queries_made_ref >= Q) return ’=’;
char res = perform_query_actual({item_curr}, {item_prev, item_s_aux});
cmp1v2.emplace(key, res);
return res;

}

void exhaust_queries() {
if (N >= 2) {

int a = 0, b = 1;
while (queries_made_ref < Q) {

perform_query_actual({a}, {b});
++b;
if (b == a) ++b;
if (b >= N) {

b = 0;
a = (a + 1) % N;
if (b == a) b = (b + 1) % N;

}
}

}
}

};

// Weight estimation module
class WeightEstimator {
private:

static constexpr long long BASE_WEIGHT = 100000;
static constexpr int FACTOR_GT = 200;
static constexpr int FACTOR_LT = 50;
static constexpr int FACTOR_XJ_FALLBACK = 100;

QueryManager& qm;
int N, D, Q;

double estimate_log2(double val) {
return (val <= 1.0) ? 0.0 : std::log2(val);

}

int calculate_query_cost(int N_val, int k_pivots) {
if (k_pivots <= 0) return 0;
if (k_pivots == 1) return std::max(0, N_val - 1);
double cost = 0;
cost += k_pivots * estimate_log2(k_pivots);
for (int j = 2; j < k_pivots; ++j) {

if (j - 1 > 0) cost += estimate_log2(j - 1);
}
cost += (N_val - k_pivots) * estimate_log2(k_pivots);
return static_cast<int>(std::ceil(cost));

}

void merge_sort_pivots(std::vector<int>& pivots, int left, int right) {
if (left >= right) return;
int mid = (left + right) / 2;
merge_sort_pivots(pivots, left, mid);
merge_sort_pivots(pivots, mid + 1, right);

int n1 = mid - left + 1, n2 = right - mid;
std::vector<int> L(n1), R(n2);
for (int i = 0; i < n1; ++i) L[i] = pivots[left + i];
for (int j = 0; j < n2; ++j) R[j] = pivots[mid + 1 + j];

int i = 0, j = 0, k = left;
while (i < n1 && j < n2) {

char cmp = qm.compare1(L[i], R[j]);
if (cmp == ’<’ || cmp == ’=’) pivots[k++] = L[i++];
else pivots[k++] = R[j++];

}
while (i < n1) pivots[k++] = L[i++];
while (j < n2) pivots[k++] = R[j++];

}

public:
WeightEstimator(QueryManager& qm_, int N_, int D_, int Q_) : qm(qm_), N(N_), D(D_), Q(Q_) {}

std::vector<long long> estimate_weights() {
std::vector<long long> weights(N, BASE_WEIGHT);

// Determine pivot count
int k_pivots = (N > 0) ? 1 : 0;
if (N > 1) {

for (int k = N; k >= 1; --k) {
if (calculate_query_cost(N, k) <= Q) {

k_pivots = k;
break;

}
}

}
k_pivots = std::min(k_pivots, N);

if (k_pivots == 0) return weights;

// Select and sort pivots

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

std::vector<int> pivots(k_pivots);
std::vector<int> indices(N);
std::iota(indices.begin(), indices.end(), 0);
std::shuffle(indices.begin(), indices.end(), rng_engine);
for (int i = 0; i < k_pivots; ++i) pivots[i] = indices[i];

if (k_pivots >= 2) {
merge_sort_pivots(pivots, 0, k_pivots - 1);

}

// Estimate pivot weights
if (k_pivots == 1) {

weights[pivots[0]] = BASE_WEIGHT;
for (int i = 0; i < N; ++i) {

if (i == pivots[0]) continue;
char res = qm.compare1(i, pivots[0]);
if (res == ’=’) weights[i] = BASE_WEIGHT;
else if (res == ’<’) weights[i] = std::max(1LL, BASE_WEIGHT * FACTOR_LT / 100);
else weights[i] = std::max(1LL, BASE_WEIGHT * FACTOR_GT / 100);

}
} else {

// Multi-pivot estimation
weights[pivots[0]] = BASE_WEIGHT;

// Handle p1
char res_p1 = qm.compare1(pivots[1], pivots[0]);
if (res_p1 == ’=’) weights[pivots[1]] = weights[pivots[0]];
else if (res_p1 == ’<’) weights[pivots[1]] = std::max(1LL, weights[pivots[0]] * FACTOR_LT / 100);
else weights[pivots[1]] = std::max(1LL, weights[pivots[0]] * FACTOR_GT / 100);

if (res_p1 == ’>’ && weights[pivots[1]] == weights[pivots[0]]) {
weights[pivots[1]] = weights[pivots[0]] + 1;

}

// Handle remaining pivots with binary search bracketing
long long max_bound = BASE_WEIGHT * (N / std::max(1, D) + 10);
for (int j = 2; j < k_pivots; ++j) {

int cur = pivots[j], prev = pivots[j-1];
char res = qm.compare1(cur, prev);

if (res == ’=’) {
weights[cur] = weights[prev];

} else if (res == ’<’) {
weights[cur] = std::max(1LL, weights[prev] * FACTOR_LT / 100);

} else {
// Binary search to bracket X_j
long long X_low = 1, X_high = max_bound;
bool low_set = false, high_set = false;

int low_idx = 0, high_idx = j - 2;
int tries = std::max(1, static_cast<int>(std::ceil(estimate_log2(std::max(1, high_idx -

low_idx + 1)))));

for (int t = 0; t < tries && low_idx <= high_idx && queries_made < Q; ++t) {
int mid_idx = (low_idx + high_idx) / 2;
int s = pivots[mid_idx];
char res_1v2 = qm.compare1v2(cur, prev, s);

if (res_1v2 == ’=’) {
X_low = X_high = weights[s];
low_set = high_set = true;
break;

} else if (res_1v2 == ’<’) {
X_high = weights[s];
high_set = true;
high_idx = mid_idx - 1;

} else {
X_low = weights[s];
low_set = true;
low_idx = mid_idx + 1;

}
}

long long est_X;
if (low_set && !high_set) est_X = X_low * FACTOR_GT / 100;
else if (!low_set && high_set) est_X = X_high * FACTOR_LT / 100;
else if (low_set && high_set) est_X = (X_low + X_high) / 2;
else est_X = weights[prev] * FACTOR_XJ_FALLBACK / 100;

est_X = std::max(1LL, est_X);
weights[cur] = weights[prev] + est_X;

}

// Ensure monotonicity
if (weights[cur] < weights[prev]) weights[cur] = weights[prev];
if (res == ’>’ && weights[cur] == weights[prev]) weights[cur] = weights[prev] + 1;

}

// Estimate non-pivot weights
std::vector<bool> is_pivot(N, false);
for (int p : pivots) is_pivot[p] = true;

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

for (int i = 0; i < N; ++i) {
if (is_pivot[i]) continue;

int low = 0, high = k_pivots - 1, found = -1;
while (low <= high && queries_made < Q) {

int mid = (low + high) / 2;
char res = qm.compare1(i, pivots[mid]);
if (res == ’=’) { found = mid; break; }
else if (res == ’<’) high = mid - 1;
else low = mid + 1;

}

if (found != -1) {
weights[i] = weights[pivots[found]];
continue;

}

int pos = low;
if (pos == 0) {

long long w0 = weights[pivots[0]];
if (k_pivots >= 2) {

long long w1 = weights[pivots[1]];
if (w1 > w0 && w0 > 0) weights[i] = std::max(1LL, w0 * w0 / w1);
else weights[i] = std::max(1LL, w0 / 2);

} else {
weights[i] = std::max(1LL, w0 / 2);

}
} else if (pos == k_pivots) {

long long wk1 = weights[pivots[k_pivots - 1]];
if (k_pivots >= 2) {

long long wk2 = weights[pivots[k_pivots - 2]];
if (wk1 > wk2 && wk2 > 0) weights[i] = std::max(1LL, wk1 * wk1 / wk2);
else weights[i] = std::max(1LL, wk1 * 2);

} else {
weights[i] = std::max(1LL, wk1 * 2);

}
} else {

long long wl = weights[pivots[pos - 1]];
long long wr = weights[pivots[pos]];
if (wl > 0 && wr > 0) {

weights[i] = static_cast<long long>(std::sqrt(static_cast<double>(wl) * wr));
} else {

weights[i] = (wl + wr) / 2;
}
weights[i] = std::max(weights[i], wl);
weights[i] = std::min(weights[i], wr);

}
weights[i] = std::max(1LL, weights[i]);

}
}

// Final validation
for (int i = 0; i < N; ++i) {

if (weights[i] <= 0) weights[i] = BASE_WEIGHT;
}

return weights;
}

};

// Assignment optimizer
class AssignmentOptimizer {
private:

int N, D;
std::vector<long long>& weights;
std::mt19937& rng;

double calc_variance(const std::vector<long long>& sums, long long total) {
if (D <= 0) return 1e18;
double mean = static_cast<double>(total) / D;
double sum_sq = 0;
for (long long s : sums) sum_sq += static_cast<double>(s) * s;
double var = sum_sq / D - mean * mean;
return std::max(0.0, var);

}

public:
AssignmentOptimizer(int N_, int D_, std::vector<long long>& w, std::mt19937& r)

: N(N_), D(D_), weights(w), rng(r) {}

std::vector<int> optimize() {
std::vector<int> assignment(N, 0);
std::vector<long long> group_sums(D, 0);
std::vector<std::vector<int>> group_items(D);
std::vector<int> item_pos(N);

// Greedy initialization
std::vector<std::pair<long long, int>> sorted_items;
for (int i = 0; i < N; ++i) {

sorted_items.emplace_back(-weights[i], i);
}
std::sort(sorted_items.begin(), sorted_items.end());

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

long long total_sum = 0;
for (auto [neg_w, item] : sorted_items) {

int best_group = 0;
for (int g = 1; g < D; ++g) {

if (group_sums[g] < group_sums[best_group]) best_group = g;
}
assignment[item] = best_group;
item_pos[item] = group_items[best_group].size();
group_items[best_group].push_back(item);
group_sums[best_group] += weights[item];
total_sum += weights[item];

}

double current_var = calc_variance(group_sums, total_sum);

// Enhanced local search with best-of-K
if (D > 1) {

const int MAX_ITERS = 400;
const int K_ITEMS = 8;

for (int iter = 0; iter < MAX_ITERS; ++iter) {
if ((iter & 31) == 0) {

auto now = std::chrono::steady_clock::now();
if (std::chrono::duration_cast<std::chrono::milliseconds>(now - program_start_time) >=

time_limit_ms) break;
}

int max_g = 0, min_g = 0;
for (int g = 1; g < D; ++g) {

if (group_sums[g] > group_sums[max_g]) max_g = g;
if (group_sums[g] < group_sums[min_g]) min_g = g;

}
if (max_g == min_g || group_items[max_g].empty()) break;

// Find best relocate from max_g to min_g among top-K heaviest
std::vector<std::pair<long long, int>> candidates;
for (int item : group_items[max_g]) {

candidates.emplace_back(weights[item], item);
}
if (candidates.empty()) break;
std::sort(candidates.begin(), candidates.end(), [](const auto& a, const auto& b) { return a.

first > b.first; });
if ((int)candidates.size() > K_ITEMS) candidates.resize(K_ITEMS);

double best_var = current_var;
int best_item = -1;
for (auto [w, item] : candidates) {

long long new_max = group_sums[max_g] - w;
long long new_min = group_sums[min_g] + w;
double new_var = calc_variance({new_max, new_min}, group_sums[max_g] + group_sums[min_g]);
if (new_var + 1e-12 < best_var) {

best_var = new_var;
best_item = item;

}
}

if (best_item == -1) break;

// Apply move
long long w = weights[best_item];
group_sums[max_g] -= w;
group_sums[min_g] += w;
current_var = calc_variance(group_sums, total_sum);

// Update tracking
int pos = item_pos[best_item];
int last = group_items[max_g].back();
if (best_item != last) {

group_items[max_g][pos] = last;
item_pos[last] = pos;

}
group_items[max_g].pop_back();
item_pos[best_item] = group_items[min_g].size();
group_items[min_g].push_back(best_item);
assignment[best_item] = min_g;

}
}

// Targeted Simulated Annealing
if (D > 1) {

double T = std::max(1.0, current_var * 0.25);
double cool_rate = 0.99985;
std::uniform_real_distribution<double> unif(0.0, 1.0);
int iterations = 0, no_imp = 0;

while (true) {
++iterations;
if ((iterations & 255) == 0) {

auto now = std::chrono::steady_clock::now();
if (std::chrono::duration_cast<std::chrono::milliseconds>(now - program_start_time) >=

time_limit_ms) break;

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

T *= cool_rate;
if (T < 1e-12) break;

}

// Targeted moves: 75% heavy-to-light relocate, 25% swap
if ((rng() % 4) != 0) {

// Targeted relocate
int max_g = 0, min_g = 0;
for (int g = 1; g < D; ++g) {

if (group_sums[g] > group_sums[max_g]) max_g = g;
if (group_sums[g] < group_sums[min_g]) min_g = g;

}

if (group_items[max_g].empty()) { ++no_imp; continue; }

// Pick heavy item from max group (best of 3 samples)
int item = group_items[max_g][rng() % group_items[max_g].size()];
for (int s = 0; s < 2; ++s) {

int cand = group_items[max_g][rng() % group_items[max_g].size()];
if (weights[cand] > weights[item]) item = cand;

}

long long w = weights[item];
long long new_max = group_sums[max_g] - w;
long long new_min = group_sums[min_g] + w;

double new_var = current_var;
new_var -= (static_cast<double>(group_sums[max_g]) * group_sums[max_g]) / D;
new_var -= (static_cast<double>(group_sums[min_g]) * group_sums[min_g]) / D;
new_var += (static_cast<double>(new_max) * new_max) / D;
new_var += (static_cast<double>(new_min) * new_min) / D;

double delta = new_var - current_var;
if (delta < 0 || unif(rng) < std::exp(-delta / T)) {

// Accept move
current_var = new_var;
group_sums[max_g] = new_max;
group_sums[min_g] = new_min;

int pos = item_pos[item];
int last = group_items[max_g].back();
if (item != last) {

group_items[max_g][pos] = last;
item_pos[last] = pos;

}
group_items[max_g].pop_back();
item_pos[item] = group_items[min_g].size();
group_items[min_g].push_back(item);
assignment[item] = min_g;

if (delta < -1e-12) no_imp = 0; else ++no_imp;
} else ++no_imp;

} else {
// Random swap
int g1 = rng() % D, g2 = rng() % D;
while (g2 == g1) g2 = rng() % D;
if (group_items[g1].empty() || group_items[g2].empty()) { ++no_imp; continue; }

int a = group_items[g1][rng() % group_items[g1].size()];
int b = group_items[g2][rng() % group_items[g2].size()];
long long wa = weights[a], wb = weights[b];

long long new_g1 = group_sums[g1] - wa + wb;
long long new_g2 = group_sums[g2] - wb + wa;

double new_var = current_var;
new_var -= (static_cast<double>(group_sums[g1]) * group_sums[g1]) / D;
new_var -= (static_cast<double>(group_sums[g2]) * group_sums[g2]) / D;
new_var += (static_cast<double>(new_g1) * new_g1) / D;
new_var += (static_cast<double>(new_g2) * new_g2) / D;

double delta = new_var - current_var;
if (delta < 0 || unif(rng) < std::exp(-delta / T)) {

current_var = new_var;
group_sums[g1] = new_g1;
group_sums[g2] = new_g2;

// Swap items
int pos_a = item_pos[a], pos_b = item_pos[b];
int back_a = group_items[g1].back(), back_b = group_items[g2].back();
if (a != back_a) { group_items[g1][pos_a] = back_a; item_pos[back_a] = pos_a; }
group_items[g1].pop_back();
if (b != back_b) { group_items[g2][pos_b] = back_b; item_pos[back_b] = pos_b; }
group_items[g2].pop_back();

item_pos[b] = group_items[g1].size(); group_items[g1].push_back(b); assignment[b] = g1
;

item_pos[a] = group_items[g2].size(); group_items[g2].push_back(a); assignment[a] = g2
;

if (delta < -1e-12) no_imp = 0; else ++no_imp;
} else ++no_imp;

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

}

if (no_imp > N * 12) break;
}

}

return assignment;
}

};

int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(NULL);

program_start_time = std::chrono::steady_clock::now();
uint64_t seed = std::chrono::duration_cast<std::chrono::nanoseconds>(

std::chrono::steady_clock::now().time_since_epoch()).count();
rng_engine.seed(seed);

std::cin >> N_items_global >> D_groups_global >> Q_total_global;

QueryManager qm(N_items_global, Q_total_global, queries_made, rng_engine);
WeightEstimator estimator(qm, N_items_global, D_groups_global, Q_total_global);

std::vector<long long> weights = estimator.estimate_weights();

qm.exhaust_queries();

AssignmentOptimizer optimizer(N_items_global, D_groups_global, weights, rng_engine);
std::vector<int> assignment = optimizer.optimize();

for (int i = 0; i < N_items_global; ++i) {
std::cout << assignment[i] << (i + 1 == N_items_global ? ’\n’ : ’ ’);

}

return 0;
}
// EVOLVE-BLOCK-END

Listing 5: SHINKAEVOLVE Discovered ahc025 Solution.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

D.4 MIXTURE-OF-EXPERTS LOAD BALANCING LOSS

def load_balancing_loss(
gate_logits: tuple[torch.Tensor],
num_experts: int,
top_k: int = 2,
attention_mask: Optional[torch.Tensor] = None,

) -> torch.Tensor:
"""
Load balancing loss for Mixture-of-Experts models.

parameters

layer_logits:

list with shape (B, T, total_experts) per layer.
total_experts:

number of experts inside the moe feed-forward sub-block.
top_k_experts:

number of experts chosen per token (k in top-k gating).
attention_mask:

optional mask (B, T) where 0 marks padded tokens.

returns

torch.Tensor:

scalar loss to be added to the training objective.
"""
determine device & flat token count
device = gate_logits[0].device
num_layers = len(gate_logits)
bsz, seqlen = attention_mask.shape
n_tokens = bsz * seqlen

merge layers into (tokens, layers, experts)
stacked = torch.stack(gate_logits, dim=-2).to(device)
logits = stacked.view(n_tokens, num_layers, num_experts)

obtain routing information
_, routing_probs, sel_idx = route_logits_to_scores(logits, top_k)
sel_mask = F.one_hot(sel_idx, num_experts)

if attention_mask is None:
average over all tokens
avg_sel = sel_mask.float().mean(dim=0)
avg_prob = routing_probs.mean(dim=0)

else:
expand & apply mask
m_exp = (

attention_mask.unsqueeze(-1)
.unsqueeze(-1)
.unsqueeze(-1)
.expand(bsz, seqlen, num_layers, top_k, num_experts)
.reshape(-1, num_layers, top_k, num_experts)

)
avg_sel = sel_mask.float().mul(m_exp).sum(dim=0) / m_exp.sum(dim=0)

p_mask = (
attention_mask.unsqueeze(-1)
.unsqueeze(-1)
.expand(bsz, seqlen, num_layers, num_experts)
.reshape(-1, num_layers, num_experts)

)
avg_prob = routing_probs.mul(p_mask).sum(dim=0) / p_mask.sum(dim=0)

mismatch penalty
per_layer = avg_sel * avg_prob.unsqueeze(-2)
main_loss = per_layer.mean(0).sum() * num_experts

--- Minimum usage regularizer: softly penalize underused experts ---
avg_sel: (layers, top_k, experts)
For each expert, sum over top_k to get total selection per expert per layer
avg_sel_sum = avg_sel.sum(dim=-2) # (layers, experts)
Normalize so that sum over experts = 1 per layer
avg_sel_norm = avg_sel_sum / (avg_sel_sum.sum(dim=-1, keepdim=True) + 1e-8)

Compute entropy of avg_prob per layer (routing distribution)
entropy = -(avg_prob * torch.log(avg_prob + 1e-8)).sum(dim=-1) # (layers,)
max_entropy = torch.log(torch.tensor(num_experts, dtype=avg_prob.dtype, device=avg_prob.device))
entropy_scale = 1.5 - entropy / (max_entropy + 1e-8) # ranges from 0.5 (uniform) to 1.5 (concentrated)

Penalty: encourage each expert to be used at least min_threshold
min_threshold = 0.01 * (64.0 / num_experts)

min_usage_penalty = torch.relu(min_threshold - avg_sel_norm).sum(dim=-1) # (layers,)
penalty_coeff = 0.1

Final loss: main + entropy-scaled min usage penalty
return main_loss + penalty_coeff * (min_usage_penalty * entropy_scale).mean()

Listing 6: SHINKAEVOLVE Discovered Mixture of Experts Load Balancing Loss.

53

	Introduction
	Related Work
	Method
	Parent and inspiration sampling
	Program mutation and novelty assessment
	Execution and world feedback

	Results
	Circle Packing: Reproducing & Improving AlphaEvolve Results
	AIME: Evolving Agent Scaffolds for Math Reasoning
	ALE-Bench: Evolving Programs for Combinatorial Optimization
	LLM Training: Evolving Losses for Balanced and Effective Experts

	Ablations & Analysis
	Discussion
	Shinka Implementation Details
	Task Implementation Details
	Circle Packing Problem
	AIME Math Reasoning Agentic Harness
	ALE-Bench Problems
	Mixture-of-Experts Load Balancing Loss

	Additional Results
	Circle Packing: Robustness across 3 independent runs
	Circle Packing: API Cost Breakdown
	Circle Packing: Asynchronous Throughput Scaling
	Circle Packing: Robustness across Code Embedding Thresholds
	Circle Packing: Robustness across LLM Prioritization Approaches

	ShinkaEvolve Discovered Solutions
	Circle Packing Problem
	AIME Math Reasoning Agentic Harness
	ALE-Bench Problems
	ALE-Bench LITE task: ahc039
	ALE-Bench LITE task: ahc025

	Mixture-of-Experts Load Balancing Loss

