
Leveraging Temporal Graph Networks Using Module
Decoupling

Or Feldman
Ben-Gurion University of the Negev

Technion - Israel Institute of Technology
orfel@post.bgu.ac.il

Chaim Baskin
Ben-Gurion University of the Negev

chaimbaskin@bgu.ac.il

Abstract
Current memory-based methods for dynamic graph learning use batch process-
ing to efficiently handle high stream of updates. However, the use of batches
introduces a phenomenon we term missing updates, which adversely affects the
performance of memory-based models. In this work, we analyze the negative
impacts of missing updates on dynamic graph learning models, and propose the
decoupling strategy to mitigate these effects. Based on this strategy, we develop
the Lightweight Decoupled Temporal Graph Network (LDTGN), a memory-
based model with a minimal number of learnable parameters that deals with
high frequency of updates. We validated our proposed model across diverse
dynamic graph benchmarks. LDTGN surpassed the average precision of previous
methods by over 20% in scenarios demanding frequent graph updates. In the vast
majority of the benchmarks, LDTGN achieves better or comparable results while
operating with significantly higher throughput than existing baselines. The code
to replicate our experiments is available at this url.

1 Introduction

Dynamic graphs are commonly used to describe real-world dynamic systems, where the interacting
elements are modeled as nodes, and the interactions between two elements are represented as edges.
Each edge is usually labeled with a timestamp indicating its time of occurrence. Item recommendation
on e-commerce platforms [1], friendship suggestion on social networks [2, 3], anomaly detection on
communication networks [4], and traffic forecasting [5] are all practical tasks that can be modeled
using dynamic graphs.

Although most real-world graph-related tasks have time-evolving data, deep learning approaches
typically focus on problems described by static graphs, which do not change over time. Moreover, it
has also been shown that ignoring the dynamic nature of a system by abstracting it with static graphs
is suboptimal [6, 7]. A dynamic representation of a system, on the other hand, is often able to learn
its time-evolving behavior [8–12].

Dynamic graph approaches are often based on discrete-time [13–15] or continuous-time [16–18]
settings. In discrete-time setting, data are received as a sequence of snapshots describing the full
graph structure at specific times, while in the flexible continuous-time setting, a single update on the
graph can happen at any moment. The setting in which deep learning models for dynamic graphs
operate at inference time can be roughly divided into the following types: streaming, deployed,
and live update [19]. In this work, we focus on continuous-time dynamic graphs in the context of
streaming, in which the models may be updated upon receiving new information, but cannot perform
backpropagation due to the high throughput required.

Memory-based models for dynamic graphs are designed to support the assimilation of new information
through graph updates during the inference phase. To do this, they manage a memory unit that
represents the current state of the dynamic graph. This memory unit usually includes the current

Or Feldman and Chaim Baskin, Leveraging Temporal Graph Networks Using Module Decoupling. Proceedings
of the Third Learning on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29, 2024.

https://github.com/orfeld415/Modules-Decoupling-TGN

Leveraging Temporal Graph Networks Using Module Decoupling

structure of the dynamic graph, data-specific information such as node and edge features, timestamps
of previous updates, and learnable information computed by the model.

In the streaming setting of continuous-time dynamic graphs, memory-based networks have to use
batches to keep up with the stream of incoming updates. Using batches, these models process multiple
updates and predictions in parallel. This situation introduces a new problem in which updates for
the models are not being considered for the predictions inside their mutual batch. In Section 3,
we formally define this undesirable phenomenon as missing updates. In this work, we suggest the
decoupling strategy to minimizes the negative impacts of missing updates, while still using batches.
Guided by this strategy, we develop the Lightweight Decoupled Temporal Graph Network (LDTGN)
– an efficient memory-based model for dynamic graph learning that outperforms most established
baselines both in terms of running time and performance.

To summarize, this work makes the following contributions:

• We introduce and analyze the problem of missing updates in memory-based models.

• We suggest the decoupling methodology for building memory-based models for dynamic graph
learning.

• Based on the suggested methodology, we propose LDTGN, a new lightweight model for dynamic
graph learning tasks that can operate at high streaming rates and with a significantly smaller
number of parameters compared to other baselines.

• We evaluate LDTGN on various transductive and inductive benchmarks for dynamic graph
learning. LDTGN achieves better or comparable performance on the tested benchmarks and
outperforms previous methods in terms of throughput.

2 Background
Static graph G = (V, E) is a tuple of nodes V = {1, ...,n} and edges E ⊆ V×V . G is often equipped
with two feature functions: FV and FE that map a node or an edge into a vector representing their
matching features. Continuous-Time Dynamic Graph (CTDG) is a sequence Q = {ut1 , ut2 , ..., utm}
of m timestamped updates on the graph. An update ut that occurs at time t can be one of the
following: node addition, node removal, edge addition, and edge removal. In CTDG, the features
of nodes and edges can change over time. Hence, feature functions also take timestamp as an input,
where the functions’ output represents the features at that timestamp. G[Q(t)] is the static graph
received by applying all the updates from Q on G that occur until time t. The k-hop neighborhood of
a node vi at time t is defined by:

N 0
i (t) = {vi} (1)

N k
i (t) = {vj |vu ∈ N k−1

i (t), (vu, vj) ∈ G[Q(t)]} (2)

As a result of the growing interest in CTDGs that update frequently, several techniques have been
recently developed [7, 16, 18, 20–22]. Many of these methods are specific instances of the Temporal
Graph Network (TGN) model [6]. TGN is a general memory-based network designed to learn on
CTDGs while achieving throughput suitable for streaming tasks. The primary concept of TGN is to
maintain node features, or states, that are updated with each change to the graph. To achieve this,
TGN utilizes two central modules: memory and prediction.

Memory module. The memory module is responsible for applying the updates on the graph and
update the states accordingly. When a new batch of updates arrives, the memory module applies a
message function that generates a vector for each node involved in each update. For example, the
model would generate the following message vectors upon receiving the update of adding the edge
ei,j from node vi to node vj at time t:

mi(t) = msgs(si(t
−), sj(t

−),∆ti, FE(ei,j , t)) (3)

mj(t) = msgd(sj(t
−), si(t),∆tj , FE(ei,j , t)) (4)

where su(t−) is the state of vu prior to t and ∆tu is the time elapsed since vu received an update. msgs
and msgd may have learnable parameters. Then, all the messages in the batch are aggregated into a

2

Leveraging Temporal Graph Networks Using Module Decoupling

single message per node, s.t., if node vi is involved in updates at t1, t2, ..., tn where t1 ≤ t2 ≤ ... ≤ tn
then:

mi(tn) = agg(mi(t1),mi(t2), ...,mi(tn)) (5)
The aggregation function, for example, can consider only mi(tn) and neglect any previous messages
in the batch. Finally, the messages are used to update the state of the nodes:

si(t) = mem(mi(t), si(t
−)) (6)

The mem function is a memory-based neural network such as LSTM [23] or GRU [24].

Prediction module. The prediction module computes the model’s predictions based on the given
inputs and the current task. For example, the prediction module calculates the probability of edge
existence between two nodes at a specified future time in future edge prediction tasks. The prediction
process starts with reading from the memory module the states of all the nodes in the neighborhood
of each node in the input. Then, the prediction module generates new embedding for each input node
based on its state and the states of its neighbors. Let [·||·] denote the operation of vector concatenation.
The embedding formulation based on the 1-hop neighborhood of a node vi is:

zi(t) = Σvj∈N 1
i (t)

h(vi(t), vj(t), FE(ei,j)) (7)

where vu(t) = [FV(vu, t)||su(t−)||∆tu] and h is a learnable function. Using the neighborhood of a
node to compute its embedding mitigates the staleness problem [25]. For the task of predicting the
future existence of an edge ei,j at time t, TGN computes the edge’s probability to exist by:

pi,j(t) = merge(zi(t), zj(t)) (8)

where merge is a learnable function, such as an MLP.

3 Problem statement
Batches used by memory-based models contain both updates to the graph and input queries for the
model to predict. This mechanism allows memory-based models to achieve a reasonable throughput
during inference time [6, 18, 20, 22]. In the streaming setting, where the graph receives new updates
at extremely high frequency, it is crucial for the model to maintain sufficient throughput; otherwise,
the buffer containing the new inputs and updates may overflow.

Memory-based models have a well-defined flow of operation upon receiving a new batch. First, they
compute their predictions for the inputs in the batch. This operation is performed in parallel by using
the current states and the current graph structure as saved in their memory. Next, they process all the
updates in the batch and update their inner memory accordingly. This flow of operations introduces
the undesirable phenomenon we call missing updates.

Formally, given a batch B = {xt1 , xt2 ...xtm} of size m where xti can be either an update to the
graph uti or an input query qti , e.g., whether there exists an interaction between nodes vk and vj
at time ti. We say that uti is a missing update if there exists an input query qtj such that i < j
and at least one of the nodes in uti is in the neighborhood of the nodes in qtj . Inputs to the model
that depend on missing updates are harder to predict, as their states and their neighbors’ states are
outdated at the time of the prediction.

3.1 Empirical analysis

We examined the incidence and impact of the missing updates phenomenon across various real-world
datasets for dynamic graphs. We measured the average ratio of inputs in a batch that depend on at
least one missing update. In addition, we calculated the average number of missing updates in a
single batch. We conducted both measurements for various batch sizes. In both cases, we focused on
missing updates within the 1-hop neighborhood of the input nodes and report the results in Figure 1(a)
and Figure 1(b), respectively. We also tested the TGN model trained on these datasets with the
examined batch sizes. In Figure 1(c), we report the average precision of TGN for each batch size,
normalized by the average precision achieved with a batch size of 10. In Appendix A, we supply the
full missing updates statistics for all the datasets used in this work.

In Figure 1, we can see that an increase in batch size correlates with a higher incidence of missing
updates. Furthermore, the occurrence of missing updates varies across different datasets. The findings

3

Leveraging Temporal Graph Networks Using Module Decoupling

0 25 50 75 100 125 150 175 200
Batch size

0.0

0.2

0.4

0.6

0.8

1.0

Af
fe

ct
ed

 in
pu

ts
Reddit
UCI
Enron
US Legis.
Can. Parl.

(a)

0 25 50 75 100 125 150 175 200
Batch size

0
10
20
30
40
50
60
70

M
iss

in
g

up
da

te
s Reddit

UCI
Enron
US Legis.
Can. Parl.

(b)

25 50 75 100 125 150 175 200
Batch size

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Av
er

ag
e

Pr
ec

isi
on

Reddit
UCI
Enron
US Legis.
Can. Parl.

(c)

Figure 1: The incidence of missing updates in real-world datasets as a function of the batch size,
and their impact on the performance of TGN. In (a), the ratio of inputs that depend on at least one
missing update increases significantly as the batch size increases. In (b), the average number of
missing updates per input increases as the batch size increases. In (c), the performance of TGN is
correlated with the number of missing updates, where a high incidence of missing updates indicates a
significant performance decrease.

from Figure 1 suggest a negative correlation between the occurrence of missing updates in a dataset
and the performance of a model trained on it. Consequently, achieving optimal performance in
memory-based models necessitates smaller batch sizes. This result highlights a trade-off in memory-
based models: while smaller batch sizes improve performance, larger batch sizes are needed to attain
high throughput in streaming scenarios.

4 Related work
Handling missing updates. The t-Batch algorithm [20] was initially intended to improve the
running-time performance of memory-based networks for dynamic graphs that process updates one
after the other (i.e., batch size equal to 1). It combines multiple updates into a single batch as long as
the batches do not contain the same nodes, where the batches are temporally sorted, allowing the
networks to apply the updates in parallel. Using t-Batch, JODIE’s memory-based model becomes
X9.2 faster than similar methods without suffering from missing updates [20]. The t-batch algorithm,
however, suffers from two main flaws. First, large batch sizes for t-Batch are often impossible since
temporal locality is a common characteristic of dynamic graphs [26]. In addition, many modern
deep learning networks for dynamic graphs, such as TGN, depend on the neighborhood of the nodes
to compute their predictions, causing t-Batch to perform complicated neighborhood-independent
batches instead of node-independent batches, which are significantly smaller.

Efficient methods for streaming. According to Huang et al. [19], EdgeBank is currently an order
of magnitude faster than other well-known methods for dynamic graph learning. EdgeBank [26] is a
memorization algorithm that saves any seen update and predicts according to a simple decision rule
that can be one of the following: whether the input was seen in the last few iterations or whether
the input has already been seen a sufficient number of times. The algorithm’s simplicity allows it to
perform extremely fast, even without batches, thus not suffering from missing updates. Nevertheless,
EdgeBank was developed to serve as a baseline for testing and comparing other methods for dynamic
graphs [26], therefore, its performance lags significantly behind the state-of-the-art [19, 27].

5 Proposed method
In this section, we describe our proposed method to balance the batch size trade-off discussed earlier
in Section 3. The method decouples the modules of memory-based models by ensuring that each
module operates with a different batch size. In general, the memory module will utilize a smaller
batch size for frequent updates, while the prediction module will employ a larger batch size for
efficiency.

Next, we describe our proposed lightweight model for dynamic graph learning tasks. The model is a
specific instance of TGN, but with decoupled modules that are implemented using efficient functions.
Specifically, we parameterize the EdgeBank [26] model to allow it to learn. Following that, we

4

Leveraging Temporal Graph Networks Using Module Decoupling

introduce extra parameters to consider single-node information in the prediction instead of solely
relying on edge temporal information.

5.1 The decoupling strategy

We propose to decouple the core modules of memory-based models: the prediction and memory
modules. The decoupled modules will operate on different data using different batch size. Given
a batch containing updates to apply and inputs to predict, the model divides the batch into smaller
consecutive batches we term memory batches. The memory module operates on the memory batches,
and thus, it can perform memory updates more frequently. After processing a memory batch but
before proceeding to the next one, the memory module extracts and temporally saves the temporal
neighborhood information. This information encompasses the neighborhood state relevant to the
nodes in the subsequent memory batches, preventing it from being overridden. The neighborhood
state is defined by:

SNk
i (t)(t) = {sj(t) |vj ∈ N k

i (t)} (9)

The saved states create views of the model’s memory at each time a memory batch starts. After
processing all memory batches, the prediction module retrieves the extracted states for each node
associated with a given input. The states of each input are retrieved from the view that is immediately
preceding its timestamp. Subsequently, the prediction module computes predictions for all inputs
within the complete batch simultaneously. Note that the total memory required to save the information
for the views is equal to the memory used in standard memory-based models with the same batch
size.

Figure 2 demonstrates the effectiveness of a decoupled model compared to a standard memory-based
model. In Figure 2, the edge at t4 is given as an input for the models. A standard memory-based
model computes the embeddings of v3 and v6 based on their neighborhood states before t1 and only
then updates its inner memory with the edges at t1, t2 and t3. On the other hand, a decoupled model
initially performs memory updates of the two memory batches. Then, its prediction module uses
the states extracted before t3 that include the updates in the first memory batch. The missing update
that affects the interaction between v3 and v6 is avoided by using the decoupling strategy since the
prediction module is aware of the interaction between v2 and v3.

Decoupling the modules of memory-based models offers two immediate benefits. First, by decoupling
the memory module from the prediction module and setting the memory batch size to 1, the number
of missing updates in each batch is guaranteed to be 0. In addition, by using decoupling, we can
accelerate the execution time of an existing model without compromising its accuracy. This is
achieved by decoupling its modules, setting the memory batch size to match the model’s original
batch size, and increasing the batch size of the prediction module substantially. Using the original
batch size for the memory batches ensures the same frequency of missing updates, and the new larger
batch size improves the runtime performance. Figure 3 illustrates the running time improvement
of decoupled TGN with a memory batch size of 50 when using growing batch sizes. Notably, the
decoupling strategy enhances TGN’s running time by 12.5% without compromising its performance,
as the frequency of missing updates depends only on the memory batch size. Furthermore, transferring
additional computations from the memory module to the prediction module will lead to an additional
improvement in running time. Further analysis of the potential speedup of the decoupling strategy is
discussed in Appendix E.

5.2 Lightweight Decoupled Temporal Graph Network

We propose the Lightweight Decoupled Temporal Graph Network (LDTGN), an efficient model
designed for dynamic graph learning tasks. LDTGN operates with high throughput, crucial for the
streaming setting, while also achieving superior performance in dynamic graph learning tasks.

We develop LDTGN by enhancing EdgeBank and incorporating the decoupling strategy. Although
EdgeBank’s performance falls short of the current state-of-the-art, it achieves commendable results
with exceptionally high throughput, making it a suitable foundation for our model. We construct
LDTGN by finding the deficiencies in EdgeBank that need addressing to attain top-tier performance,
and integrating improvements to resolve these issues effectively. In this subsection, we describe
LDTGN for future edge prediction tasks and assume only edge addition updates. Comprehensive

5

Leveraging Temporal Graph Networks Using Module Decoupling

1 2

2 3

4 5

3 6

Batch

1

2
3

4
5

6

1

2
3

4
5

6

1

2
3

4
5

6

Ground truth

Proposed model

Memory-based model

Figure 2: Illustration of a dynamic graph at
t4 for the task of predicting the edge (v3, v6).
The state of a memory-based model is compared
to the state of a model operating using the pro-
posed decoupling strategy. The memory-based
model was updated prior to t1 and, therefore,
does not contain (v1, v2), (v2, v3) and (v4, v5).
The model that follows the decoupling strategy
and applies inner memory batch updates was
previously updated at t2 and, therefore, closely
resembles the ground truth and is missing only
(v4, v5).

Figure 3: Comparison of running times for de-
coupled TGN with a constant memory batch
size of 50 and varying batch sizes, tested on
the Wikipedia dataset. The running times are
normalized by the baseline scenario where both
the memory batch size and the batch size are set
to 50.

details about applying node addition, node removal, and edge removal updates, as well as adjustments
for node classification tasks, are provided in Appendix C.

Poursafaei et al. [26] formulated EdgeBank as a memory-based algorithm that stores the last T
updates. EdgeBank predicts ’positive’ only for edges in the memory and ’negative’ for any other edge.
We can also describe this memory-based prediction rule as a linear function that maps a time-based
difference into a prediction. Equation (10) details the linear function of EdgeBank with a decision
function that predicts ’positive’ for an edge ei,j , only if it was updated in the last T updates.

pi,j(t) = −(t− ti,j) + T (10)

In Equation (10), ti,j is the last time the edge ei,j received an update, and t is the current time.
ti,j is set to 0 if ei,j has not been received yet. Poursafaei et al. [26] suggested to use a constant
value of 1000 for T . The equation should be parameterized to allow the model to learn the most
appropriate value of T for every dataset. To do this, we add a bias b and a coefficient w as detailed in
Equation (11).

pi,j(t) = (t− ti,j)w + b (11)
Using Equation (11), we can learn the appropriate threshold for each task. As in EdgeBank, this
function does not incorporate the nodes themselves into the prediction. We solve it by adding the time
differences of each node in the potential edge and appropriate coefficients as detailed in Equation (12).

pi,j(t) = (t− ti,j)w1 + (t− ti)w2 + (t− tj)w3 + b (12)

In Equation (12), ti and tj are the last times the nodes vi and vj received an update, respectively.
Equation (12) is missing topological and data-specific information such as node and edge features.
Moreover, the prediction function is linear, which often causes the learned function to be distant from
the ground truth prediction function. To solve this issue, we first create embeddings for the nodes in
the potential edge and a preliminary embedding for the edge itself as described in Equations (13)
and (14):

zi(t) = Σk∈N 1
i (t)

αk[vi(t)||vk(t)||FE(ei,k)] (13)

zi,j(t) = TDE(t− ti,j) (14)
where vi(t) = [FV(vi, t)||TDE(t− ti)] and αk is attention weight computed as in GAT [28]. TDE
is a non-linear time difference embedding function such as Time2Vec [29]. Equation (15) uses the

6

Leveraging Temporal Graph Networks Using Module Decoupling

?
 Temporal Neighborhood Extraction

&
Previous Edge Timestamp

TDE
Neighborhood
Aggregation

Merge
&

Predict

Old Memory
Memory View

New Memory

Update

Used only in LDTGN-mem -

Timestamps

?

Update

Timestamps

,

,

Figure 4: Framework of the proposed model. The batch of updates and inputs is first divided into
memory batches and a single batch of inputs. Then, the new edges and their appropriate timestamps
are saved in the memory. In LDTGN-mem, the state of each node in the memory batch is updated
using the msg, agg, and mem functions. Before each update, the relevant information is saved in
a memory view to prevent it from being overridden. Next, the information of each input node is
extracted from the appropriate memory view. Then, TDE is applied to the time differences between
the inputs and the time of the extracted timestamps. Neighborhood information is aggregated using
learnable attention weights to create a single encoding for each node. Finally, the node encoding and
the edge encoding are merged using the merge function, and the combined encoding is used to get
the final prediction.

embeddings of the nodes, edge time difference, and a non-linear merge function to give the final
prediction.

pi,j(t) = merge(zi(t), zj(t), zi,j(t)) (15)
Equations (13) to (15) constitute the prediction module of LDTGN. The prediction module only
requires ti, tj and ti,j from the memory module, making these timestamps the sole data needed by
the memory module. In the experiments, we implemented LDTGN with a memory batch size of 1,
thus eliminating the adverse effects of missing updates. This design choice not only mitigates these
negative impacts but also enables the model to process updates without the message aggregator of
TGN. The message aggregator may lead to loss of information as detailed in Section 2. LDTGN
operates with a minimal memory batch size and with a high throughput thanks to the removal of
msgs, msgd and mem from the memory module. Compared to TGN, LDTGN saves states for the
edges in addition to the states of the nodes. This does not add an additional memory to LDTGN over
TGN, since TGN already saves the full graph to incorporate topological information in the prediction.

In the scenarios where the throughput is allowed to be smaller, and the missing updates negative
effects are neglectable for small memory batch size, LDTGN can incorporate long-term dependencies.
We refer to this variant of LDTGN as LDTGN-mem. To achieve long-term dependencies, LDTGN-
mem is implemented with a heavier memory module. This memory module generates the following
messages:

mi(t) = [si(t
−)||sj(t−)||TDE(t− ti)] (16)

mj(t) = [sj(t
−)||si(t−)||TDE(t− tj)] (17)

The aggregation function for the messages takes only the most recent message per node, and the
mem function is set to be a GRU cell:

si(t) = GRU(mi(t), si(t
−)) (18)

To incorporate the long-term memory in the prediction module, LDTGN-mem adds the current
learned state to the data of each node:

vi(t) = [FV(vi, t)||TDE(t− ti)||si(t−)] (19)

7

Leveraging Temporal Graph Networks Using Module Decoupling

In contrast to LDTGN, LDTGN-mem has to operate with a memory batch size larger than 1 to ensure
a reasonable throughput. We chose to implement LDTGN-mem with a memory batch size of 50.
This is because we observed earlier in Figure 1 that the incidence of missing updates with a batch size
of 50 is not severe. In addition, LDTGN-mem operates with an acceptable throughput when using
this memory batch size, as presented later in Section 6. The adjustments required for LDTGN-mem
are detailed in the illustration of our model in Figure 4.

6 Experiments
All the experiments were performed using DyGLib [27] – the unified library for dynamic graph learn-
ing evaluation. DyGLib contains various real world datasets including large-scale dynamic graphs
with millions of edges. We additionally evaluated our model on the Temporal Graph Benchmark
(TGB) [19]. The results for TGB are available in Appendix D. The experiments were performed for
the task of future edge prediction with random negative edge sampling on the following datasets:
Wikipedia, Reddit, MOOC, LastFM, Enron, Social Evo., UCI, Flights, Can. Parl., US Legis., UN
Trade, UN Vote, and Contacts. The datasets were collected by Poursafaei et al. [26]. Additional infor-
mation and statistics regarding the datasets can be found in Appendix A. We used seven well-known
methods as baselines for the task of future edge prediction: DyRep [16], TGAT [7], TGN [6], CAWN
[22], EdgeBank [26], GraphMixer [18] and DyGFormer [27]. Additional information regarding the
baselines can be found in Appendix B. We adopted the approach used in previous works and split the
dataset into training, validation, and test sets by performing a chronological split of 70%–15%–15%.
We report the mean and standard deviation of the Average Precision (AP) on the test set. Results for
Areas Under the Receiver Operating Characteristic Curve (AUC-ROC) are detailed in Appendix D.

6.1 Future edge prediction

In the first experiment, we tested transductive future edge prediction with random negative edge
sampling, i.e., for each positive edge in the datasets, a negative edge with the same source and a
random destination is sampled. The results for this experiment are presented in Table 1. We also
performed an experiment for the inductive future edge prediction task, in which all the edges in the
validation and test sets contain only nodes that have not been previously seen in the training set.
The results for this experiment are reported in Table 2. The baselines’ results were computed with
DyGLib using the hyperparameters configurations as described in [27]. As in [27], all the models
were trained and tested using a batch size of 200. Additional implementation-specific details of
LDTGN and LDTGN-mem and their training methodology are detailed in Appendix C. We report
in Tables 1 and 2 the best results among the LDTGN variations. The full results for each LDTGN
variation are in Appendix D. LDTGN achieves better or comparable results compared to the baselines
for the setting of transductive and inductive future edge prediction. In benchmarks where the negative
effects of the missing updates are insignificant for small batch sizes, LDTGN achieve comparable
performance to DyGFormer. In the benchmarks where missing updates have substantial influence,
such as US Legis, LDTGN considerably outperforms the compared baselines since it completely
removes all the missing updates when using a memory batch size of 1.

Table 1: AP for transductive future edge prediction with random negative sampling over five runs.
The significantly best result for each benchmark appears in bold font.

Dataset DyRep TGAT TGN CAWN EdgeBank GraphMixer DyGFormer LDTGN (ours)

Wikipedia 94.86±0.06 96.94±0.06 98.45±0.06 98.76±0.03 90.37±0.00 97.25±0.03 99.03±0.02 98.99±0.03
Reddit 98.22±0.04 98.52±0.02 98.63±0.06 99.11±0.01 94.86±0.00 97.31±0.01 99.22±0.01 99.28±0.02
MOOC 81.97±0.49 85.84±0.15 89.15±1.60 80.15±0.25 57.97±0.00 82.78±0.15 87.52±0.49 91.73±0.65
LastFM 71.92±2.21 73.42±0.21 77.07±3.97 86.99±0.06 79.29±0.00 75.61±0.24 93.00±0.12 91.22±0.31
Enron 82.38±3.36 71.12±0.97 86.53±1.11 89.56±0.09 83.53±0.00 82.25±0.16 92.47±0.12 98.10±0.01

Social Evo. 88.87±0.30 93.16±0.17 93.57±0.17 84.96±0.09 74.95±0.00 93.37±0.07 94.73±0.01 95.45±0.51
UCI 65.14±2.30 79.63±0.70 92.34±1.04 95.18±0.06 76.20±0.00 93.25±0.57 95.79±0.17 97.05±0.01

Flights 95.29±0.72 94.03±0.18 97.95±0.14 98.51±0.01 89.35±0.00 90.99±0.05 98.91±0.01 98.76±0.06
Can. Parl. 66.54±2.76 70.73±0.72 70.88±2.34 69.82±2.34 64.55±0.00 77.04±0.46 97.36±0.45 99.47±0.03
US Legis. 75.34±0.39 68.52±3.16 75.99±0.58 70.58±0.48 58.39±0.00 70.74±1.02 71.11±0.59 92.08±0.09
UN Trade 63.21±0.93 61.47±0.18 65.03±1.37 65.39±0.12 60.41±0.00 62.61±0.27 66.46±1.29 97.82±0.07
UN Vote 62.81±0.80 52.21±0.98 65.72±2.17 52.84±0.10 58.49±0.00 52.11±0.16 55.55±0.42 80.94±1.43
Contacts 95.98±0.15 96.28±0.09 96.89±0.56 90.26±0.28 92.58±0.00 91.92±0.03 98.29±0.01 98.78±0.04

8

Leveraging Temporal Graph Networks Using Module Decoupling

Table 2: AP for inductive future edge prediction with random negative sampling over five different
runs. The significantly best result for each benchmark appears in bold font.

Dataset DyRep TGAT TGN CAWN GraphMixer DyGFormer LDTGN (ours)

Wikipedia 92.43±0.37 96.22±0.07 97.83±0.04 98.24±0.03 96.65±0.02 98.59±0.03 98.74±0.02
Reddit 96.09±0.11 97.09±0.04 97.50±0.07 98.62±0.01 95.26±0.02 98.84±0.02 98.86±0.02
MOOC 81.07±0.44 85.50±0.19 89.04±1.17 81.42±0.24 81.41±0.21 86.96±0.43 90.61±0.32
LastFM 83.02±1.48 78.63±0.31 81.45±4.29 89.42±0.07 82.11±0.42 94.23±0.09 92.62±0.59
Enron 74.55±3.95 67.05±1.51 77.94±1.02 86.35±0.51 75.88±0.48 89.76±0.34 96.06±0.09

Social Evo. 90.04±0.47 91.41±0.16 90.77±0.86 79.94±0.18 91.86±0.06 93.14±0.04 94.37±0.68
UCI 57.48±1.87 79.54±0.48 88.12±2.05 92.73±0.06 91.19±0.42 94.54±0.12 94.92±0.01

Flights 92.88±0.73 88.73±0.33 95.03±0.60 97.06±0.02 83.03±0.05 97.79±0.02 97.31±0.16
Can. Parl. 54.02±0.76 55.18±0.79 54.10±0.93 55.80±0.69 55.91±0.82 87.74±0.71 97.83±0.06
US Legis. 57.28±0.71 51.00±3.11 58.63±0.37 53.17±1.20 50.71±0.76 54.28±2.87 83.76±0.44
UN Trade 57.02±0.69 61.03±0.18 58.31±3.15 65.24±0.21 62.17±0.31 64.55±0.62 97.43±0.07
UN Vote 54.62±2.22 52.24±1.46 58.85±2.51 49.94±0.45 50.68±0.44 55.93±0.39 81.29±1.41
Contacts 92.18±0.41 95.87±0.11 93.82±0.99 89.55±0.30 90.59±0.05 98.03±0.02 97.94±0.13

6.2 Memory and running time performance

We calculated the average number of learnable parameters required for each model to achieve its
best performance and reported it in Figure 5. We also measured the average throughput at inference
time for each model across all the datasets, where the throughput is defined as the number of edges
the model can process in a single second. The results are shown in Figure 6. In both Figure 5
and Figure 6, LDTGN surpasses the other baselines by a large margin in terms of efficiency. The
throughput of the baselines was measured using a batch size that is at least the batch size used for
LDTGN; hence, the results in Figure 6 are also proportionate to the latency of LDTGN compared to
the other baselines.

Figure 5: Average number of learnable param-
eters used by the baselines and our model. The
black ranges indicate the standard deviation of the
average number of learnable parameters.

Figure 6: Average throughput (processed edges
per second) of the baselines and our model. The
black ranges indicate the standard deviation of the
average throughput.

7 Conclusion
In this work, we introduced the missing updates phenomenon caused by the batching technique
in memory-based models for dynamic graph learning. We showed negative correlation between
the frequency of missing updates in datasets and the performance of the memory-based models.
Since larger batch sizes lead to more missing updates, yet are necessary for reasonable throughput,
there is a trade-off regarding the batch size in memory-based models. To balance this trade-off, we
presented the decoupling strategy for designing memory-based models. Decoupling enables two
types of batches – one for the memory module and the other for the prediction module. In this way,
models for dynamic graphs can increase the frequency of the updates while still handling their arrival
streams. In addition, we introduced LDTGN, a lightweight model for future edge prediction that is
highly efficient in terms of time and memory. When feasible, LDTGN can be equipped with a heavier
memory module, allowing it to better capture long-term dependencies. We also showed by extensive
experiments that LDTGN has outstanding performance for both transductive and inductive tasks,
achieving better or comparable performance than well-known baselines on the tested benchmarks.

9

Leveraging Temporal Graph Networks Using Module Decoupling

References
[1] Linlin Ding, Baishuo Han, Shu Wang, Xiaoguang Li, and Baoyan Song. User-centered recom-

mendation using us-elm based on dynamic graph model in e-commerce. International Journal
of Machine Learning and Cybernetics, 10:693–703, 2019. 1

[2] Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and recommending
links in social networks. In Proceedings of the fourth ACM international conference on Web
search and data mining, pages 635–644, 2011. 1

[3] Sogol Haghani and Mohammad Reza Keyvanpour. A systemic analysis of link prediction in
social network. Artificial Intelligence Review, 52:1961–1995, 2019. 1

[4] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang.
Netwalk: A flexible deep embedding approach for anomaly detection in dynamic networks. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2672–2681, 2018. 1

[5] Andrea Cini, Ivan Marisca, Filippo Maria Bianchi, and Cesare Alippi. Scalable spatiotemporal
graph neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume
37(6), pages 7218–7226, 2023. 1

[6] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. CoRR,
abs/2006.10637, 2020. 1, 2, 3, 8, 16, 17

[7] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs. 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. 1, 2, 8, 16

[8] Georg Simmel. The sociology of georg simmel, volume 92892. Simon and Schuster, 1950. 1
[9] Mark S Granovetter. The strength of weak ties. American journal of sociology, 78(6):1360–1380,

1973.
[10] Shmoolik Mangan and Uri Alon. Structure and function of the feed-forward loop network motif.

Proceedings of the National Academy of Sciences, 100(21):11980–11985, 2003.
[11] Riitta Toivonen, Jussi M Kumpula, Jari Saramäki, Jukka-Pekka Onnela, János Kertész, and

Kimmo Kaski. The role of edge weights in social networks: modelling structure and dynamics.
In Noise and Stochastics in Complex Systems and Finance, volume 6601, pages 48–55. SPIE,
2007.

[12] Thomas E Gorochowski, Claire S Grierson, and Mario Di Bernardo. Organization of feed-
forward loop motifs reveals architectural principles in natural and engineered networks. Science
advances, 4(3):eaap9751, 2018. 1

[13] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
Proceedings of the twelfth international conference on Information and knowledge management,
pages 556–559, 2003. 1

[14] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks. In Proceedings of the
13th international conference on web search and data mining, pages 519–527, 2020.

[15] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34(04), pages 5363–5370, 2020. 1

[16] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. 1, 2, 8, 16

[17] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural
networks. In Proceedings of the 43rd international ACM SIGIR conference on research and
development in information retrieval, pages 719–728, 2020.

[18] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong,
and Mehrdad Mahdavi. Do we really need complicated model architectures for temporal
networks? The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. 1, 2, 3, 8, 16

10

Leveraging Temporal Graph Networks Using Module Decoupling

[19] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele
Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Tempo-
ral graph benchmark for machine learning on temporal graphs. Advances in Neural Information
Processing Systems, 36, 2023. 1, 4, 8

[20] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1269–1278, 2019. 2, 3, 4, 13

[21] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,
Jingren Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via
contrastive learning. CoRR, abs/2105.07944, 2021.

[22] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. 2, 3, 8, 16

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997. 3

[24] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 1724–1734, 2014. 3

[25] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth,
and Pascal Poupart. Representation learning for dynamic graphs: A survey. The Journal of
Machine Learning Research, 21(1):2648–2720, 2020. 3

[26] Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. Advances in Neural Information Processing Systems,
35:32928–32941, 2022. 4, 6, 8, 16

[27] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 36:
67686–67700, 2023. 4, 8, 13, 16

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018. 6

[29] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota,
Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec:
Learning a vector representation of time. CoRR, abs/1907.05321, 2019. 6

[30] James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001, 2001. 13

[31] Jitesh Shetty and Jafar Adibi. The enron email dataset database schema and brief statistical
report. Information sciences institute technical report, University of Southern California, 4(1):
120–128, 2004. 13

[32] Anmol Madan, Manuel Cebrian, Sai Moturu, Katayoun Farrahi, et al. Sensing the" health state"
of a community. IEEE Pervasive Computing, 11(4):36–45, 2011. 13

[33] Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. Patterns and dynamics of users’ behavior
and interaction: Network analysis of an online community. Journal of the American Society for
Information Science and Technology, 60(5):911–932, 2009. 13

[34] Martin Strohmeier, Xavier Olive, Jannis Lübbe, Matthias Schäfer, and Vincent Lenders. Crowd-
sourced air traffic data from the opensky network 2019–2020. Earth System Science Data, 13
(2):357–366, 2021. 13

[35] Shenyang Huang, Yasmeen Hitti, Guillaume Rabusseau, and Reihaneh Rabbany. Laplacian
change point detection for dynamic graphs. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pages 349–358, 2020. 13

[36] James H Fowler. Legislative cosponsorship networks in the us house and senate. Social
networks, 28(4):454–465, 2006. 13

11

Leveraging Temporal Graph Networks Using Module Decoupling

[37] Graham K MacDonald, Kate A Brauman, Shipeng Sun, Kimberly M Carlson, Emily S Cassidy,
James S Gerber, and Paul C West. Rethinking agricultural trade relationships in an era of
globalization. BioScience, 65(3):275–289, 2015. 13

[38] Erik Voeten, Anton Strezhnev, and Michael Bailey. United Nations General Assembly Voting
Data. Harvard Dataverse, 2009. URL https://doi.org/10.7910/DVN/LEJUQZ. 13

[39] Piotr Sapiezynski, Arkadiusz Stopczynski, David Dreyer Lassen, and Sune Lehmann. Interaction
data from the copenhagen networks study. Scientific Data, 6(1):315, 2019. 13

[40] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages
807–814, 2010. 17

12

https://doi.org/10.7910/DVN/LEJUQZ

Leveraging Temporal Graph Networks Using Module Decoupling

A Datasets statistics and descriptions
In our experiments we used the following dynamic graph datasets:

• Wikipedia [20]: Wikipedia edit requests log over one month, where the editing users and Wikipedia
pages are represented as nodes and the edit requests are modeled as edges. The edges are timestamped
and contain LIWC feature vectors [30] of the requested text to post.

• Reddit [20]: Reddit post requests log over one month where the posting users and subreddits are
represented as nodes and the posting requests are modeled as edges.

• MOOC [20]: Students’ access records to MOOC online courses, where students and content units
(e.g., videos, answers, etc.) are described as nodes and the access actions (viewing a video, submitting
an answer, etc.) are modeled as edges. The edges are timestamped and have four features describing
the action.

• LastFM [20]: LastFM listening records over one month, where the LastFM users and the songs are
represented as nodes and there is an edge between the users and the songs to which they listened.
The edges are timestamped and do not contain any features.

• Enron [31]: Email logs of Enron employees over a period of three years, where the employees are
modeled as nodes and a single edge represents an email sent between two employees. The edges are
timestamped and do not contain any features.

• Social Evo. [32]: Documentation of the everyday life of undergraduate students living in dormitories
from October 2008 to May 2009. Represented as a mobile phone proximity network where each edge
has two features.

• UCI [33]: Message log of the online community of students from the University of California,
Irvine, where the students are modeled as nodes and a single edge represents a message sent between
two students. The edges are timestamped with a granularity of seconds.

• Flights [34]: Tracked air traffic during the COVID-19 pandemic, where the airports are modeled as
nodes and the edges are the tracked flights between two airports. The edges are timestamped and
weighted. The weight of the edges indicates the number of flights between the airports in a day.

• Can. Parl. [35]: Documented interactions between Canadian members of parliaments from 2006 to
2019, where the members of parliaments are described as nodes, two of which are connected by an
edge if they both voted “yes” on a bill. The edges are timestamped and weighted. The weight of the
edges indicates the number of times that one member voted “yes” for another member’s bill within
one year.

• US Legis. [36]: Documented interactions in the US Senate, where legislators are modeled as nodes,
and two of which are connected by an edge if they co-sponsored a bill. The edges are timestamped
and weighted. The weight of the edges indicates the number of times that two members of the US
Congress co-sponsored a bill in a given term.

• UN Trade [37]: Documented global food and agriculture trading connections spanning over 30
years, where nations are represented as nodes, two of which are connected by an edge if they have an
agriculture import or export relations. The edges are timestamped and weighted. The weight of the
edges is the sum of normalized agriculture import or export values between two countries.

• UN Vote [38]: Documentation of roll-call votes in the United Nations General Assembly from 1946
to 2020 where nations are represented as nodes, two of which are connected by an edge if they both
voted “yes” for an item. The edges are timestamped and weighted. The weight of the edges is the
number of times the two countries vote “yes” on a call.

• Contact [39]: Physical proximity records documenting around 700 university students over a period
of four weeks, where the students are modeled as nodes. Two students are connected by an edge
if they are within a close proximity to each other. The edges are timestamped and weighted. The
weight of the edges specifies the physical proximity between two students.

The full statistics of the datasets as collected by Yu et al. [27] are reported in Table 3.

13

Leveraging Temporal Graph Networks Using Module Decoupling

Table 3: Datasets statistics.
Dataset Domain #Nodes #Edges #Node Features #Edge Features Bipartite Duration

Wikipedia Social 9,227 157,474 - 172 True 1 month
Reddit Social 10,984 672,447 - 172 True 1 month
MOOC Interaction 7,144 411,749 - 4 True 17 months
LastFM Interaction 1,980 1,293,103 - – True 1 month
Enron Social 184 125,235 - – False 3 years

Social Evo. Proximity 74 2,099,519 - 2 False 8 months
UCI Social 1,899 59,835 - – False 196 days

Flights Transport 13,169 1,927,145 - 1 False 4 months
Can. Parl. Politics 734 74,478 - 1 False 14 years
US Legis. Politics 225 60,396 - 1 False 12 terms
UN Trade Economics 255 507,497 - 1 False 32 years
UN Vote Politics 201 1,035,742 - 1 False 72 years
Contact Proximity 692 2,426,279 - 1 False 1 month

In Table 4 we report the ratio of inputs that depend on at least a single missing update in their 1-hop
neighborhood. In Table 5 we report the average number of missing updates affecting the 1-hop
neighborhood of the nodes. Tables 4 and 5 contain the missing updates statistics for all the datasets
used in this work for various batch sizes.

Table 4: Ratio of inputs that depend on at least
a single missing update in their 1-hop neighbor-
hood.

Dataset 1 10 25 50 100 200

Wikipedia 0 0.23 0.42 0.55 0.67 0.76
Reddit 0 0.31 0.52 0.67 0.78 0.86
MOOC 0 0.88 0.95 0.98 0.99 0.99
LastFM 0 0.74 0.88 0.94 0.97 0.98
Enron 0 0.85 0.92 0.95 0.98 0.99

Social Evo. 0 0.90 0.96 0.98 0.99 0.99
UCI 0 0.70 0.85 0.91 0.95 0.97

Flights 0 0.82 0.90 0.94 0.96 0.98
Can. Parl. 0 0.90 0.96 0.98 0.99 0.99
US Legis. 0 0.90 0.96 0.98 0.99 0.99
UN Trade 0 0.90 0.96 0.98 0.99 0.99
UN Vote 0 0.90 0.96 0.98 0.99 0.99
Contacts 0 0.86 0.94 0.97 0.98 0.99

Table 5: Average number of missing updates
affecting the 1-hop neighborhood of each input
node.

Dataset 1 10 25 50 100 200

Wikipedia 0 0.25 0.65 1.19 2.02 3.28
Reddit 0 0.15 0.39 0.78 1.53 2.99
MOOC 0 0.72 1.45 2.38 3.90 6.57
LastFM 0 0.45 1.16 2.10 3.59 5.93
Enron 0 2.95 6.07 9.81 15.55 24.95

Social Evo. 0 1.86 3.15 5.22 9.77 19.22
UCI 0 0.95 2.12 3.67 5.98 9.31

Flights 0 2.82 5.77 8.79 11.97 14.55
Can. Parl. 0 4.41 11.46 22.33 40.65 66.87
US Legis. 0 4.19 10.10 17.41 25.26 31.09
UN Trade 0 4.37 11.21 21.35 37.41 57.00
UN Vote 0 3.75 8.56 14.35 21.47 28.01
Contacts 0 1.74 2.60 3.15 3.85 5.13

A.1 Missing updates and sparse dynamic graphs

Table 6 contains all the datasets we used in our work, including datasets of large and sparse graphs
from TGB (tgbl-review, tgbl-coin, and tgbl-comment). We excluded tgbl-wiki and tgbl-flight because
they are based on the Wikipedia and Flights datasets, which we have already included. The table
is sorted by the average degree. MUX stands for the average number of missing updates of a node
in an interaction to predict using a memory-based model with a batch size of X. In general, graphs
with a smaller average degree, i.e., sparse graphs, tend to have fewer missing updates. This makes
sense since they depend on fewer neighbors who can potentially receive updates. However, this is not
always the case. For example, UCI, which is sparser than tgbl-comment, has more missing updates.
Moreover, increasing the batch size, even for large and sparse graphs (such as tgbl-review, tgbl-coin,
and tgbl-comment), increases the number of missing updates, making them non-negligible. Even a
low number such as 0.3 in tgbl-review means that, on average, for 30% of the nodes in the graph, a
memory-based model would not consider the node’s recent update when making a prediction.

14

Leveraging Temporal Graph Networks Using Module Decoupling

Table 6: Datasets and their average number of missing updates affecting the 1-hop neighborhood of
input nodes, sorted by sparsity.

Dataset Average Degree MU200 MU100 MU50
Social Evo. 28371.8 19.2 9.7 5.2

UN Vote 5152.9 28.0 21.4 14.3
Contact 3506.1 5.1 3.8 3.1

UN Trade 1990.1 57.0 37.4 21.3
Enron 680.6 24.9 15.5 9.8

LastFM 653.0 5.9 3.5 2.1
US Legis. 268.4 31.0 25.2 17.4

Flights 146.3 14.5 11.9 8.7
Can. Parl. 101.4 66.8 40.6 22.3

Reddit 61.2 2.9 1.5 0.7
MOOC 57.6 6.5 3.9 2.3

tgbl-comment 44.5 0.4 0.4 0.1
tgbl-coin 35.7 4.2 2.6 1.6

UCI 31.5 9.3 5.9 3.6
Wikipedia 17.0 3.2 2.0 1.1

tgbl-review-v2 13.8 0.3 0.2 0.1

15

Leveraging Temporal Graph Networks Using Module Decoupling

B Baselines descriptions

We used the following baselines in the experiments:

•DyRep [16]: DyRep is an RNN-based architecture that utilizes a temporal attention mechanism to
exploit the dynamic structure of the graphs.

• TGAT [7]: TGAT uses a time-encoding function and aggregates neighborhood information using
self-attention to compute the embedding for each node.

• TGN [6]: TGN is a general architecture for CTDG learning tasks. It uses both a prediction module
and a memory module to get relevant and accurate predictions for each input at each moment in time.
It does this by aggregating information from the neighborhood of each node and maintain learnable
updated memory which is based on RNN, and thus also solves the staleness problem.

• CAWN [22]: The CAWN model is based on causal anonymous walks that are generated for each
node. The walks are encoded using RNNs and aggregated to achieve the node representation.

• EdgeBank [26]: EdgeBank is a memorization algorithm that saves any seen update and, given an
input, it predicts according to a simple decision rule that can be one of the following: whether the
input was seen in the last few iterations (EdgeBankth) or in the last few time units (EdgeBanktw), or
whether the input has already been seen a sufficient number of times (EdgeBankre). While EdgeBank
can also have a decision rule that is based on infinite memory i.e., predicts positive for any previously
seen edge and predicts negative otherwise (EdgeBankinf). The algorithm’s simplicity allows it
to perform extremely fast, making it significantly faster than any other model for dynamic graph
learning. In our experiments, we report the best results of EdgeBank among all of its decision rule
variations.

• GraphMixer [18]: GraphMixer uses three components for the task of future edge prediction: a
link-encoder that is based on MLP and a fixed time-encoding function, a node-encoder that only
performs neighborhood mean-pooling and another MLP for edge prediction.

• DyGFormer [27]: DyGFormer is a transformer-based architecture. To generate an encoding for a
given interaction, DyGFormer generates a co-occurrence embedding of the interaction in addition to a
neighborhood representation for each interacting node. Then, it uses a patching technique on historical
representations of the interacting nodes to better capture long-term temporal dependencies. The
patches are then sent to a transformer and its outputs are averaged to create the final representation.

C Additional Implementation Details

C.1 Supporting additional update types

In Section 5.2 we described how to handle edge addition updates. In case of an update that removes
the edge ei,j , ti,j should be set to 0. Similarly, when a node vi is added to the graph, ti should be set
to the current time. ti should be set to 0 when the node is removed.

C.2 Node classification

To adjust LDTGN for dynamic node classification, the merge function needs to be removed, s.t., the
prediction operation is applied directly on the node embedding. The Wikipedia dataset can also be
used for dynamic node classification, therefore we used it to evaluate our model compared to other
baselines:

Table 7: AUC-ROC for node prediction task on the Wikipedia dataset.

Dataset DyRep TGAT TGN CAWN GraphMixer DyGFormer LDTGN (ours)

Wikipedia 86.39±0.98 84.09±1.27 86.38±2.34 84.88±1.33 86.80±0.79 87.44±1.08 86.71±0.44

For this task of node classification LDTGN achieves comparable performance to previous state-of-
the-art while still being the most efficient in terms of throughput and latency.

16

Leveraging Temporal Graph Networks Using Module Decoupling

C.3 Further implementation details

For the TDE of LDTGN we used an MLP with two hidden layers and two activation layers of
ReLU [40]. Each linear layer of TDE outputs vector of length 100. Before applying TDE the time
difference need to be normalised to ease the learning process. We used Equation (20) to normalise
the time difference, where C is the length of the dataset.

normalise(t) =
log(1 + t)

log(1 + C)
(20)

For LDTGN-mem, we used Time2Vec as the TDE function. Time2Vec utilizes the cosine function,
thus omitting the need for normalization.

The merge function of LDTGN and LDTGN-mem is an MLP that maps multiple input vectors into a
single value that represents the probability of the edge to be positive. The MLP first applies linear
layer that maps the three vectors into a single vector. Then, it reduces the vector’s dimension to 80,
10 and finally to 1. After each dimensionality reduction, ReLU is being applied. Finally, a sigmoid
function is applied on the result to obtain the probability of an edge to be positive.

In practice, it is challenging to utilize the full neighborhood of input nodes to compute the predictions
and withstand a reasonable throughput, since the neighborhood of each node is expected to grow
overtime. Thus, we implemented our models using the recent neighbors sampling strategy that
was suggested by Rossi et al. [6] in which only the k neighbors of each hop which were recently
involved in an update are used for computing the predictions. Thus, the computation time of the
model becomes independent of the graph’s scale. For our models, we used k = 20.

C.4 Choosing the memory batch size

The optimal batch size of the memory module depends on the model’s requirements. If there is a
demand for the model to operate in a certain throughput, the smallest batch size that enables that
should be selected, but if, on the other hand, precision is the priority, we will select the largest batch
size that achieves this. This trade-off is discussed earlier in Section 3. It is recommended that the
general batch size will be a multiplication of the memory batch size for convenient implementation, but
it does not have to. As demonstrated in Figure 1(b) different datasets can have different frequencies of
missing updates. Datasets with larger frequencies of missing updates tend to require smaller memory
batch sizes. In our experiments, we set the memory batch size of LDTGN-mem to be 50 as it provides
a good trade-off between precision and throughput.

C.5 Training

We trained the models for 100 epochs with a patience of 20 epochs before early stopping. We used
binary cross entropy loss as the objective function and optimized the models using Adam’s algorithm
with a learning rate of 10−4. To ensure that all models were trained and tested on exactly the same
negative edges, a constant seed was used. Additionally, the sampling function ensured that the size of
the sampled batches of negative edges was the same for every model, equal to the batch size, which
also prevented the sampled negative edges from differing between different model evaluations.

All the experiments were performed on Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz and
NVIDIA GeForce RTX 3090.

D Additional results

In Tables 8 to 11 we report the AP and AUC-ROC of our proposed model and the baselines for the
tasks of transductive and inductive future edge prediction.

In Table 12 we report the results for TGB. The metric used in TGB is Mean Reciprocal Rank (MRR).
‘-’ in the results table denotes scenarios where a specific method was either not officially applied to
the dataset or was unable to complete the validation and testing phases within a reasonable time. The
full implementation of LDTGN for TGB can be found in this url.

17

https://github.com/orfeld415/Modules-Decoupling-TGB

Leveraging Temporal Graph Networks Using Module Decoupling

Table 8: AP for transductive future edge prediction with random negative sampling over five runs.
The significantly best result for each benchmark appears in bold font.

Dataset DyRep TGAT TGN CAWN EdgeBank GraphMixer DyGFormer LDTGN (ours) LDTGN-mem (ours)

Wikipedia 94.86±0.06 96.94±0.06 98.45±0.06 98.76±0.03 90.37±0.00 97.25±0.03 99.03±0.02 98.86±0.02 98.99±0.03
Reddit 98.22±0.04 98.52±0.02 98.63±0.06 99.11±0.01 94.86±0.00 97.31±0.01 99.22±0.01 98.61±0.01 99.28±0.02
MOOC 81.97±0.49 85.84±0.15 89.15±1.60 80.15±0.25 57.97±0.00 82.78±0.15 87.52±0.49 83.34±1.47 91.73±0.65
LastFM 71.92±2.21 73.42±0.21 77.07±3.97 86.99±0.06 79.29±0.00 75.61±0.24 93.00±0.12 90.81±0.01 91.22±0.31
Enron 82.38±3.36 71.12±0.97 86.53±1.11 89.56±0.09 83.53±0.00 82.25±0.16 92.47±0.12 98.10±0.01 92.28±0.32

Social Evo. 88.87±0.30 93.16±0.17 93.57±0.17 84.96±0.09 74.95±0.00 93.37±0.07 94.73±0.01 95.45±0.51 94.02±0.16
UCI 65.14±2.30 79.63±0.70 92.34±1.04 95.18±0.06 76.20±0.00 93.25±0.57 95.79±0.17 97.05±0.01 95.75±0.04

Flights 95.29±0.72 94.03±0.18 97.95±0.14 98.51±0.01 89.35±0.00 90.99±0.05 98.91±0.01 97.50±0.07 98.76±0.06
Can. Parl. 66.54±2.76 70.73±0.72 70.88±2.34 69.82±2.34 64.55±0.00 77.04±0.46 97.36±0.45 99.47±0.03 72.82±9.17
US Legis. 75.34±0.39 68.52±3.16 75.99±0.58 70.58±0.48 58.39±0.00 70.74±1.02 71.11±0.59 92.08±0.09 80.93±0.48
UN Trade 63.21±0.93 61.47±0.18 65.03±1.37 65.39±0.12 60.41±0.00 62.61±0.27 66.46±1.29 97.82±0.07 96.65±0.19
UN Vote 62.81±0.80 52.21±0.98 65.72±2.17 52.84±0.10 58.49±0.00 52.11±0.16 55.55±0.42 80.94±1.43 71.21±1.14
Contacts 95.98±0.15 96.28±0.09 96.89±0.56 90.26±0.28 92.58±0.00 91.92±0.03 98.29±0.01 98.19±0.03 98.78±0.04

Table 9: AP for inductive future edge prediction with random negative sampling over five different
runs. The significantly best result for each benchmark appears in bold font.

Dataset DyRep TGAT TGN CAWN GraphMixer DyGFormer LDTGN (ours) LDTGN-mem (ours)

Wikipedia 92.43±0.37 96.22±0.07 97.83±0.04 98.24±0.03 96.65±0.02 98.59±0.03 98.74±0.02 98.40±0.04
Reddit 96.09±0.11 97.09±0.04 97.50±0.07 98.62±0.01 95.26±0.02 98.84±0.02 98.00±0.04 98.86±0.02
MOOC 81.07±0.44 85.50±0.19 89.04±1.17 81.42±0.24 81.41±0.21 86.96±0.43 82.73±1.52 90.61±0.32
LastFM 83.02±1.48 78.63±0.31 81.45±4.29 89.42±0.07 82.11±0.42 94.23±0.09 92.17±0.01 92.62±0.59
Enron 74.55±3.95 67.05±1.51 77.94±1.02 86.35±0.51 75.88±0.48 89.76±0.34 96.06±0.09 88.07±0.56

Social Evo. 90.04±0.47 91.41±0.16 90.77±0.86 79.94±0.18 91.86±0.06 93.14±0.04 94.37±0.68 91.31±0.22
UCI 57.48±1.87 79.54±0.48 88.12±2.05 92.73±0.06 91.19±0.42 94.54±0.12 94.92±0.01 93.00±0.12

Flights 92.88±0.73 88.73±0.33 95.03±0.60 97.06±0.02 83.03±0.05 97.79±0.02 95.60± 0.10 97.31±0.16
Can. Parl. 54.02±0.76 55.18±0.79 54.10±0.93 55.80±0.69 55.91±0.82 87.74±0.71 97.83±0.06 58.05±3.08
US Legis. 57.28±0.71 51.00±3.11 58.63±0.37 53.17±1.20 50.71±0.76 54.28±2.87 83.76±0.44 65.75±1.57
UN Trade 57.02±0.69 61.03±0.18 58.31±3.15 65.24±0.21 62.17±0.31 64.55±0.62 97.43±0.07 89.21±1.15
UN Vote 54.62±2.22 52.24±1.46 58.85±2.51 49.94±0.45 50.68±0.44 55.93±0.39 81.29±1.41 63.54±2.09
Contacts 92.18±0.41 95.87±0.11 93.82±0.99 89.55±0.30 90.59±0.05 98.03±0.02 97.85±0.03 97.94±0.13

Table 10: AUC-ROC for transductive future edge prediction with random negative sampling over
five runs. The significantly best result for each benchmark appears in bold font.

Dataset DyRep TGAT TGN CAWN EdgeBank GraphMixer DyGFormer LDTGN (ours) LDTGN-mem (ours)

Wikipedia 94.37 ± 0.09 96.67 ± 0.07 98.37 ± 0.07 98.54 ± 0.04 90.78 ± 0.00 96.92 ± 0.03 98.91 ± 0.02 98.67±0.01 98.90±0.05
Reddit 98.17 ± 0.05 98.47 ± 0.02 98.60 ± 0.06 99.01 ± 0.01 95.37 ± 0.00 97.17 ± 0.02 99.15 ± 0.01 98.20±0.02 99.25±0.02
MOOC 85.03 ± 0.58 87.11 ± 0.19 91.21 ± 1.15 80.38 ± 0.26 60.86 ± 0.00 84.01 ± 0.17 87.91 ± 0.58 82.43±1.72 93.33±0.54
LastFM 71.16 ± 1.89 71.59 ± 0.18 78.47 ± 2.94 85.92 ± 0.10 83.77 ± 0.00 73.53 ± 0.12 93.05 ± 0.10 90.79±0.01 91.68±0.51
Enron 84.89 ± 3.00 68.89 ± 1.10 88.32 ± 0.99 90.45 ± 0.14 87.05 ± 0.00 84.38 ± 0.21 93.33 ± 0.13 98.31±0.01 93.35±0.42

Social Evo. 90.76 ± 0.21 94.76 ± 0.16 95.39 ± 0.17 87.34 ± 0.08 81.60 ± 0.00 95.23 ± 0.07 96.30 ± 0.01 96.82±0.25 95.93±0.06
UCI 68.77 ± 2.34 78.53 ± 0.74 92.03 ± 1.13 93.87 ± 0.08 77.30 ± 0.00 91.81 ± 0.67 94.49 ± 0.26 96.22±0.03 94.79±0.07

Flights 95.95 ± 0.62 94.13 ± 0.17 98.22 ± 0.13 98.45 ± 0.01 90.23 ± 0.00 91.13 ± 0.01 98.93 ± 0.01 96.98±0.09 98.82±0.07
Can. Parl. 73.35 ± 3.67 75.69 ± 0.78 76.99 ± 1.80 75.70 ± 3.27 64.14 ± 0.00 83.17 ± 0.53 97.76 ± 0.41 99.68±0.02 77.66±7.92
US Legis. 82.28 ± 0.32 75.84 ± 1.99 83.34 ± 0.43 77.16 ± 0.39 62.57 ± 0.00 76.96 ± 0.79 77.90 ± 0.58 94.88±0.10 87.96±0.53
UN Trade 67.44 ± 0.83 64.01 ± 0.12 69.10 ± 1.67 68.54 ± 0.18 66.75 ± 0.00 65.52 ± 0.51 70.20 ± 1.44 97.91±0.06 97.16±0.17
UN Vote 67.18 ± 1.04 52.83 ± 1.12 69.71 ± 2.65 53.09 ± 0.22 62.97 ± 0.00 52.46 ± 0.27 57.12 ± 0.62 86.81±0.87 77.33±1.04
Contact 96.48 ± 0.14 96.95 ± 0.08 97.54 ± 0.35 89.99 ± 0.34 94.34 ± 0.00 93.94 ± 0.02 98.53 ± 0.01 98.58±0.01 99.06±0.04

Table 11: AUC-ROC for inductive future edge prediction with random negative sampling over 5
different runs. The significantly best result for each benchmark appears in bold font.

Dataset DyRep TGAT TGN CAWN GraphMixer DyGFormer LDTGN (ours) LDTGN-mem (ours)

Wikipedia 91.49±0.45 95.90±0.09 97.72±0.03 98.03±0.04 95.57±0.20 98.48±0.03 98.23±0.00 98.30±0.06
Reddit 96.05±0.12 96.98±0.04 97.39±0.07 98.42±0.02 93.80±0.07 98.71±0.01 97.30±0.03 98.56±0.05
MOOC 84.03±0.49 86.84±0.17 91.24±0.99 81.86±0.25 81.43±0.19 87.62±0.51 81.88±1.74 92.36±0.30
LastFM 82.24±1.51 76.99±0.29 82.61±3.15 87.82±0.12 70.84±0.85 94.08±0.08 91.75±0.01 92.57±0.86
Enron 76.34±4.20 64.63±1.74 78.83±1.11 87.02±0.50 72.33±0.99 90.69±0.26 95.77±0.13 88.46±0.79

Social Evo. 91.18±0.49 93.41±0.19 93.43±0.59 84.73±0.27 93.71±0.18 95.29±0.03 96.03±0.37 94.01±0.2
UCI 58.08±1.81 77.64±0.38 86.68±2.29 90.40±0.11 84.49±1.82 92.63±0.13 92.83±0.02 90.83±0.21

Flights 93.56±0.70 88.64±0.35 95.92±0.43 96.86±0.02 82.48±0.01 97.80±0.02 94.44±0.21 97.39±0.21
Can. Parl. 55.27±0.49 56.51±0.75 55.86±0.75 58.83±1.13 55.83±1.07 89.33±0.48 98.73±0.05 58.59±4.42
US Legis. 61.07±0.56 48.27±3.50 62.38±0.48 51.49±1.13 50.43±1.48 53.21±3.04 88.19±0.24 72.45±1.31
UN Trade 58.82±0.98 62.72±0.12 59.99±3.50 67.05±0.21 63.76±0.07 67.25±1.05 97.47±0.07 90.26±1.28
UN Vote 55.13±3.46 51.83±1.35 61.23±2.71 48.34±0.76 50.51±1.05 56.73±0.69 86.99±0.86 68.99±1.66
Contact 91.89±0.38 96.53±0.10 94.84±0.75 89.07±0.34 93.05±0.09 98.30 ± 0.02 98.26±0.02 98.22±0.14

18

Leveraging Temporal Graph Networks Using Module Decoupling

Table 12: MRR for future edge prediction on TGB. The significantly best result for each benchmark
appears in bold font. The second best result for each benchmark is underlined.

Dataset DyRep TGAT TGN CAWN EdgeBank GraphMixer DyGFormer LDTGN (ours)

tgbl-wiki-v2 0.050 ± 0.017 0.141 ± 0.007 0.396 ± 0.060 0.711 ± 0.006 0.571 0.118 ± 0.002 0.798 ± 0.004 0.816 ± 0.001
tgbl-review-v2 0.220 ± 0.030 0.355 ± 0.012 0.349 ± 0.020 0.193 ± 0.001 0.025 0.521 ± 0.015 0.224 ± 0.015 0.381 ± 0.009
tgbl-coin-v2 0.452 ± 0.046 - 0.586 ± 0.037 - 0.580 - 0.752 ± 0.004 0.649 ± 0.007

tgbl-comment 0.289 ± 0.033 - 0.379 ± 0.021 - 0.149 - 0.670 ± 0.001 0.400 ± 0.006
tgbl-flight-v2 0.556 ± 0.014 - 0.705 ± 0.020 - 0.387 - - 0.736 ± 0.015

E Decoupling potential speedup analysis
In this section, we analyze the potential speedup that models can achieve by using the decoupling
strategy. The decoupling strategy does not affect running time directly, but rather aids to accelerate the
running time of models without compromising their precision. Figure 3 demonstrates this exact idea:
one can decouple a memory-based model and increase its batch size significantly while maintaining a
constant memory batch size. This will lead to running time improvement without compromising the
precision of the decoupled model.

In the context of a sequence containing updates for a model to apply and inputs for it to predict,
denote the time it takes for the memory module to apply all the given updates in the sequence as
tmemory and denote the time it takes for the prediction module to finish computing the predictions for
all the inputs in the sequence as tprediction. The total time it takes for the model to finish processing
the sequence is:

Ttotal = tmemory + tprediction (21)
By decoupling the network one can reduce this time to

Tdecouple_total = tmemory +
tprediction

BSnew/BSold
(22)

Where BSold is the batch size of the model before decoupling and BSnew is the batch size of the
decouple model. Hence the potential speedup of the model is:

speedup =
BSnew · tprediction +BSnew · tmemory

BSold · tprediction +BSnew · tmemory
(23)

19

	1 Introduction
	2 Background
	3 Problem statement
	3.1 Empirical analysis

	4 Related work
	5 Proposed method
	5.1 The decoupling strategy
	5.2 Lightweight Decoupled Temporal Graph Network

	6 Experiments
	6.1 Future edge prediction
	6.2 Memory and running time performance

	7 Conclusion
	A Datasets statistics and descriptions
	A.1 Missing updates and sparse dynamic graphs

	B Baselines descriptions
	C Additional Implementation Details
	C.1 Supporting additional update types
	C.2 Node classification
	C.3 Further implementation details
	C.4 Choosing the memory batch size
	C.5 Training

	D Additional results
	E Decoupling potential speedup analysis

