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Abstract: Bimanual manipulation presents unique challenges compared to uni-
manual tasks due to the complexity of coordinating two robotic arms. In this
paper, we introduce InterACT: Inter-dependency aware Action Chunking with
Hierarchical Attention Transformers, a novel imitation learning framework de-
signed specifically for bimanual manipulation. InterACT leverages hierarchical
attention mechanisms to effectively capture inter-dependencies between dual-arm
joint states and visual inputs. The framework comprises a Hierarchical Attention
Encoder, which processes multi-modal inputs through segment-wise and cross-
segment attention mechanisms, and a Multi-arm Decoder that generates each
arm’s action predictions in parallel, while sharing information between the arms
through synchronization blocks by providing the other arm’s intermediate out-
put as context. Our experiments, conducted on various simulated and real-world
bimanual manipulation tasks, demonstrate that InterACT outperforms existing
methods. Detailed ablation studies further validate the significance of key compo-
nents, including the impact of CLS tokens, cross-segment encoders, and synchro-
nization blocks on task performance. We provide supplementary materials and
videos on our project page1.
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1 Introduction

Bimanual manipulation tasks, such as unscrewing a bottle cap or connecting two electrical cables,
presents significant challenges due to the need for high precision and complex coordination between
the two arms. Traditional approaches often rely on high-end robots and precise sensors, which can be
expensive and require meticulous calibration [1, 2, 3]. However, recent advances in learning-based
approaches offer the potential to perform such complex tasks using low-cost hardware. The ALOHA
and the Action Chunking with Transformers (ACT) framework has shown that low-cost systems can
achieve high-precision tasks that were traditionally only possible with expensive setups. The ACT
addresses compounding error problem in imitation learning by predicting sequences of actions rather
than single steps, thereby reducing the task’s effective horizon and mitigating errors over time [4].

Despite recent advances, achieving the complex coordination between both arms required for con-
sistent and successful execution of even relatively simple tasks remains a challenge in bimanual
robotics. In this work, we propose InterACT: a new policy designed for bimanual manipulation that
emphasizes inter-dependencies between two arms by utilizing hierarchical attention mechanisms.
In our designs, multimodal inputs are encoded through segment-wise and cross-segment encoders
which handle the complex relationships between different segments in a manner similar to how
long documents are processed in NLP [5]. This combines the proprioceptive data of the robot arm
joints and the visual features of the camera in a coherent latent space that allows for coordinated
detail-oriented and smooth action execution.

1https://soltanilara.github.io/interact/
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Our method advances beyond existing approaches by emphasizing the hierarchical structure of bi-
manual tasks: while independent arm movements are managed at the lower level, coordination oc-
curs at a higher level, allowing each arm’s actions to be informed by the other’s movements as well
as the environmental sensory feedback.. Leveraging the latest advances in attention mechanisms,
this work presents a novel solution for bimanual manipulation tasks.

2 Related Works

2.1 Bimanual Manipulation

Bimanual manipulation involves two robotic arms performing tasks that require dexterity and coor-
dination. Inspired by the natural ability of humans to perform such tasks, researchers have been keen
on modeling these skills in robots. Prevailing methodologies, including classical control methods,
reinforcement learning, and imitation learning, have significantly advanced the field.

Early research primarily relied on classical control methods, focusing on predefined trajectories and
high-fidelity models to achieve coordinated movements [1, 2, 3]. However, these methods often
required extensive calibration and were less adaptable to dynamic environments. The introduction
of reinforcement learning (RL) made bimanual manipulation more adaptable and robust. RL-based
approaches have proven effective in handling complex tasks, outperforming classical methods, and
generalizing across different scenarios [6, 7, 8, 6, 9]. These methods leverage RL’s ability to learn
from interactions with the environment, improving performance in varied and unpredictable condi-
tions [10, 11, 12]. Imitation learning has emerged as a prominent method for teaching robots tasks
through human demonstrations. This approach enables robots to mimic complex human actions,
facilitating the execution of intricate tasks [13, 14]. Research has demonstrated the effectiveness of
imitation learning in training robots for coordinated dual-arm manipulation leveraging waypoints,
hierarchical skill learning and force-based techniques [15, 16, 17, 18, 19, 20]. Frameworks like
ALOHA have shown that low-cost systems can perform high-precision tasks using imitation learn-
ing techniques traditionally reserved for expensive setups [4, 21]. Similarly, the Action Chunking
with Transformers (ACT) algorithm addresses the compounding error problem in imitation learning
by predicting sequences of actions, improving accuracy and efficiency [4].

Despite these advancements, bimanual manipulation remains challenging. Recent research has ex-
plored stabilizing one arm [22], simplifying actions [23], integrating additional multi-modal data,
such as language or sensory feedback [24, 25, 26], to enhance the robustness and efficiency of bi-
manual manipulation systems. These efforts hold promise for developing more adaptable robotic
systems capable of performing more complex manipulation tasks.

2.2 Hierarchical Attention Mechanisms

Hierarchical attention [27] mechanisms have gained prominence for their ability to process and inte-
grate multi-modal inputs. These mechanisms aggregate information at multiple levels of granularity,
making them well-suited for tasks requiring both local and global context understanding [28, 29].

Hierarchical attention has shown considerable success in other domains, such as natural language
processing (NLP), where hierarchical attention transformers have been effectively used for long
document classification [5, 30, 31]. These models focus on different parts of the input text at varying
levels of abstraction, enhancing the ability to handle long and complex documents. Extensions of
foundational attention mechanisms [32], such as the Hierarchical Attention Network (HAN) [27] and
hierarchical representations in BERT [33], further demonstrate their potential in managing multi-
layered information.

In robotic manipulation, the concept of hierarchy has been explored to manage the complexity of
long-horizon tasks by breaking down problems into manageable sub-tasks [34], but not at the pol-
icy’s attention layer level. As proven in long document classification, leveraging segment-wise and
cross-segment attention mechanisms, hierarchical attention models can capture dependencies within

2



and across sentences [5]. This makes hierarchical attention transformers particularly appealing for
use in bimanual robotic manipulation tasks, where capturing dependencies between arms is crucial.

In this work, we tailor the transformer architecture featuring hierarchical attention to the bimanual
robotics tasks and explore its utility in extracting the complex inter-dependencies between the ac-
tions of the two arms. We hypothesize that this can lead to more coordinated actions and hence,
more robust performance.

3 InterACT: Inter-dependency Aware Action Chunking with Hierarchical
Attention Transformer

The ACT model [4] leverages transformer architecture to predict future steps in bimanual manipula-
tion tasks, effectively handling sequences of actions by capturing temporal dependencies. However,
it does not explicitly model inter-dependencies between dual-arm joint states and visual inputs,
which can limit its performance in complex manipulation tasks.

InterACT builds upon the ACT model, enhancing it with hierarchical attention mechanisms to cap-
ture inter-dependencies between dual-arm joint states and visual inputs. This section provides an
overview of the InterACT model and its key components: the Hierarchical Attention Encoder,
which processes multi-modal inputs to capture both intra- (corresponding to one arm or sensory in-
put) and inter-segment (across arms or sensory inputs) dependencies, and the Multi-arm Decoder,
which generates synchronized action predictions for both arms.

Figure 1: Architecture of the InterACT. The Hierarchical Attention Encoder consists of multi-
ple blocks of segment-wise encoders and cross-segment encoder. The output is passed through the
Multi-arm Decoder which consists of Arm1 and Arm2 specific decoders that process the input seg-
ments independently. The synchronization block allows for information sharing between the two
decoders.

3.1 Hierarchical Attention Encoder

Segments are defined as independent groups of data inputs that are processed individually before
integration. In this context, segments include the joint states of each arm and visual features at
a specific timestep. The Hierarchical Attention Encoder processes input segments and captures
both intra-segment and inter-segment dependencies through a hierarchical attention mechanism that
consists of two primary components: the Segment-wise encoder and the Cross-segment encoder. A
detailed pipeline for the Hierarchical Attention Encoder is illustrated in Figure 1 and Algorithm 1.
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Algorithm 1: Hierarchical Attention Encoder
1: Given: Demo dataset D, segment-wise encoder Eseg, cross-segment encoder Ecross, CLS tokens CLS,

number of layers L.
2: Let Si represent the input segment at index i, CLSi represent the CLS tokens for segment i, and Svisual

represent the visual features.
3: Initialize segment-wise encoder Eseg
4: Initialize cross-segment encoder Ecross
5: for each segment Si in D do
6: Prepend CLS tokens: S′

i ← [CLSi, Si]
7: Add positional encoding to S′

i

8: for each layer l = 1, 2, ..., L do
9: S′

i ← Eseg(S
′
i)

10: end for
11: end for
12: Extract CLS tokens: CLStokens ← [CLS1,CLS2, ...,CLSN ]
13: Add positional encoding to CLStokens
14: for each layer l = 1, 2, ..., L do
15: CLStokens ← Ecross(CLStokens)
16: end for
17: Return final encoded states {CLSarm1, S

′
arm1,CLSarm2, S

′
arm2,CLSvisual, S

′
visual}

Each raw joint position is embedded into a single token through a linear layer. Visual features are
extracted from RGB images using ResNet18 backbones, which convert and flatten the images along
the spatial dimension to form a sequence of visual feature tokens. The joint sequences from both
arms and the visual feature sequence are then concatenated to form a combined input sequence.
Classification tokens (CLS tokens) are prepended to each segment, allowing the model to capture
and summarize segment information during attention [33, 35]. Positional embeddings are applied
to the sequence to ensure the model can understand the order of the tokens within each segment
sequence.

Segment-Wise encoder is responsible for capturing intra-segment dependencies by processing each
segment individually. Each segment represents a distinct modality, and the encoder’s task is to
aggregate the information within each segment. The self-attention mechanism allows each token
within the segment to attend to every other token, including the CLS tokens, thereby allowing the
CLS token to capture intra-segment dependencies. This aggregation of information enables the
model to effectively leverage the relationships within different parts of the segment [5], such as the
dependencies between joints or the spatial relationships within visual inputs.

Cross-segment encoder is responsible for capturing inter-segment dependencies by handling the
CLS tokens generated from each segment by the segment-wise encoder. The CLS tokens serve as
a condensed representation of each segment, summarizing the key information within the segment.
By focusing on these CLS tokens, the cross-segment encoder reduces the computational overhead
while effectively integrating information across different modalities.

Multiple segment-wise and cross-segment encoders are stacked, allowing the model to progressively
refine its understanding of both intra- and inter-segment relationships. We follow an interleaved
stacking approach [5], where segment-wise and cross-segment encoders alternate. This deep stack-
ing enables the model to capture the complex dependencies across segments.

3.2 Multi-arm Decoder

Similar to multi-task learning in NLP [36, 37], the Multi-arm Decoder comprises two parallel paths
of decoder blocks, each dedicated to processing the encoded states and target tokens to generate
the predicted actions for one of the arms. This separation makes sense in bimanual manipulation
tasks because, while the arms must coordinate, they often perform independent actions that require
individual attention and control. By using separate decoders, each arm can process its specific
actions while still sharing critical information through synchronization mechanisms.
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This section details the components and workflow of the Multi-arm Decoder, highlighting how it
employs enriched input sequence and CLS tokens from the encoder to coordinate actions between
both arms effectively. A detailed pipeline for the Multi-arm Decoder is illustrated in Figure 1 and
Algorithm 2.

Algorithm 2: Multi-arm Decoder
1: Given: Target tokens with positional embeddings Tpos, number of layers L.
2: Let Darm1, Darm2 represent decoders for Arm1 and Arm2 respectively.
3: Let Dsync represent Synchronization block.
4: Initialize cross-attention blocks for Darm1 and Darm2
5: Initialize synchronization block (multihead self-attention)
6: Arm1 Specific Decoder:
7: for each layer l = 1, 2, ..., L do
8: Arm1input ← {Sarm1,CLSarm2,CLSvisual, Svisual}
9: Arm1output ← Darm1(Arm1input, Tpos)

10: end for
11: Arm2 Specific Decoder:
12: for each layer l = 1, 2, ..., L do
13: Arm2input ← {CLSarm1, Sarm2,CLSvisual, Svisual}
14: Arm2output ← Darm2(Arm2input, Tpos)
15: end for
16: Synchronization Block:
17: Concatenatedoutput ← {Arm1output, Arm2output}
18: Sharedoutput ← Dsync(Concatenatedoutput)
19: Split Shared Output:
20: Sharedoutput arm1, Sharedoutput arm2 ← Split(Sharedoutput)
21: Arm Specific Decoder
22: Arm1final output ← Darm1(Arm1input, Sharedoutput arm1)
23: Arm2final output ← Darm2(Arm2input, Sharedoutput arm2)
24: Return Arm1final output, Arm2final output

Encoded states from the Hierarchical Attention Encoder are used as the context for decoding. Target
tokens, initialized with positional embeddings, serve as the starting point for generating sequence
of actions. The input for each decoder includes relevant segments and CLS tokens to facilitate
cross-attention mechanisms.

Arm Specific Decoders are responsible for generating intermediate decoder outputs for each arm.
The Arm1 Decoder takes in Arm1 segments, Arm2 CLS tokens, and visual feature segments, while
the Arm2 Decoder takes in Arm2 segments, Arm1 CLS tokens, and visual feature segments. Each
layer processes these inputs through a cross-attention mechanism with the target tokens, incorporat-
ing contextual information from both joint states and visual features. This design enables each arm
to use contextual information from the other arm ensuring synchronized actions.

Synchronization Block enhances coordination between both arms. Before generating the final out-
put from each decoder, the intermediate outputs from both decoders are concatenated and processed
through a synchronization block, which uses self-attention to integrate shared information. This step
ensures that both arms leverage the combined context from the other arm and visual inputs before
passing through the reset of the decoder layers. The use of attention mechanisms for sharing in-
formation across multiple decoders has also been explored in multi-task learning, demonstrating its
effectiveness in improving performance and coherence within tasks [38].

3.3 Training and Evaluation

InterACT is trained using an end-to-end imitation learning framework adapted from the ACT al-
gorithm. The training process involves collecting high-quality human demonstrations through a
teleoperation system, capturing joint positions and RGB images at 50Hz. The collected data is pre-
processed to extract joint states and visual features using ResNet18 backbones, converting the RGB
images into feature tokens. Each joint state and visual feature is tokenized, with multiple CLS tokens
prepended to summarize each segment’s information. Positional embeddings are added to retain se-
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quence information. Action chunking is implemented to predict sequences of actions rather than
single steps, reducing the task’s effective horizon and mitigating compounding errors. Additionally,
a temporal ensemble method is employed to improve the temporal consistency and robustness of the
action predictions by weighing predictions over multiple time steps [4].

Evaluation is conducted on both simulated and real-world tasks, measuring success rates to assess
the model’s performance in generating accurate and coordinated actions.

4 Experiments and Results

For the real-robot setup, we modified the ALOHA 2 [39] setup by adjusting the height of the top
camera to improve the visibility of the tabletop environment. This adjustment ensures that the cam-
era captures a more comprehensive view of the workspace, which is essential for accurately tracking
the bimanual manipulation tasks. Our robot setup is illustrated in Appendix B.

To evaluate our model, we conducted experiments on three simulation tasks and six real-world tasks:
Transfer Cube and Peg Insertion along with Slide Ziploc and Thread Velcro are tasks adapted
from ACT [4]. We also introduce five new tasks: one simulation task and four real-world tasks. The
simulation task is Slot Insertion, where both arms need to grab each side of a long peg together
and place it in a slot on the table. The new real-world tasks include Insert Plug, Click Pen, Sweep,
and Unscrew Cap. We collected 50 demonstrations for each task. For the simulation tasks, the data
used to train the model were all from human demonstrations and we did not evaluate performance
of the models trained on scripted data. Detailed task definitions are provided in Appendix A, and
the hyperparameters of both ACT and InterACT are provided in Appendix C.

To Evaluate the performance of InterACT, we chose to compare our model against ACT [4] and the
Diffusion policy [40]. However, with only 50 demonstrations, the Diffusion policy failed to execute
any of the nine tasks. We did not perform any additional tuning on the Diffusion policy, as its poor
performance suggested it was not well-suited for tasks with limited demonstration data. Therefore,
we focus our comparisons exclusively on ACT, as ACT already significantly outperforms several
other policies, including BC-ConvMLP [41, 14], BeT [42], and VINN [43], by a large margin in
bimanual manipulation tasks [4].

Transfer Cube (Sim) Peg Insertion (Sim) Slide Ziploc (Real) Thread Velcro (Real)

Touch Lift Transfer Grasp Contact Insert Grasp Pinch Open Lift Grasp Insert

ACT 82 60 50 76 66 20 96 92 88 88 42 16

InterACT 98 88 82 88 78 44 96 92 92 94 56 20

Slot insertion (Sim) Insert Plug (Real) Click Pen (Real) Sweep (Real) Unscrew cap (Real)
Lift Insert Grasp Insert Grasp Click Grasp Sweep Touch Unscrew

ACT 96 88 92 30 92 56 88 42 84 60

InterACT) 100 100 92 42 94 62 92 52 88 62

Table 1: Success rate (%) for tasks adapted from ACT [4] (top) and our original tasks (bottom).
For simulation tasks, we averaged the results across 3 random seeds over 50 episodes each. The
real-world tasks were also evaluated over 50 episodes.

4.1 Results

The results of our experiments are summarized in Tables 1. Our InterACT model shows superior
performance compared to ACT on all simulated and real-world tasks. In the simulated tasks, In-
terACT outperformed ACT significantly, particularly in the Transfer Cube and Peg Insertion tasks
where coordination and precision are crucial. The success rates for the ”Transfer” stages in the
Transfer Cube task, as well as the ”Insert” stages in the Peg Insertion task, were notably higher with
InterACT, demonstrating the effectiveness of our method in tasks that require coordination between
the two arms. Moreover, in newly introduced tasks such as Slot Insertion and Insert Plug, InterACT
also demonstrated higher performance. The Slot Insertion task, which requires precise coordination
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Transfer Cube Peg Insertion Slot Insertion
Touch Lift Transfer Grasp Contact Insert Lift Insert

InterACT (no CLS Tokens) 98 84 84 70 68 22 100 86

InterACT (no CS Encoder) 80 72 72 84 80 24 100 98

InterACT (no Sync Block) 74 54 54 90 86 30 100 100

InterACT (all components) 98 88 84 88 78 44 100 100

Table 2: Success rate (%) for simulation tasks under different conditions, InterACT model with
InterACT model without CLS tokens, cross-segment (CS) encoder, and synchronization block. Co-
ordination subtasks are indicated in bold.

between two arms to carry the peg and adjust for alignment, showed a 100% success rate with In-
terACT, compared to 88% with ACT. Similarly, in the Insert Plug task, InterACT achieved better
results in the coordination subtask ”Insert”. This highlights the robustness of our model in handling
tasks that require precise coordination between the two arms.

Overall, the experimental results validate the effectiveness of our hierarchical attention framework.
By improving coordination and precision in bimanual manipulation tasks, our InterACT model pro-
vides a more robust solution for complex bimanual manipulation challenges in both simulation and
real-world scenarios.

4.2 Ablation Studies

In this section, we perform ablation studies to evaluate the contributions of different components of
the InterACT framework. Specifically, we focus on the impact of CLS tokens, the cross-segment
encoder, and the synchronization block in the decoder.

Impact of CLS Tokens: To assess the impact of CLS tokens, we conducted experiments with
and without CLS tokens as input to the decoder. The results, summarized in Table 2, showed no
significant difference in the easier Transfer Cube task. However, there were notable improvements
in the success rates of the more complex Peg Insertion task when CLS tokens were included. The
aggregated information in the CLS tokens enhances the model’s ability to generate accurate and
coordinated actions, particularly in tasks requiring higher precision and synchronization.

Figure 2: Attention weights for CLS tokens at the Multi-arm Decoder over time for Peg In-
sertion (right) and Transfer Cube (right). The red highlighted sections correspond to specific
timesteps in executing the task. Spikes in attention weights are observed during coordinated phase.

To gain deeper insights into the model’s behavior, we studied how attention weights to CLS tokens
at the decoder change over the timesteps. The results illustrated in Figure 2 showed that during the
phase of interaction between the two arms, significant spikes in attention weights were observed.
These spikes occurred at key moments where coordinated actions between the arms were neces-
sary. This indicates that the model heavily relies on the CLS tokens to process information when
coordinating actions between the arms. This observation highlights the CLS tokens’ importance in
facilitating precise bimanual manipulation.
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Impact of Cross-segment Encoder: The cross-segment encoder captures inter-segment dependen-
cies, allowing the model to effectively integrate information from different joints across the two arms
as well as the camera frames. The results indicate that removing the cross-segment encoder signifi-
cantly decreases performance in complex tasks. For example, in the Slot Insertion task, the success
rate for the coordination subtask ”Insert” dropped to 24% from 44% without the cross-segment
encoder. This highlights the importance of capturing inter-segment dependencies for generating
accurate and coordinated actions.

Impact of Synchronization Block: The synchronization block enhances coordination between the
two arms by sharing contextual information at the decoder.. This is crucial for synchronized and
efficient bimanual manipulation. The results show that the removal of the synchronization block
leads to a significant drop in performance across all tasks, particularly in the Transfer Cube and
Peg Insertion tasks. This demonstrates the necessity of the synchronization block for achieving
coordinated and actions.

Our ablation studies clearly illustrate that all components of the proposed InterACT frame-
work—CLS tokens, cross-segment encoder, and synchronization block—play a critical role in
achieving high success rates in coordination tasks. The best performance for the coordination sub-
task is achieved when all components are utilized, underscoring the importance of the holistic inte-
gration of these elements in the InterACT framework.

5 Conclusion and Future Work

In this work, we introduced InterACT, a framework for robust bimanual manipulation, which in-
tegrates hierarchical attention transformers to capture inter-dependencies between dual-arm joint
states and visual inputs. The key contributions of our work include the development of a Hierar-
chical Attention Encoder and a Multi-arm Decoder. The Hierarchical Attention Encoder aggregates
intra-segment information using a segment-wise encoder and integrates inter-segment dependen-
cies through a cross-segment encoder. The Multi-arm Decoder, while generating action sequence
for each arm in parallel, ensures coordinated action sequence generation through synchronization
blocks. Our experiment results on both simulated and real-world tasks demonstrate the superior
performance of InterACT compared to the baseline ACT. The ablation studies further highlight the
importance of these components in our framework. The use of CLS tokens, cross-segment encoder
and the synchronization block significantly enhances the model’s ability to generate accurate and
coordinated actions, leading to higher success rates in bimanual manipulation tasks.

One of the limitations of InterACT is that the number of CLS tokens and the number of encoder
blocks are influenced by the level of coordination required for a given task. While we set a fixed
number of CLS tokens across all tasks, finding the optimal hyperparameter requires heavy tuning, as
there is no clear rule to guide this selection. Additionally, the level of coordination between the two
arms is not straightforward to measure. Coordination can depend on task-specific factors such as
temporal synchronization, dependency between arm movements, and precision, which are not easily
quantifiable. As a result, determining the optimal hyperparameters becomes even more challenging,
requiring manual adjustments and multiple experiments to ensure optimal performance. One poten-
tial approach to mitigate this challenge could involve adding an auxiliary loss term that explicitly
encourages coordinated actions between the two arms, which might help improve coordination with-
out relying on extensive tuning. However, this may require quantitative definition of coordination
and further experimentation. As it stands, the scalability of our approach to more complex tasks or
scenarios with diverse coordination requirements remains a challenge.

While InterACT has shown promising directions in integrating robotic arm joints and visual inputs,
it has not yet explored integration with other modalities. Future work will explore integrating addi-
tional modalities, such as language or sensory feedback, to further improve the robustness of biman-
ual manipulation tasks. Additionally, addressing the hierarchical nature of tasks will be crucial for
better task decomposition and execution. These enhancements could leverage the flexible attention
mechanisms demonstrated in this work to manage the added complexity and data integration.

8



Acknowledgments

We thank the members of the UC Davis Laboratory for AI, Robotics, and Automation (LARA)
for their valuable feedback, discussions, and assistance with data collection that contributed to this
work.

References

[1] S. S. Mirrazavi Salehian, N. Figueroa, and A. Billard. A unified framework for coordinated
multi-arm motion planning. The International Journal of Robotics Research, 37(10):1205–
1232, 2018.

[2] Y. Koga and J.-C. Latombe. Experiments in dual-arm manipulation planning. In Proceedings
1992 IEEE International Conference on Robotics and Automation, pages 2238–2239. IEEE
Computer Society, 1992.

[3] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas, and D. Kragic.
Dual arm manipulation—a survey. Robotics and Autonomous systems, 60(10):1340–1353,
2012.

[4] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. RSS, 2023.

[5] I. Chalkidis, X. Dai, M. Fergadiotis, P. Malakasiotis, and D. Elliott. An exploration of hi-
erarchical attention transformers for efficient long document classification. arXiv preprint
arXiv:2210.05529, 2022.

[6] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned
task schemas. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 1149–1155. IEEE, 2020.

[7] Y. Chen, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. McAleer, H. Dong, S.-C. Zhu, and
Y. Yang. Towards human-level bimanual dexterous manipulation with reinforcement learning.
Advances in Neural Information Processing Systems, 35:5150–5163, 2022.

[8] S. Kataoka, S. K. S. Ghasemipour, D. Freeman, and I. Mordatch. Bi-manual manipulation and
attachment via sim-to-real reinforcement learning. arXiv preprint arXiv:2203.08277, 2022.

[9] K. S. Luck and H. B. Amor. Extracting bimanual synergies with reinforcement learning. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
4805–4812. IEEE, 2017.

[10] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40, 2016.

[11] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine. Deep reinforcement learning
for vision-based robotic grasping: A simulated comparative evaluation of off-policy methods.
In 2018 IEEE international conference on robotics and automation (ICRA), pages 6284–6291.
IEEE, 2018.

[12] V. Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[13] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning. In Conference on robot learning, pages 357–368. PMLR, 2017.

[14] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, pages 991–1002. PMLR, 2022.

9



[15] L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn. Waypoint-based imitation learning for robotic
manipulation. arXiv preprint arXiv:2307.14326, 2023.

[16] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters. Towards learning hierarchical
skills for multi-phase manipulation tasks. In 2015 IEEE international conference on robotics
and automation (ICRA), pages 1503–1510. IEEE, 2015.

[17] A. X. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel. Learning force-based manipulation of
deformable objects from multiple demonstrations. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 177–184. IEEE, 2015.

[18] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann. Imitation learning of dual-arm manipulation
tasks in humanoid robots. International journal of humanoid robotics, 5(02):183–202, 2008.
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Appendix A: New task definitions

In this section, we define the new tasks we introduced in this work including one simulated task and
four real-world tasks.

Slot Insertion (Sim): Slot insertion is a simulated task where both arms need to lift each side of a
long peg together (Lift) and place it in a slot on the table (Insert).

Insert Plug (Real): Insert Plug is a real-world task where each arm grabs a male and a female
electrical plug respectively (Grasp) and connects the two plugs above the table (Insert).

Click Pen (Real): Click Pen is a real-world task where each one (left) arm grabs a retractable pen in
the middle (Grasp), and clicks the pen with the other (right) arm (Click).

Sweep (Real): Sweep is a real-world task where one arm grabs a brush and the other arm grabs a
dustpan (Grasp). The arms then move towards a toy object lying on the table and sweep it into the
dustpan (Sweep).

Unscrew Cap (Real): Unscrew Cap is a real-world task where one arm grabs a plastic water bot-
tle while the other arm reaches and touches the bottle cap (Touch), then grabs the bottle cap and
unscrews it (Unscrew).
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Appendix B: Real-robot Setup

We utilize the ALOHA 2 setup [39] for our real-world experiments. Rather than cropping the top
camera frame, we lower the camera’s height to focus on the table environment, thereby maintaining
resolution and capturing the necessary details. Additionally, similar to the ALOHA setup [4], we
use a tarp around the setup to block unnecessary background distractions. These modifications help
enhance the quality of data collected by ensuring that the attention is solely on the manipulation
tasks. A photo of our setup is shown in Figure 3.

Figure 3: Our Real-robot Setup. We have modified the ALOHA 2 setup for our real-world experi-
ments. Modifications include adjusting the camera height and using a tarp around the setup.
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Appendix C: Hyperparameters

In this section, we summarize the hyperparameters of InterACT and ACT models used for training
and evaluation in this paper.

Hyperparameters

# Segment-Wise Encoder Layers 3

# Cross-Segment Encoder Layers 3

# Multi-arm Decoder Layers 4

# Synchronization Block Layers 1

# CLS tokens for Arm Joints 7

# CLS tokens for Visual Features 5

Table 3: Unique hyperparameters of InterACT

Hyperparameters

# Encoder Layers 4

# Decoder Layers 7

Table 4: Unique hyperparameters of ACT

Hyperparameters

Learning Rate 1e-5

Batch Size 8

Feedforward Dimension 3200

Hidden Dimension 512

# Heads 8

Chunk Size 50

Beta 10

Dropout 0.1

Table 5: Common hyperparameters of InterACT and ACT
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