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ABSTRACT

Partial label learning (PLL) is a typical weakly supervised learning problem, where
each training example is associated with a set of candidate labels among which
only one is true. Most existing PLL approaches assume that the incorrect labels
in each training example are randomly picked as the candidate labels and model
the generation process of the candidate labels in a simple way. However, these
approaches usually do not perform as well as expected due to the fact that the
generation process of the candidate labels is always instance-dependent. Therefore,
it deserves to be modeled in a refined way. In this paper, we consider instance-
dependent PLL and assume that the generation process of the candidate labels
could decompose into two sequential parts, where the correct label emerges first in
the mind of the annotator but then the incorrect labels related to the feature are also
selected with the correct label as candidate labels due to uncertainty of labeling.
Motivated by this consideration, we propose a novel PLL method that performs
Maximum A Posterior (MAP) based on an explicitly modeled generation process
of candidate labels via decomposed probability distribution models. Extensive
experiments on manually corrupted benchmark datasets and real-world datasets
validate the effectiveness of the proposed method. Source code is available at
https://github.com/palm-ml/idgp.

1 INTRODUCTION

Partial label learning (PLL) aims to deal with the problem where each instance is provided with
a set of candidate labels, only one of which is the correct label. The problem of learning from
partial label examples naturally arises in a number of real-world scenarios such as web data mining
Luo & Orabona (2010), multimedia content analysis Zeng et al. (2013); Chen et al. (2017), and
ecoinformatics Liu & Dietterich (2012); Tang & Zhang (2017).

A number of methods have been proposed to improve the practical performance of PLL. Identification-
based PLL approaches Jin & Ghahramani (2002); Nguyen & Caruana (2008); Liu & Dietterich (2012);
Chen et al. (2014); Yu & Zhang (2016) regard the correct label as a latent variable and try to identify
it. Average-based approaches Hüllermeier & Beringer (2006); Cour et al. (2011); Zhang & Yu (2015)
treat all the candidate labels equally and average the modeling outputs as the prediction. In addition,
risk-consistent methods Feng et al. (2020); Wen et al. (2021) and classifier-consistent methods Lv
et al. (2020); Feng et al. (2020) are proposed for deep models. Furthermore, aimed at deep models,
Wang et al. (2022) investigate contrastive representation learning, Zhang et al. (2021) adapt the class
activation map, and Wu et al. (2022) revisit consistency regularization in PLL.

It is challenging to avoid overfitting on candidate labels, especially when the candidate labels
depend on instances. Therefore, the previous methods assume that the candidate labels are instance-
independent. Unfortunately, this often tends to be the case that the incorrect labels related to the
feature are more likely to be picked as candidate label set for each instance. Recent work Xu et al.
(2021) has also shown that the presence of instance-dependent PLL imposes additional challenges
but is more realistic in practice than the instance-independent case.
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In this paper, we focus on the instance-dependent PLL via considering the essential generating
process of candidate labels in PLL. To begin with, let us rethink meticulously how candidate labels
arise in most manual annotation scenarios. When one annotates an instance, though the correct label
has already emerged in the mind of the annotator first, the incorrect labels which are related to the
feature of the instance confuse the annotator, then leading to the result that the correct label and some
incorrect labels are packed together as the candidate labels. Therefore, the generating process of the
candidate labels in instance-dependent PLL could be decomposed into two stages, i.e., the generation
of the correct label of the instance and the generation of the incorrect labels related to the instance,
which could be described by Categorical distribution and Bernoulli distribution, respectively.

Motivated by the above consideration, we propose a novel PLL method named IDGP, i.e., Instance-
dependent partial label learning via Decompositional Generation Process. Before performing IDGP,
the distributions of the correct label and the incorrect label given the training example should be
modeled explicitly by decoupled probability distributions Categorical distribution and Bernoulli
distribution. Then we perform Maximum A Posterior (MAP) estimation on the PLL training dataset
to deduce a risk minimizer. To optimize the risk minimizer, Dirichlet distribution and Beta distri-
bution are leveraged to model the condition prior inside and estimate the parameters of Categorical
distribution and Bernoulli distribution due to the conjugacy. Finally, we refine prior information
by updating the parameters of the corresponding conjugate distributions iteratively to improve the
performance of the predictive model in each epoch. Our contributions can be summarized as follows:

• We for the first time explicitly model the generation process of candidate labels in instance-
dependent PLL. The entire generating process is decomposed into the generation of the correct
label of the instance and the generation of the incorrect labels, which could be described by
Categorical distribution and Bernoulli distribution, respectively.

• We optimize the models of Categorical distribution and Bernoulli distribution via the MAP
technique, where the corresponding conjugate distributions, i.e., Dirichlet distribution and Beta
distribution are induced.

• We derive an estimation error bound of our approach, which demonstrates that the empirical risk
minimizer would approximately converge to the optimal risk minimizer as the number of training
data grows to infinity.

2 RELATED WORK

In this section, we briefly review the literature for PLL from two aspects, i.e., traditional PLL and
deep PLL. The former absorbs many classical machine learning techniques and usually utilizes linear
models while the latter embraces deep learning and builds upon deep neural networks. We focus on
the underlying assumptions on the generation of candidate labels behind part of them.

Traditional PLL usually uses average-based or identification-based approaches to disambiguate the
candidate label set. Average-based approaches treat each candidate label of the instance equally
Hüllermeier & Beringer (2006); Cour et al. (2011); Zhang & Yu (2015). Typically, Hüllermeier &
Beringer (2006); Zhang & Yu (2015) apply the K-nearest neighbor technique to predict a new instance
through voting. Identification-based approaches are constantly trying to identify the possible correct
label, either explicitly or implicitly during the training phase, in order to reduce label ambiguity Jin &
Ghahramani (2002); Nguyen & Caruana (2008); Liu & Dietterich (2012); Chen et al. (2014); Yu &
Zhang (2016). For instance, Nguyen & Caruana (2008); Yu & Zhang (2016) formulate their objective
functions by treating the correct label as a latent variable via the maximum margin criterion. Zhang
et al. (2016); Feng & An (2018); Wang et al. (2019); Xu et al. (2019b) use topological information in
the feature space to iteratively update the confidence of each candidate label or the label distribution.
It should be noted that most traditional PLL methods ignore the process of generating candidate labels.
The Logistic Stick-Breaking Conditional Multinomial Model is proposed by Liu & Dietterich (2012)
to depict the generation process, but the candidate labels are assumed to be instance-independent.

Deep PLL has recently been studied and advanced the practical application of PLL, where the
PLL approaches are not restricted to linear models and low-efficiency optimization. Yao et al.
(2020a) pioneer the use of deep convolutional neural networks and employ a regularization term
of uncertainty and a temporal-ensembling term to train the deep model. Lv et al. (2020) propose
a progressive identification method that allows PLL to be compatible with arbitrary models and
optimizers while also performing impressively on image classification benchmarks for the first
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time. Yao et al. (2020b) introduce a network-cooperation mechanism in deep PLL which trains two
networks simultaneously to reduce their respective disambiguation errors. Feng et al. (2020) employ
the importance reweighting strategy to derive a risk-consistent estimator and the transition matrix
for PLL to derive a classifier-consistent estimator. Wen et al. (2021) introduce a leverage parameter
that weights losses on partial labels and non-partial labels. Xu et al. (2021) apply variational label
enhancement Xu et al. (2020; 2019a) to iteratively recover label distribution for each instance. Lv
et al. (2021) for the first time propose unreliable PLL, a realistic and challenge setting. Zhang et al.
(2021) discover class activation map could be used for disambiguation, and class activation value
could be used to capture the learned representation information in a more general way. Lyu et al.
(2022) transform the PLL problem into an “instance-label” matching selection problem. He et al.
(2022) utilize semantic label representations to enhance the label disambiguation. Wang et al. (2022)
create a contrastive learning framework for PLL disambiguation. To preserve the manifold structure
in both feature and label space, Wu et al. (2022) employ manifold consistency regularization.

From Feng et al. (2020), the generation process of candidate labels has been paid attention to in Deep
PLL, making a naive assumption that the candidate label set is uniformly sampled for each instance.
Wen et al. (2021) extend the uniform case to the class-dependent one but remain instance-independent.
Xu et al. (2021) for the first time consider PLL under the instance-dependent case, a more realistic
but challenging setting. However, Xu et al. (2021) do not explicitly model the generation process of
instance-dependent candidate labels. The generative model in it is employed only to generate label
distribution. In this paper, we not only consider the instance-dependent PLL but also explicitly model
the generation process of instance-dependent candidate labels via decoupled probability distributions.

3 PROPOSED METHOD

First of all, we introduce some necessary notations for our approach. In PLL, labeling information of
every instance in the training dataset is corrupted from a correct label into a candidate label set, which
contains the correct label and incorrect candidate labels but is not a complete label set. Let X ⊆ Rq

be the q-dimensional feature space of the instances and Y = {1, 2, . . . , c} be the label space with c
class labels. Then a PLL training data set can be formulated as D = {(xi, Si)|1 ≤ i ≤ n}, where
xi ∈ X denotes the i-th q-dimensional feature vector and Si ∈ C = 2Y \ {∅,Y} is the candidate
label set annotated for xi. Si consists of the correct label yi ∈ Y and the incorrect candidate label set
S
yi

i = Si \ {yi}. We aim to find a multi-class classifier f : X 7→ Y according to D.

3.1 OVERVIEW

To deal with instance-dependent PLL, we introduce the explicit generation model of instance-
dependent candidate labels, which decouples the distribution of the correct and incorrect candidate
labels. Then Category distribution and Bernoulli distribution are leveraged to depict them respectively
with Dirichlet distribution and Beta distribution as their prior distributions. Based on the probabilistic
generation model, we simply deduce the log-likelihood loss function for optimization and then move
forward to the MAP optimization problem in consideration of the prior distributions Dirichlet and
Beta. Finally, we further propose the algorithm IDGP, which keeps and refines the prior information.

3.2 GENERATION MODEL OF CANDIDATE LABELS

Focusing on instance-dependent partial label learning, we propose a novel generation model of
candidate labels, which explicitly models the generation process and decouples the distribution of the
candidate labels into the distribution of the correct label and incorrect candidate labels respectively.
To form a candidate label set, we suppose the correct label is first selected according to a posterior
distribution dependent on the instance. And then the incorrect candidate labels related to the feature
of instance emerge to disturb the annotator and are sampled from another posterior distribution
dependent on the instance. The concrete generation model is demonstrated as follows.

Given an instance xi, its candidate label set Si, consisting of the correct label yi and the incorrect
candidate labels S

yi

i , is drawn from a probability distribution with the following density:

p(Si|xi) =
∑
j∈Si

p(yi = j|xi)p(S
j

i |xi). (1)
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Here, p(Si|xi) suggests our generation model is entirely dependent on the instance. Our generation
model builds upon the PLL assumption that the correct label is always in the candidate set, which
allows for directly splitting Si into yi and S

yi

i . For the given candidate label set Si, each label j ∈ Si

have the possibility p(yi = j|xi) sampled by the annotator as the correct label in the first stage of
generation, and then the incorrect candidate labels S

j

i are sampled with the possibility p(S
j

i |xi) in
the second stage to form the entire candidate label set Si. The generation of the correct label and
incorrect labels are conditioned on the instance xi. In this way, we decompose the generation process
of the instance-dependent candidate labels.

After the decomposition of generation, the corresponding probability distributions are required to
depict p(yi|xi) and p(S

yi

i |xi). We assume that the correct label yi of each instance xi is drawn
from a Categorical distribution with the parameters θi, where θi = [θ1i , θ

2
i , . . . , θ

c
i ] ∈ [0, 1]c is a

c-dimension vector with the constraint
∑c

j=1 θ
j
i = 1, i.e.,

p(li|xi,θi) = Cat(li|θi) =
c∏

j=1

(θji )
lji , (2)

where the vector li = [l1i , l
2
i . . . , l

c
i ] ∈ {0, 1}c is utilized to represent whether the j-th label is the

correct label yi, i.e.,lji = 1 if j = yi, otherwise lji = 0.

Besides, for the incorrect candidate label set S
yi

i , it can also be denoted by a logical label vector
syi

i = [s1i , s
2
i . . . , s

c
i ] ∈ {0, 1}c to represent whether the j-th label is the incorrect candidate label,

i.e., sji = 1 if j ∈ S
yi

i , sji = 0 if j /∈ S
yi

i . In order to describe p(S
yi

i |xi) with a probabilistic model,
we further decouple the incorrect candidate labels by assuming that the distribution of each variable
sji is independent from each other, i.e, p(syi

i |xi) =
∏

j∈S
yi
i
p(sji |xi)

∏
j /∈S

yi
i
(1 − p(sji |xi)) and

the incorrect candidate label set S
yi

i is drawn from a multivariate Bernoulli distribution with the
parameters zi, where zi = [z1i , z

2
i , . . . , z

c
i ] ∈ [0, 1]c is a c-dimension vector, i.e.,

p(syi

i |xi, zi) =

c∏
j=1

Ber(sji |z
j
i ) =

c∏
j=1

(zji )
sji (1− zji )

1−sji . (3)

For the latter estimation of θi in MAP, we introduce Dirichlet distribution, the conjugate distribution
of the Categorical distribution, as its conditional prior, i.e., p(θi|xi) = Dir(θi|λi), where λi =

[λ1
i , λ

2
i , . . . , λ

c
i ]
⊤(λj

i > 0) is a c-dimensional vector as the output of our main branch inference
model f parameterized by Θ for an instance xi, i.e, λi = a · exp (f(xi;Θ)/γ) + b, where a, b and
γ(a ≥ 1, b ≥ 0, γ > 0) are used to resolve the scale ambiguity. Note that the main branch inference
model f is leveraged as the final predictive model to accomplish the PLL target X 7→ Y by using
ŷi = argmaxj θ̂

j
i , where θ̂ji will be estimated by λi with the conjugacy later.

Likewise, to estimate zi latter in MAP, we introduce Beta distribution, the conjugate distribution of
Bernoulli distribution, as the conditional prior parameterized by αi = [α1

i , α
2
i , . . . , α

c
i ]
⊤ and βi =

[β1
i , β

2
i , . . . , β

c
i ]

⊤(αj
i > 0, βj

i > 0), i.e., p(zi|xi) =
∏c

j=1 Beta(zji |α
j
i , β

j
i ). We employ an auxil-

iary branch model g parameterized by Ω to output Λ⊤
i = [α⊤

i ,β
⊤
i ],i.e, Λi = a·exp (g(xi;Ω)/γ)+b.

The same model and constants to scale Λi are implemented to simplify our approaches. It should
be noted that the predictive model f(xi;Θ) or auxiliary model g(xi;Ω) can be any deep neural
network once its output satisfies the corresponding constraint.

3.3 OPTIMIZATION USING MAXIMUM A POSTERIOR

Based on the generation model of candidate labels denoted by Eq.(1), Eq.(2) and Eq.(3), by using the
technique of Maximum Likelihood (ML) estimation we can immediately induce the log-likelihood
loss function for the PLL training data set to be optimized:

LML = −
n∑

i=1

log p(Si|xi,θi, zi) = −
n∑

i=1

log
∑
j∈Si

θji
∏
k∈S

j
i

zki
∏
k/∈S

j
i

(1− zki ). (4)
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The Eq.(4) demonstrates how the distribution of the correct label interacts with that of the incorrect
candidate labels after decoupling the generation. In the backpropagation of the training process, they
provide weight coefficients for each other.

In order to bring in prior information for PLL, we further introduce IDGP, which performs MAP
in the training data set. In IDGP, we are more concerned about maximizing the joint distribution
p(θ, z|x, S). This will lead to the following optimization problem LMAP = LML + Lreg , where

Lreg = −
n∑

i=1

log p(θi|xi) + log p(zi|xi). (5)

Compared to ML, our IDGP framework provides a natural way of leveraging prior information
via optimizing the extra condition prior illustrated by the Eq.(5) in the training process, which is
significant for PLL due to the implicit supervision information. Combined with the prior distribution
Dirichlet and Beta, Lreg can be analytically calculated as follows:

Lreg = −
n∑

i=1

c∑
j=1

(λj
i − 1) log θji + (αj

i − 1) log zji + (βj
i − 1) log (1− zji ). (6)

The mathematical derivations of Eq.(4) and Eq.(6) are provided in Appendix A.1. By combining the
Eq.(4) and the Eq.(6), the MAP optimization problem L can be calculated as follows:

L = −
n∑

i=1

log
∑
j∈Si

θji
∏
k∈S

j
i

zki
∏
k/∈S

j
i

(1− zki )

−
n∑

i=1

c∑
j=1

(λj
i − 1) log θji + (αj

i − 1) log zji + (βj
i − 1) log (1− zji ).

(7)

L can also accommodate the uniform case, which can be seen in Appendix A.2. Then, due to the
conjugacy of Dirichlet and Categorical distribution Minka (2000), we can estimate θji by using

θ̂ji = E
[
θji |xi,λi

]
=

oji + λj
i∑c

k=1 λ
k
i + oki

, (8)

where oji denotes the number of occurrences on the label j for xi, i.e., oji = 1 if j ∈ Si, otherwise
oji = 0. Similarly, we can leverage the conjugacy of Beta and Bernoulli distribution to estimate zji ,i.e,

ẑji = E
[
zji |xi, α

j
i , β

j
i

]
=

oji + αj
i

αj
i + βj

i + oji
. (9)

The mathematical derivations of Eq.(8) and Eq.(9) are provided in Appendix A.3.

As it is shown in the Eq.(6), IDGP provides prior information that can be included in the parameters
λ, α and β for the predictive model f(x;Θ) and the auxiliary model g(x;Ω) by transforming
them into the weights exerted on the corresponding label. The prior information comes from
the memorization effects Han et al. (2020) of the neural network. It makes the neural network
always likely to recognize and remember the correct label in priority, leading to a kind of initial
disambiguation at the beginning epochs. Hence, to keep fine prior information, we replace λi with
λ̂i in the following way:

λ̂
j(t)
i =

{
mλ

j(r)
i +(1−m)λ

j(t)
i , if j ∈ Si

1 + ϵ, otherwise,
(10)

where (·)(t) denotes the vector or scalar (·) at the t epoch, r(≤ t) denotes the beginning epoch we set
to reserve the fine prior information for f(x;Θ), m ∈ (0, 1) is a positive constant used to replenish
the present information λ

j(t)
i with the prior information λ

j(r)
i , and ϵ is a minor value, which means

that the weight excerted on each incorrect label is negligible. In the similar way, we replace α
(t)
i and

β
(t)
i with α̂

(t)
i and β̂

(t)
i , i.e, the vectors α̂(t)

i and β̂
(t)
i will be calculated by{

α̂
j(t)
i = dα

j(q)
i + (1− d)α

j(t)
i

β̂
j(t)
i = dβ

j(q)
i + (1− d)β

j(t)
i ,

(11)
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Algorithm 1 IDGP Algorithm
Input: PLL training dataset D = {(xi, Si|1 ≤ i ≤ n}, Epoch T , Iteration K;
Output: The predictive model f(x;Θ)

1: Initialize the parameters of the predictive model f(x;Θ) and the auxiliary model g(x;Ω);
2: Initialize λ̂

(1)
i ,α̂(1)

i ,β̂(1)
i for each instance xi;

3: for t = 1, 2, . . . , T do
4: Randomly shuffle the training dataset D and divide it into K mini-batches;
5: for k = 1, 2, . . . ,K do
6: Calculate the parameters of Categorical distribution and Bernoulli distribution θ̂i and ẑi for

the instance xi by the Eq.(8) and (9);
7: Calculate the parameters λ̂(t)

i , α̂(t)
i , β̂(t)

i for the instance xi by the Eq.(10) and (11);
8: Fix Θ, update Ω by the Eq.(7);
9: Fix Ω, update Θ by the Eq.(7);

10: end for
11: end for

where q denotes the beginning epoch we set to reserve the fine prior information for the auxiliary
model g(x;Ω), and d ∈ (0, 1) is also a positive constant used to provide the present model informa-
tion α

j(t)
i , β

j(t)
i with the prior information α

j(q)
i , β

j(q)
i . Before the epoch r, λ̂j(t)

i = λ
j(t)
i if j ∈ Si,

otherwise 1+ ϵ. Before the epoch q, α̂j(t)
i = α

j(t)
i and β̂

j(t)
i = β

j(t)
i . In the above way, we refine the

prior information epoch by epoch.

The optimization of the two model f(x;Θ) and g(x;Ω) at the epoch t for an instance x is as follows.
First, f(x;Θ) outputs λ while g(x;Ω) outputs α and β, based on which, according to Eq.(8) and
Eq.(9), we replace θ and z with the estimation θ̂ and ẑ in Eq.(7). Next, to introduce prior information,
we use λ̂, α̂ and β̂ in Eq.(10) and Eq.(11) to replace λ, α and β in Eq.(7). Note that θ̂ and ẑ are
variables, of which we calculate the gradient to perform backpropagation, while λ̂, α̂ and β̂ are
constants. Finally, we update the predictive model f(x;Θ) and the auxiliary model g(x;Ω) by fixing
one and updating the other. The whole algorithmic description of the IDGP is shown in Algorithm 1.
After implementing IDGP in the PLL training dataset, we can use the output λ of the main branch
inference model f(x;Θ) to calculate the predict results θ̂ as the label confidence in the test dataset.

4 THEORETICAL ANALYSIS

In this section, we pay attention to the estimation error bound of the predictive model f(x;Θ).
According to Eq.(7), the empirical risk estimator for the predictive model f(x;Θ) is denoted
by R̂(f) = 1

n

∑n
i=1 LMAP (f(xi), Si) and for further analysis, we give an upper bound of

LMAP (f(xi), Si) as follows:

LMAP (f(xi), Si) ≤ −

Ki +

c∑
j=1

wj
i ℓ(f(xi), e

j)

 , (12)

where ej denotes the standard canonical vector in Rc, ℓ denotes the cross-entropy function, wj
i = λj

i−
1+ 1

|Si| if j ∈ Si, otherwise wj
i = λj

i −1, and Ki = log |Si|+ 1
|Si|

∑
j∈Si

log
∏

k∈S
j
i
zki

∏
k/∈S

j
i
(1−

zki ) + (αj
i − 1) log zji + (βj

i − 1) log (1− zji ). We denote K = max{K1,K2, ...,Kn} and scale wj
i

to [0, ρ] during the training process. The detailed induction of Eq.(12) can be seen in Appendix A.4.
Then to formulate the estimation error bound of f , we give the following definition and lemmas.
Definition 1. Let x1,x2, . . . ,xn ∈ X be n i.i.d random variables drawn from a probability
distribution, σ1, σ2, . . . , σn ∈ {−1,+1} be Rademacher variables with even probabilities, and
H = {h : X 7→ R} be a class of measurable functions. Then the expected Rademacher complexity of
H is defined as

Rn(H) = Ex,σ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
.
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Table 1: Classification accuracy (mean±std) of each comparing approach on benchmark datasets for instance-
dependent PLL

Datasets MNIST FMNIST KMNIST CIFAR10 CIFAR100

IDGP 98.92± 0.05% 91.48± 0.32% 96.88± 0.17% 87.57± 0.26% 64.59± 0.17%

PLCR 98.56±0.08%• 90.10±0.21%• 95.29±0.21%• 86.37±0.38%• 64.12±0.23%•
PICO 98.61±0.12%• 88.41±0.20%• 94.78±0.19%• 86.16±0.21%• 62.98±0.38%•

VALEN 98.72±0.05%• 90.63±0.30%• 96.19±0.75% 85.48±0.62%• 62.96±0.96%•
CAVL 98.84±0.05%• 87.94±0.19%• 93.69±0.28%• 59.67±3.30%• 52.59±1.01%•
LWS 98.56±0.06%• 88.99±0.26%• 92.27±1.03%• 37.49±2.82%• 53.98±0.99%•
RC 98.41±0.09%• 89.60±0.19%• 93.78±0.17%• 85.95±0.40%• 63.41±0.56%•
CC 98.16±0.14%• 89.86±0.11%• 94.08±0.35%• 79.96±0.99%• 62.40±0.84%•

PRODEN 98.39±0.10%• 89.79±0.24%• 93.79±0.24%• 86.04±0.21%• 62.56±1.49%•

According Definition 1, given the function space G = {(x, S) 7→ LMAP (f(x), S) |f ∈ F}, the
expected Rademacher complexity of G can be defined as follows:

R̃n(G) = Ex,S,σ

[
sup
g∈G

1

n

n∑
i=1

σig(xi, Si)

]
. (13)

We pre-limit both the main model f and the auxiliary model g by clamping their output to [−A,A],
and the loss LMAP can be bounded, though it would not have extended to infinity in practice.

Lemma 1. Suppose the loss function LMAP (f(x), S) is bounded by M ,i.e.,M =
supx∈X ,S∈C,f∈F LMAP (f(x), S), then for any ξ > 0, with probability at least 1− ξ,

sup
f∈F

∣∣∣R(f)− R̂(f)
∣∣∣ ≤ 2Rn(G) +

M

2

√
log 2

ξ

2n
.

Lemma 2. Assume the loss function ℓ (f(x), eι) is L-Lipschitz with respect to f(x) (0 < L < ∞)
for all ι ∈ Y . Let Hι = {h : x 7→ fι(x)|f ∈ F} and Rn(Hι) = Ex,σ

[
suph∈Hι

1
n

∑n
i=1 h(xi)

]
,

then the following inequality holds:

R̃n(G) ≤
√
2ρcL

∑
ι∈Y

Rn(Hι) +K.

The proof of Lemma 1 and 2 is provided in Appendix A.5 and A.6. Based on Lemma 1 and 2,
we induce an estimation error bound for our IDGP method. Let f̂ = argminf∈F R̂(f) be the
empirical risk minimizer and f⋆ = argminf∈F R(f) be the true minimizer. The function space Hι

for the label ι ∈ Y is defined as {h : x 7→ fy(x)|f ∈ F}, and Rn(Hι) is defined as the expected
Rademacher complexity of Hι with sample size n. Then we have the following theorem.

Theorem 1. Assume the loss function ℓ(f(x), eι) is L-Lipschitz with respect to f(x) (0 < L < ∞)
for all ι ∈ Y and LMAP (f(x), S) is bounded by M , i.e.,M = supx∈X ,S∈C,f∈F LMAP (f(x), S),.
Then, for any ξ > 0, with probability at least 1− ξ,

R(f̂)−R (f⋆) ≤ 4
√
2ρcL

∑
ι∈Y

Rn (Hι) +M

√
log 2

ξ

2n
+ 4K.

The proof can be found in Appendix A.7. Theorem 1 means that as n → ∞ the empirical risk
minimizer f will converge to the optimal risk minimizer f⋆ for models with a bounded norm.

5 EXPERIMENTS

In this section, we validate the effectiveness of our proposed IDGP by performing it on augmented
benchmark and real-world datasets and comparing its results against DNN-based PLL algorithms.
Furthermore, the ablation study and sensitive analysis of parameters are conducted to explore IDGP.
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Table 2: Classification accuracy (mean±std) of comparing algorithms on the real-world datasets.

Lost BirdSong MSRCv2 Soccer Player Yahoo!News

IDGP 77.02±0.82% 74.23±0.17% 50.45±0.47% 55.99±0.28% 66.62±0.19%

VALEN 76.87±0.86% 73.39±0.26%• 49.97±0.43%• 55.81±0.10% 66.26±0.13%•
CAVL 75.89±0.42%• 73.47±0.13%• 44.73±0.96%• 54.06±0.67%• 65.44±0.23%•
LWS 73.13±0.32%• 51.45±0.26%• 49.85±0.49%• 50.24±0.45%• 48.21±0.29%•
RC 76.26±0.46% 69.33±0.32%• 49.47±0.43%• 56.02±0.59% 63.51±0.20%•
CC 63.54±0.25%• 69.90±0.58%• 41.50±0.44%• 49.07±0.36%• 54.86±0.48%•

PRODEN 76.47±0.25% 73.44±0.12%• 45.10±0.16%• 54.05±0.15%• 66.14±0.10%•

5.1 DATASETS

We implement IDGP with compared DNN-based algorithms on five widely used benchmark datasets in
deep learning, including MNIST LeCun et al. (1998), Kuzushiji-MNIST Clanuwat et al. (2018),
Fashion-MINIST Xiao et al. (2017), CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009).
Instance-dependent partial labels for these datasets are generated through the same strategy as Xu
et al. (2021), which for the first time consider instance-dependent PLL.

Besides, part of the comparing algorithms are also performed on five frequently used real-world
datasets, which come from different practical application domains, including Lost Cour et al. (2011),
BirdSong Briggs et al. (2012), MSRCv2 Liu & Dietterich (2012), Soccer Player Zeng et al.
(2013) and Yahoo!News Guillaumin et al. (2010).

For benchmark datasets, we split 10% samples from the training datasets for validating. For each
real-world dataset, we run the methods with 80%/10%/10% train/validation/test split. Then we run
five trials on each datasets with different random seeds and report the mean accuracy and standard
deviation of all comparing algorithms.

5.2 BASELINES

We compare IDGP with eight DNN-based methods:1) PLCR Wu et al. (2022), a regularized training
framework which is based on data augmentation and utilizes the manifold consistency regularization
term to preserve the manifold structure both in feature space and label space. 2) PICO Wang et al.
(2022), a contrastive learning framework which is based on data augmentation and performs label
disambiguation based on the contrastive prototypes. 3) VALEN Xu et al. (2021), an instance-dependent
PLL framework which guides the training process via the recovered latent label distributions. 4) CAVL
Zhang et al. (2021), a discriminative approach which identifies correct labels from candidate labels by
class activation value. 5) LWS Wen et al. (2021), an identification-based method which introduces a
leverage parameter to consider the trade-off between losses on candidate and non-candidate labels. 6)
RC Feng et al. (2020), a risk-consistent PLL method which is induced by an importance reweighting
strategy. 7) CC Feng et al. (2020), a classifier-consistent PLL method which leverages the transition
matrix describing the probability of the candidate label set given a correct label. 8) PRODEN Lv
et al. (2020), a self-training style algorithm which provides a framework to equip arbitrary stochastic
optimizers and models in PLL. Note that PLCR and PICO will not be compared on the real-world
datasets due to the requirement of data augmentation.

To ensure the fairness, we employ the same network backbone, optimizer and data augmentation
strategy for all the comparing methods. For MNIST, Kuzushiji-MNIST and Fashion-MNIST,
we take LeNet-5 as their backbone. For CIFAR-10 and CIFAR-100, the network backbone is
changed to ResNet-32 He et al. (2016). For all the real-world datasets, we simply adopt the linear
model. The optimizer is stochastic gradient descent (SGD) Robbins & Monro (1951) with momentum
0.9 and batch size 256. The details of data augmentation strategy are shown in Appendix A.8.
Besides, the learning rate is selected from {10−4, 10−3, 10−2}, and the weight decay is selected from
{10−5, 10−4, 10−3, 10−2} according to the performance on the validation.

5.3 EXPERIMENTAL RESULTS

The performance of each DNN-based method on each corrupted benchmark dataset is summarized in
Table 1, where the best results are highlighted in bold and •/◦ indicates whether IDGP statistically
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Table 3: Classification accuracy (mean±std) for comparison against IDGP-ML.

Dataset IDGP IDGP-ML
Lost 77.02±0.82% 52.50±3.20%•
BirdSong 74.23±0.17% 71.13±0.45%•
MSRCv2 50.45±0.47% 43.04±0.98%•
Soccer Player 55.99±0.28% 49.56±0.31%•
Yahoo!News 66.62±0.19% 51.48±0.07%•
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Figure 1: Parameter sensitivity analysis for IDGP on Lost, BirdSong and Yahoo!New

wins/loses to the comparing method on each dataset additionally (pairwise t-test at 0.05 significance
level). We can overall see that IDGP significantly outperforms all comparing approaches on all
benchmark datasets (except on Kuzushiji-MNIST where VALEN performs comparably against
IDGP), and the improvements are particularly noticeable on Fashion-MNIST and CIFAR-10.

Table 2 demonstrates the ability of IDGP to solve the PLL problem in real-world datasets. PLCR
and PICO are not compared on the real-world PLL datasets due to the inability of data augmentation
to be employed on the extracted features from various domains. We can find that our method has
stronger competence than others in all datasets except Soccer Player where IDGP loses to RC
but still ranks second. As for BirdSong, MSRCv2 and Yahoo!News, the performance of IDGP is
significantly better than all other comparing algorithms. And when it comes to Lost, our method is
comparable to VALEN, PRODEN and RC, while obviously better than the rest.

5.4 FURTHER ANALYSIS

To demonstrate the effectiveness of the iteratively refined prior information introduced by IDGP,
we remove the loss function Lreg to reverse IDGP to IDGP-ML, which only uses the log-likelihood
function for optimization. The performance of IDGP-ML against IDGP is also measured by the
classification accuracy (with pairwise t-test at 0.05 significance level). As is illustrated in Table 3,
with the assistance of the prior information which IDGP provides and improves epoch by epoch, IDGP
achieves superior performance on all real-world datasets compared to IDGP-ML.

Furthermore, we conduct parameter sensitivity analysis to study the influence of the two hyper-
parameters a, γ on our algorithm, which decides the scale of Dirichlet and Beta distribution parameters.
Figure 2 illustrates the sensitivity of IDGP in the real-world datasets including Lost, BirdSong,
Yahoo!New when a varies from 0.001 to 1000 and γ increases from 0.1 to 3. We can easily find
that as for the small-scale real-world datasets like Lost, a and γ are suggested around 0.1 and 0.5,
respectively. For the more large-scale real-world datasets like BirdSong, Yahoo!News, IDGP
seems insensitive to a, and γ are suggested around 1.

6 CONCLUSION

In this paper, we consider a more realistic scenario, instance-dependent PLL, and explicitly decompose
and model the generation process of instance-dependent candidate labels. Then based on the
decompositional generation process, a novel instance-dependent PLL approach IDGP is proposed
by us to further introduce and refine the prior information in every training epoch via MAP. The
experimental comparisons with other DNN-based algorithms on both instance-dependent corrupted
benchmark datasets and real-world datasets demonstrate the effectiveness of our proposed method.
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A APPENDIX

A.1 DERIVATIONS OF EQ.(4) AND EQ.(6)

The derivation of Eq.(4) is as follows:

LML = −
n∑

i=1

log p(Si|xi,θi, zi)

= −
n∑

i=1

log
∑
j∈Si

p(yi = j|xi)p(S̄
j
i |xi)

= −
n∑

i=1

log
∑
j∈Si

(Cat(li|xi,θi)

c∏
k=1

Ber( ¯ski |zki )|yi = j)

= −
n∑

i=1

log
∑
j∈Si

(

c∏
k=1

(θki )
lki

c∏
k=1

(zki )
s̄ki (1− zki )

1−s̄ki |yi = j)

= −
n∑

i=1

log
∑
j∈Si

θji
∏
k∈ ¯

Sj
i

zki
∏
k/∈ ¯

Sj
i

(1− zki ).

(14)

The derivation of Eq.(6) is as follows:

Lreg = −
n∑

i=1

log p(θi|xi) + log p(zi|xi)

= −
n∑

i=1

log
Γ(

∑c
j=1 λ

j
i )∏c

j=1 Γ(λ
j
i )

c∏
j=1

(θji )
λj
i−1 + log

c∏
j=1

Γ(αj
i + βj

i )

Γ(αj
i )Γ(β

j
i )
(zji )

αj
i−1(1− zji )

βj
i−1

= −
n∑

i=1

log

c∏
j=1

(θji )
λj
i−1 + log

c∏
j=1

(zji )
αj

i−1(1− zji )
βj
i−1 + CΓ

= −
n∑

i=1

c∑
j=1

(λj
i − 1) log(θji ) + (αj

i − 1) log(zji ) + (βj
i − 1) log(1− zji ) + CΓ.

(15)

CΓ = −
∑n

i=1 log
Γ(

∑c
j=1 λj

i )∏c
j=1 Γ(λj

i )
+log

∏c
j=1

Γ(αj
i+βj

i )

Γ(αj
i )Γ(β

j
i )

. Due to that we later use λ̂, α̂ and β̂ in Eq.(10)

and Eq.(11) to replace λ, α and β in Eq.(7), which are fixed to be constants, CΓ will be a constant
and ignored. Here, the derivation of Eq.(6) has been finished.
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A.2 DEGENERATION OF EQ.(7)

The proposed process can accommodate the uniform generation process of candidate labels by settng
the parameters of Bernoulli distribution to a constant p, which also means the flipping probability. In
this case, we can degenerate LML,Lreg and L to the following form.

LML-D = −
n∑

i=1

log
∑
j∈Si

θji
∏
k∈ ¯

Sj
i

zki
∏
k/∈ ¯

Sj
i

(1− zki )

= −
n∑

i=1

log
∑
j∈Si

θji (1− p)c+1−|Si|p|S|−1

= −
n∑

i=1

log(1− p)c+1−|Si|p|S|−1
∑
j∈Si

θji

= −
n∑

i=1

log
∑
j∈Si

θji −
n∑

i=1

log(1− p)c+1−|Si|p|S|−1.

(16)

Due to that the second term is a constant, the final LML is formulated as

LML-D = −
n∑

i=1

log
∑
j∈Si

θji . (17)

Due to the parameters of Bernoulli Distribution are constant, we do not need Beta Distribution.
Hence,

Lreg-D = −
n∑

i=1

c∑
j=1

(λj
i − 1)logθij . (18)

Finally,

LD = LML-D + Lreg-D = −
n∑

i=1

log
∑
j∈Si

θji −
n∑

i=1

c∑
j=1

(λj
i − 1)logθij . (19)

A.3 DERIVATIONS OF EQ.(8) AND EQ.(9)

θi ∼ p(θi|xi,λi) ∝ Dir(θi|λi) · Cat(li|θi)

=
Γ(

∑c
j=1 λ

j
i )∏c

j=1 Γ(λ
j
i )

·
c∏

j=1

(θji )
λj
i−1 ·

c∏
j=1

(θji )
lji

=
Γ(

∑c
j=1 λ

j
i )∏c

j=1 Γ(λ
j
i )

·
c∏

j=1

(θji )
λj
i+lji−1

= Dir(θi|λi + li).

(20)

The above has proved the conjugacy of Dirichlet and Categorical distribution. For Dirichlet distribu-
tion , its expectation can be calculated as

E[θji |xi,λi] =
λj
i + lji∑c

k=1 λ
k
i + lki

=
λj
i + oji∑c

k=1 λ
k
i + oki

. (21)

The mathematical derivations of Eq.(8) are completed. Eq.(9) can be proved in a similar way due to
Dirichlet distribution and Categorical distribution are the generalization forms of Beta distribution
and Bernoulli distribution respectively.
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A.4 CALCULATION DETAILS OF EQ. (12)

According to multivariate basic inequality, we can obtain:

− log
∑
j∈Si

θji
∏
k∈S

j
i

zki
∏
k/∈S

j
i

(1− zki ) ≤ − log |Si| −
1

|Si|
∑
j∈Si

log θji + log
∏
k∈S

j
i

zki
∏
k/∈S

j
i

(1− zki )

 .

(22)
Then we can calculate Eq. (12) as

LMAP (f(xi), Si) = − log
∑
j∈Si

θji
∏
k∈S

j
i

zki
∏
k/∈S

j
i

(1− zki )

−
c∑

j=1

(λj
i − 1) log θji + (αj

i − 1) log zji + (βj
i − 1) log (1− zji )
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1

|Si|
∑
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log θji + log
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j
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j
i

(1− zki )


−

c∑
j=1

(λj
i − 1) log θji + (αj
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1

|Si|
∑
j∈Si

log
∏
k∈S

j
i

zki
∏
k/∈S

j
i

(1− zki ) +

c∑
j=1

(αj
i − 1) log zji + (βj

i − 1) log (1− zji )


−

∑
j∈Si

(
λj
i − 1 +

1

|Si|

)
log θji −

∑
j∈Si

(
λj
i − 1

)
log θji

=−

Ki +

c∑
j=1

wj
i ℓ(f(xi), e

j)


(23)

where ej denotes the standard canonical vector in Rc, and ℓ denotes the cross-entropy func-
tion, wj

i = λj
i − 1 + 1

|Si| if j ∈ Si, otherwise wj
i = λj

i − 1, and Ki = log |Si| +
1

|Si|
∑

j∈Si
log

∏
k∈S

j
i
zki

∏
k/∈S

j
i
(1− zki ) + (αj

i − 1) log zji + (βj
i − 1) log (1− zji ).

A.5 PROOF OF LEMMA 1

In order to prove this lemma, we first show LMAP can be bounded. Due to the ouput of f, g is limited
in [−A,A], the following inequations hold:

θ̂ji ≥ a exp(−A/γ) + b

ac exp(A/γ) + bc+ c
= B (24)

E =
a exp(−A/γ) + b

2(a exp(A/γ) + b) + 1
≤ ẑji ≤ a exp(A/γ) + b+ 1

a exp(A/γ) + a exp(−A/γ) + 2b+ 1
= F (25)

Hence,

LMAP ≤ − log |Si|B(1− F )c+1−|Si|E|Si|−1 − c log[BE(1− F )]a exp(A/γ)+b

When M takes the value larger than −log|Si|B(1 − F )c+1−|Si|E|Si|−1 − clog[BE(1 −
F )]a exp(A/γ)+b, the loss LMAP will be bounded. Note that the limitation to the output of the
model excludes extreme (conditional) probabilities, the effect of which could be ignored which A is
large enough.
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Then, we show that the one direction supf∈F R(f) − R̂(f) is bounded with probability at least
1 − ξ/2, and the other direction can be similarly shown. Suppose an example (xi, Si) is replaced
by another arbitrary example (x′

i, S
′
i), then the change of supf∈F R(f)− R̂(f) is no greater than

M/(2n), the loss function L are bounded by M . By applying McDiarmid’s inequality, for any ξ > 0,
with probability at least 1− ξ/2,

sup
f∈F

R(f)− R̂(f) ≤ E

[
sup
f∈F

R(f)− R̂(f)

]
+

M

2

√
log 2

δ

2n
. (26)

By sysmetrization, we can obtain

E

[
sup
f∈F

R(f)− R̂(f)

]
≤ 2R̃n(G). (27)

By further taking into account the other side supf∈F R(f) − R̂(f), we have for any ξ > 0, with
probability at least 1− ξ,

sup
f∈F

|R(f)− R̂(f)| ≤ 2Rn(G) +
M

2

√
log 2

ξ

2n
(28)

A.6 PROOF OF LEMMA 2

The upper bound loss function of LMAP(f(xi), Si) is denoted by

L̄(f(xi), Si) = −

Ki +

c∑
j=1

wj
i ℓ(f(xi), e

j)

 (29)

Correspondingly, the function space for L̄ can be defined as:

Ḡ =
{
(x, S) 7→ L̄ (f(x), S) |f ∈ F

}
(30)

Then the expected Rademacher complexity of Ḡ can be defined as follows:

R̃n(Ḡ) = Ex,S,σ

[
sup
ḡ∈Ḡ

1

n

n∑
i=1

σiḡ(xi, Si)

]
(31)

For each example (xi, Si), since wj
i is bounded in [0, ρ] and Ki ≤ K, we can obtain R̃n(G) ≤

R̃n(Ḡ) ≤ ρcRn(ℓ◦F)+K where ℓ◦F denotes {ℓ◦F|f ∈ F}. Since Hι = {h : x 7→ fy(x)|f ∈ F}
and the loss function ℓ (f(x, eι)) is L-Lipschitz for all ι ∈ Y , by the Rademacher vector contraction
inequality, we have Rn(ℓ ◦ F) ≤

√
2L

∑
ι∈Y Rn(Hι). Then the proof is completed.

A.7 PROOF OF THEOREM 1

Theorem is proven through

R(f̂)−R(f∗) = R(f̂)− R̂(f̂) + R̂(f̂)− R̂(f∗) + R̂(f∗)−R(f∗)

≤ R(f̂)− R̂(f̂) + R̂(f∗)−R(f∗)

≤ 2 sup
f∈F

∣∣∣R(f)− R̂(f)
∣∣∣

≤ 4R̃n(G) +M

√
log 2

δ

2n

≤ 4
√
2ρcL

∑
ι∈Y

Rn(Hι) +M

√
log 2

δ

2n
+ 4K

(32)
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Table 4: Classification accuracy (mean±std) of each comparing approach on benchmark datasets, of which
instance-dependent partial labels are generated by our generation model.

Datasets MNIST FMNIST KMNIST CIFAR10 CIFAR100

IDGP 98.87± 0.05% 91.20± 0.21% 97.28± 0.19% 90.18± 0.32% 64.67± 0.23%

PLCR 98.46±0.22%• 90.18±0.27%• 95.19±0.13%• 87.07±0.34%• 64.43±0.44%
PICO 98.61±0.12%• 88.32±0.17%• 94.78±0.19%• 86.56±2.74%• 63.05±0.26%•

VALEN 98.77±0.04%• 90.58±0.36%• 96.41±0.33%• 86.31±0.37%• 63.77±0.51%•
CAVL 98.77±0.09%• 88.09±0.32%• 93.30±0.55%• 60.20±2.64%• 52.85±2.21%•
LWS 98.52±0.14%• 88.90±0.25%• 92.69±0.76%• 39.75±2.22%• 53.52±1.37%•
RC 98.35±0.14%• 89.78±0.29%• 94.06±0.05%• 85.48±0.27%• 63.24±0.97%•
CC 98.15±0.07%• 89.67±0.31%• 94.12±0.17%• 80.19±0.76%• 62.11±1.03%•

PRODEN 98.43±0.10%• 89.72±0.36%• 94.08±0.45%• 85.60±0.20%• 62.87±0.45%•

Table 5: Classification accuracy (mean±std) for comparison against IDGP-ML on benchmark datasets, of which
instance-dependent partial labels are generated by our generation model.

Dataset IDGP IDGP-ML
MNIST 98.87±0.05% 91.79±0.12%•
Kuzushiji-MNIST 97.28±0.19% 76.67±0.34%•
Fashion-MINIST 91.27±0.21% 78.38±0.29%•
CIFAR-10 90.18±0.32% 69.47±0.45%•
CIFAR-100 64.67±0.23% 40.23±0.57%•

A.8 DETAILS OF DATA AUGMENTATION

For all benchmark datasets, we apply Random Horizontal Flipping, Random Cropping, and Cutout.
For CIFAR-10 and CIFAR-100, AutoAugment is additionally applied.

A.9 EXTENDING EXPERIMENTS

Our Generation Model. We also synthesize the sampled correct label from Categorical Distribution
p(y = j|x) and incorrect candidate labels from Bernoulli Distribution p(s̄j = 1|x). For the former,
correct labels has been contained in these datasets. For the latter, we use the confidence prediction of
a clean neural network g(x; Ω̂) (trained only with correct labels) to model the Bernoulli Distribution,
i.e., p(s̄j = 1|x) = sigmoid(gj(x; Ω̂)). Table 4 illustrates the performance of IDGP and comparing
approaches on on benchmark datasets, of which instance-dependent partial labels generated by
our generation model. From the table, we can overall see that IDGP consistently outperforms all
comparing approaches on all benchmark datasets, and the improvements are particularly noticeable
on Kuzushiji-MNIST and CIFAR-10.

Ablation Study. As is illustrated in Table 5, IDGP also achieves superior performance on all
benchmark datasets, of which instance-dependent partial labels are generated by our generation
model.

Sensitive Analysis. For the benchmark dataset Fashion-MINIST, the performance of IDGP is
stable and effective in the case that a is around 10 and γ is around 1.5.
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Figure 2: Parameter sensitivity analysis for IDGP on Fashion-MINIST.
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