
CODEAGENT: Enhancing Code Generation with Tool-Integrated Agent
Systems for Real-World Repo-level Coding Challenges

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have shown001
promise in automated code generation but002
typically excel only in simpler tasks such003
as generating standalone code units. How-004
ever, real-world software development often005
involves complex code repositories with com-006
plex dependencies and extensive documenta-007
tion. To enable LLMs to handle these real-008
world repo-level code generation, we present009
CODEAGENT, a novel LLM-based agent frame-010
work that employs external tools for effec-011
tive repo-level code generation. CODEAGENT012
integrates five programming tools, enabling013
interaction with software artifacts for infor-014
mation retrieval, code implementation, and015
code testing. We implement four agent strate-016
gies to optimize these tools’ usage. To the017
best of our knowledge, CODEAGENT is the018
first agent framework specifically for repo-019
level code generation. In order to measure020
the effectiveness of our method at the repos-021
itory level, we design a repo-level benchmark022
CODEAGENTBENCH. The performance on023
this benchmark shows a significant improve-024
ment brought by our method, with improve-025
ments in pass rate ranging from 2.0 to 15.8.026
Further tests on the HumanEval benchmark027
confirm CODEAGENT’s adaptability and effi-028
cacy across various code generation tasks. No-029
tably, CODEAGENT outperforms commercial030
products like GitHub Copilot, showcasing su-031
perior accuracy and efficiency. These results032
demonstrate CODEAGENT’s robust capabilities033
in code generation, highlighting its potential034
for real-world repo-level coding challenges.035

1 Introduction036

Code generation automatically generates programs037

for the natural language (NL) requirement. Recent038

years have seen a trend in tackling code generation039

tasks with large language models (LLMs), such040

as Code Llama (Rozière et al., 2023), StarCoder041

(Li et al., 2023), and DeepSeekCoder (DeepSeek,042

2023). Many efforts have been performed (Zhang 043

et al., 2023b; Luo et al., 2023; Zheng et al., 2023) 044

and shown impressive code generation abilities. 045

Despite achieving satisfactory performances, 046

these studies mainly focus on simple generation 047

scenarios including statement-level and function- 048

level code generation. Statement-level code gener- 049

ation (Iyer et al., 2018; Athiwaratkun et al., 2022) 050

aims to output statement-specific source codes. 051

Function-level code generation (Chen et al., 2021; 052

Austin et al., 2021; Hendrycks et al., 2021) pre- 053

dicts independent code that only invokes built-in 054

functions and APIs from third-party libraries. For 055

both scenarios, the length of the generated code 056

is rather short, and they only generate standalone 057

code units. However, more than 70% functions in 058

the open-source projects are non-standalone (Yu 059

et al., 2023). Developers typically write programs 060

based on specific code environments, generally re- 061

ferring to code repositories. These repo-level code 062

snippets usually have intricate contextual depen- 063

dencies, which is too complex for existing LLMs 064

to handle and generate (Li et al., 2024). 065

To enhance the efficacy of LLMs in repo-level 066

code generation tasks, we draw inspiration from 067

human programming practices. Developers typi- 068

cally employ a variety of tools to aid in complex 069

programming. For instance, they might utilize 070

search engines to explore key concepts or static 071

analysis tools to identify pre-existing functions or 072

classes. These tools are instrumental in the de- 073

velopment of code projects. Embracing this idea, 074

we propose a novel LLM-based agent framework 075

CODEAGENT that leverages external tools to help 076

LLMs in repo-level code generation. With five 077

programming tools, CODEAGENT is capable of 078

interacting with the software artifacts, including 079

retrieving useful information, finding existing code 080

symbols in the repository, and handling essential 081

code testing. To guide LLMs to efficiently use 082

tools, we draw on four agent strategies covering Re- 083

1

Act, Tool-Planning, OpenAIFunc, and Rule-based084

form. Based on agent strategies, LLMs can auto-085

matically select suitable tools for each repo-level086

task, finally providing a comprehensive response.087

To our knowledge, we are the first to adopt and088

optimize an agent-based method for the complex089

repo-level code generation task.090

In order to measure the effectiveness of our091

method at the code repository, we manually con-092

struct CODEAGENTBENCH, a benchmark specifi-093

cally for repo-level code generation with a total094

of 101 functions and classes sourced from real095

code projects. It provides rich information about096

the repository, such as documentation and con-097

textual dependency, to help LLMs better under-098

stand it. We further conduct extensive experi-099

ments for evaluation. We apply CODEAGENT100

to nine powerful open-source and closed-source101

LLMs with parameter sizes ranging from 13B to102

175B to show the universality. Compared to di-103

rectly generating from LLMs, experimental results104

on CODEAGENTBENCH reveal that CODEAGENT105

achieves significant improvements ranging from106

2.0 to an extraordinary 15.8 across various LLMs.107

Further evaluations on well-known function-level108

benchmark HumanEval (Chen et al., 2021) confirm109

CODEAGENT’s versatility in diverse code genera-110

tion tasks. Remarkably, when compared to com-111

mercial products like GitHub Copilot (Dakhel et al.,112

2023), CODEAGENT stands out, demonstrating su-113

perior accuracy. These findings highlight the robust114

practical capabilities of CODEAGENT in the code115

generation community, underscoring its potential116

to evolve real-world repo-level coding challenges.117

We summarize our main contributions:118

• We make an attempt to investigate repo-level119

code generation, which has crucial worth for120

understanding LLMs’ performance in practi-121

cal code generation scenarios.122

• We propose CODEAGENT, an LLM-based123

agent framework for repo-level code gener-124

ation. It develops five external programming125

tools to help LLMs complete the whole gen-126

eration process and draw on four agent strate-127

gies to automatically optimize tools’ usage.128

• We construct CODEAGENTBENCH, a repo-129

level code generation benchmark, which has130

high-quality code repositories and covers di-131

verse topics.132

• Experimental results on nine LLMs show 133

CODEAGENT’s versatility and effectiveness 134

in diverse code generation tasks, highlight- 135

ing its potential for resolving real-world repo- 136

level coding challenges. 137

2 Background 138

2.1 LLMs and Agents for Code Generation 139

LLMs have shown impressive capabilities in code 140

generation since they have billions of parameters 141

trained on a large amount of corpus with different 142

training objectives. Recently, OpenAI 1 proposes 143

GPT-3.5 and GPT-4 series models (e.g., ChatGPT 144

(Chat, 2022)), which have shown strong generation 145

abilities in coding. There are also various open- 146

soured work, such as CodeGen (Nijkamp et al., 147

2022), StarCoder (Li et al., 2023), Code Llama 148

(Rozière et al., 2023), WizardCoder (Luo et al., 149

2023) and DeepSeekCoder (DeepSeek, 2023). 150

Recent research has also increasingly shown that 151

LLMs can be instrumental in developing AI agents 152

(Palo et al., 2023; Wang et al., 2023a; Xi et al., 153

2023; Shen et al., 2023; Patil et al., 2023; Qin et al., 154

2023). Examples such as ToolFormer (Schick et al., 155

2023), Auto-GPT (AutoGPT, 2023), BabyAGI 156

(BabyAGI, 2023), KwaiAgents (Pan et al., 2023) 157

and ToolCoder (Zhang et al., 2023a) demonstrate 158

LLMs’ proficiency in tool utilization for complex 159

tasks. However, there is no relevant work tar- 160

geting the complex coding capabilities of agent 161

systems. In this paper, we select GPT-4 (GPT-4, 162

2023), GPT-3.5 (GPT-3.5, 2023), and other pow- 163

erful LLMs to design coding agent systems for 164

real-world repo-level code generation. 165

2.2 Code Generation Tasks 166

Existing code generation tasks mainly focus 167

on generating standalone code units, including 168

statement-level (Yin et al., 2018) and function-level 169

generation (Hendrycks et al., 2021; Chen et al., 170

2021). The generated programs are usually short 171

and are independent of other codes. However, in 172

software development, programmers mainly work 173

within a code environment. They extend their func- 174

tionalities based on the foundational code frame- 175

work. Inspired by this, some studies (Yu et al., 176

2023; Liao et al., 2023) introduce intricate pro- 177

gramming tasks that are based on particular code 178

environments such as projects and code reposito- 179

ries. Nevertheless, these studies only provide lim- 180

1https://openai.com/

2

ited constraint information to LLMs, containing the181

requirements, signature information, and restricted182

code dependencies, leading to a difference in pro-183

gramming information needs from humans. To184

get closer to realistic programming scenarios, we185

formalize the repo-level code generation task and186

propose CODEAGENT to help LLMs handle this187

complex task. We construct a repo-level code gen-188

eration benchmark CODEAGENTBENCH to evalu-189

ate our method and provide an analysis of bench-190

marks commonly used for these generation tasks in191

Table 7. Compared with existing code generation192

tasks, repo-level code generation is more consistent193

in real-world programming scenarios, fostering the194

evolvement of the code generation community.195

3 Repo-level Code Generation Task196

To fill the gap between existing code generation197

tasks and practical coding scenarios, we formalize198

the repo-level code generation task. Since a code199

repository generally contains intricate invocation200

relationships, only with a deep understanding of201

the code repository can LLMs generate satisfying202

programs that not only adhere to requirements but203

also seamlessly integrate with the current reposi-204

tory. Given a code repository, the repo-level code205

generation task aims to generate code based on all206

the software artifacts included in the repository,207

encompassing the documentation, code depen-208

dency, runtime environment, which form the task209

input. Here we give a detailed description of its210

composition format. Figure 1 shows an illustration211

of the repo-level code generation task.212

Documentation It describes the generation tar-213

gets and is the main input component of repo-level214

code generation. The documentation provides ad-215

ditional supporting information beyond the NL re-216

quirements. It contains class-level (class name, sig-217

nature, and member function) and function-level218

(functional description, and params description) in-219

formation of targets. Typically, the correctness of220

generated programs is verified with the test suite.221

The generated programs must conform to the inter-222

face (e.g., the input parameters). Thus, the docu-223

mentation also provides the type and interpretation224

of input parameters and output values. In addi-225

tion, considering that requirements usually contain226

domain-specific terminologies, the documentation227

explains these terms as well, such as mathematical228

theorems. As shown in Figure 1, documentation of229

the project contains rich information, where differ-230

ent elements are highlighted with diverse colors. 231

Contextual Dependency A key distinction of 232

our new task from other independent code genera- 233

tion tasks is its inclusion of contextual dependen- 234

cies. This aspect is crucial, as classes or functions 235

typically interact with other code segments within 236

the repository, such as import statements or other 237

user-defined classes and functions. These interac- 238

tions may occur within the same file or across mul- 239

tiple files. For instance, to implement the Random- 240

Forest class in Figure 1, it is necessary to utilize 241

the bootstrap_sample function from rf.py and the 242

DecisionTree class from dt.py, demonstrating the 243

intricate code contextual dependencies involved. 244

Runtime Environment Different from natu- 245

ral language, program language is executable. 246

Whether programs return target results after execu- 247

tion is a crucial manner to verify the correctness 248

of generated programs. Developers typically de- 249

pend on the execution feedback to correct errors 250

in programs. The runtime environment provides 251

all configurations needed to run the code repos- 252

itory and offers convenient interaction to ensure 253

an all-sided evaluation of LLMs’ performance on 254

repo-level code generation. 255

4 CODEAGENT Method 256

We introduce a novel LLM-based agent framework 257

CODEAGENT that leverages external tools to en- 258

hance the problem-solving abilities of LLMs in 259

intricate repo-level code generation. CODEAGENT 260

seamlessly pauses generation whenever tools are 261

called and resumes generation by integrating their 262

outputs. These tools can assist LLMs with the 263

entire code generation process, including informa- 264

tion retrieval, code implementation, and code test- 265

ing as shown in Table 1, thus interacting with the 266

software artifacts (Section 4.1). Providing LLMs 267

with access to tools, CODEAGENT explores four 268

agent strategies to optimize these tools’ usage (Sec- 269

tion 4.2). Figure 2 illustrates the overview of our 270

CODEAGENT. 271

4.1 Designed Programming Tools 272

Given a requirement, developers usually first gather 273

relevant knowledge, then find and modify exist- 274

ing programs to meet the requirement, and finally 275

verify programs with the assistance of tools. To 276

mimic this process, we develop several program- 277

ming tools that are specifically designed for LLMs. 278

3

"RandomForest"

class numpy_ml.trees.RandomForest(n_trees, max_depth, n_feats, classifier=True,
criterion='entropy’)

-[Description]-
 An ensemble (forest) of decision trees where each split is calculated using a random
subset of the features in the input.
-[Notes]-
The RandomForest class, denoted as 𝓡𝓕, comprises
ntrees decision trees. Each tree Ti is built on a bootstrapped sample from the training
data 𝓓, with splits determined by a random subset of nfeats features.

Parameters:
 * **n_trees** (*int*) -- The number of individual
decision trees to use within the ensemble.

…

predict(X)
Predict the target value for each entry in *X*.
Parameters:

…

Member Function

Theorem & Explanation

Functional Description

Class Name & Signature

Params Description

bandits

factorization

utils

trees

rf.py

dt.py

gbdt.py

import numpy as np
from .dt import DecisionTree
def bootstrap_sample(X, Y):

N, M = X.shape
idxs = np.random.choice(N, N,

replace=True)
return X[idxs], Y[idxs]

…

import numpy as np
class Node:

…
class DecisionTree:

…

trees/rf.py

trees/dt.py

(Python Environment) >>>
Python 3.9.7
Successfully installed numpy, scipy, …

class RandomForest:
def __init__(self, n_trees, max_depth, n_feats,

classifier=True, criterion="entropy"):
self.trees = []
…

def fit(self, X, Y):
self.trees = []
for _ in range(self.n_trees):

X_samp, Y_samp = bootstrap_sample(X, Y)
tree = DecisionTree(

n_feats=self.n_feats,
max_depth=self.max_depth

)
…

Input Documentation

Input Code Dependency

Input Runtime Environment

Output Code

Figure 1: An illustrative example of the repo-level code generation. The task input contains complex descriptions,
code dependencies, and runtime environment, which is more realistic than the existing benchmark.

<Input Documentation> + <Tool Descriptions> + …

ReAct, OpenAIFunc*
Thought: … I should search

“random forest” …
Action: WebSearch(“random forest”)

Tool output: …

Tool-Planning
Step 1. Seach the concept …
Step 2. Define the class …

(For each step, choose a tool
to help complete that step.)

Rule-based Tool Usage
Step 1. website search

<Thought> + <Action>

3. SymbolSearch

2. DocSearch

…

4. FormatCheck 5. PythonREPL

interact

…

Website Search

Code Navigation

Code Interpreter

Documentation

Code Dependency

Runtime
Environment

Code Repo

Programming Tools

…

Agent Strategy
LLMs

Figure 2: Left: Overview of CODEAGENT. With
our designed programming tools and agent strategies,
LLMs interact with code repositories and generate repo-
level code. Right: Illustration of agent strategies in
CODEAGENT. "OpenAIFunc" is similar to "ReAct" in
the interaction mode, with some differences in the con-
tent generated by LLMs and the format of tool callings.

Tool Domain Tool Name Usage Pattern

Information
Retrieval

Website Search WebSearch(input_query)

Documentation Reading DocSearch(input_name)

Code
Implementation Code Symbol Navigation SymbolSearch(module_path

or input_name)

Code Testing Format Checker FormatCheck()

Code Interpreter PythonREPL(input_code)

Table 1: Programming tool statistics in CODEAGENT

CODEAGENT incorporates these external tools279

from three perspectives: information retrieval, code280

implementation, and code testing, which are com-281

monly used by programmers in their daily work.282

4.1.1 Information Retrieval Tools283

Information retrieval tools are responsible for ana-284

lyzing repositories and collecting resources, which285

is pivotal in understanding the problem domain.286

We develop popular website search and documen- 287

tation reading as information retrieval tools. 288

Website Search Programmers often share solu- 289

tions for various programming problems on web- 290

sites where search engines consider them as knowl- 291

edge resources. When encountering similar prob- 292

lems, developers only submit a question query 293

to a search engine. The engine can provide use- 294

ful programming suggestions. Inspired by this, 295

CODEAGENT uses a popular search engine Duck- 296

DuckGo2 to choose the most relevant websites, and 297

then apply LLMs to summarize the website con- 298

tent as the final tool output 3. In the process, we 299

block websites that may lead to data leakage. The 300

usage pattern of this tool is formatted as: Web- 301

Search(input_query), which will return the format- 302

ted content searched from websites. 303

Documentation Reading Besides gathering in- 304

formation from websites, we also retrieve relevant 305

knowledge from the documentation of the repos- 306

itory. To achieve this, CODEAGENT leverages 307

BM25 (Robertson et al., 2009) as the documen- 308

tation reading tool. Given a class name or function 309

name, it can retrieve correlative content from the 310

documentation as its output. If the result is too long, 311

the tool will use the LLM to summarize it and then 312

provide it to LLMs for code generation. This tool 313

is designed in the format: DocSearch(input_name). 314

4.1.2 Code Implementation Tools 315

Code implementation tools aim to provide relevant 316

code items (i.e., pre-defined symbol names and 317

code snippets) in the code repository. LLMs mod- 318

ify and integrate these items into the generation 319

2https://duckduckgo.com/
3We choose DuckDuckGo because it provides a cheaper

and more convenient API than other search engines such as
Google and Bing.

4

process. It not only expedites the development pro-320

cess but also encourages code reuse. We build a321

code symbol navigation tool to help LLMs imple-322

ment code snippets.323

Code Symbol Navigation We use tree-sitter 4324

to design the code symbol navigation tool. This325

tool explores code items from two types. The first326

type is oriented to the file or module-oriented pars-327

ing, where the tool performs static analysis of a file328

or module and provides symbol names defined in329

it, encompassing global variables, function names,330

and class names. The other type is the class or331

function symbol navigation. Given a class or func-332

tion name, the tool finds its definition from the333

code repository. Combining the two types, this tool334

can traverse predefined source code within a repos-335

itory, empowering LLMs to understand intricate336

dependencies and reuse codes. This tool is de-337

signed in the format: SymbolSearch(module_path338

or input_name). The tool will detect what the in-339

put is and return the corresponding results (e.g.,340

all defined symbols in the given file path or the341

implementation code corresponding to the given342

symbol name). When no parameters are provided,343

the default value is the path of the current file.344

4.1.3 Code Testing Tools345

After acquiring generated codes, we design code346

testing tools to format and test them, enhancing347

their correctness and readability.348

Format Checker The tool is built to check the349

format correctness of generated codes. Specifically,350

we develop Black 5 as the format checker. It can351

check format errors such as indentation misalign-352

ment and missing keywords. Subsequently, it tries353

to rectify these errors and reorganizes code state-354

ments, enhancing the correctness and readability of355

generated codes. The usage pattern of this tool is:356

FormatCheck(), which will automatically format357

the most recently generated code and return the358

formatted version.359

Code Interpreter The tool focuses on examining360

the syntax and function of programs. It furnishes361

a runtime environment so that LLMs can debug362

generated codes with execution feedback. The tool363

requires LLMs to provide a program to be executed,364

and then runs the code in the repository environ-365

ment. Meanwhile, LLMs generate some test cases366

4https://tree-sitter.github.io/tree-sitter/
5https://github.com/psf/black

to verify whether the output of the generated code 367

meets the expected results. When occurring errors, 368

this tool will offer error information to facilitate 369

LLMs to fix bugs until programs are error-free, 370

which has been proven to be effective by many 371

existing works (Chen et al., 2022; Zhang et al., 372

2023b) to correct output programs. The runtime 373

environment is prepared for each task, as described 374

in Section B.1.1. This tool is designed in the for- 375

mat: PythonREPL(input_code), and the tool will 376

return the executed result of the input code. 377

4.2 Agent Strategy 378

To guide LLMs to leverage these powerful tools 379

properly, we develop four agent strategies for 380

repo-level code generation, including ReAct, Tool- 381

Planning, OpenAIFunc, and Rule-based Tool Us- 382

age. The interaction between LLMs and external 383

tools is based on LangChain 6. 384

ReAct This strategy (Yao et al., 2022) prompts 385

LLMs to generate reasoning traces and task-related 386

actions in an interlaced fashion. Based on actions, 387

ReAct selects the proper external tools and invokes 388

them by providing input. The strategy then treats 389

the output of tools as additional knowledge and 390

decides whether to generate a final code or invoke 391

other tools for further processing. 392

Tool-Planning We propose a variant, i.e., Tool- 393

Planning, of Planning strategy (Wang et al., 2023b) 394

that makes a plan before solving problems and has 395

shown effectiveness in many studies (Zhang et al., 396

2022; Jiang et al., 2023). Different from Planning, 397

our strategy can invoke proper tools based on the 398

plan. Specifically, Tool-Planning first makes a plan 399

to divide an entire task into several subtasks and 400

then performs subtasks according to the plan. For 401

complex subtasks, it will automatically choose an 402

appropriate tool to assist LLMs in code generation. 403

OpenAIFunc Recently, some models (e.g., GPT- 404

3.5 (GPT-3.5, 2023) and GPT-4 (GPT-4, 2023)) 405

have the function-calling ability provided by Ope- 406

nAI (OpenAIFunc, 2023). The interaction mode is 407

similar to that of "ReAct", with some differences 408

in the content generated by LLMs and the format 409

of calling external tools. 410

Rule-based Tool Usage When faced with a com- 411

plex problem, programmers often first learn related 412

knowledge, then write programs, and check the 413

6https://python.langchain.com

5

Name Domain Samples # Line # DEP

numpyml-easy Machine Learning 22 10.9 0.3
numpyml-hard Machine Learning 35 85.4 2.6
container Data Structure 4 130.3 8.0
micawber Information Extraction 7 19.7 4.3
tinydb Database 21 36.7 2.7
websockets Networking 12 91.6 7.5

Total 101 57.0 3.1

Table 2: Statistics of CODEAGENTBENCH. # Line:
average lines of code. # DEP: average number of code
dependencies.

function of programs. Inspired by the workflow,414

we propose a rule-based strategy.415

This strategy defines the order of tool usage and416

interlinks these tools by prompts. I) LLMs leverage417

website search to gather useful online information;418

II) LLMs then use documentation reading tool to419

search relevant classes and functions; III) Code420

symbol navigation is required to select and view421

the source codes of related classes and functions.422

Based on the above information, LLMs generate423

programs; IV) Subsequently, LLMs invoke the for-424

mat checker to check the syntax and format of gen-425

erated programs; V) Finally, LLMs use the code426

interpreter to evaluate the functional correctness427

of programs. Based on the feedback information,428

LLMs fix errors within programs. For each part,429

LLMs will autonomously cycle through the use of430

tools until it decides to move on to the next part or431

the cycle reaches its limit number (e.g., 3).432

5 Experiment433

We perform extensive experiments to answer434

three research questions: (1) How much can435

CODEAGENT improve the advanced code gener-436

ation LLMs on repo-level code generation (Sec-437

tion 5.2); (2) What is the improvement of our438

CODEAGENT on classical code generation such439

as HumanEval (Section 5.3); (3) To what extent440

do our selected tools in the agent system help for441

repo-level coding (Section 5.4).442

5.1 Experimental Setup443

Benchmarks To evaluate our method on repo-444

level code generation, we follow the format de-445

scribed in Section 3 and construct a new benchmark446

CODEAGENTBENCH. We select five diverse top-447

ics and choose repositories with high stars from448

GitHub. The detailed construction process and449

statistics of our benchmark are shown in Table 2450

and Section B.2. CODEAGENTBENCH contains451

101 samples, and for each task, LLMs are provided452

with documentation containing the requirements453

needed to be implemented, along with a set of tools 454

we designed, as well as full access permissions 455

to code files in the repository. We use the self- 456

contained test suite in each code repository to eval- 457

uate the correctness of generated programs. 458

In addition, to evaluate the generalization abil- 459

ity of CODEAGENT, we also perform experiments 460

on function-level code generation. In this paper, 461

we use a widely-used function-level benchmark 462

HumanEval (Chen et al., 2021). It contains 164 463

programming problems with the function signature, 464

docstring, body, and unit tests. 465

Base LLMs We apply CODEAGENT to nine most 466

powerful LLMs, including GPT-3-davinci (GPT- 467

3, 2022), GPT-3.5-turbo (GPT-3.5, 2023), GPT- 468

4-turbo (GPT-4, 2023), Claude-2 (Claude, 2023), 469

Llama2-70B-chat (Llama, 2023), Code Llama-34B 470

(Rozière et al., 2023), WizardCoder-34B (Luo 471

et al., 2023), DeepSeek-33B (DeepSeek, 2023) and 472

Vicuna-13B (Chiang et al., 2023). Additional de- 473

scriptions are provided as a part of Table 3. 474

Metrics Following previous works (Zan et al., 475

2022; Zheng et al., 2023), we use the pass rate as 476

the metric, where we treat the generated program 477

correctly only if its output is consistent with all 478

ground truths of the test suite. Specifically, we are 479

mainly concerned with Pass@1 (Chen et al., 2021), 480

which is a representative of the Pass@k family, 481

because in real-world scenarios, we usually only 482

consider the single generated code. 483

5.2 Repo-level Coding Performance 484

In our experiments, we utilized our specially 485

designed repo-level benchmark, CODEAGENT- 486

BENCH, to assess the efficacy of CODEAGENT 487

in enhancing the performance of nine prominent 488

code LLMs. The results are presented in Table 3. 489

Our proposed CODEAGENTBENCH proves to 490

be substantially more challenging than existing 491

benchmarks, as evidenced by the relatively lower 492

pass rates. On all base LLMs with various sizes, 493

CODEAGENT consistently delivers significant per- 494

formance improvements. Specifically, for GPT-4 495

model (GPT-4, 2023), we observe a maximum in- 496

crease of 15.8, equating to a 72.7% relative en- 497

hancement over the baseline, i.e., NoAgent. The 498

improvements of other LLMs range from 2.0 to 499

an impressive 15.8, underscoring the effectiveness 500

of our proposed approach. This demonstrates that 501

the tools integrated within CODEAGENT provide 502

6

Models Scales NoAgent Rule-based ReAct Tool-Planning OpenAIFunc

Closed source LLM
GPT-3-davinci (GPT-3, 2022) 175B 16.8 24.8 (↑ 7.9) 22.8 (↑ 5.9) 18.8 (↑ 2.1) -
GPT-3.5-turbo (GPT-3.5, 2023) - 19.8 31.7 (↑ 11.9) 30.7 (↑ 10.8) 21.8 (↑ 2.0) 28.7 (↑ 8.9)
GPT-4-turbo (GPT-4, 2023) - 21.8 37.6 (↑ 15.8) 34.7 (↑ 12.9) 25.7 (↑ 4.0) 34.7 (↑ 12.9)
Claude-2 (Claude, 2023) - 8.9 10.9 (↑ 2.0) 9.9 (↑ 1.0) 9.9 (↑ 1.0) -

Open source LLM
Llama2-70B-chat (Llama, 2023) 70B 10.9 12.9 (↑ 2.0) 11.9 (↑ 1.1) 11.9 (↑ 1.1) -
Code Llama-34B (Rozière et al., 2023) 34B 2.0 5.0 (↑ 3.0) 4.0 (↑ 2.0) 4.0 (↑ 2.0) -
WizardCoder-34B (Luo et al., 2023) 34B 2.0 6.9 (↑ 5.0) 5.0 (↑ 2.7) 4.0 (↑ 2.0) -
DeepSeek-33B (DeepSeek, 2023) 33B 13.9 24.8 (↑ 10.9) 20.8 (↑ 6.9) 15.8 (↑ 2.0) -
Vicuna-13B (Chiang et al., 2023) 13B 1.0 1.0 0.0 0.0 -

Table 3: The Pass@1 results of different agent strategies on CODEAGENTBENCH. "NoAgent" refers to the baseline
where LLMs generate code solely based on the provided documentation.

useful information, aiding LLMs in producing ac-503

curate code solutions and effectively tackling com-504

plex repo-level coding challenges.505

Across different LLMs, a notable trend is that506

more advanced LLMs exhibit greater improve-507

ments with the application of CODEAGENT. How-508

ever, for Vicuna-13B model (Chiang et al., 2023),509

performance on CODEAGENTBENCH is notably510

poor, showing no appreciable enhancement with511

the agent strategy. In contrast, the improvement512

is quite pronounced for other high-capacity LLMs.513

Furthermore, we find that different agent strate-514

gies yield varying levels of enhancement. Among515

these strategies, Rule-based and ReAct strategies516

are more effective, whereas Tool-Plannig strategy517

appears less suited for the task.518

5.3 Function-level Coding Performance519

We further apply our CODEAGENT to function-520

level code generation with the well-known Hu-521

manEval benchmark (Chen et al., 2021). We adapt522

our approach to this scenario by omitting the docu-523

mentation reading tool and code symbol navigation.524

The adjustment is necessitated as these tools are not525

applicable to the standalone code generation task.526

For this task, we strategically selected a range of527

representative LLMs for evaluation, constrained by528

our available resources and computational capacity.529

The pass rate results are detailed in Table 4.530

The results once again highlight the efficacy of531

CODEAGENT in enhancing the performance of532

code LLMs across all metrics. Notably, the maxi-533

mum improvements observed for each model span534

from 6.1 to 9.7 on Pass@1. These findings un-535

derscore the versatility and effectiveness of our536

CODEAGENT in augmenting the capabilities of537

LLMs across a variety of code generation tasks.538

5.4 Ablation Study 539

To investigate the influence of tools incorporated in 540

CODEAGENT, we conduct an ablation study focus- 541

ing on tool utilization in repo-level code generation. 542

We choose GPT-3.5-turbo with ReAct as the base 543

model, named GPT-3.5-ReAct. We meticulously 544

track the usage frequency of each tool during code 545

generation processes, with the statistics presented 546

in Table 5 under the column # Usage. Subsequently, 547

we exclude one tool at a time from our approach, 548

allowing us to isolate and understand the individ- 549

ual contribution of each tool. The performances 550

of these ablation scenarios are shown in Table 5, 551

categorized under the column Ablation Result. 552

Our findings reveal that the code symbol naviga- 553

tion tool is particularly pivotal in our agent system. 554

On average, CODEAGENT utilizes this tool approx- 555

imately 2.45 times per code generation, a frequency 556

higher than the counterpart of other tools. Notably, 557

the performance significantly declines when this 558

tool is omitted, underscoring its critical role in en- 559

hancing the effectiveness of our approach. Further- 560

more, the ablation results confirm that each tool 561

in our agent system contributes positively to the 562

overall improvement. This evidence not only val- 563

idates the effectiveness of our strategy design but 564

also highlights the utility of programming tools in 565

addressing the repo-level coding task. 566

6 Discussion 567

6.1 Compared with Commercial Products 568

Nowadays, a lot of mature commercial products 569

are available to support complex code generation 570

tasks. It is essential to compare CODEAGENT with 571

these established products. We categorize them 572

into two distinct groups: (1) IDE Products are 573

AI-powered autocomplete-style suggestion tools 574

integrated within IDE software. Notable examples 575

7

Models NoAgent Rule-based ReAct Plan OpenAIFunc

GPT-3.5-turbo (GPT-3.5, 2023) 72.6 82.3 (↑ 9.7) 79.3 (↑ 6.7) 73.8 (↑ 1.2) 81.1 (↑ 8.5)
CodeLLaMA-34B (Rozière et al., 2023) 51.8 59.7 (↑ 7.9) 58.2 (↑ 6.4) 54.1 (↑ 2.3) -
WizardCoder-34B (Luo et al., 2023) 73.2 79.4 (↑ 6.2) 77.6 (↑ 4.4) 75.6 (↑ 2.4) -
DeepSeek-33B (DeepSeek, 2023) 78.7 84.8 (↑ 6.1) 83.5 (↑ 4.8) 81.1 (↑ 2.4) -

Table 4: The Pass@1 results of different agent strategies on the HumanEval benchmark.

Usage Ablation Result

GPT-3.5-ReAct - 30.7

Websit Search 0.30 27.7 (↓ 3.0)
Documentation Reading 0.84 26.7 (↓ 4.0)
Code Symbol Navigation 2.45 22.8 (↓ 7.9)
Format Check 0.17 29.7 (↓ 1.0)
Code Interpreter 0.22 29.7 (↓ 1.0)

GPT-3.5-NoAgent - 19.8

Table 5: Average tool usage number and ablation result
on CODEAGENTBENCH for GPT-3.5-ReAct.

NumpyML-easy NumpyML-hard

Our Agent
GPT-3.5 14 3
GPT-4 17 5

IDE Product
GitHub Copilot 7 1
Amazon CodeWhisperer 5 0

Agent Product
AutoGPT (with GPT-4) 2 0

Table 6: Performance compared with commercial pro-
gramming products (the number of solved problems).

are GitHub Copilot (Copilot, 2023) and Amazon576

CodeWhisperer (CodeWhisperer, 2023). (2) Agent577

Products encompass autonomous agents driven by578

GPT-4 (GPT-4, 2023). They are capable of execut-579

ing a variety of tasks, including coding, such as580

well-known AutoGPT (AutoGPT, 2023).581

Considering that IDE products are primarily de-582

signed as completion systems, we limit human in-583

teractions to less than three times per task to ensure584

a fair comparison. The evaluation is conducted on585

the numpyml subset of CODEAGENTBENCH man-586

ually by an experienced Python developer. Table 6587

shows the number of solved problems on different588

products and our CODEAGENT.589

The results demonstrate that CODEAGENT590

works better than existing products on complex591

coding scenarios. In addition, despite both592

CODEAGENT and AutoGPT being agent-based593

approaches, CODEAGENT exhibits numerous op-594

timizations tailored for repo-level coding tasks,595

thereby making it better than AutoGPT in the task.596

Compared to IDE products that can also analyze597

complex code dependencies, our method benefits598

from the flexibility inherent in the agent system, 599

resulting in a substantial lead over IDE products. 600

6.2 Qualitative Analysis 601

We explore generated cases to assess CODEAGENT 602

(e.g., GPT-3.5-ReAct) and the baseline model (e.g., 603

GPT-3.5-NoAgent). The comparative analysis is 604

shown in Figure 3 and Figure 4. 605

CODEAGENT typically begins with examin- 606

ing the code dependencies in the repository, sub- 607

sequently refining its code generation strategy 608

through a step-by-step process known as “chain- 609

of-thought”. As in Figure 3, the input documen- 610

tation specifies the need for a class with member 611

functions set_params and summary. CODEAGENT, 612

assisting with the symbol navigation tool, finds the 613

base class and identifies the member function _ker- 614

nel as a key component for implementation. This 615

is reflected in the generated thought process: 616

"The set_params and summary methods 617

can be inherited from the base class 618

without modifications ... The ‘_kernel’ 619

method needs to be overridden ..." 620

(Generated by CODEAGENT-GPT-3.5-ReAct) 621

On the contrary, GPT-3.5-NoAgent lacks access to 622

detailed information on code structures, resulting 623

in incorrect code solutions, as depicted in Figure 4. 624

7 Conclusion 625

We formalize the repo-level code generation task to 626

evolve real-world coding challenges. To enhance 627

LLMs to handle repo-level code generation, we 628

propose CODEAGENT, a novel LLM-based agent 629

framework. CODEAGENT develops five program- 630

ming tools, enabling LLMs to interact with soft- 631

ware artifacts, and designs four agent strategies to 632

optimize tools’ usage. To evaluate the effectiveness 633

of our CODEAGENT, we construct CODEAGENT- 634

BENCH, a new benchmark for repo-level code gen- 635

eration that includes rich information about the 636

code repository. Experiments on nine LLMs show 637

that CODEAGENT achieves a significant improve- 638

ment on diverse programming tasks, highlighting 639

its potential in real-world coding challenges. 640

8

Limitation641

Although our work is a very early exploration of642

this area, there are several limitations on our work643

that we aim to address as quickly as possible:644

Firstly, we propose a new task format for645

the repo-level code generation task and release646

CODEAGENTBENCH. Our preliminary experi-647

ments prove that the impact of LLMs’ memoriza-648

tion on pre-training data is slight for fair evaluation.649

However, it still needs further experiments to elimi-650

nate this hidden danger. We will follow the relevant651

research to further understand its influence on our652

proposed benchmark.653

Secondly, we only incorporate simple tools to654

CODEAGENT. Some advanced programming tools655

are not explored. The limitation may restrict the656

agent’s ability in some challenging scenarios.657

Thirdly, in Section 6.1, the comparison with658

commercial products is not rigorous since exper-659

iments are done manually. We will study how to660

evaluate IDE products more standardly.661

Finally, since LLMs are very sensitive to input662

prompts, it is very important to optimize prompts in663

the agent system. We will continue to explore better664

agent strategies based on the current approach.665

References666

Rie Kubota Ando and Tong Zhang. 2005. A framework667
for learning predictive structures from multiple tasks668
and unlabeled data. Journal of Machine Learning669
Research, 6:1817–1853.670

Galen Andrew and Jianfeng Gao. 2007. Scalable train-671
ing of L1-regularized log-linear models. In Proceed-672
ings of the 24th International Conference on Machine673
Learning, pages 33–40.674

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,675
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin676
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al.677
2022. Multi-lingual evaluation of code generation678
models. arXiv preprint arXiv:2210.14868.679

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten680
Bosma, Henryk Michalewski, David Dohan, Ellen681
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.682
Program synthesis with large language models. arXiv683
preprint arXiv:2108.07732.684

AutoGPT. 2023. https://agpt.co.685

BabyAGI. 2023. https://github.com/686
yoheinakajima/babyagi.687

Chat. 2022. https://chat.openai.com/.688

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, 689
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022. 690
Codet: Code generation with generated tests. arXiv 691
preprint arXiv:2207.10397. 692

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 693
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 694
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 695
Greg Brockman, et al. 2021. Evaluating large 696
language models trained on code. arXiv preprint 697
arXiv:2107.03374. 698

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 699
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 700
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 701
2023. Vicuna: An open-source chatbot impressing 702
gpt-4 with 90%* chatgpt quality. See https://vicuna. 703
lmsys. org (accessed 14 April 2023). 704

Claude. 2023. https://www.anthropic.com/ 705
index/claude-2. 706

CodeWhisperer. 2023. https://aws.amazon. 707
com/codewhisperer/. 708

Copilot. 2023. https://github.com/ 709
features/copilot. 710

Arghavan Moradi Dakhel, Vahid Majdinasab, Amin 711
Nikanjam, Foutse Khomh, Michel C Desmarais, and 712
Zhen Ming Jack Jiang. 2023. Github copilot ai pair 713
programmer: Asset or liability? Journal of Systems 714
and Software, 203:111734. 715

DeepSeek. 2023. https://huggingface.co/ 716
deepseek-ai. 717

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, 718
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng 719
Sha, Xin Peng, and Yiling Lou. 2023. Classe- 720
val: A manually-crafted benchmark for evaluating 721
llms on class-level code generation. arXiv preprint 722
arXiv:2308.01861. 723

GPT-3. 2022. https://platform.openai. 724
com/docs/models/gpt-base. 725

GPT-3.5. 2023. https://platform.openai. 726
com/docs/models/gpt-3-5. 727

GPT-4. 2023. https://platform. 728
openai.com/docs/models/ 729
gpt-4-and-gpt-4-turbo. 730

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 731
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 732
Samir Puranik, Horace He, Dawn Song, et al. 2021. 733
Measuring coding challenge competence with apps. 734
arXiv preprint arXiv:2105.09938. 735

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and 736
Luke Zettlemoyer. 2018. Mapping language to 737
code in programmatic context. arXiv preprint 738
arXiv:1808.09588. 739

9

https://agpt.co
https://github.com/yoheinakajima/babyagi
https://github.com/yoheinakajima/babyagi
https://github.com/yoheinakajima/babyagi
https://chat.openai.com/
https://www.anthropic.com/index/claude-2
https://www.anthropic.com/index/claude-2
https://www.anthropic.com/index/claude-2
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://huggingface.co/deepseek-ai
https://huggingface.co/deepseek-ai
https://huggingface.co/deepseek-ai
https://platform.openai.com/docs/models/gpt-base
https://platform.openai.com/docs/models/gpt-base
https://platform.openai.com/docs/models/gpt-base
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei740
Shang, and Ge Li. 2023. Self-planning code gen-741
eration with large language model. arXiv preprint742
arXiv:2303.06689.743

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Zhi Jin,744
Hao Zhu, Huanyu Liu, Kaibo Liu, Lecheng Wang,745
Zheng Fang, Lanshen Wang, Jiazheng Ding, Xuan-746
ming Zhang, Yihong Dong, Yuqi Zhu, Bin Gu, and747
Mengfei Yang. 2024. Deveval: Evaluating code748
generation in practical software projects. CoRR,749
abs/2401.06401.750

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas751
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc752
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.753
2023. Starcoder: may the source be with you! arXiv754
preprint arXiv:2305.06161.755

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,756
Julian Schrittwieser, Rémi Leblond, Tom Eccles,757
James Keeling, Felix Gimeno, Agustin Dal Lago,758
et al. 2022. Competition-level code generation with759
alphacode. Science, 378(6624):1092–1097.760

Dianshu Liao, Shidong Pan, Qing Huang, Xiaoxue Ren,761
Zhenchang Xing, Huan Jin, and Qinying Li. 2023.762
Context-aware code generation framework for code763
repositories: Local, global, and third-party library764
awareness. arXiv preprint arXiv:2312.05772.765

Llama. 2023. https://huggingface.co/766
meta-llama/Llama-2-70b-chat.767

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-768
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,769
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:770
Empowering code large language models with evol-771
instruct. arXiv preprint arXiv:2306.08568.772

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan773
Wang, Yingbo Zhou, Silvio Savarese, and Caiming774
Xiong. 2022. Codegen: An open large language775
model for code with multi-turn program synthesis.776
arXiv preprint arXiv:2203.13474.777

OpenAIFunc. 2023. https:778
//openai.com/blog/779
function-calling-and-other-api-updates.780

Norman Di Palo, Arunkumar Byravan, Leonard Hasen-781
clever, Markus Wulfmeier, Nicolas Heess, and Mar-782
tin A. Riedmiller. 2023. Towards A unified agent783
with foundation models. CoRR, abs/2307.09668.784

Haojie Pan, Zepeng Zhai, Hao Yuan, Yaojia Lv, Ruiji785
Fu, Ming Liu, Zhongyuan Wang, and Bing Qin.786
2023. Kwaiagents: Generalized information-seeking787
agent system with large language models. CoRR,788
abs/2312.04889.789

Shishir G. Patil, Tianjun Zhang, Xin Wang, and790
Joseph E. Gonzalez. 2023. Gorilla: Large lan-791
guage model connected with massive apis. CoRR,792
abs/2305.15334.793

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 794
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 795
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, 796
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, 797
and Maosong Sun. 2023. Toolllm: Facilitating large 798
language models to master 16000+ real-world apis. 799
CoRR, abs/2307.16789. 800

Mohammad Sadegh Rasooli and Joel R. Tetreault. 2015. 801
Yara parser: A fast and accurate dependency parser. 802
Computing Research Repository, arXiv:1503.06733. 803
Version 2. 804

Stephen Robertson, Hugo Zaragoza, et al. 2009. The 805
probabilistic relevance framework: Bm25 and be- 806
yond. Foundations and Trends® in Information Re- 807
trieval, 3(4):333–389. 808

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 809
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 810
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 811
Code llama: Open foundation models for code. arXiv 812
preprint arXiv:2308.12950. 813

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 814
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 815
Cancedda, and Thomas Scialom. 2023. Toolformer: 816
Language models can teach themselves to use tools. 817
arXiv preprint arXiv:2302.04761. 818

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 819
Weiming Lu, and Yueting Zhuang. 2023. Hugging- 820
gpt: Solving AI tasks with chatgpt and its friends in 821
huggingface. CoRR, abs/2303.17580. 822

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 823
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 824
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei 825
Wei, and Ji-Rong Wen. 2023a. A survey on large 826
language model based autonomous agents. CoRR, 827
abs/2308.11432. 828

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, 829
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 830
2023b. Plan-and-solve prompting: Improving zero- 831
shot chain-of-thought reasoning by large language 832
models. arXiv preprint arXiv:2305.04091. 833

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen 834
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, 835
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, 836
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran 837
Wang, Changhao Jiang, Yicheng Zou, Xiangyang 838
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, 839
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan 840
Zheng, Xipeng Qiu, Xuanjing Huan, and Tao Gui. 841
2023. The rise and potential of large language model 842
based agents: A survey. CoRR, abs/2309.07864. 843

John Yang, Akshara Prabhakar, Karthik Narasimhan, 844
and Shunyu Yao. 2023. Intercode: Standardizing 845
and benchmarking interactive coding with execution 846
feedback. arXiv preprint arXiv:2306.14898. 847

10

https://doi.org/10.48550/ARXIV.2401.06401
https://doi.org/10.48550/ARXIV.2401.06401
https://doi.org/10.48550/ARXIV.2401.06401
https://huggingface.co/meta-llama/Llama-2-70b-chat
https://huggingface.co/meta-llama/Llama-2-70b-chat
https://huggingface.co/meta-llama/Llama-2-70b-chat
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates
https://doi.org/10.48550/ARXIV.2307.09668
https://doi.org/10.48550/ARXIV.2307.09668
https://doi.org/10.48550/ARXIV.2307.09668
https://doi.org/10.48550/ARXIV.2312.04889
https://doi.org/10.48550/ARXIV.2312.04889
https://doi.org/10.48550/ARXIV.2312.04889
https://doi.org/10.48550/ARXIV.2305.15334
https://doi.org/10.48550/ARXIV.2305.15334
https://doi.org/10.48550/ARXIV.2305.15334
https://doi.org/10.48550/ARXIV.2307.16789
https://doi.org/10.48550/ARXIV.2307.16789
https://doi.org/10.48550/ARXIV.2307.16789
http://arxiv.org/abs/1503.06733
https://doi.org/10.48550/ARXIV.2303.17580
https://doi.org/10.48550/ARXIV.2303.17580
https://doi.org/10.48550/ARXIV.2303.17580
https://doi.org/10.48550/ARXIV.2303.17580
https://doi.org/10.48550/ARXIV.2303.17580
https://doi.org/10.48550/ARXIV.2308.11432
https://doi.org/10.48550/ARXIV.2308.11432
https://doi.org/10.48550/ARXIV.2308.11432
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak848
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.849
React: Synergizing reasoning and acting in language850
models. arXiv preprint arXiv:2210.03629.851

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan852
Vasilescu, and Graham Neubig. 2018. Learning to853
mine aligned code and natural language pairs from854
stack overflow. In Proceedings of the 15th interna-855
tional conference on mining software repositories,856
pages 476–486.857

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,858
Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and859
Qianxiang Wang. 2023. Codereval: A benchmark860
of pragmatic code generation with generative pre-861
trained models. arXiv preprint arXiv:2302.00288.862

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin,863
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,864
and Jian-Guang Lou. 2022. Cert: Continual pre-865
training on sketches for library-oriented code genera-866
tion. arXiv preprint arXiv:2206.06888.867

Kechi Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin. 2023a.868
Toolcoder: Teach code generation models to use apis869
with search tools. arXiv preprint arXiv:2305.04032.870

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023b.871
Self-edit: Fault-aware code editor for code genera-872
tion. In Proceedings of the 61st Annual Meeting of873
the Association for Computational Linguistics (Vol-874
ume 1: Long Papers), ACL 2023, Toronto, Canada,875
July 9-14, 2023, pages 769–787.876

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex877
Smola. 2022. Automatic chain of thought prompt-878
ing in large language models. arXiv preprint879
arXiv:2210.03493.880

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan881
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,882
Yang Li, et al. 2023. Codegeex: A pre-trained model883
for code generation with multilingual evaluations on884
humaneval-x. arXiv preprint arXiv:2303.17568.885

11

https://doi.org/10.18653/V1/2023.ACL-LONG.45
https://doi.org/10.18653/V1/2023.ACL-LONG.45
https://doi.org/10.18653/V1/2023.ACL-LONG.45

A Details of Case Study886

Here we show the illustration of the case study887

for CODEAGENT (GPT-3.5-ReAct) and GPT-3.5-888

NoAgent in Figures 3 and 4.889

We can find a distinct operational pattern in890

CODEAGENT in Figure 3. Through meticulous891

analysis, CODEAGENT leverages code symbol nav-892

igation tool to scrutinize information within the893

‘utils.kernels’ module, where the target class for894

implementation resides. Our custom-designed tool895

proficiently navigates to the module, offering in-896

sights into its contents, including package details,897

defined functions and classes, through a static anal-898

ysis process. Importantly, CODEAGENT discovers899

a crucial class named ‘KernelBase’ and obtains900

detailed information about it with another use of901

the tool. Within ‘KernelBase’, there is an abstract902

method named ‘_kernel’ that needs to be imple-903

mented. CODEAGENT recognizes this method as904

essential for the development process, highlight-905

ing its importance. Compared with the NoAgent906

in Figure 4, our approach accurately captures this907

content hidden in the complex information in the908

code repository, and precisely implements the final909

code.910

We also notice that during the third tool invoca-911

tion, CODEAGENT calls the code interpreter tool912

and execute a piece of code that appears insignifi-913

cant. We have observed similar situations in other914

cases as well. We attribute this to LLMs still lack-915

ing proficient mastery of some complex program-916

ming tools. This insight directs our future research917

towards enhancing LLMs’ ability to more effec-918

tively use complex programming tools.919

B Details of CODEAGENTBENCH920

In this section, we introduce the details of our921

CODEAGENTBENCH benchmark. We describe its922

composition format (Section B.1), the construction923

process (Section B.2), and provide a detailed com-924

parison with existing benchmarks (Section B.3).925

B.1 Benchmark Composition926

Code repository contains intricate invocation re-927

lationships. Only with a deep understanding of928

code repository can LLMs generate satisfying pro-929

grams that not only adhere to requirements but930

also seamlessly integrate with the current reposi-931

tory. Inspired by this, each task of our benchmark932

provides rich information, encompassing the docu-933

mentation, code dependency, runtime environment,934

self-contained test suite, and canonical solution, 935

which form the input and output. 936

B.1.1 Benchmark Input 937

Documentation Documentations are the main in- 938

put component of our benchmark and describe the 939

generation targets. We follow the code documen- 940

tation format used in a popular documentation cre- 941

ation tool Sphinx 7. Figure 1 illustrates an example 942

of documentation in CODEAGENTBENCH, where 943

different elements are highlighted with diverse col- 944

ors. When accomplishing a new task, our prepared 945

documentation can provide LLMs with all-sided 946

details that need to be considered to ensure that 947

the generation target has been well-defined and 948

constrained. 949

Contextual Dependency Contextual depen- 950

dency is an important role in our benchmark. To 951

accurately identify these dependencies, we devel- 952

oped a static analysis tool using tree-sitter 8. Our 953

designed tool allows us to extract all user-defined 954

elements (such as class names, function names, 955

constants, and global variables) and public library 956

names from each file. These elements are then 957

stored in a knowledge base. For any given function, 958

we use this knowledge base to locate its source file, 959

parse the file to identify all user-defined symbols 960

and public libraries, and finally determine its con- 961

textual dependencies by exact matching of symbol 962

names and scopes. On average, each sample in 963

CODEAGENTBENCH involves around 3.1 code de- 964

pendencies, thereby closely simulating real-world 965

programming conditions. Detailed information is 966

shown in Table 2. 967

Runtime Environment Developers often use 968

feedback from running programs to find and fix 969

mistakes. In CODEAGENTBENCH, we build a 970

sandbox environment for each task. The sandbox 971

environment provides all configurations needed to 972

run the repository and offers convenient interaction 973

to ensure an all-sided evaluation of LLMs’ perfor- 974

mance on repo-level code generation. 975

B.1.2 Benchmark Ground-truth Output 976

Canonical Solution We use the answers included 977

in the repository as the initial solutions and invite 978

three participants to manually refine them. The 979

first participant checks surface errors of solutions 980

based on the repository information. The second 981

7https://www.sphinx-doc.org/
8https://tree-sitter.github.io/tree-sitter/

12

Input
"PolynomialKernel"

class numpy_ml.utils.kernels.PolynomialKernel(d=3, gamma=None, c0=1)

The degree-*d* polynomial kernel.

-[Notes]-
For input vectors \mathbf{x} and \mathbf{y}, the polynomial kernel is:
k(\mathbf{x}, \mathbf{y}) = (\gamma \mathbf{x}^\top \mathbf{y} + c_0)^d
In contrast to the linear kernel, the polynomial kernel also computes similarities *across* dimensions of the **x** and **y** vectors, allowing it to account for interactions between features.
As an instance of the dot product family of kernels, the polynomial kernel is invariant to a rotation of the coordinates about the origin, but *not* to translations.

Parameters:
* **d** (*int*) -- Degree of the polynomial kernel. Default is 3.
* **gamma** (*float** or **None*) -- A scaling parameter for the dot product between *x* and *y*, determining the amount of smoothing/resonlution of the kernel. Larger values result in
greater smoothing. If None, defaults to 1 / *C*. Sometimes referred to as the kernel bandwidth. Default is None.
* **c0** (*float*) -- Parameter trading off the influence of higher-order versus lower-order terms in the polynomial. If *c0* = 0, the kernel is said to be homogenous. Default is 1.

set_params(summary_dict)
Set the model parameters and hyperparameters using the settings in *summary_dict*.
Parameters:

summary_dict (*dict*) -- A dictionary with keys 'parameters' and 'hyperparameters', structured as would be returned by the "summary()" method. If a particular (hyper)parameter is not
included in this dict, the current value will be used.

Returns:
new_kernel (Kernel instance) -- A kernel with parameters and hyperparameters adjusted to those specified in *summary_dict*.

summary()
Return the dictionary of model parameters, hyperparameters, and ID

Tool-1 (Code Symbol Navigation)
SymbolSearch(numpy_ml.utils.kernels)
=>
import_package_or_function: re, np, ABC, abc, abstractmethod
mannual_defined_function: pairwise_l2_distances, kernel_checks
mannual_defined_class: LinearKernel, KernelInitializer, KernelBase, RBFKernel

Tool-2 (Code Symbol Navigation)
SymbolSearch(KernelBase)
=>
The code is:
```python
class KernelBase(ABC):
    def __init__(self):

…
    @abstractmethod
    def _kernel(self, X, Y):

…
    def __call__(self, X, Y=None):

…
    def __str__(self):

…
    def summary(self):

…
    def set_params(self, summary_dict):

…
```

Tool-3 (Code Interpreter)
PythonREPL(……)
=>
The output is empty.

The input code:
import numpy as np
from numpy_ml.utils.kernels import KernelBase

CodeAgent (GPT-3.5-ReAct) Output
Let's continue with the implementation of the PolynomialKernel class. The kernel function for this class involves a dot product of the input vectors, raised to a specified degree, and optionally
scaled and shifted. This can be implemented using numpy's dot product function and basic arithmetic operations.

The set_params and summary methods can be inherited from the base class without modifications, as they should work the same for any kernel. The `_kernel` method needs to be overridden
to implement the polynomial kernel function.

Here is the completed implementation:

```python
class PolynomialKernel(KernelBase):

def __init__(self, d=3, gamma=None, c0=1):
super().__init__()
self.parameters = {"d": d, "c0": c0, "gamma": gamma if gamma is not None else 1.0}
self.hyperparameters = {"id": "PolynomialKernel"}

def _kernel(self, X, Y):
gamma = self.parameters["gamma"]
c0 = self.parameters["c0"]
d = self.parameters["d"]
result = (gamma * np.dot(X, Y.T) + c0) ** d
return result

```

In this class, the `__init__` method sets up the degree, gamma, and c0 parameters, with defaults as specified. If gamma is not provided (None), it's default value is set to 1.

The `_kernel` method implements the polynomial kernel function. It first retrieves the parameters from the class' attribute `parameters`. It then computes the polynomial kernel function as
`(gamma * dot_product(X, Y) + c0) ** d` and returns the result. Note that `np.dot(X, Y.T)` is used to compute the dot product of X and Y. The transpose of Y (`Y.T`) is used since in numpy, the dot
function computes dot product along the last axis of the input arrays, so we need to make sure the vectors in X and Y align correctly.

Figure 3: Case study of our proposed CODEAGENT (GPT-3.5-ReAct) on CODEAGENTBENCH. We omit some
input prompts and LLM’s thoughts for viewing convenience.

person runs the solutions to identify and fix execu-982

tion bugs. The last participant is responsible for983

executing solutions with the test suite, aiming to984

ensure its functional correctness. Through the it-985

erative process, we can ensure the robustness and986

reliability of solutions as much as possible.987

B.1.3 Benchmark Evaluation 988

Self-Contained Test Suite To evaluate the cor- 989

rectness of generated programs, CODEAGENT- 990

BENCH furnishes a self-contained test suite for 991

each task. We first analyze and extract test cases 992

contained in the repository. We then invite two 993

participants to manually add test cases to enhance 994

13

GPT-3.5-NoAgent Output
Here is the implementation of the `PolynomialKernel` class in the `numpy_ml.utils.kernels` module:

```python
class PolynomialKernel:
    def __init__(self, d=3, gamma=None, c0=1):
        self.d = d
        self.gamma = gamma
        self.c0 = c0

    def set_params(self, summary_dict):
        if 'parameters' in summary_dict:
            self.d = summary_dict['parameters'].get('d', self.d)
            self.gamma = summary_dict['parameters'].get('gamma', self.gamma)
            self.c0 = summary_dict['parameters'].get('c0', self.c0)
        if 'hyperparameters' in summary_dict:
            self.d = summary_dict['hyperparameters'].get('d', self.d)
            self.gamma = summary_dict['hyperparameters'].get('gamma', self.gamma)
            self.c0 = summary_dict['hyperparameters'].get('c0', self.c0)

    def summary(self):
        return {
            'parameters': {'d': self.d, 'gamma': self.gamma, 'c0': self.c0},
            'hyperparameters': {'d': self.d, 'gamma': self.gamma, 'c0': self.c0},
            'ID': id(self)
        }
```

Note that the `PolynomialKernel` class has three parameters in its constructor: `d`, `gamma`, and `c0`. The `set_params` method allows updating the parameters of the kernel using a dictionary,
and the `summary` method returns a dictionary containing the current parameters, hyperparameters, and the ID of the kernel instance. ...

Figure 4: Case study of the baseline GPT-3.5-NoAgent on CODEAGENTBENCH. Compared with Figure 3, GPT-
3.5-NoAgent generates the incorrect programs.

its coverage as much as possible. In CODEAGENT-995

BENCH, each task has at least one unit test case.996

Whereafter, another participant manually checks997

the correctness of the test suite. Given a new task,998

we run the corresponding unit test code to verify999

the generated programs based on our sandbox envi-1000

ronment. We treat the generated program correctly1001

only if its output aligns with all ground truths of1002

the test suite. For fairness, LLMs can not access1003

the test suite during code generation.1004

B.2 Benchmark Construction Process1005

To make CODEAGENTBENCH diverse, we select1006

five prevalent topics judged by ten developers and1007

choose repositories with high stars from GitHub.1008

The selected topics contain machine learning, data1009

structure, information extraction, database, and net-1010

working. To ensure the quality, we only select1011

repositories that use pytest 9 and unittest10 as the1012

test framework and its documentation is generated1013

by Sphinx11 tool. We also filter out complex repos-1014

itories that are hard to deploy and test. Then, we1015

extract all functions and classes in code repositories1016

and arrange two participants to sequentially exe-1017

cute them. Our construction costs approximately1018

600 person-hours. Each participant possesses 2-1019

5 years of Python programming experience. Fi-1020

nally, we get 101 functions and classes collected1021

from real code projects in Python. The statistics of1022

CODEAGENTBENCH are shown in Table 2.1023

9https://docs.pytest.org/
10https://docs.python.org/3/library/unittest.html
11https://www.sphinx-doc.org/

B.3 Compared with Existing Benchmarks 1024

We perform a detailed analysis of existing code gen- 1025

eration benchmarks in Table 7. Compared to the 1026

previous benchmarks, our CODEAGENTBENCH 1027

has two main advantages. On the one hand, it 1028

is closer to real-world code generation scenarios. 1029

On the other hand, CODEAGENTBENCH provides 1030

pretty complex information that is related to the 1031

code repository, including documentation, contex- 1032

tual dependency, runtime environments, and test 1033

suites. In Figure 5, we give an illustrative exam- 1034

ple of HumanEval, a function-level code genera- 1035

tion benchmark. Compared with ours in Figure 1036

1, it is obvious that our constructed CODEAGENT- 1037

BENCH contains complex descriptions and code 1038

dependencies, which is more realistic than the ex- 1039

isting benchmark. This information can efficiently 1040

prompt LLMs for repo-level code generation. 1041

from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other
than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>>
has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """

Function Signature & Description

def has_close_elements(numbers: List[float], threshold: float):
for idx, elem in enumerate(numbers):

…
return False

Output Code

Input Description

Figure 5: An illustrative example of existing benchmark
HumanEval.

14

Benchmark Language Source Task Samples # Tests # Line # Tokens # Input

CoNaLA (Yin et al., 2018) Python Stack Overflow Statement-level 500 ✖ 1 4.6 NL

Concode (Iyer et al., 2018) Java Github Function-level 2000 ✖ - 26.3 NL

APPS (Hendrycks et al., 2021) Python Contest Sites Competitive 5000 ✔ 21.4 58 NL + IO

HumanEval (Chen et al., 2021) Python Manual Function-level 164 ✔ 11.5 24.4 NL + SIG + IO

MBXP (Athiwaratkun et al., 2022) Multilingual Manual Function-level 974 ✔ 6.8 24.2 NL

InterCode (Yang et al., 2023) SQL, Bash Manual Function-level 200, 1034 ✔ - - NL + ENV

CodeContests (Li et al., 2022) Python, C++ Contest Sites Competitive 165 ✔ 59.8 184.8 NL + IO

ClassEval (Du et al., 2023) Python Manual Class-level 100 ✔ 45.7 123.7 NL + CLA

CoderEval (Yu et al., 2023) Python, Java Github Project-level 230 ✔ 30.0 108.2 NL + SIG

RepoEval (Liao et al., 2023) Python Github Repository-level 383 ✖ - - NL + SIG

CODEAGENTBENCH Python Github Repository-level 101 ✔ 57.0 477.6
Software Artifacts

(NL + DOC
+ DEP + ENV)

Table 7: The statistics of existing widely-used code generation benchmarks. # Tests: whether a benchmark has the
test suite. # Line: average lines of code. # Tokens: average number of tokens. # Input: Input information of LLMs.
NL: Natural language requirement. IO: Input and output pairs. SIG: Function signature. CLA: Class skeleton as
described in Section 2.2. ENV: Runtime environment. DOC: Code documentation. DEP: Code dependency.

15

	Introduction
	Background
	LLMs and Agents for Code Generation
	Code Generation Tasks

	Repo-level Code Generation Task
	CodeAgent Method
	Designed Programming Tools
	Information Retrieval Tools
	Code Implementation Tools
	Code Testing Tools

	Agent Strategy

	Experiment
	Experimental Setup
	Repo-level Coding Performance
	Function-level Coding Performance
	Ablation Study

	Discussion
	Compared with Commercial Products
	Qualitative Analysis

	Conclusion
	Details of Case Study
	Details of CodeAgentBench
	Benchmark Composition
	Benchmark Input
	Benchmark Ground-truth Output
	Benchmark Evaluation

	Benchmark Construction Process
	Compared with Existing Benchmarks

