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ABSTRACT

Inverse rendering with Gaussian Splatting has advanced rapidly, but accurately
disentangling material properties from complex global illumination effects, par-
ticularly indirect illumination, remains a major challenge. Existing methods of-
ten query indirect radiance from Gaussian primitives pre-trained for novel-view
synthesis. However, these pre-trained Gaussian primitives are supervised only
towards limited training viewpoints, thus lack supervision for modeling indirect
radiances from unobserved views. To address this issue, we introduce radiometric
consistency loss, a novel physically-based constraint that provides supervision to-
wards unobserved views by minimizing the residual between each Gaussian prim-
itive’s learned radiance and its physically-based rendered counterpart. Minimiz-
ing the residual for unobserved views establishes a self-correcting feedback loop
that provides supervision from both physically-based rendering and novel-view
synthesis, enabling accurate modeling of inter-reflection. We then propose Radio-
metrically Consistent Gaussian Surfels (RadioGS), an inverse rendering frame-
work built upon our principle by efficiently integrating radiometric consistency
by utilizing Gaussian surfels and 2D Gaussian ray tracing. We further propose a
finetuning-based relighting strategy that adapts Gaussian surfel radiances to new
illuminations within minutes, achieving low rendering cost (<10ms). Extensive
experiments on existing inverse rendering benchmarks show that RadioGS outper-
forms existing Gaussian-based methods in inverse rendering, while retaining the
computational efficiency.

1 INTRODUCTION

Inverse rendering, a long-standing task in computer vision and graphics, seeks to recover scene
properties such as geometry, material, and illumination from one or more input images. Despite
its significance, this problem remains non-trivial due to the complex interactions between light and
materials, as well as the uncertainty of lighting conditions. Inspired by the remarkable success
of neural radiance fields in novel view synthesis (NVS) (Mildenhall et al., 2021), recent inverse
rendering techniques have adopted these implicit neural representations (Zhang et al., 2021b; Boss
et al., 2021; Zhang et al., 2021a; Liang et al., 2023). More recently, Gaussian Splatting (Kerbl et al.,
2023) has emerged as a powerful alternative to overcome the computational demands of implicit
neural representations.

While Gaussian Splatting allows faster optimization and real-time rendering, modeling complex
global illumination effects, particularly indirect illumination and inter-reflections between surfaces,
remains a significant challenge. Existing Gaussian-based inverse rendering approaches often ad-
dress indirect illumination as learnable residual light (Gao et al., 2024; Liu et al., 2024; Bi et al.,
2024), or obtain incident radiances from NVS-trained Gaussian primitives (Liang et al., 2024; Shi
et al., 2023; Sun et al., 2025; Gu et al., 2024). These approaches, however, lack supervision for
indirect radiances from unobserved directions due to the limited viewpoints available during NVS
training. Inaccurate indirect radiances from unobserved directions may lead to incorrect surface and
illumination decomposition, such as baking indirect lighting effects into the surface.

In this work, we introduce a novel physically-based constraint for Gaussian-based inverse rendering,
termed radiometric consistency loss, inspired by principles from self-training neural radiance caches
for global illumination (Hadadan et al., 2021; Müller et al., 2021). Radiometric consistency aims to
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(b) Rendering and decomposition results

PBR render Roughness NormalAlbedo

(a) Realistic and detailed indirect illumination modeling

Indirect Radiance

IRGS SVG-IR Ours

Relighting Results

PBR render Indirect 
Illumination

(c) Relighting results on real-world object dataset

PBR Indirect
Rad. PBR Indirect

Rad. PBR Indirect
Rad. PBR Indirect

Rad.

Figure 1: We introduce RadioGS, a novel inverse rendering framework that models accurate indirect
illumination by providing a novel physically-based supervision on unobserved directions. (a) Com-
pared to existing Gaussian-based methods (Gu et al., 2024; Sun et al., 2025), our method provides
realistic inter-reflection between the red bulb and the blobs on the yellow lego surface, (b) leading
to robust decomposition of scene properties. (c) Our method can also generate realistic indirect
illumination on new lighting conditions for real objects from Stanford-ORB dataset (Kuang et al.,
2023).

reduce the residual between the learned radiances of Gaussian primitives and the physically-based
rendered (PBR) radiances for unobserved directions, generating a self-correcting guidance between
view-constrained Gaussian radiances and physical principle induced from the PBR radiances. Our
physically-based constraint allows Gaussian primitives to self-correct their radiances to match the
consistency and provide accurate indirect illumination for unobserved viewpoints.

We further propose RadioGS, an inverse rendering framework with efficiently integrated radiomet-
ric consistency by employing Gaussian surfels and differentiable Gaussian ray tracing. Furthermore,
we introduce an efficient relighting strategy that leverages radiometric consistency to rapidly adapt
Gaussian surfel radiances under novel lighting conditions, enabling per-frame rendering time below
10ms by directly utilizing adapted surfel radiances. Thorough experiments on multiple inverse ren-
dering benchmarks demonstrate that RadioGS shows enhanced disentanglement of inter-reflections
from material and geometry reconstruction, leading to superior relighting performance compared to
existing Gaussian-based inverse rendering methods both quantitatively and qualitatively. In sum-
mary, our main contributions are as follows:

• Radiometric consistency, a novel physically-based constraint that guides Gaussian surfels
to self-correct their radiance by enforcing consistency between surfel radiance and physi-
cally rendered radiance for unobserved viewpoints.

• RadioGS, a novel inverse rendering framework that efficiently integrates radiometric con-
sistency based on 2D Gaussian ray tracing to accurately model indirect illumination for
enhanced inverse rendering performance.

• An efficient relighting method that adapts Gaussian surfel radiances under new lighting
conditions within a few minutes, achieving notable reduction in rendering time (<10ms).

2 RELATED WORKS

Inverse Rendering with Neural Radiance Fields. Inverse rendering aims to recover and decom-
pose scene properties such as geometry, material, and lighting conditions from images (Marschner,
1998). Inspired by the success of neural radiance fields (NeRFs) (Mildenhall et al., 2021) for novel
view synthesis (NVS), several works leverage NeRF-like neural representations to optimize scene
properties (Zhang et al., 2021a;b; Srinivasan et al., 2021) guided by the rendering equation
(Kajiya, 1986). Another line of research focuses on modeling indirect illumination to achieve an
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improved disentanglement of lighting conditions using NeRFs (Zhang et al., 2022; Yao et al., 2022;
Zhang et al., 2023; Li et al., 2024) or directly queries indirect radiance from NVS pre-trained radi-
ance fields (Jin et al., 2023). Subsequent works deploy path tracing (Wu et al., 2023; Dai et al., 2024)
or devise enhanced sampling strategies (Attal et al., 2024) to query incident radiances for physically-
based rendering with NeRFs. However, modeling indirect illumination with NeRFs is computation-
ally intensive due to its reliance on volumetric ray marching and numerous neural network queries
per ray. Our method provides an efficient representation for modeling indirect illumination with
physically-based constraints for inverse rendering.

Inverse Rendering with Gaussian Splatting. Recent advances leverage Gaussian primitives (Kerbl
et al., 2023) to encode geometry and material information, enabling fast optimization for inverse
rendering (Liu et al., 2024; Bi et al., 2024). However, modeling indirect illumination with Gaus-
sian primitives remains a key challenge. Existing methods model indirect radiances as per-Gaussian
learnable parameters (Gao et al., 2024; Bi et al., 2024; Ye et al., 2025), but the unconstrained opti-
mization may lead to ambiguous decomposition of illumination and material information. Another
line of work queries indirect radiances from NVS-pretrained Gaussian primitives by baking irradi-
ance volumes (Liang et al., 2024) or using point-based ray tracing (Sun et al., 2025). Yet, NVS-
pretrained Gaussian primitives are supervised only towards observed directions, lacking supervision
along arbitrary directions for indirect radiances. Recent work (Gu et al., 2024) leverages differ-
entiable Gaussian ray tracing to optimize indirect radiances, but the training signal is still derived
from synthesizing images of observed views. In contrast to these approaches, our work introduces
physically-based supervision for unobserved viewpoints by enforcing all Gaussian radiances to sat-
isfy the principle of the rendering equation.

Self-training Radiance Caches for Global Illumination. Efficiently evaluating the rendering
equation (Kajiya, 1986) is central to both rendering and inverse rendering. Classical radiosity (Goral
et al., 1984; Immel et al., 1986) solves a simplified, diffuse form of rendering equation via linear
systems, while radiance caching (Krivánek et al., 2005; Krivanek & Gautron, 2022) amortizes the
computational cost by storing and interpolating light samples. Recent work shows that neural caches
can be self-trained to satisfy the rendering equation by iteratively minimizing the rendering-equation
residual (Müller et al., 2021; Hadadan et al., 2021), and that such caches provide effective supervi-
sion on global illumination for differentiable rendering (Hadadan et al., 2023). We therefore pro-
pose an inverse rendering framework that extends these principles to Gaussian primitives, efficiently
guiding Gaussian primitives to represent global illumination.

3 PRELIMINARIES

Gaussian Surfels, also termed 2D Gaussian Splatting (2DGS) (Huang et al., 2024), represent a
scene with disk-like 2D Gaussian primitives, which are derived form of 3D Gaussian primitives. A
Gaussian surfel is expressed using a transformation matrix H ∈ R4×4 that transforms the surfel’s
local UV space to world space as below:

H =

[
sutu svtv 0 p
0 0 0 1

]
, (1)

where tu, tv , s = (su, sv), and p refer to the two principal tangential vectors, the scaling vector,
and the center position, respectively.

Ray-splat intersection is employed to determine the contribution of surfels for final rendering. A
Gaussian surfel contains an opacity α and a view-dependent radiance attribute c parameterized by
learnable spherical harmonics coefficients SHj . Each pixel is rendered by alpha-blending of N
depth-sorted Gaussian surfels:

C =

N∑
j=1

Tjαjcj , Tj =

j−1∏
k=1

(1− αk), cj = SHj(ωo), (2)

where C is the final pixel color, Tj is the accumulated transmittance, and SHj is the spherical har-
monics coefficients parameterization of cj . We utilize the Gaussian surfels as the baseline for our
inverse rendering framework for robust geometry recovery, and its integration with Gaussian ray
tracing (described in Sec. 4.1.2).

3
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Physically-based Rendering (PBR) models the interaction between light and surfaces in a scene
via the rendering equation (Kajiya, 1986). The outgoing radiance L(x, ωo) at a surface point x in
direction ωo is defined as follows:

L(x, ωo) =

∫
Ω

fr(x, ωo, ωi)Li(x, ωi)(ωi · nx)dωi (3)

where fr is the bidirectional reflectance distribution function (BRDF), nx is the normal at point x,
and Li(x, ωi) is the incoming radiance at the point x in direction ωi.

We assume the target materials for inverse rendering are mostly dielectric, where the diffuse and
specular reflectance, fd and fs, of a surface point x are governed by diffuse albedo a(x) and rough-
ness r(x), respectively. These parameters define the total reflectance fr based on a simplified Disney
BRDF (Burley & Studios, 2012) to model the reflectance as below:

fr(x, ωo, ωi) = fd(x) + fs(x, ωo, ωi) =
a(x)

π
+

DFG

4(nx · ωi)(nx · ωo)
, (4)

where D, F , and G are the normal distribution function, the Fresnel term, and the geometry term,
respectively, which depend on roughness r(x).

Incoming radiance Li may result directly from the light source or through indirect bounces of other
surfaces, depending on the visibility at the surface. Thus, we model the incoming radiance as below:

Li(x, ωi) = V (x, ωi) · Ldir(x, ωi) + Lind(x, ωi), (5)
where V is the visibility at the surface point x with respect to the direction ωi, and Ldir and Lind

are the corresponding direct and indirect incident radiance terms. We note that Ldir is independent
of x when light sources are distant.

4 METHOD

In this section, we first introduce our novel physically-based regularization termed radiometric con-
sistency. Building on this, we present our inverse rendering framework called Radiometrically Con-
sistent Gaussian Surfels (RadioGS), followed by our efficient relighting method based on our radio-
metric consistency.

4.1 RADIOMETRIC CONSISTENCY FOR GAUSSIAN SURFELS

Modeling accurate indirect illumination and inter-reflections between Gaussian surfels is crucial
for robust decomposition of lighting and material information. Recent GS-based inverse rendering
methods query indirect radiance directly from Gaussian surfels, but the surfel radiances are super-
vised only through reconstruction from the training images. As a result, surfel radiances along
directions that are unseen by camera rays can lead to arbitrary values while still fitting the training
images, degrading the stability and accuracy of indirect illumination (top-right diagram of Fig. 2).
To address this issue, we introduce radiometric consistency, a novel physically-based constraint that
guides Gaussian surfel radiances for unobserved directions based on the physically-based rendering
process (bottom-right diagram of Fig. 2).

4.1.1 FORMULATION

We consider a set of Gaussian surfels G = {Gj} pretrained for novel-view synthesis (NVS) with
each surfel Gi. Let us denote the surfel radiance at position x towards direction ωo, as LG(x, ωo),
which is queried from spherical harmonics coefficients of the corresponding Gaussian surfel. Each
surfel has optimizable parameters for albedo and roughness. Direct illumination Ldir(ωi) is repre-
sented by an environment cubemap for inverse rendering.

The core principle of our radiometric consistency is that the learned outgoing radiance of a surfel
should match its physically-rendered radiance, as dictated by the rendering equation (Eq 3. We
formulate our principle as a residual minimization problem. Following Eq. 3, the residual rG can
be expressed as the difference between the surfel radiance LG and the physically-based rendered
radiance LPBR

G as below:

LPBR
G (x, ωo) =

∫
Ω

fr (x, ωo, ωi;G) (V (x, ωi;G)Ldir(ωi) + Lind(x, ωi;G)) (ωi · nx)dωi, (6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

RadioGS

NVS pre-trained GS

Illustration of Proposing RadioGS

z

Gaussian Surfels 

ℒ𝒓𝒓𝒓𝒓𝒓𝒓 = 𝑳𝑳𝑮𝑮 − 𝑳𝑳𝐆𝐆𝐏𝐏𝐏𝐏𝐏𝐏𝑳𝑳𝑮𝑮

R
asterizer

𝑳𝑳𝐆𝐆𝐏𝐏𝐏𝐏𝐏𝐏
Learnable Env. Map

𝒑𝒑𝒋𝒋,𝒔𝒔𝒋𝒋, 𝒕𝒕𝒖𝒖,𝒋𝒋, 𝒕𝒕𝒗𝒗,𝒋𝒋,𝛼𝛼𝑗𝑗 ,𝑆𝑆𝑆𝑆𝑗𝑗
Pre-trained Attributes

PBR radianceSurfel radiance

Physically-based Rendering

Rendered
Output

GT

ℒ𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

Forward

Backward

Radiometric Consistency 2D Gaussian Ray Tracing
Indirect Illumination Supervision

𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑗𝑗
Material Attributes

𝒑𝒑𝒋𝒋, 𝒔𝒔𝒋𝒋, 𝒕𝒕𝒋𝒋,𝜎𝜎𝑗𝑗, 𝑐𝑐𝑗𝑗, 𝑎𝑎𝑗𝑗, 𝑟𝑟𝑗𝑗

Figure 2: Overview of our RadioGS. Left: Our radiometric consistency loss Lrad provides
physically-based supervision on indirect radiances from views unobserved by image reconstruction
loss Lrecon, by enforcing consistency between surfel radiance LG and physically-based rendered
(PBR) radiance LPBR

G of Gaussian surfels. Radiometric consistency is seamlessly integrated into
the inverse rendering framework, guiding Gaussian surfels to obtain physically-based radiance for
delivering realistic indirect radiance to other surfels. 2D Gaussian ray tracing is deployed to jointly
optimize ray-traced Gaussian surfels with our radiometric consistency loss. Right: Black-dotted ar-
rows show NVS supervision, which leaves the occluded green Gaussian unconstrained, while pink-
dotted arrows show our radiometric consistency providing additional supervision on its outgoing
radiance along unseen directions (e.g., towards other Gaussian surfels).

RG(x, ωo) = LG(x, ωo)− LPBR
G (x, ωo), (7)

where LPBR
G is the radiance calculated by physically-based rendering, fr(·;G), V (·;G), and

Lind(·;G) are the BRDF, visibility, and indirect light induced by Gaussian surfels G based on
Eq. 4 and Eq. 5, respectively.

Our radiometric consistency aims to reduce the l1-norm of the residual over all Gaussian surfels and
all possible directions ωo denoted as Lrad:

Lrad(G) = Ej,ωo
[∥RG∥1] . (8)

Minimizing the residual norm ∥RG∥1 establishes a self-correcting feedback loop based on the
rendering equation. On one hand, the physically-rendered radiance LPBR

G serves as a physically
grounded target, guiding the surfel radiance LG to represent global illumination for unobserved
viewpoints, based on the rendering equation. On the other hand, the well-constrained surfel radi-
ances LG towards camera viewpoints provide a strong supervisory signal that is propagated to the
surfel radiances contributing to the indirect illumination term Lind of Eq. 6. This synergistic process
allows the Gaussian surfels to obtain physically grounded radiances, thereby providing physically-
induced illumination for other surfels.

4.1.2 2D GAUSSIAN RAY TRACING AND MONTE CARLO SAMPLING

Obtaining the visibility V (·;G) and indirect radiance Lind(·;G) from Gaussian surfels is critical for
creating our self-correcting feedback loop based on the inter-reflection among surfels. Point-based
ray tracing has been applied to precompute visibility (Gao et al., 2024; Guo et al., 2024) and to query
indirect radiance (Sun et al., 2025) from Gaussian primitives, but lacks the differentiability and speed
required for use during optimization. Inspired by recent works leveraging differentiable Gaussian
ray tracing (Moenne-Loccoz et al., 2024; Xie et al., 2024), we deploy a 2D Gaussian ray tracer
from IRGS (Gu et al., 2024) to leverage optimization through ray-traced surfels for radiometric
consistency. 2D Gaussian ray tracing brings seamless integration with our Gaussian surfels by
sharing the same ray-splat intersection that defines the contribution of Gaussian surfels.

Given a ray with the origin x and the direction ωi, our ray tracer Trace(x, ωi;G) = (Ltrace, Ttrace)
gathers Gaussian surfels intersecting the ray and returns accumulated radiance Ltrace and the final
transmittance Ttrace following the alpha-blending process of Eq. 2. We use ray-traced radiance
Ltrace directly as indirect radiance Lind(x, ωi;G) and the complement of transmittance 1− Ttrace

5
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as visibility V (x, ωi;G)), respectively. Using our ray tracer, we acquire the Monte Carlo estimate
of the integral in Eq. 7 as below:

LPBR
G (x, ωo) ≈

2π

Ns

Ns∑
i=1

fr(x, ωo, ωi;G) (V (x, ωi;G)Ldir(ωi) + Lind(x, ωi;G)) (ωi · nx), (9)

where we uniformly sample Ns incident directions ωi over the hemisphere defined by the surfel
normal nx.

We also perform Monte Carlo sampling on Gaussian surfels G and direction ωo for residual estima-
tion. We randomly sample Ng surfels for each optimization step, and also sample random directions
on the hemisphere defined by the normal of each sampled surfel to generate guidance towards un-
observed directions. In addition, we additionally sample the directions towards camera viewpoint
to propagate well-constraint supervisory signal to ray-traced Gaussian surfels. In conclusion, our
design for residual estimation allows us to efficiently deploy radiometric consistency, generating
self-correcting training signals explicitly for surfel radiance LG and PBR radiance LPBR

G to satisfy
the physical constraint of the rendering equation.

4.2 INVERSE RENDERING WITH RADIOMETRICALLY CONSISTENT GAUSSIAN SURFELS

In this section, we introduce our inverse rendering framework RadioGS, optimizing Gaussian surfels
for inverse rendering under the physically-based constraints from our radiometric consistency. Our
framework operates in two stages to ensure both stable training and accuracy. We then introduce our
efficient relighting strategy based on radiometric consistency.

Initialization. Existing works initialize geometry via NVS pre-training proir to tackling inverse ren-
dering. To incorporate our physically-based constraint during initialization, we additionally intro-
duce a simplified version of our radiometric consistency loss, using an efficient split-sum approxima-
tion (Munkberg et al., 2022) instead of the Monte Carlo estimate. Our approximation avoids training
instability from oscillating geometry during the early optimization stage, resulting in a robust ge-
ometric foundation that is efficiently regularized based on our physically-based constraint (see the
table of Figure 6 for ablation). Following 2DGS (Huang et al., 2024), we apply image reconstruction
loss Lrecon to images rasterized by surfel radiance LG, depth distortion loss Ldist, normal-depth
consistency loss Ln, normal smoothing loss Lns, and mask-entropy loss Lmask. We also add image
reconstruction loss LPBR

recon to images rasterized by physically-rendered radiance LPBR
G , which is

approximated using the split-sum approximation. Thus, the total loss for the initialization stage is a
weighted sum of the loss components as below:

Linit = Lrecon + LPBR
recon + λradLrad + λdistLdist + λnLn + λnsLns + λmLm. (10)

Inverse Rendering. With our initialized Gaussian surfels, we proceed to the main inverse rendering
stage by leveraging the full Monte Carlo-estimated radiometric consistency loss Lrad to accurately
model complex inter-reflections. We additionally use smoothing losses for rasterized albedo and
roughness, denoted as Las and Lrs, to encourage spatial coherence of material features. Finally,
a light prior loss Llight (Liu et al., 2023) is applied to encourage the rendered incident diffuse
illumination to adopt a natural white appearance. Thus, the total optimization objective for inverse
rendering is a weighted sum of loss components as below:

Linv = Linit + λasLas + λrsLrs + λlightLlight. (11)

Please refer to the supplementary for the details of additional loss functions Lrecon, LPBR
recon, Lns,

Lm, Las, Lrs, and Llight, and the learning rates of Gaussian surfel parameters.

Relighting. Once the lighting condition changes, surfel radiances cannot provide indirect illumina-
tion, since they are specifically optimized for the previous lighting condition. Instead, we query indi-
rect radiances following IRGS (Gu et al., 2024) by alpha-blending the normal, albedo, and roughness
towards the incident direction using Gaussian ray tracing, and applying a split-sum approximation to
efficiently estimate the incident radiance. However, storing numerous incident radiances per surfel
and re-estimating outgoing radiances based on Eq. 9 consumes additional rendering time.

To this end, we introduce a finetuning-based relighting approach that leverages radiometric consis-
tency. Radiometric consistency allows surfel radiances to rapidly adapt to new lighting conditions.

6
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Table 1: Quantitative comparisons on TensoIR dataset (Jin et al., 2023). The results are colored in
rank as 1st, 2nd, and 3rd. Our method surpasses existing Gaussian-based methods and a NeRF-based
method in most metrics, while maintaining the computational efficiency with the average training
time of 1 hour. We report our relighting metric using Gaussian ray tracing (Ours) and finetuning-
based method (Ours*).

Method Novel View Synthesis Normal Albedo Relight Training
PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ hours

TensoIR 35.09 0.976 0.040 4.100 29.27 0.950 0.085 28.58 0.944 0.081 4
GS-IR 35.33 0.974 0.039 4.948 29.94 0.921 0.100 24.37 0.885 0.096 0.5
GI-GS 36.75 0.972 0.037 5.253 29.90 0.921 0.099 24.70 0.886 0.106 0.5
R3DG 33.35 0.964 0.041 5.927 29.27 0.951 0.078 27.37 0.909 0.083 1.1
IRGS 35.43 0.964 0.049 4.209 30.62 0.956 0.072 29.91 0.935 0.076 0.9

SVG-IR 36.71 0.976 0.033 4.358 30.48 0.950 0.074 31.10 0.946 0.056 1.1
Ours 32.09 0.953 0.048 1.0Ours* 37.86 0.980 0.027 3.689 31.05 0.952 0.072 31.41 0.948 0.052

LEGO: {136}

GTSVG-IRIRGS

NVS

Albedo

Normal

Relight
(fireplace)

Relight
(forest)

OursTensoIR

Figure 3: Qualitative result on the “lego” scene of TensoIR dataset. Our method provides en-
hanced decomposition and realistic relighting results compared to Gaussian-based methods. Specif-
ically, our method shows noticeably robust performance on regions with high geometric complexity,
such as the highlighted bucket. Best viewed in zoom.

Given a new lighting condition, we perform a few finetuning iterations exclusively on the surfel
radiances by minimizing our radiometric consistency loss Lrad. Once finetuning is complete, the
scene can be rendered from any viewpoint using only surfel radiances.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Dataset and Metric. We evaluate our method’s novel view synthesis (NVS), inverse render-
ing, and relighting capabilities using two synthetic datasets: TensoIR (Jin et al., 2023) and Syn-
thetic4Relight (Zhang et al., 2022). These two synthetic datasets provide diverse lighting conditions
and ground truth for geometry and material evaluation. We employ PSNR, SSIM, and LPIPS for
evaluating NVS, albedo, and relighting. Normal reconstruction is evaluated using Mean Angular Er-
ror (MAE), and roughness is evaluated using Mean Square Error (MSE). We also provide qualitative
relighting results on a real-world object dataset Stanford-ORB (Kuang et al., 2023) in Figure 1-(c).
Implementation Details. For our radiometric consistency loss Lrad, we set the weight λrad = 0.2.
We sample Ng = 4096 Gaussian surfels and Ns = 64 incident rays per surfel, resulting in 218

rays traced through Gaussian surfels to calculate the radiometric consistency loss at every training
iteration. We store the ray-traced results on sampled Gaussians at each step for use in physically-
rendered image. For our relighting method, we set the weight λrad = 1.0, and discard all other

7
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losses. Experiments were conducted on an NVIDIA RTX 4090 GPU, with total optimization taking
approximately 60 minutes (30 for initialization and 30 for inverse rendering), and the finetuning
process taking approximately 2 minutes. Please refer to the appendix for further details.

Baselines. We compare our method against prior Gaussian Splatting (GS)-based methods: GS-
IR (Liang et al., 2024), GI-GS (Chen et al., 2024), R3DG (Gao et al., 2024), IRGS (Gu et al., 2024),
and SVG-IR (Sun et al., 2025). We also include TensoIR (Jin et al., 2023), an efficient NeRF-based
approach. Quantitative and qualitative results are reproduced using the publicly available code.

5.2 INVERSE RENDERING PERFORMANCE COMPARISONS

Ours (Finetuned)
PSNR: 37.45

Time: 4.15ms

GT
(Env: Fireplace)

SVG-IR
PSNR: 34.90
Time: 10ms

IRGS
PSNR: 34.46
Time: 670ms

Ours
PSNR: 38.65
Time: 12.1ms

TensoIR
PSNR: 34.50
Time: >1sec

Figure 4: Relighting results on
the “armadillo” scene of TensoIR
dataset.

TensoIR. On the TensoIR dataset (Table 1), our approach
demonstrates superior performance on various metrics in-
cluding novel-view synthesis (NVS), normal estimation,
and relighting compared to existing methods. Notably,
our method outperforms other ray-tracing based meth-
ods on Gaussian primitives (Gu et al., 2024; Sun et al.,
2025), reflecting the necessity of physically-based con-
straints on surfel radiances in inverse rendering. More-
over, our finetuning-based relighting method outperforms
existing relighting methods, indicating the effectiveness
of our self-correcting guidance from radiometric consis-
tency.

Qualitative results on Figure 3 illustrate our method’s per-
formance on reconstructing finer geometric details for nor-
mal reconstruction and NVS, which leads to more realistic
relighting results. Figure 1-(a) showcases the realistic and
detailed indirect illumination modeled by our method on
the same scene compared to the other competitors.
Additional comparisons on relighting (Figure 4) show that
both of our relighting methods achieve realistic relight-
ing results, showing real-time rendering capabilities. Es-
pecially, our finetuning-based method shows the fastest
rendering time, with a minor compromise in quality com-
pared to ray-tracing based relighting. This is because finetuning process accumulates minor errors
from estimated geometry and material properties of Gaussian surfels into surfel radiances, leading
to the trade-off in visual quality.

Table 2: Quantitative comparisons on
Synthetic4Relight dataset.

Method NVS Roughness Albedo Relight
PSNR ↑ MSE ↓ PSNR ↑ PSNR ↑

R3DG 34.10 0.010 28.65 33.12
IRGS 34.44 0.008 30.50 34.35

SVG-IR 34.14 0.009 29.06 32.59
Ours 34.98 0.011 30.69 34.87

Synthetic4Relight. Results on the Synthetic4Relight
dataset (Table 2) further validate the capabilities of
our method, outperforming existing methods in NVS,
albedo reconstruction and relighting, while showing
comparable performance on roughness estimation. Vi-
sual comparisons on Figure 5 demonstrate how our re-
alistic modeling of indirect illumination leads to en-
hanced albedo reconstruction and NVS. The inter-
reflecting directions of the highlighted region are over-
looked during novel-view synthesis training, whereas
our radiometric consistency provides physically-based constraint on surfel radiances towards reflect-
ing directions, resulting in realistic indirect illumination.

5.3 ABLATION STUDIES ON RADIOMETRIC CONSISTENCY

We report ablation studies on components of our radiometric consistency on the TensoIR dataset.
The table of Figure 6 shows the PSNR metrics for three categories, NVS, albedo reconstruction, and
relighting, in our ablation studies.

Absence of Radiometric Consistency. We perform ablation studies on the radiometric consistency
by removing the radiometric consistency loss during the inverse rendering stage (see the left sub-
figure of Figure 6 and “λrad = 0” on the right table of Figure 6). The absence of radiometric

8
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IRGS SVG-IR Ours GT

Relight
PSNR:31.27

N.A.

NVS
PSNR:33.62

Albedo 
PSNR: 28.25

Indirect 
Radiance

Albedo 
PSNR:29.49

Indirect 
Radiance

Albedo Indirect 
Radiance

Albedo 
PSNR:28.49

Indirect 
Radiance

Relight
PSNR:31.10

NVS
PSNR:33.92

Relight
PSNR:32.28

NVS
PSNR:34.14

RelightNVS

Figure 5: Qualitative results on the “hotdog” scene of Synthetic4Relight (Zhang et al., 2022)
dataset. Our method models natural inter-reflection between the sausages and the buns, showing
superior reconstruction performance on highlighted regions. IRGS shows relatively bright and fluc-
tuating indirect illumination, which led to darker albedo reconstruction. SVG-IR models relatively
darker indirect illumination, returning brighter albedo reconstruction. Best viewed in zoom.

(b) Ablation Studies on Radiometric Consistency loss ℒ𝑟𝑟𝑟𝑟𝑟𝑟

O
ur

s
w

/o
 ℒ

𝑟𝑟𝑟𝑟
𝑟𝑟

Indirect Illumination Albedo Albedo L1 error

Method NVS Albedo Relight
PSNR ↑ PSNR ↑ PSNR ↑

Ours 37.86 31.05 32.09
λrad = 0 35.82 30.82 31.69

Detach LPBR
G 37.25 30.67 32.05

Detach LG 37.46 28.68 31.42
NVS init. 37.43 30.34 31.66

Figure 6: Ablation studies on our radiometric consistency. The left sub-figure demonstrates how
our radiometric consistency loss Lrad provides guidance on radiances towards unobserved views
such as the interstices, leading to enhanced albedo reconstruction (red box). Also, our method
guides the generation of inter-reflections between the ketchup and the plate (yellow box). The right
table contains PSNR metrics for the ablation studies.

consistency provides incorrect indirect radiances on unobserved directions, degrading the albedo
reconstruction on the corresponding regions and leading to significant performance degradation in
all three categories.

Detaching Gradient Flows from Lrad. We ablate on the self-correcting gradient flow by detach-
ing the gradients towards Gaussian surfels during the calculation of the surfel radiance LG and
physically-based rendered radiance LPBR

G on Eq. 7. Detaching either gradient leads to an overall
performance drop. Detaching gradient from LG cause noticeable degradation on albedo reconstruc-
tion, while detaching gradient from LPBR

G degrades NVS. Such degradation reflects the importance
of the view-constrained supervision signal from LG, and the physically-based constraint delivered
by LPBR

G .

Initialization. We found that removing radiometric consistency during initialization degrades
overall performance, highlighting the contribution of our radiometric consistency as beneficial
physically-based guidance for initialization.

6 CONCLUSION AND FUTURE WORKS

We introduced a novel physically-based supervision called radiometric consistency, which addresses
the key challenge of modeling indirect illumination in Gaussian-based representations by guiding
Gaussian surfels to learn accurate indirect illumination towards unobserved directions. We then in-
troduced Radiometrically Consistent Gaussian Surfels (RadioGS), a novel inverse rendering frame-
work that efficiently leverages radiometric consistency by utilizing 2D Gaussian ray tracing. We also
presented a new relighting method that leverages our constraint to quickly adapt surfel radiances to
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new lighting environments, achieving a rendering time below 10ms per frame. Experiments demon-
strated that RadioGS outperforms existing Gaussian-based methods on two synthetic benchmarks,
based on accurate and realistic indirect illumination. Since the current method only supports dielec-
tric materials, extending radiometric consistency to more complex materials, such as anisotropic or
highly-reflective surfaces, would be an interesting future direction.
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APPENDIX

THE USE OF LLMS

The author(s) used ChatGPT for minor grammatical adjustments, and all resulting edits were care-
fully reviewed and finalized by the author(s).

A IMPLEMENTATION DETAILS

In this section, we discuss additional details of the implementation of our work.

A.1 DEPTH INTERPOLATION

Depth maps of our Gaussian surfels are rendered by interpolation of the Gaussian primitives:

D =

N∑
i=1

αiTi∑N
j=1 αjTj

di, (12)

where di is the depth of i-th primitive. This formulation ensures the depth map reflects the visibility-
weighted contribution of all overlapping primitives.

A.2 LOSS FUNCTIONS

A.2.1 RECONSTRUCTION LOSS

The reconstruction loss is composed of a weighted sum of l1-loss and SSIM (WangZhou et al.,
2004). Following our baseline (Huang et al., 2024), we assign a weight of 0.8 to the l1-loss and 0.2
to SSIM.

A.2.2 DISTORTION LOSS

The depth distortion loss enforces geometric consistency along rays by minimizing the weighted
pairwise depth differences between Gaussian primitives:

Ldist =
∑
i,j

αiTiαjTj |zi − zj |, (13)

where zi denotes the depth value of the i-th primitive. The loss drives Gaussian primitives to collapse
into tight clusters aligned with surface geometry and enhances depth coherence.

A.2.3 NORMAL-DEPTH CONSISTENCY LOSS

This loss enforces geometric coherence by aligning Gaussian primitive normals with surface geom-
etry derived from depth gradients:

Ln =
∑
i

αiTi(1− nT
i N) (14)

where ni is the normal vector of i-th primitive and N is the surface normal at the median of inter-
section ps estimated from gradient of depth map:

N =
∇xps ×∇yps

∥∇xps ×∇yps∥
. (15)

A.2.4 FIRST-ORDER EDGE AWARE SMOOTHING LOSS

We use edge-aware smoothing constraints to enhance spatial coherence while preserving structural
edges for surface normal, albedo, and roughness predictions. These losses minimize the gradient of
each feature and relax smoothing constraints at image edges:

L{n,a,r}s = ∥∇{N ,A,R}∥ exp(−∥∇Cgt∥), (16)
where N , A, and R are rendered normal, albedo, and roughness map, respectively and Cgt is the
ground truth training image.
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A.2.5 SPARSITY LOSS

The sparsity loss drives Gaussian’s opacity towards 0 or 1:

Ls =
1

|α|
∑
αi

[log(αi) + log(1− αi)] (17)

It collapses the spatial distribution of Gaussian primitives into thin surface-aligned layers and accel-
erates ray tracing by reducing hits and sorting via early termination.

A.2.6 LIGHT PRIOR LOSS

The light prior loss enforces neutral white illumination in diffuse rendering. It constrains the per-
channel average intensities c̄i of estimated lighting:

Llight =
1

3

∑
i=1

3

∣∣∣∣∣∣c̄i − 1

3

∑
j=1

3c̄j

∣∣∣∣∣∣ (18)

A.3 2D GAUSSIAN RAY TRACER

We implemented 2D Gaussian ray tracer using Pytorch CUDA extensions and OptiX (Parker et al.,
2010) following Moenne-Loccoz et al. (2024) and Gu et al. (2024). We adopt a simpler BVH
construction with two triangles encapsulating the 2D Gaussian primitives from Xie et al. (2024),
reducing the BVH update on each training iteration from 3ms to 2ms. The Gaussian response is
achieved by analytically calculating the intersection point p between the flat 2D Gaussian primitive
with the center µ and normal n and the ray with origin o and direction d as below:

p =

(
n · (µ− d)

n · d

)
d+ o. (19)

Such formulation is identical to the one that of the 2DGS Huang et al. (2024) rasterizer, ensuring
consistent Gaussian response between the rasterizer and the ray tracer.

To reduce the computation of depth-sorting ray-traced Gaussians, we utilize any-hit program to
gather k Gaussians within the buffer. Once the buffer is full, we sort the gathered Gaussians by
depth, and accumulate the radiance and trasmittance based on Eq. 2. The process repeats to gather
the next k Gaussians until all ray-traced Gaussians are accumulated or the transmittance reaches the
threshold. We use buffer of K=16 for sorting Gaussians per ray, and terminate the tracing when with
the transmittance threshold of 0.03. For differentiability, we re-cast the rays to gather the same set
of Gaussians, and analytically calculate the gradients.

A.4 ADDITIONAL TRAINING DETAILS

We use learning rates of 0.005, 0.005, 0.01 for albedo, roughness, and cubemap, respectively, and
other hyperparameters following the configuration of 2DGS (Huang et al., 2024). We represent
the optimizable environment map as cubemap with a resolution of 32. The first initailize stage is
trained for 40K iterations, with loss weight hyperparameters λd, λn, λns, λs as 1000, 0.05, 0.02,
and 0.05, respectively. The inverse rendering stage is trained for 20K iterations, with loss weight
hyperparameters λas, λrs, λlight as 0.2, 0.1, and 0.01, respectively. After the initialization stage,
we reinitialize the albedo, roughness, and cubemap. Then, we start the inverse rendering stage with
the same learning rate depicted above. For the finetuning stage, we set the same learning rate only
for the spherical harmonics coefficients.

A.5 RENDERING AND RELIGHTING WITH SPLIT-SUM APPROXIMATION

Split-sum approximation is a technique for efficiently computing indirect illumination in physically
based rendering. By decomposing the complex specular BRDF integral into two separable terms on
Eq. 3, it avoids the computational burden of Monte Carlo sampling while preserving visual fidelity.
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We divide the light transport into diffuse Ld and specular Ls components each and approximate the
specular light transport as below:

Ls(ωo) ≈
∫
Ω

fs(ωi, ωo)(ωi ·N)dωi ·
∫
Ω

Li(ωi)D(ωi, ωo)(ωi ·N)dωi. (20)

This precomputation allows the specular contribution to be efficiently estimated at runtime by sam-
pling the pre-filtered environment map (using the reflection vector and roughness) and the BRDF
LUT.

Diffuse radiance Ld is computed more directly as the product of the surface’s diffuse reflectance
(albedo) and the total incoming diffuse light. The latter is also precomputed by convolving the
environment map with a cosine lobe to create an irradiance map.

We apply the split-sum approximation for the initialization stage to easily approximate the estimate
of physically-rendered outgoing radiance Lpbr on each Gaussian primitive. For relighting, we apply
the split-sum approximation to calculate the incident indirect illumination Lind from the traced
secondary ray using the ray-traced surface position, normal, albedo, and roughness values. The
achieved Lind is used for relighting integrated with the traced visibility V and the queried direct
light Ldir.

B COMAPARISON ON RELIGHTING PERFORMANCE AND RENDERING COST

On table 3, we report relighting performance using three configurations: (1) Gaussian ray tracing that
estimates indirect radiance using the PBR split-sum approximation (PBR split-sum), (2) Gaussian
ray tracing that uses indirect radiance predicted by fine-tuned surfels (PBR fine-tuned), and (3)
direct rasterization with fine-tuned surfel radiances (Surfel fine-tuned). While fine-tuning introduces
a slight quality drop, it enables the surfel radiances to adapt to new lighting conditions and act as
physically consistent indirect illumination sources, all while achieving substantially faster rendering
speeds than competing approaches. We also provide qualitative comparisons between the three
configurations in Figure 20.

Table 3: Relighting Performance and Rendering cost during relighting on TensoIR dataset.

Method Relight Rendering
PSNR ↑ SSIM ↑ LPIPS ↓ ms

IRGS 29.91 0.935 0.076 1090
SVG-IR 31.10 0.946 0.056 82.48
PBR split-sum 32.09 0.953 0.048 38.64
PBR finetuned 31.59 0.952 0.049 38.29
Surfel finetuned 31.41 0.948 0.052 5.902

C VISUAL COMPARISON ON ILLUMINATION COMPONENTS

We provide additional visual comparisons on “hotdog” and the “lego” scene from the TensoIR
dataset (Jin et al., 2023) in Figure 7 and Figure 8. We visualize illumination components including
incident direct and indirect radiances, and their rendered results on the datasets along with Gaussian-
based methods IRGS (Gu et al., 2024) and SVG-IR (Sun et al., 2025) to compare our realistic indirect
illumination. The components are the mean value of the samples during the Monte Carlo rendering.
Our method provides realistic indirect illumination that maintains the fine details of inter-reflecting
surfaces, while the IRGS (Gu et al., 2024) often overestimates the intensity of the indirect radiance
and SVG-IR (Sun et al., 2025) often underestimates the intensity of indirect radiance due to the lack
of physical guidance for indirect radiances on unobserved views.

D ADDITIONAL VISUAL COMPARISON ON BENCHMARK DATASETS

We provide additional visual comparisons on “armadillo” scene from the TensoIR (Jin et al., 2023)
dataset, and all the scenes from the Synthetic4Relight dataset from Figure 9 to 12. For the TensoIR
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Figure 7: Qualitative comparison on illumination components on the “hotdog” scene of TensoIR
dataset. Best viewed in zoom.

dataset, we deliver comparison on novel-view synthesis (NVS), normal reconstruction, albedo re-
construction and relighting with Gaussian-based methods IRGS (Gu et al., 2024) and SVG-IR (Sun
et al., 2025), and NeRF-based method TensoIR (Jin et al., 2023). For the Synthetic4Relight dataset,
we deliver comparison on novel-view synthesis (NVS), albedo reconstruction, roughness reconstruc-
tion, and relighting with Gaussian-based methods R3DG (Gao et al., 2024), IRGS (Gu et al., 2024)
and SVG-IR (Sun et al., 2025).
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Figure 8: Qualitative comparison on illumination components on the“lego” scene of TensoIR
dataset. Best viewed in zoom.
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Figure 9: Qualitative comparison on NVS, albedo reconstruction, normal reconstruction, and re-
lighting on the “armadillo” scene of the TensoIR dataset. Best viewed in zoom.
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Figure 10: Qualitative comparison on NVS, albedo reconstruction, roughness reconstruction, and
relighting on the “jugs” scene of the Synthetic4Relight dataset. Best viewed in zoom.
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Figure 11: Qualitative comparison on NVS, albedo reconstruction, roughness reconstruction, and
relighting on the “air baloons” scene of the Synthetic4Relight dataset. Best viewed in zoom.
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Figure 12: Qualitative comparison on NVS, albedo reconstruction, roughness reconstruction, and
relighting on the “chair” scene of the Synthetic4Relight dataset. Best viewed in zoom.
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E EVALUATION OF INDIRECT ILLUMINATION

Current inverse rendering benchmarks, including TensoIR Jin et al. (2023), Synthetic4Relight Zhang
et al. (2022), and Stanford-ORB Kuang et al. (2023), do not provide ground truth (GT) for indirect
illumination for quantitative and qualitative evaluation. To address this limitation, we generated
a new evaluation dataset with explicit GT Indirect Illumination. We utilized the original Blender
files from the TensoIR dataset to generate high-fidelity ground truth. We used Blender Cycles path
tracing engine to render the indirect illumination pass along with the original render pass. To ensure
noise-free references, especially for indirect illumination, we set the sampling rate to 256 spp and
applied the OIDN denoiser [3]. This allows direct quantitative evaluation of the indirect illumination
components. We trained our model and the ablation model discarding the radiometric consistency
loss (Ours w/o Lrad) using the same hyperparameters described in the paper. We also trained two
baselines, IRGS and SVG-IR, for comparison.

Table 4 presents the quantitative comparison against baselines (IRGS, SVG-IR) and our ablation
model on our new dataset. Our method significantly outperforms all baselines in indirect illumina-
tion reconstruction, confirming that our method accurately models the physical transport of indirect
light. Our accurate indirect illumination leads to superior performance in most other metrics. When
radiometric consistency is removed (Ours w/o Lrad), the indirect PSNR drops significantly, show-
ing that the performance gain comes from our proposed framework utilizing radiometric consistency,
which effectively supervises indirect radiance from unobserved views.

We also provide qualitative comparisons in Figure 13. As shown, our method faithfully reconstructs
indirect illumination compared to baseline models and our ablation model. Overall, our method pro-
duces indirect illumination closest to the ground truth, while IRGS produces overestimated intensity,
and SVG-IR tends to underestimate the intensity of the indirect radiances. Similar phenomena can
also be observed in the qualitative results in Figures 7 and 8 of our paper. Our ablation model (Ours
w/o Lrad) tends to produce white blurs on inter-reflecting regions compared to our method due to
the lack of supervision on unseen views. Finally, we provide additional qualitative comparisons
of indirect illumination during relighting in Figure 14, where our method produces more realistic,
accurate indirect illumination than the baseline models.

Table 4: Quantitative comparison against baselines (IRGS, SVG-IR) and our ablation model on our
new dataset. Our method significantly outperforms all baselines in indirect illumination reconstruc-
tion.

Method NVS Indirect Illumination Geometry Albedo
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Normal MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

IRGS 35.0982 0.9660 0.0436 24.2219 0.8792 0.1092 4.1835 30.0931 0.9521 0.0752
SVG-IR 36.9634 0.9786 0.0266 30.9747 0.9134 0.0843 4.2624 29.7354 0.9309 0.0822

Ours w/o Lrad 36.3471 0.9764 0.0276 30.0954 0.9161 0.0752 3.8332 30.3425 0.9470 0.0760
Ours 37.8519 0.9822 0.0212 32.8832 0.9266 0.0726 3.6048 30.6224 0.9502 0.0744
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Figure 13: Qualitative comparison on novel-view synthesis and indirect illumination on our dataset.
Best viewed in zoom.
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Figure 14: Qualitative comparison on indirect illumination for four different lighting conditions on
the “hotdog” scene of our dataset. Best viewed in zoom.
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F ABLATION STUDIES ON RADIOMETRIC CONSISTENCY

In this section, we discuss the contributions of the two main components of our framework, differ-
entiable Gaussian ray tracing and supervision on unobserved (i.e. unseen) direction.

F.1 RADIOMETRIC CONSISTENCY AND DIFFERENTIABLE GAUSSIAN RAY TRACING

The primary challenge in applying radiometric consistency to existing GS-based inverse rendering
is that existing pipelines cannot dynamically query surfel radiances as indirect radiances during op-
timization. Existing pipelines employ point-based ray tracing or baked volumes, which precompute
indirect radiance from NVS-pretrained Gaussian primitives in a non-differentiable manner. These
precomputed values remain fixed during the optimization. When these values do not reflect updated
Gaussian attributes, the supervision signal from radiometric consistency may become inconsistent.
Our framework addresses this issue by employing differentiable Gaussian ray tracing to query indi-
rect radiance for sampled surfels at every iteration.

We further conducted ablation studies to show how our framework enhances the contribution of
radiometric consistency in Gaussian-based inverse rendering. Starting from the model initialized
with our method, we trained three ablation models using different methods for querying indirect
radiances and rendering, while utilizing our radiometric consistency loss during inverse rendering
optimization.

• “Split-sum”: Applies split-sum approximation to calculate physically-based radiance dur-
ing the inverse rendering optimization, which does not involve indirect illumination.

• “RT precompute”: Applies Monte Carlo estimate (Eq.(8)) to calculate and precomputes
indirect radiances via ray tracing, freezing the indirect illumination estimate during the
optimization.

• “RT w/o diff.”: Dynamically updates indirect radiances via ray tracing during optimization,
but without updating through ray-traced surfels by detaching the gradient on the ray-traced
results.

The quantitative results of the three ablation models and our method are depicted in Table 5. “Split-
sum” shows severe degradation in normal, albedo, and relighting accuracy due to the lack of illu-
mination effects from surfels. “RT Precompute” shows enhanced normal, albedo, and relighting
accuracy by utilizing precomputed indirect illumination, but yields the lowest novel-view synthe-
sis performance among all methods. While “RT w/o Diff” improves overall performance through
dynamic updates to these values, it still falls short of our method across all metrics. Ours method
achieves the best performance across all metrics, demonstrating that the fully differentiable self-
correcting feedback loop is essential for robust disentanglement.

Table 5: Ablation study on radiometric consistency strategies. We compare our method with
baselines using different indirect illumination handling. Best results are highlighted in bold.

Method NVS Geometry Albedo Relighting
PSNR ↑ SSIM ↑ LPIPS ↓ Normal MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Split-sum 36.659 0.9800 0.0254 4.0066 27.471 0.9339 0.0828 28.816 0.9371 0.0575
RT Precompute 35.547 0.9728 0.0332 3.7138 30.523 0.9481 0.0750 31.965 0.9516 0.0496
RT w/o Diff. 37.252 0.9789 0.0275 3.6946 30.673 0.9507 0.0732 32.050 0.9524 0.0484

Ours 37.858 0.9801 0.0266 3.6889 31.048 0.9523 0.0719 32.092 0.9533 0.0478

F.2 SUPERVISION ON UNOBSERVED DIRECTION

To further support our interpretation that the radiometric consistency supervises unseen directions,
we conducted an additional ablation where we train both “Ours” and “Ours w/o ” on only 50% and
25% of the randomly subsampled training views of our new dataset on Appendix E. The numeri-
cal results on NVS and indirect illumination reconstruction performance are in Table 6. We have
denoted the performance drop relative to the full training view (100%) on the right side of the met-
rics. NVS metrics degrade for both methods when fewer views are used. However, when using
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25% of the training views, indirect illumination reconstruction with our model remains nearly un-
changed (-0.17dB), whereas the ablation shows a significant drop in indirect PSNR (-2.21dB). This
indicates that when the camera viewpoint is limited, radiometric consistency still provides effective
supervision that cannot be provided by NVS alone.

Table 6: Ablation study on training view scarcity. We report NVS and Indirect PSNR metrics
across different subsets of training views. Values in parentheses denote the performance drop relative
to the 100% setting.

Train views NVS PSNR Indirect PSNR
Ours Ours w/o Ours Ours w/o

100% 37.85 36.35 32.88 30.10
50% 37.54 (-0.31) 35.81 (-0.54) 32.79 (-0.09) 29.15 (-0.95)
25% 36.79 (-1.06) 34.65 (-1.70) 32.71 (-0.17) 27.89 (-2.21)
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G ABLATION STUDY ON HYPERPARAMETERS Ng AND Ns

G.1 ANALYSIS ON TENSOIR DATASET

We evaluated the performance impact of two key hyperparameters on the TensoIR dataset: the
number of surfels sampled for radiometric consistency (Ng) and the number of incident ray samples
(Ns) per surfel.

First, we varied Ng from 1024 to 8192 while keeping Ns fixed at 64. As shown in Table 7, increasing
Ng generally improves reconstruction quality across all tasks and metrics. This improvement is
attributed to the radiometric consistency loss supervising a larger number of surfels per iteration.
Notably, Ng does not impact the rendering cost during inference, as it strictly controls the number
of surfels supervised during the optimization step.

Table 7: Ablation study on the number of surfels (Ng) for radiometric consistency. We vary Ng

while fixing Ns = 64. Increasing Ng improves quality without affecting rendering cost.

Ng
NVS Geometry Albedo Relight Render

PSNR ↑ SSIM ↑ LPIPS ↓ Normal MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ (ms)

1024 37.8206 0.9799 0.0268 3.6900 30.9137 0.9518 0.0730 32.0569 0.9529 0.0481 38.5
2048 (Ours) 37.8580 0.9801 0.0266 3.6889 31.0479 0.9521 0.0721 32.0920 0.9533 0.0478 38.6
4096 37.8707 0.9802 0.0264 3.6852 31.0495 0.9522 0.0721 32.1112 0.9532 0.0478 38.7
8192 37.8799 0.9802 0.0263 3.6834 31.0507 0.9523 0.0720 32.1294 0.9533 0.0477 38.5

Next, we analyzed the effect of Ns ranging from 16 to 128 with Ng fixed at 2048. Table 8 demon-
strates that reconstruction quality improves as Ns increases up to 64. However, increasing Ns fur-
ther to 128 yields diminishing returns, and in some tasks (e.g., NVS and Relighting), performance
slightly drops. This suggests that the additional ray samples beyond this point do not significantly
resolve the variance in Monte Carlo integration for the given capacity. regarding efficiency, the ren-
dering cost scales with Ns due to the additional computation required for the Monte Carlo estimate
of LPBR

G . However, the rendering cost remains manageable even at Ns = 128, achieving 58.3 ms
per frame (∼17.2 fps).

Table 8: Ablation study on the number of secondary ray samples (Ns). We vary Ns while fixing
Ng = 2048. Performance saturates around Ns = 64.

Ns
NVS Geometry Albedo Relight Render

PSNR ↑ SSIM ↑ LPIPS ↓ Normal MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ (ms)

16 37.4199 0.9792 0.0275 3.7174 30.8656 0.9505 0.0735 32.1684 0.9518 0.0494 16.2
32 37.8125 0.9799 0.0268 3.6979 30.9014 0.9510 0.0730 32.1537 0.9528 0.0483 22.6
64 (Ours) 37.8707 0.9802 0.0264 3.6852 31.0479 0.9521 0.0721 32.1112 0.9532 0.0478 38.6
128 37.6548 0.9798 0.0268 3.6821 30.9563 0.9512 0.0728 31.9768 0.9526 0.0480 58.3

G.2 RENDERING EFFICIENCY ON LARGE-SCALE SCENES (MIPNERF360)

We further provide analysis on MipNeRF360 (Barron et al., 2022) dataset to evaluate the rendering
cost in complex, scene-level environments. Qualitative results corresponding to this analysis are
provided in Figure 15.

We further investigated the computational cost by varying Ng from 1024 to 16384 while keeping
Ns fixed at 64 (Table 9). Consistent with the analysis on the TensoIR dataset, varying Ng has a
negligible impact on the rendering cost.

Finally, we analyzed the effect of the number of incident ray samples (Ns) on rendering time, vary-
ing Ns from 16 to 64 with Ng fixed at 2048 (Table 10). As shown, the rendering cost scales with
Ns. This indicates that while larger scenes increase the baseline computational load, the rendering
speed can be effectively controlled by adjusting Ns. Although reducing Ns improves speed, it may
trade off rendering quality. However, given that increasing Ng improves quality without computa-
tional overhead, our method can scale to larger scenes while maintaining efficiency by strategically
balancing Ng and Ns.
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Table 9: Rendering cost analysis on MipNeRF360 with varying Ng . We fix Ns = 64. Consistent
with TensoIR, Ng does not significantly affect rendering speed.

Ng Average (ms) Bonsai (ms) Counter (ms) Kitchen (ms) Room (ms)
1024 81.23 77.37 72.38 86.81 88.43
2048 (Ours) 81.40 77.78 72.95 84.29 90.56
4096 81.69 78.87 72.19 85.28 90.41
8192 81.53 77.75 73.34 85.22 89.82
16384 81.86 77.75 73.24 86.08 90.38

Table 10: Rendering cost analysis on MipNeRF360 with varying Ns. We fix Ng = 2048. Reducing
Ns significantly decreases rendering time, allowing for trade-offs between speed and quality.

Ns Average (ms) Bonsai (ms) Counter (ms) Kitchen (ms) Room (ms)
16 24.57 23.49 23.86 26.07 24.85
32 43.43 42.00 39.32 47.31 45.10
64 (Ours) 81.40 77.78 72.95 84.29 90.56

Render

Normal

Albedo

Occlusion

Indirect 
Illumination

CounterBonsai Kitchen Room

Relighting2

Relighting1

Figure 15: Qualitative results on the MipNeRF360 dataset. Best viewed in zoom.
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H ADDITIONAL ANALYSIS ON THE INITIALIZATION STRATEGY

We compared our initialization strategy against NVS-based initialization methods. We define ”NVS
Init.” as a model utilizing NVS pre-training for initialization followed by our full inverse rendering
optimization. Additionally, we evaluated ”NVS Init. w/o Lrad”, where the radiometric consistency
loss is removed throughout both the initialization and the subsequent optimization stages.

Table 11 summarizes the quantitative results. The ”NVS Init. w/o Lrad” baseline exhibits the lowest
performance across all tasks, highlighting the necessity of radiometric supervision. While introduc-
ing radiometric consistency after NVS pre-training (”NVS Init.”) improves albedo and relighting
quality, it still falls short of our method. Notably, even when our method is trained without radio-
metric consistency during the main optimization phase (”Ours w/o Lrad”), it outperforms the full
NVS-initialized model in albedo reconstruction. This suggests that enforcing physical constraints
from the start is crucial for robust disentanglement.

Table 11: Ablation study on initialization strategies. We compare our initialization (Ours) against
NVS-based initialization baselines. ”NVS init.” denotes NVS pre-training followed by our standard
optimization. ”during IR” refers to the inverse rendering optimization stage.

Method NVS PSNR ↑ Albedo PSNR ↑ Relight PSNR ↑
NVS init. + λrad = 0 during IR 35.70 30.31 31.51
NVS init. 37.43 30.34 31.66
Ours w/o Lrad (λrad = 0 during IR) 35.82 30.82 31.69
Ours 37.86 31.05 32.09

We further analyze the convergence behavior and qualitative results in Figure 16. As shown in the
convergence plot (left of Figure 16), our initialization leads to substantially faster and more stable
convergence of the radiometric consistency loss Lrad, whereas standard NVS initialization results
in higher and noisier residuals. This demonstrates that conventional NVS initialization places the
surfels into a suboptimal orientation that is misaligned with the physical decomposition required for
inverse rendering with radiometric consistency. Qualitatively (right of Figure 16), NVS pre-training
causes the model to misinterpret geometric cues, leading to shadows baked into the geometry (red
arrows) and inter-reflections merged into the albedo (blue arrows). In contrast, our initialization
preserves physical priors from the beginning, enabling enhanced geometry reconstruction and a
cleaner separation of inter-reflection effects.
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Figure 16: Ablation study of our initialization method on the “hotdog” scene of TensoIR dataset.
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I ENVIRONMENT MAP RECONSTRUCTION ON BENCHMARK DATASETS

We visualized the optimized environment maps from the TensoIR (Jin et al., 2023) and Syn-
thetic4Relight (Zhang et al., 2022) datasets and compared them with baseline methods and the
Ground Truth (GT) in Figures 17 and 18. Our method consistently recovers environment maps
that are visually closest to the ground truth environment map, reflecting the benefit of our radiomet-
ric consistency, leading to robust disentanglement of illumination for inverse rendering. In contrast,
GI-GS and GS-IR show unnatural environment maps compared to other baseline methods. Baselines
relying on point-based ray tracing (R3DG and SVG-IR) often fail to disentangle base color from the
environment map, such as for the scenes “hotdog” and “lego” from TensoIR, and “air balloons”
from the Synthetic4Relight dataset. While IRGS uses differentiable Gaussian ray tracing, it tends to
overestimate the intensity in regions that should be dark, such as the ground of the GT environment
map.
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Figure 17: Qualitative comparison on reconstructed environment map on TensoIR dataset. Best
viewed in zoom.
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Figure 18: Qualitative comparison on reconstructed environment map on Synthetic4Relight dataset.
Best viewed in zoom.
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J ADDITIONAL ANALYSIS ON FINETUNING-BASED RELIGHTING STRATEGY

We visualize the convergence and visual progression in Figure 19. As finetuning progresses, the
image rendered by surfel radiances quickly converges towards the PBR reference (orange line, left
plot). However, the quality of the PBR reference itself slightly degrades over time (blue line, left
plot), due to the errors accumulated by the finetune surfel radiances that contribute as indirect il-
lumination for physically-based rendering. Nevertheless, our method quickly adapts surfel radi-
ances to new lighting conditions, allowing us to directly use learned surfel radiances to rasterize
relighted frames. We additionally provide the corresponding visual comparisons in Figure 20 of
the revised paper, which demonstrates that our finetuning-based relighting method shows similar
relighting quality compared to ray-traced results.
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Figure 19: Illustrative figure on how our finetuning-based relighting adapts surfel radiances for new
lighting conditions.

PBR render
(Split-sum)

PBR render
(Finetuned)

Surfel render
(Finetuned)

A
rm

ad
ill

o
F
ic

us
H

ot
do

g
Le

go

Relight GT PBR render
(Split-sum)

PBR render
(Finetuned)

Surfel render
(Finetuned)

Relight GT

Figure 20: Qualitative ablation study on three relighting method: 1) Gaussian ray tracing that queries
indirect radiance via split-sum approximation“PBR render (Split-sum)”, 2) Gaussian ray tracing that
queries indirect radiance from finetuned surfels “PBR render (Finetuned)”, and 3) direct rasterization
with finetuned surfel radiances “Surfel render (Finetuned)”.

While our proposed finetuning-based relighting introduces a pre-computation step compared to ex-
isting relighting pipelines, it offers advantages in terms of rendering cost and memory efficiency.
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We analyze the trade-off between additional finetuning cost and real-time capabilities by comparing
average rendering speed and VRAM consumption on the TensoIR dataset. We compare our fine-
tuned model against a baseline relighting method that utilizes Gaussian ray tracing for shading with
varying sample counts Ns ∈ {64, 128, 256}.

As reported in Table 12, although finetuning incurs an upfront computational cost, it eliminates the
necessity of storing incident radiance for every surfel during inference. This results in significantly
reduced memory usage and faster inference speeds (∼5.90 ms). In contrast, baseline relighting
methods demonstrate increasing rendering time and memory consumption proportional to the sam-
ple count N , as they require storing dense incident ray information for shading each surfel. These
results suggest that our method is particularly suitable for memory-constrained environments, such
as consumer-grade GPUs or edge devices, where storing dense lighting data becomes prohibitive.

Table 12: Comparison of rendering speed and memory usage. We compare our finetuned model
against the baseline relighting method with varying ray tracing sample counts (N ). Our method
achieves significantly lower rendering time and memory footprint.

Method Sample Count (N ) Rendering (ms) ↓ VRAM (MB) ↓
Ours (Finetuned) - 5.90 308.2

Baseline (Ray Tracing)
64 38.64 1512.6
128 58.31 2523.3
256 86.99 4589.5
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