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ABSTRACT

The study of decoding visual neural information faces challenges in generalizing
single-subject decoding models to multiple subjects, due to individual differences.
Moreover, the limited availability of data from a single subject has a constraining
impact on model performance. Although prior multi-subject decoding methods
have made significant progress, they still suffer from several limitations, including
difficulty in extracting global neural response features, linear scaling of model
parameters with the number of subjects, and inadequate characterization of the
relationship between neural responses of different subjects to various stimuli.
To overcome these limitations, we propose a CLIP-guided Multi-sUbject visual
neural information SEmantic Decoding (CLIP-MUSED) method. Our method
consists of a Transformer-based feature extractor to effectively model global
neural representations. It also incorporates learnable subject-specific tokens
that facilitates the aggregation of multi-subject data without a linear increase of
parameters. Additionally, we employ representational similarity analysis (RSA) to
guide token representation learning based on the topological relationship of visual
stimuli in the representation space of CLIP, enabling full characterization of the
relationship between neural responses of different subjects under different stimuli.
Finally, token representations are used for multi-subject semantic decoding. Our
proposed method outperforms single-subject decoding methods and achieves state-
of-the-art performance among the existing multi-subject methods on two fMRI
datasets. Visualization results provide insights into the effectiveness of our
proposed method. Code is available at https://github.com/CLIP-MUSED/CLIP-
MUSED.

1 INTRODUCTION

In recent years, researchers have made significant progress in visual neural decoding tasks, allowing
for the deciphering of semantic information from brain activities in response to visual stimuli
(Akamatsu et al., 2020; Li et al., 2022; Bagchi & Bathula, 2022). However, due to individual
differences, most decoding models are trained separately on each subject. Single-subject models are
susceptible to overfitting due to the limited data available for each subject as a result of constraints
in data acquisition. Furthermore, single-subject models exhibit weak generalization performance on
new subjects. In contrast, multi-subject decoding methods can aggregate data from multiple subjects,
mitigate overfitting issues, and achieve superior performance across different subjects. Thus, it is of
great value to investigate multi-subject neural information decoding methods.

Individual differences manifest in both the anatomical structure and functional topography of the
brain (Haxby et al., 2020). While image registration techniques can eliminate anatomical differences,
differences in functional topography persist, including variations in the size, shape, and location of
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Figure 1: Diagram of the different multi-subject functional alignment methods.

functional areas on the cortical surface. Therefore, aligning the functional topology of different
subjects poses a critical challenge in multi-subject decoding research.

Most multi-subject decoding methods are based on hyperalignment (Haxby et al., 2020; Chen et al.,
2015), a classic method for functional alignment. As shown in Fig. 1, subjects S1 and S2 view
four stimuli (t1 ∼ t4), which are represented as high-dimensional vectors in the voxel space of
each subject. Hyperalignment transforms neural responses from the voxel space of each subject to
a shared space through the learning of a mapping function Rj . It aligns the functional topology
structure of different subjects by bringing together the neural representations of different subjects
under the same stimulus in the shared space, as illustrated by the same-colored balls in Fig. 1.
Nonetheless, hyperalignment cannot handle the common scenario where different subjects view
different stimuli during data acquisition. To tackle this challenge, Li et al. (2020) proposed a
category-based functional alignment approach. As shown in Fig. 1, this method pulls together
the neural representations of different subjects in the shared space that relate to the same category
of stimuli (two bird images t1 and t2).

However, these multi-subject decoding methods still have three limitations:

1. The mapping function Ri has restricted expressive power. Linear transformation discussed
by Yousefnezhad & Zhang (2017) and MLP composed of stacked linear layers used by
Yousefnezhad & Zhang (2017) are unsuitable for high-dimensional voxel responses. To
overcome this limitation, Chen et al. (2016) proposed a CNN-based hyperalignment algorithm.
However, CNNs face challenge in capturing global features that reflect the long-range functional
connectivities between brain regions.

2. Current studies require learning a distinct mapping function Ri for each subject. As the number
of subjects increases, the number of model parameters will also increase linearly, leading to a
considerable increase in computational complexity.

3. Existing methods have not fully characterized the relationship between the neural responses
of different subjects under similar stimuli. However, research has demonstrated that different
subjects exhibit similar neural responses when presented with semantically analogous visual
stimuli (Huth et al., 2012; Connolly et al., 2012; Carlson et al., 2014; Zhang et al., 2020).
For instance, in Fig. 1, t1 and t2 are birds, while t3 (cat) and t4 (building blocks) are not.
Additionally, birds and cats both belong to the animal category, whereas building blocks are
inanimate objects. Therefore, in the shared space, the representation of t3 should be more
proximate to the representations of t1 and t2 than that of t4.

To address the aforementioned issues, we propose the following solutions:

1. Transformers possess the ability to capture long-range dependencies. Therefore, we design a
Transformer-based network to learn the mapping function and model the relationships between
different brain regions.

2. Transformers can flexibly add tokens that learn specific knowledge. Prior research has introduced
diverse inductive biases into Transformers through extra tokens (Touvron et al., 2021; Naseer
et al., 2021). Inspired by these studies, we introduce subject-specific tokens into the Transformer
model in this paper. These learnable tokens encode individual differences, allowing other
parameters to be shared across subjects.
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Figure 2: The framework of the proposed method. Left: Low-level and high-level feature RSM
of visual stimuli are obtained from CLIP at first. Right: The Transformer-based encoder extracts
multi-subject shared neural representations guided by the visual stimulus feature RSM.

3. Previous studies (Zhou et al., 2022) have shown that CLIP (Radford et al., 2021) has stronger
explanatory power for neural responses in the ventral visual pathway than single-modal DNNs,
indicating high consistency between CLIP and cortical representations of visual stimuli. Thus,
the topological relationships of visual stimuli in the CLIP representation space can serve as prior
knowledge to guide neural representation learning in the shared space.

In summary, we propose a CLIP-guided Multi-sUbject visual neural information SEmantic
Decoding method (CLIP-MUSED), as illustrated in Fig. 2. The proposed method leverages
a Transformer-based fMRI feature extractor to map the neural responses of each subject from
the original voxel space to the shared space. We further divide individual differences into two
categories: differences in the processing patterns of low-level features (such as shape and color)
and high-level features (such as semantic categories) of visual stimuli. To encode these two types
of differences, we incorporate a low-level token and a high-level token for each subject into the
Transformer architecture. The proposed method uses the topological relationships of visual stimuli
in the shallower and deeper layers of CLIP to guide the representation learning of low-level and
high-level tokens, respectively, through representational similarity analysis (RSA). To ensure that
the low-level and high-level token representations of the same subject encode as much different
information as possible, we impose an orthogonal constraint on two representations inspired by the
previous study (Niu et al., 2019). Given that both low-level and high-level features play critical roles
in semantic classification, we concatenate the low-level and high-level token representations of each
subject for semantic classification.

The contributions are summarized as follows.

1. We propose a Transformer-based fMRI feature extractor that can efficiently extract global
features of neural responses.

2. CLIP-MUSED learns low-level and high-level tokens for each subject and shares the other
parameters across subjects. The method can be applied to multiple subjects without linear
increase of parameters.

3. With the help of RSA, CLIP-MUSED utilizes the topological relationships of visual stimuli in the
CLIP representation space to fully characterize the relationship between neural representations
under different stimuli for different subjects.

4. The experimental results on two fMRI datasets demonstrate that CLIP-MUSED surpasses
single-subject decoding methods by aggregating more training data and reducing individual
differences. Our method also achieves state-of-the-art performance among the existing multi-
subject methods.
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2 METHODOLOGY

2.1 OVERVIEW

Given a neural dataset with neural activities of N subjects under visual stimuli, let X (n) denote the
voxel space. X(n) ∈ Rni×di is the neural responses of the n-th subject, where ni is the number of
image stimuli and di is the number of voxels. Let I and Y denote the pixel space and the label space
of the image stimuli, respectively. Our goal is to aggregate the neural responses of the N subjects
to train a classifier C : X (1) × · · · × X (N) → Y . To achieve this goal, we propose CLIP-MUSED
that first maps the image stimuli from I to the representation space F of CLIP. Then, a Transformer
feature extractor is used to map the neural responses from X (n) to a shared space Z . Finally, RSA is
employed to guide the representation learning of Z using the topological relationships of the visual
stimuli in F .

2.2 CLIP-BASED FEATURE EXTRACTION OF VISUAL STIMULI

In a previous study (Zhou et al., 2022), it was shown that CLIP (Radford et al., 2021) outperforms
various single-modal DNNs in explaining cortical activity, and that there is a hierarchical correspon-
dence between CLIP and the human ventral visual pathway. Based on these findings, we use CLIP to
extract features of visual stimuli in our method. However, it is worth noting that other DNN feature
spaces could also be used in our approach.

CLIP comprises an image encoder and a text encoder, as shown in Fig. 2. In our method, we
input visual stimuli along with corresponding textual information (either textual descriptions or label
names) into CLIP to obtain multi-modal features. Due to the hierarchical architecture of CLIP, we
use the first-layer features of the image encoder as the low-level feature fllv , while the average of the
image and text features from the last layer of CLIP is used as the multi-modal high-level feature fhlv .
We compute representation similarity matrices (RSMs), MI

llv and MI
hlv , to quantify the similarity

between B visual stimuli in low-level and high-level feature spaces, where B denotes the batch size
in a mini-batch. Specifically, MI

llv[i, j] and MI
hlv[i, j] represent the cosine similarity between the

ith and jth images in the feature spaces Fllv and Fhlv , respectively.

2.3 TRANSFORMER-BASED FMRI FEATURE EXTRACTION

The feature extraction process of the conventional Transformer can be formulated as follows:

z0 =
[
xclass;x

1E; · · · ;xME
]
+Epos, (1)

z′l = MHSA (LN (zl−1)) + zl−1, l = 1, 2, . . . , L (2)

zl = MLP (LN (z′l)) + z′l, l = 1, 2, . . . , L (3)

z = LN
(
z0L

)
. (4)

First, the input data x ∈ Rd is divided into M equally sized patches, resulting in x ∈ RM×din .
As shown in Eq. (1), the patch embeddings of x are obtained by passing them through a linear
embedding layer E ∈ Rdin×dout . The resulting patch embeddings are then concatenated with a
learnable class Token xclass and fed into an L-layer Transformer encoder. To preserve the positional
relationships in the original data, positional encoding Epos ∈ R(M+1)×Dout is used. As shown in
Eqs. (2) and (3), each layer consists of a multi-head self-attention (MHSA) module with residual
connections and a feed-forward (MLP) module. The features are layer-normalized (LN) before
being input into the MHSA and MLP modules. As shown in Eq. (4), the model applies layer
normalization to the variable z0L and generates the final representation z.

To ensure that our model is applicable to different subjects, we design a Transformer-based fMRI
feature extractor with subject-specific tokens, as depicted in Fig. 3. In the input stage, we patchify
the blood oxygenation level dependent (BOLD) signals at first. There are two ways to patchify
the BOLD signals. The first method involves patchifying the data based on regions of interest
(ROIs), while the second method directly patchifies the 3-D BOLD volumes. Fig. 3(a) illustrates the
second method. Due to the high dimensionality of the BOLD volumes, directly patchifying them can
result in a large number of patches, which leads to high computation cost. To address this problem,
we first reduce the dimensionality of the BOLD volumes using a 3D-CNN, and then patchify and
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Figure 3: Transformer-based fMRI feature extractor of CLIP-MUSED. (a) Conversion of BOLD
signals in Volume format to BOLD patches. (b) Flowchart of the feature extraction process. (c)
Network structure of the Transformer encoder.

flatten the feature volumes as BOLD patches. The framework of the Transformer-based feature
extractor is shown in Fig. 3(b). Distinct from the conventional Transformer, the model includes
learnable subject-specific low-level and high-level tokens xllv and xhlv . The network structure
of the Transformer encoder in Fig. 3(b) is illustrated in Fig. 3(c). Each layer consists of a residual
MHSA module and a feed-forward module. The feature extraction process of the Transformer-based
multi-subject fMRI feature extractor can be formalized as follows:

z0 =
[
xllv;xhlv;x

1E; · · · ;xME
]
+Epos, (5)

z′l = MHSA (LN (zl−1)) + zl−1, l = 1, 2, . . . , L (6)

zl = MLP (LN (z′l)) + zl−1, l = 1, 2, . . . , L (7)

zllv = LN
(
z0L

)
, (8)

zhlv = LN
(
z1L

)
. (9)

As described in Eq. (6) and Eq. (7), the low-level and high-level tokens interact with different BOLD
patches, eventually forming low-level and high-level neural representations denoted as zllv and zhlv .
To extract features from the neural signals X(n) of the n-th subject, CLIP-MUSED calls the low-
level token x

(n)
llv and high-level token x

(n)
hlv of the n-th subject. These tokens are then combined with

the BOLD patches and fed into the model for feature extraction.

2.4 MULTI-SUBJECT SHARED NEURAL RESPONSE REPRESENTATION

To capture the distinct processing patterns of visual stimuli across different subjects and encode
them into the low-level and high-level token representations (zllv, zhlv), CLIP-MUSED leverages
the topological relationships among visual stimuli in the feature spaces Fllv and Fhlv of CLIP to
guide the representation learning process.

The guidance is realized by representational similarity analysis (RSA). First, B neural signals are
randomly sampled to obtain the low-level and high-level representations (zllv, zhlv). Next, we
compute the representational similarity matrices (RSMs) MX

llv,M
X
hlv ∈ RB×B for the low-level

and high-level representations zllv and zhlv , respectively. Here, MX
llv[i, j] represents the cosine

similarity between zllv[i] and zllv[j]. During training, we shuffle the samples of all subjects and
randomly sample from them. In a mini-batch, zllv[i] and zllv[j] may come from different subjects.
The topological relationships of visual stimuli in the multimodal feature space and the shared space
are aligned by minimizing the squared F-norm of the difference matrix normalized by the matrix
size, i.e.,

Lllv =
∥∥MI

llv −MX
llv

∥∥2
F
/B2, (10)

Lhlv =
∥∥MI

hlv −MX
hlv

∥∥2
F
/B2. (11)

5



Published as a conference paper at ICLR 2024

In addition to RSA, we can also establish the association between visual stimuli and neural signal
representations using a mapping network. However, RSA-based method is superior to the mapping-
based method. We offer a detailed explanation of why we chose RSA in Section B of the
supplementary materials.

2.5 SEMANTIC CLASSIFIER

Both low-level visual features and high-level semantic features are crucial for semantic classification.
To leverage both types of features, the low-level and high-level token representations are concate-
nated and fed into an MLP network for classification. The model outputs predicted probabilities ŷ.
The semantic classification process can be formalized as follows:

z = CONCAT(zllv, zhlv), (12)
ŷ = MLP(z). (13)

The cross-entropy loss function is used as the classification loss.

Lc = − 1

C

C∑
j=1

[yj log(ŷj) + (1− yj) log(1− ŷj)] . (14)

2.6 OPTIMIZATION OBJECTIVE

To encourage low-level and high-level token representations for each stimulus to differ as much as
possible, the proposed method applies an orthogonal constraint

minL⊥ =
∥∥zllvzThlv∥∥2F /B2. (15)

The optimization objective of the method is

minL = Lc + λ⊥L⊥ + λllvLllv + λhlvLhlv, (16)

where λ⊥, λllv, λhlv are trade-off parameters.

3 EXPERIMENTS

3.1 DATASETS

HCP (Glasser et al., 2013; Van Essen et al., 2012): This dataset is a part of the Human Connectome
Project (HCP), containing BOLD signals from 158 subjects. To reduce computational demands,
we randomly select nine subjects for subsequent experiments. The visual stimuli consist of four
dynamic movie clips, each annotated with an 859-dimensional WordNet label (Miller, 1995). The
top 53 categories with a frequency higher than 0.1 are selected for subsequent experiments.

NSD (Natural Scenes Dataset) (Allen et al., 2022): The dataset contains BOLD signals from eight
subjects. The visual stimuli consist of natural images from the MSCOCO dataset (Lin et al., 2014),
each with multiple labels from 80 categories. Each subject viewed a total of 10,000 stimuli. Unlike
subjects in HCP, subjects in NSD viewed different stimuli. Of the 10,000 stimuli, 9,000 have no
overlap between subjects, while the remaining 1,000 stimuli were presented to all subjects. However,
some subjects did not complete all sessions, and some trials are not publicly available. For this study,
the number of stimuli per subject is approximately 9,000.

A detailed description on how we preprocess the data to adapt the input form of Transformer, split
the dataset, and obtain the multimodal features of each stimulus is provided in Section A of the
supplementary materials.

3.2 BASELINE METHODS

To validate the effectiveness of the proposed method, we compare it with single-subject decoding
methods and existing multi-subject decoding methods.
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Single-subject decoding methods: These are methods using single-subject neural signals as input
and classification loss as the constraint. SS-MLP, SS-CNN, and SS-ViT employ MLP, 3D-CNN,
and ViT as the backbone networks, respectively. Specifically, SS-MLP and SS-CNN are used for
the NSD and HCP datasets, respectively.

Multi-subject data aggregation methods: These methods train a single decoding model for
all subjects by direct data aggregation. We refer to these methods as MS-SMODEL-MLP, MS-
SMODEL-CNN, and MS-SMODEL-ViT, which use MLP, 3D-CNN, and ViT as the backbone
networks, respectively.

MS-EMB (Chehab et al., 2022): MS-EMB trains a single model for all subjects by direct data
aggregation. In contrast to MS-SMODEL, MS-EMB learns a token for each subject to encode their
identity. This approach is based on a method proposed by Chehab et al. (2022) and uses ViT as the
backbone network.

Shared response model (SRM) (Chen et al., 2015): SRM is a probabilistic generative hyperalign-
ment method. However, SRM cannot handle the case where subjects view different stimuli, so it is
only used on the HCP dataset. We use the open-source code available in BrainIAK. We search the
optimal dimensionality of the shared latent space in intervals of 100 dimensions within the range of
[100, 600]. The optimal dimensionality is 500.

3.3 PARAMETER SETTINGS

For the HCP dataset, we first extract volume features using a six-layer 3D-CNN (Dai et al.,
2022) as shown in Fig. 3(a). This results in features of size 7 × 8 × 7 × 512, which are then
reshaped into features of size 392 × 512. Each 512-dimensional vector serves as a patch for the
Transformer. Afterward, CNN and Transformer layers are alternated. CLIP-MUSED employs a
two-layer Transformer. Note that all CNN and Transformer layers are trained together. The learning
rate is set to 0.001, and the batch size is 64, and the optimizer is Adam. We find the optimal values
for the hyperparameters λ⊥, λhlv , and λllv by grid-search within the range of [0.001, 0.01, 0.1] and
the best values are λ⊥ = 0.001, λhlv = 0.001, λllv = 0.1. The models converge after approximately
three hours of training on one NVIDIA A100 GPU.

For the NSD dataset, the network structure of Transformer is similar to that of ViT (Dosovitskiy
et al., 2021), with a patch embedding dimension of 512, 24 layers, and 8 heads for multi-head self-
attention. The learning rate is set to 0.0001, the batch size is 64, and the optimizer is Adam. We
find the optimal values for the hyperparameters λ⊥, λhlv , and λllv by grid-search within the range
of [0.0001, 0.001, 0.01] and the best values are λ⊥ = 0.001, λhlv = 0.001, λllv = 0.0001. The
models converge after approximately two hours of training on one NVIDIA A100 GPU.

3.4 EVALUATION METRICS

We employ three commonly used evaluation metrics in the field of multi-label classification: mean
Average Precision (mAP), the area under the receiver operating characteristic curve (AUC) and
Hamming distance.

3.5 COMPARATIVE EXPERIMENTAL RESULTS

Table 1 presents the results on the HCP dataset. Firstly, our method outperforms two single-subject
decoding methods, SS-CNN and SS-ViT. SS-ViT and our method have the same backbone models,
yet our method achieves significantly better metrics than SS-ViT, highlighting the superiority of the
efficient data aggregation strategy of our method. The comparisons of SS-ViT and our method on
different subjects are shown in Fig. C5 in the supplementary materials. Secondly, our method
is also highly competitive when compared to the other multi-subject decoding methods (MS-
SMODEL-CNN, MS-SMODEL-ViT, MS-EMB, and SRM). Despite having the same training data
and backbone models, our proposed method outperforms MS-SMODEL-ViT on all metrics. This
indicates that the subject-specific tokens employed in our method can handle individual differences
well and are superior to the simple aggregation of multi-subject data used in MS-SMODEL-ViT.

The method effectiveness is further validated on the NSD dataset, where the stimuli in the training
set for each subject are completely exclusive. Table 2 presents the results, which show that our
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Table 1: Performance of different methods
on the HCP dataset. All the improvement
of our method compared to other methods
is significant (t-test, p < 0.05) except for
those underlined, where the p-values have been
corrected with the Holm-Bonferroni method for
multiple comparisons.
Methods mAP ↑ AUC ↑ Hamming ↓
SS-CNN .347 ± .001 .531 ± .006 .351 ± .017

SS-ViT .360 ± .002 .556 ± .004 .333 ± .021

MS-SMODEL-CNN .342 ± .001 .525 ± .004 .528 ± .091

MS-SMODEL-ViT .367 ± .003 .576 ± .001 .310 ± .014

MS-EMB .368 ± .004 .572 ± .004 .305 ± .003

SRM .348 ± .002 .534 ± .003 .204 ± .000

OURS .373 ± .002 .581 ± .008 .283 ± .004

Table 2: Performance of different methods
on the NSD dataset. All the improvement
of our method compared to other methods is
significant (t-test, p < 0.05), where the p-values
have been corrected with the Holm-Bonferroni
method for multiple comparisons.

Methods mAP ↑ AUC ↑ Hamming ↓
SS-MLP .258 ± .005 .854 ± .004 .033 ± .001

SS-ViT .238 ± .005 .815 ± .008 .032 ± .000

MS-SMODEL-MLP .150 ± .005 .767 ± .006 .039 ± .001

MS-SMODEL-ViT .156 ± .006 .755 ± .014 .038 ± .001

MS-EMB .220 ± .014 .825 ± .030 .035 ± .001

OURS .258 ± .017 .877 ± .021 .030 ± .002

Table 3: Results of the ablation study on the NSD dataset. Our method outperforms the methods
with other loss configurations significantly (t-test, p < 0.05), where the p-values have been corrected
with the Holm-Bonferroni method for multiple comparisons.

λ⊥ λhlv λllv mAP ↑ AUC ↑ Hamming ↓
✓ ✓ .201± .006 .794± .010 .036± .001

✓ .209± .002 .819± .009 .036± .002

✓ ✓ .215± .012 .820± .018 .036± .001

✓ ✓ .209± .016 .824± .017 .037± .002

✓ ✓ ✓ .258± .017 .877± .021 .030± .002

method outperforms the single-subject methods, SS-MLP and SS-ViT. The comparisons of SS-ViT
and our method on different subjects are shown in Fig. C6 in the supplementary materials. With the
same amount of data and the same backbone models, the aggregation methods are far inferior to our
method. This is mainly because the MS-SMODEL methods sharing all the model parameters across
all subjects are hard to handle both inter-subject variability and differences in stimuli distribution.
Although MS-EMB performs better than the aggregation methods, it is still inferior to the proposed
method.

3.6 ABLATION STUDY

We conduct an ablation study on the NSD dataset, and the results are shown in Table 3. The model
performance is unsatisfactory when only model guidance is applied without orthogonal constraints
or when only orthogonal constraints are applied without model guidance. Using either low-level or
high-level features for guidance with orthogonal constraints results in a slight improvement in model
performance, but there is still a gap compared to the model’s performance with all three constraints.
These results confirm the necessity of multimodal model guidance and orthogonal constraints on
primary and high-level token representations. We also investigate the guidance effect of CLIP on
SS-ViT and the guidance effect of different DNNs. The results are shown in Table D5 and Table E6
in the supplementary materials.

3.7 VISUALIZATION

We visualize the attention maps of low-level and high-level tokens on the last layer of CLIP-MUSED
model. The visualization results on the left hemispheres of HCP dataset are presented in Fig. 4,
where we randomly select four subjects for presentation. Fig. 4(a) shows the attention maps for
the low-level tokens, which are concentrated in the occipital lobe. Fig. 4(b) shows the attention
maps of the high-level tokens, which are more dispersed across the cortex, with strong attention
allocated to the frontal, parietal, and temporal lobes. These results are in line with our expectations,
as previous studies have demonstrated that the processing of low-level visual features mainly occurs
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in the visual cortex, while the processing of high-level semantic features involves the temporal,
parietal, and frontal lobes (De Benedictis et al., 2014; Mitchell et al., 2008). Fig. 4(c) shows the
attention maps of the embedding tokens of MS-EMB. In contrast to the token attention maps of
CLIP-MUSED, the attention maps of MS-EMB are smoothly distributed across the entire cortical
surface, making it difficult to understand which information is encoded in the tokens.

Subject 1 Subject 3 Subject 6 Subject 7

0

0

0

8×10%&

4×10%(

1×10%&

(a)

(b)

(c)

Figure 4: On the HCP dataset, attention maps of (a) low-level tokens and (b) high-level tokens of
our method, and (c) attention maps of subject embeddings of the MS-EMB method, were visualized
on the cortical surface for 4 randomly selected subjects.
The visualized results on the NSD dataset are displayed in Fig. F8 of the supplementary materials.
The results provide explanations for the superior performance of the proposed method.

4 DISCUSSION AND CONCLUSION

To address the issue of individual variability, we propose a multi-subject semantic decoding method,
CLIP-MUSED. We design a Transformer-based encoder that can extracts global features of neural
responses. The method introduces subject-specific low-level and high-level tokens to encode
individual variability. Based on the RSA, CLIP-MUSED guides the representation learning of
tokens by the topological relationship of visual stimuli in the representation space of CLIP. On
two fMRI datasets, the proposed method outperforms the single-subject methods and achieves state-
of-the-art performance.

All parameters of CLIP-MUSED, except for the subject-specific tokens, are shared among all
subjects. This allows the method to be extended to datasets with hundreds of subjects. Moreover,
CLIP-MUSED is applicable to situations where multiple subjects have different stimuli. Even
when the stimulus images of different subjects are completely mutually exclusive, our method
outperforms single-subject decoding models. Therefore, the proposed method has the potential
to train a foundation model with aggregating multi-source neural datasets, following the research
trends in the computer vision and natural language processing communities (Radford et al., 2021;
Brown et al., 2020).

In the future, we plan to extend our method to visual stimuli reconstruction (Chen et al., 2022;
Lin et al., 2022; Takagi & Nishimoto, 2022), a more challenging task than semantic classification.
Besides, our approach can be applied to new subjects if we devise strategies to learn subject-specific
tokens for new subjects and adapt the model accordingly. Since the experimental workload are
substantial, we plan to carry out this work in the future.
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A DATA PREPROCESSING

Preprocessing before input: The original BOLD volumes in the HCP dataset have dimensions
of 113 × 136 × 113. The 3-D BOLD volumes are patchified by 3D-CNN as shown in Fig. 3(a)
during experiments. For the NSD dataset, we extract ROIs in the visual cortex based on brain
parcellation, including V1-V3, V3ab, hV4, ventral occipital (VO), intraparietal sulcus (IPS), lateral
occipital (LO), middle temporal (MT), and parahippocampal cortex (PHC), covering both primary
and high-level areas of the visual cortex. The number of voxels in each ROI varies across subjects,
and the number of voxels for the same subject also varies across different ROIs. To enable model
weight sharing across subjects, we align the dimensions of the BOLD signals in the same ROI
across subjects. Additionally, to adapt the data to the Transformer model, we align the dimensions
of the BOLD signals in the same subject across different ROIs. To achieve this, we employ
principal component analysis to reduce the dimensionality of the BOLD signals to the minimum
dimensionality value of 268 across all BOLD signals from all ROIs of all subjects. During the
testing process, we can apply zero-padding to neural signals with dimensions lower than this value.
In the methods using MLP as the backbone network, the patches of all ROIs are concatenated into a
vector to input into the model. In the methods using ViT as the backbone network, one patch is one
token.

Data split: The HCP dataset is split in accordance with the method described in Khosla et al. (2020).
The first three movies are used for training and validation, while the fourth movie is used for test.
For the single-subject decoding task, the training, validation, and test sets consist of 2000, 265, and
699 samples, respectively. For the multi-subject decoding task, the training sets of nine subjects
are combined and randomly shuffled for model training, while the validation sets of the same nine
subjects are combined for model validation. To account for the randomness, we report the average
results of three random runs. A hemodynamic delay of 4 seconds estimated in Khosla et al. (2020)
is used in this paper. For the NSD dataset, the stimuli viewed by all subjects and their corresponding
neural responses are used for test in the single-subject decoding task. A validation set consisting of
1,000 randomly sampled examples is used for hyper-parameter tuning and convergence monitoring
during training. The remaining data is used for training. For the multi-subject decoding task, the
training sets of eight subjects are combined and randomly shuffled, and a validation set of 1,000
examples is randomly sampled. The remaining data is used for training. Due to the randomness of
data split, we report the average results of five random splits.

Multimodal feature extraction: We concatenate the WordNet annotations of each movie frame
to form the textual information for stimuli in the HCP dataset. In the NSD dataset, each stimulus
image is associated with five captions. Following the approach in Lin et al. (2022), we compute the
similarity between each image and its five captions in the multimodal feature space of CLIP. We
use half of the maximum similarity score as the threshold and randomly select one caption from the
selected candidates to serve as the textual information for the stimulus. We extract the text features
by inputting the textual information into the CLIP text encoder. For both datasets, we truncate the
image and text features with a threshold of 1.5 and normalize their L2 norms to 1. We then compute
the average of the image and text features to obtain the multimodal feature fhlv , which guides the
learning of zhlv .

B THE CHOICE OF AN RSA-BASED LOSS

Using RSA to guide the representation learning of fMRI is superior to directly mapping fMRI
representations to the CLIP embeddings. There are three main reasons:

1. Mapping-based methods tend to focus on learning local information when embedding fMRI
representations into the CLIP space (e.g., minimizing the L2 norm between true and predicted
values). However, they may overlook the global topological structure of the CLIP space, which
can affect the interpretability and generalization capabilities of the embedding space. In contrast,
using RSA loss ensures the global topological structure similarity between the embedding space
and the CLIP space.

2. There is a gap between the representation spaces of CLIP and fMRI. It is more challenging to
directly learn the mapping from fMRI representations to CLIP representations than to learn the
topological relationship. Forcing alignment may lead to overfitting and poor generalization.
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Table B4: Results of the RSA-based method (CLIP-MUSED) and mapping-based methods on the
NSD dataset.

Method mAP ↑ AUC ↑ Hamming ↓
Mapping-Based .247± .026 .844± .033 .035± .002

RSA-Based .258± .017 .877± .021 .030± .002

3. Mapping-based methods introduce additional trainable parameters in the mapping network, and
the architecture of the mapping network also needs to be delicately optimized.

We also conduct a comparative experiment between RSA-based and mapping-based methods on
the NSD dataset. The results in Table B4 demonstrate the superiority of the RSA-based loss. The
coefficient (λ = 0.0001) of the mapping-based loss item has been optimized.

C PEFORMANCE COMPARISON ON EACH SUBJECT

We compare the performance of SS-ViT, which is a single-subject decoding method with CLIP-
MUSED, as they both utilize ViT as the backbone network. Fig. C5 compares the mAP of our
method and SS-ViT on each subject. As shown in the figure, our method outperforms SS-ViT on
all subjects. Fig. C6 show the comparison results on the NSD dataset. It is evident that our method
consistently outperforms SS-ViT on the majority of subjects. These findings suggest that the neural
representations shared among subjects learned by our method are superior to those learned by the
single-subject method.
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Figure C5: Performance comparison between SS-ViT and our method on each subject of the HCP
dataset.

1 2 3 4 5 6 7 8
Subjects

0.10

0.15

0.20

0.25

0.30

m
AP

Ours
SS-ViT

Figure C6: Performance comparison between SS-ViT and our method on each subject of the NSD
dataset.

D GUIDANCE EFFECT ON THE SINGLE-SUBJECT METHOD

In the experiments, we only employ CLIP guidance in our proposed multi-subject model. To
investigate the impact of CLIP guidance on the single-subject model, we modified the SS-ViT to
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Table D5: Results of two single-subject methods CLIP-SS-ViT and SS-ViT, with and without CLIP
guidance, and CLIP-MUSED on the NSD dataset. All the improvement of CLIP-MUSED compared
to other cases is significant (t-test, p < 0.05), where the p-values have been corrected with the Holm-
Bonferroni method for multiple comparisons.

Method mAP ↑ AUC ↑ Hamming ↓
SS-ViT .238± .005 .815± .008 .032± .000

CLIP-SS-ViT .234± .002 .822± .006 .032± .001

CLIP-MUSED .258± .017 .877± .021 .030± .002

enable the learning of neural representations under the guidance of CLIP, i.e., CLIP-SS-ViT. The
model structure and composition of the loss function for CLIP-SS-ViT are the same as our method,
with the only difference being that CLIP-SS-ViT is trained on single-subject data. We carefully
tuned the trade-off parameters for CLIP-SS-ViT, and the optimal parameters are λ⊥ = 0.0001,
λhlv = 0.0001, and λllv = 0.0001. The results are shown in Table D5.

It can be observed that, both guided by CLIP, our method outperforms the CLIP-SS-ViT. This
superiority can be attributed to the multi-subject aggregation strategy employed in our method.
On the single-subject model, the relatively weak effect of using CLIP as guidance may be due
to the fact that the single-subject model does not need to handle individual differences. In other
words, the original classification loss can implicitly learn the relationship between different fMRI
representations of a single subject, and the guidance from CLIP is redundant for the model.

E GUIDANCE EFFECT OF DIFFERENT DNNS

Table E6 presents the model performance when the neural representation learning is guided by
the topological relationship of visual stimuli across different DNN representation spaces. CLIP-
Img/CLIP-Text refer to the utilization of high-level image/text features extracted by the image/text
encoder of CLIP, instead of the multimodal features, during the learning of high-level tokens. In
summary, the results depicted in Table E6 suggest that features extracted from CLIP exhibit a
superior guidance effect when compared to the baseline models (ViT and AlexNet). Notably, textual
information provides a richer semantic understanding of the visual stimuli and integrating it with the
image features can serve to augment the performance of the model in guiding neural representation
learning.

Table E6: Comparison of the guidance effect of different DNNs. All the improvement of CLIP
compared to other cases is significant (t-test, p < 0.05) except for those underlined, where the
p-values have been corrected with the Holm-Bonferroni method for multiple comparisons.

Methods
HCP NSD

mAP ↑ AUC ↑ Hamming ↓ mAP ↑ AUC ↑ Hamming ↓
ViT .362± .003 .562± .004 .383± .040 .229± .009 .849± .014 .035± .001

AlexNet .362± .002 .558± .005 .333± .013 .225± .012 .855± .013 .034± .002

CLIP-Img .370± .001 .577± .001 .291± .002 .238± .006 .863± .008 .033± .001

CLIP-Text .370± .002 .579± .006 .286± .003 .223± .006 .841± .008 .036± .001

CLIP (OURS) .373± .002 .581± .008 .283± .004 .258± .017 .877± .021 .030± .002

F VISUALIZATION

We present the visualization of between-subject representational similarity matrices (RSMs) of low-
level and high-level tokens on two datasets, as depicted in Fig. F7. Notably, the similarity of tokens
between subjects is observed to be higher on the HCP dataset compared to the NSD dataset. This
can be attributed to the fact that in the HCP dataset, all subjects viewed the same stimuli, and the
distribution of stimuli across subjects is uniform, whereas in the training set of the NSD dataset, the
stimuli viewed by different subjects are mutually exclusive. Evidently, different subjects process

15



Published as a conference paper at ICLR 2024

(a) HCP (b) NSD

Low-level Token RSM High-level Token RSM High-level Token RSMLow-level Token RSM

Figure F7: RSM between low-level and high-level tokens across subjects of our method on (a) the
HCP dataset and (b) the NSD dataset.
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Figure F8: Attention maps between the low-level and high-level tokens of our method and different
brain region tokens at the last Transformer self-attention layer for 8 subjects on the NSD dataset.

stimulus information in slightly distinct patterns even when viewing the same stimuli, and these
differences are further amplified when presented with different stimuli. The tokens learned for each
subject in CLIP-MUSED can encode these inter-subject variabilities, resulting in lower similarity of
tokens between subjects on the NSD dataset with different stimuli for different subjects.

Fig. F8 shows the attention maps of the low-level and high-level tokens on different ROIs of the
NSD dataset. The low-level tokens exhibit a higher attention allocation towards the primary and
intermediate visual cortex regions on the left side of the bar chart, including V1-V4, while the high-
level tokens exhibit a more pronounced attention towards the higher visual cortex regions such as
LO, MT, and PHC. Prior research has established that MT plays a crucial role in depth perception
(Born & Bradley, 2005), LO is involved in object recognition tasks (Grill-Spector et al., 2001), and
PHC contributes to visual perception related to memory and spatial scenes (Aminoff et al., 2013).
In contrast, Fig. F9 demonstrates the attention maps of the subject embeddings in the MS-EMB
method, revealing a more focused attention on the V3, V4, and VO brain regions, but less on the
higher visual cortex regions such as LO, MT, and PHC. In contrast, our method leverages both low-
level and high-level tokens to allocate attention towards both low-level and intermediate visual cortex
regions, as well as higher visual cortex regions. The difference in token attention maps between our
method and the MS-EMB method partially elucidates the superiority of our method in classification
performance.
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Figure F9: Attention maps between the subject embedding token of the MS-EMB method and
different brain region tokens at the last Transformer self-attention layer for 8 subjects on the NSD
dataset.
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