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ABSTRACT

Diffusion models have demonstrated remarkable empirical success in recent years
and are considered one of the state-of-the-art generative models in modern AI.
These models consist of a forward process, which gradually diffuses the data dis-
tribution to a noise distribution spanning the whole space, and a backward pro-
cess, which inverts this transformation to recover the data distribution from noise.
Most of the existing literature assumes that the underlying space is Euclidean.
However, in many practical applications, the data are constrained to lie on a sub-
manifold of Euclidean space. Addressing this setting, De Bortoli et al. (2022)
introduced Riemannian diffusion models and proved that using an exponentially
small step size yields a small sampling error in the Wasserstein distance, pro-
vided the data distribution is smooth and strictly positive, and the score estimate
is L∞-accurate. In this paper, we greatly strengthen this theory by establishing
that, under L2-accurate score estimate, a polynomially small stepsize suffices to
guarantee small sampling error in the total variation distance, without requiring
smoothness or positivity of the data distribution. Our analysis only requires mild
and standard curvature assumptions on the underlying manifold. The main in-
gredients in our analysis are Li-Yau estimate for the log-gradient of heat kernel,
and Minakshisundaram-Pleijel parametrix expansion of the perturbed heat equa-
tion. Our approach opens the door to a sharper analysis of diffusion models on
non-Euclidean spaces.

1 INTRODUCTION

Initially introduced by Sohl-Dickstein et al. (2015) and later advanced by Song & Ermon (2019);
Ho et al. (2020); Dhariwal & Nichol (2021), diffusion model has become one of the bedrocks in
generative modeling across a variety of application domains such as vision, video, speech, and many
others. On a high level, diffusion models generate samples from a target distribution by operating
on two stochastic processes:

1. A forward process

X0
add noise−−−−−→ X1

add noise−−−−−→ · · · add noise−−−−−→ XT ,

where X0 is sampled from the target distribution p0 in Rd, and XT resembles pure noise.
2. A reverse process

YT
denoise−−−−→ YT−1

denoise−−−−→ · · · denoise−−−−→ Y0,

where YT starts from pure noise, and gradually removes the noise, so that at Y0, we recover
a new sample from a distribution close to p0.

The reverse process is built to recover the target data distribution by step-wise reversing the forward
process, with a goal of matching the probabilities Yt ≈ Xt in distribution for t ∈ {T, . . . , 1}. Lever-
aging the theory of backward stochastic differential equations (SDE) (Anderson, 1982; Haussmann
& Pardoux, 1986), this can be formally achieved as soon as the as long as the score function, i.e.,
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the log-gradient of the the marginal density of the forward process, becomes available, which can
be estimated via score matching (Hyvärinen & Dayan, 2005).

Tremendous recent progresses have been made in understanding the convergence of diffusion mod-
els in the Euclidean space, e.g. Lee et al. (2023); Chen et al. (2023); Benton et al. (2024); Li et al.
(2024), which establish near-tight polynomial iteration complexities of discrete-time samplers un-
der L2-accurate score estimates and mild assumptions of the data distribution. These convergence
results provide strong justifications to the empirical success of diffusion models for generating from
complex multi-modal distributions.

Many scientific domains, however, are intrinsically non-Euclidean; examples include orientations
on SO(3), directions on spheres, toroidal angles, articulated poses, and symmetric positive definite
(SPD) matrices are naturally modeled on Riemannian manifolds (Piggott & Solo, 2016; Muniz et al.,
2022). Recently, there has been an increasing interest in effectively sampling from distributions sup-
ported on manifolds and providing theoretical guarantees (Girolami & Calderhead, 2011; Gatmiry &
Vempala, 2022; Li & Erdogdu, 2023; Guan et al., 2025). Although sampling on manifolds has been
studied extensively (Cheng et al., 2023), extending diffusion models to manifolds requires careful
treatments to incorporate the manifold constraints into both the time-inhomogeneous forward and
reverse processes, with selected attempts in De Bortoli et al. (2022); Huang et al. (2022); Lou et al.
(2023); Liu et al. (2023); Fishman et al. (2023).

One notable development is De Bortoli et al. (2022), who introduced Riemannian Score-Based Gen-
erative Models (RSGMs) with convergence guarantees in the Wasserstein distance. Specifically, they
established a time-reversal diffusion process for geometric Brownian motion on manifolds, which
can be similarly learned via score matching (Hyvärinen & Dayan, 2005). While groundbreaking,
their convergence bound suffers from a few caveats: 1) it requires an exponentially small stepsize,
leading to a possibly exponential iteration complexity in some of the manifold parameters; 2) it
requires L∞-accurate score estimates, which are impractical in deep learning; and 3) the data distri-
bution is required to be smooth and strictly positive on compact manifolds. This naturally raises the
following questions:

Can we achieve polynomial iteration complexity for manifold diffusion models using L2-accurate
score estimates under mild data assumptions?

1.1 OUR CONTRIBUTION

We provide a discrete-time analysis of the RSGM sampler in De Bortoli et al. (2022), assuming
L2-accurate score estimates. Under mild geometric conditions of the manifold without assuming
smooth or strictly positive data densities, we establish that polynomial stepsizes suffice for accurate
sampling on manifolds in total variation (TV). More precisely, for some ε > 0, the TV error between
the distribution of the output Y0 and pδ , that is, an approximation to p0 with early-stopping time
δ > 0, obeys

TV
(
pδ, Law(Y0)

)
≲ ε + εscore +

√
hT poly(d, δ−1),

as long as the horizon satisfies T ≳ λ−1
1 (d log d + log(d/ε)). Here, d is the dimension of M,

λ1 is the spectral gap of −∆M , h > 0 is the stepsize, and εscore is the L2 score estimation error.1
This bound suggests that a polynomial stepsize is sufficient: take T ≍ λ−1(d log d+ log(d/ε)) and
h = ε2

poly(d,δ−1)T , then the TV error is bounded by ε+ εscore after an iteration complexity of

N = T/h ≍ poly(d, δ−1)/(λ1ε)
2.

This conveys a much more benign message about the efficiency of Riemannian diffusion models,
compared with the iteration complexity in De Bortoli et al. (2022) that scales exponentially with the
dimension d, under relaxed assumptions on both the data distribution and the score estimates.

Techniques. Our proof highlights three ingredients: (i) high-probability Li-Yau gradient bounds
for the manifold heat kernel together with early stopping to control ∥∇ log pt∥ without assuming
positivity/smoothness of p0; (ii) a localization scheme that “freezes” drifts across nearby tangent

1For simplicity, we omitted polynomial dependence on manifold geometry parameters and poly-log depen-
dence on ε. The complete version can be found in Theorem 1.
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Work Structure Metric Iteration complexity Data distribution

Benton et al. (2024) Euclidean TV Õ
(
d/ε2

)
bounded moment

Li et al. (2024) Euclidean TV Õ(poly(d)/ε) bounded support
Li & Yan (2025) Euclidean TV Õ(d/ε) bounded moment
De Bortoli et al. (2022) Manifold Wp Õ

(
exp(O(d))/ε−1/λ1

)
a smooth, strictly positive

This work Manifold TV Õ
(poly(d)
λ2
1ε

2

)
None (early stopping)

aThe original Wp error in De Bortoli et al. (2022) is stated in the form of Õ
(
Ce−λ1T + eT

√
h
)
, where

C is defined in Proposition C.6 therein, which in turn is specified by Urakawa (2006, Proposition 2.6) as
the supremum of td/2H(t, x, y), where H is the heat kernel on the manifold. In general, the best estimate
for this is due to Li-Yau (Li & Yau, 1986), which gives C ≤ eO(d). To achieve ε-error, we must set T =
λ−1
1 (Ω(d) + log ε−1) and h = e−2T ε2, then the iteration complexity T/h has the claimed form.

Table 1: Comparison of the current theoretical guarantees on diffusion probabilistic models on Eu-
clidean spaces and manifolds. Here, λ1 > 0 is the spectral gap of the Laplace-Beltrami operator.

spaces but preserves continuous Brownian motion (BM), to separate the effects of discretizing scores
and BM; and (iii) a quantitative estimates for Minakshisundaram–Pleijel parametrix that controls
one-step deviations between the manifold heat flow and its discretized proxy. These components
allow us to handle the discretization errors sharply to avoid exponential dependence.

1.2 RELATED WORKS

Non-asymptotic convergence for Euclidean diffusion models. Early convergence analyses of
diffusion models require L∞-accurate score estimates (De Bortoli et al., 2021). For stochastic sam-
plers such as DDPM (Ho et al., 2020), early bounds under Lipschitz/smoothness assumptions of
the data distribution admit an O(T− 1

2 ) iteration complexity in the total variation distance assuming
L2-accurate score estimates (Chen et al., 2023), with subsequent analyses relaxing the Lipschitz
assumption yet retaining the same complexity (Lee et al., 2023; Benton et al., 2024; Li et al., 2024).
More recently, Li & Yan (2025) has improved the iteration complexity to Õ(T−1). For determinis-
tic samplers, Chen et al. (2023) established polynomial convergence with exact scores, and Li et al.
(2024) established a convergence rate of O(T−1) under L2-accurate scores. See Beyler & Bach
(2025); Liang et al. (2024); Li & Jiao (2024) for additional analyses that established convergence in
the Wasserstein distance and improved discrete-time rates. Several works (Li & Yan, 2024; Liang
et al., 2025; Huang et al., 2024; Potaptchik et al., 2024) also developed non-asymptotic convergence
rates of diffusion models under the manifold hypothesis, suggesting diffusion models are adaptive to
low-dimensional structures. This line of work should not be confused with ours, where the diffusion
process is designed specifically to be constrained on the manifold.

Sampling on Riemannian manifold. Cheng et al. (2022; 2023) analyzed the geometric Eu-
ler–Maruyama (EM) discretization for time-homogeneous SDEs, and proved a polynomial com-
plexity guarantee under dissipative-distant geometric assumptions on the manifold. See also Bharath
et al. (2025) for follow-ups. Guan et al. (2025) proposed a Riemannian proximal sampler with con-
vergence guarantees under the log-Sobolev inequality. Various sampling algorithms are also studied
for a related problem known as sampling from constrained spaces (Srinivasan et al., 2024; Ahn &
Chewi, 2021). Nonetheless, convergence analyses of Riemannian diffusion models under general
data distributions remain highly limited, with De Bortoli et al. (2022) being the only prior work with
non-asymptotic convergence rates.

2 BACKGROUNDS

2.1 DIFFUSION MODELS ON EUCLIDEAN SPACE

We briefly recall diffusion processes on Rd. Let (Wt)t≥0 be a standard Brownian motion in Rd.
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Forward SDE and Fokker–Planck. Given a drift term bt : Rd → Rd, the forward process
(Xt)t∈[0,T ] solves the Itô SDE

dXt = bt(Xt) dt + dWt, X0 ∼ p0.
Let pt denote the law ofXt, then pt satisfies the Fokker–Planck equation ∂tpt = −∇(btpt)+ 1

2∆pt.
In the driftless setting where bt ≡ 0, the marginal pt = p0 ∗ φt is a Gaussian smoothing of p0 with
kernel φt(z) = (2πt)−d/2 exp

(
− ∥z∥2/(2t)

)
.

Score and reverse process. The score of the forward process at time t is defined as st(x) :=
∇ log pt(x). The time-reversal identity (Anderson, 1982) yields a reverse-time process (Yt)t∈[0,T ]

whose marginals match those of (Xt)t∈[0,T ] which solves the reverse-time SDE (note that t flows
from T to 0):

dYτ = [−bτ (Yt) + sτ (Yt)] dt+ dWt, τ = T − t, YT ∼ pXT .

Discretization with approximate score. Let 0 = t0 < t1 < · · · < tN = T , where ti − ti−1 =: h
be a time grid. In practice, exact score function is often unavailable. Instead, we use an approxima-
tion ŝt trained via score matching (Hyvärinen & Dayan, 2005). The Euler–Maruyama discretization
of the reverse-time SDE above is given by

yk−1 = yk + h [−btk(yk) + ŝtk(yk)] +
√
hgk, gk ∼ N (0, Id).

In our driftless setting, this reduces to

yk−1 = yk + hŝtk(yk) +
√
hgk, gk ∼ N (0, Id).

2.2 GEOMETRY AND NOTATION

We assume some familiarity with Riemannian geometry, and make use of standard notation. Please
refer to Jost (2017); Petersen (2006) for a more in-depth treatment. In particular, we use α, β, ξ, ζ,
etc., to index coordinate representation of tensors, and assume Einstein’s summation convention.
Let (M, g) be a connected, compact d-dimensional Riemannian manifold, with geodesic distance
ρ(·, ·) and volume measure µ. We assume µ(M) = 1. The Levi–Civita connection is denoted by
∇, and the Laplace–Beltrami operator by

∆Mf := ∇α∇αf.

We use TxM for the tangent space at x and use expx : TxM → M for the exponential map
and logx for its local inverse on the normal neighborhood of x. Furthermore, we define geodesic
diameter of (M, g) is

Diam(M) := sup
x,y∈M

ρ(x, y),

where ρ(·, ·) is the geodesic distance induced by g. We further denote Rm as the Riemannian
curvature tensor. Geodesic ball centered at x with radius r is denoted Bx(r).

We use the total variation (TV) and the Kullback-Leibler (KL) distance to measure the discrepancy
between two distributions p, q:

TV(p, q) =

∫
M

∣∣dp− dq
∣∣, KL(p ∥ q) =

∫
M

(
log

dp

dq

)
dp.

2.3 HEAT FLOW, BROWNIAN MOTION, AND DIFFUSION ONM

We also recall the setup for SDE and diffusion processes on Riemannian manifolds introduced in
De Bortoli et al. (2022); Cheng et al. (2023). Let (Wt)t≥0 be a standard Brownian motion in Rd and
Ux : Rd → TxM any orthonormal frame at x. The Geometric Brownian motion solves

dXt = UXt ◦ dWt,

where ◦ denotes Stratonovich integral, and its transition density pt(x, y) with respect to µ solves the
heat equation

∂tpt(·, y) =
1

2
∆Mpt(·, y).
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Algorithm 1 Riemannian Score-Based Generative Models (RSGM)

1: Manifold (M, g); score ŝt(x); early stopping time δ > 0; reverse time grid δ = t0 < t1 <
· · · < tN = T ; step size h = tk − tk−1; initial xN ∼ µ (uniform distribution);

2: for k ∈ {N, . . . , 1, 0} do
3: Choose an orthonormal frame Uk at Yk, which is a linear map from Rd to TYkM.
4: ξk ∼ N (0, Id) in Rd; Gk ← Ukξk ∈ TYkM.
5: bk ← ŝtk(Yk) ∈ TYkM
6: ∆k ← hbk +

√
hGk ∈ TYkM

7: if ∥∆k∥ ≤ h1/4 then
8: Yk−1 ← expYk(∆k)
9: else

10: Yk−1 ∼ µ
11: return Y0

Equivalently, Brownian motion can be defined abstractly as the solution to the martingale problem
for the operator 1

2∆M. Concretely, for any f ∈ C∞([0,∞)×M), the process

Mf
t := f(t,Xt)− f(0, X0)−

∫ t

0

(
∂s +

1

2
∆M

)
f(s,Xs)ds

is a martingale with respect to the natural filtration ofX . More generally, a forward diffusion process
with drift is given by

dXt = bt(Xt) dt+ UXt ◦ dWt,

with Fokker–Planck equation ∂tpt = −∇(btpt) + 1
2∆Mpt. Note that in this setting, the following

process is a martingale for smooth f :

Mf
t := f(t,Xt)− f(0, X0)−

∫ t

0

(
∂sf + ⟨bt,∇f⟩+

1

2
∆Mf

)
(s,Xs)ds. (1)

Let pt denote the density of Xt w.r.t. µ, and define the score st := ∇ log pt. The time-reversal
identity on manifolds yields a reverse SDE:

dX̃τ = (−bt(X̃τ ) +∇ log pτ (X̃τ ))dt+ UX̃τ ◦ dWt, τ = T − t, X̃T ∼ pXT .
In practice, the score ∇ log pt is approximated by a trained neural network ŝt(x).

Last but not least, note that on compact manifolds, −∆M admits a spectral gap λ1 > 0. Any initial
distribution mixes to the uniform distribution µ along the heat flow with rate e−λ1t.

3 MAIN RESULT

In this section, for completeness, we first introduce the RSGM algorithm in De Bortoli et al. (2022).
Then, we offer our polynomial convergence guarantee in Theorem 1. For simplicity, we use a
driftless forward process:

dXt = UXt ◦ dWt, X0 ∼ p0.
The time-reversal identity yields the reverse-time SDE

dYt = ∇ log pτ (Yτ ) dt + UYτ ◦ dWt, τ = T − t, YT ∼ pT . (2)

In Algorithm 1, we provide an outline of discretized reverse-time SDE on Riemannian manifold,
modified from De Bortoli et al. (2022). In each reverse step k ∈ {N, . . . , 1, 0}, we select an or-
thonormal frame Uk at yk, then sample Gaussian noise ξk and lift it to the tangent space TykM
using the orthonormal frame, obtaining Gk ∈ TykM. Afterwards, we propose a tangent update
∆k = hŝtk(yk) +

√
hGk and the project to the manifold using the exponential map. To prevent the

update from exitting the injective radius, we perform a rejection sampling step that rejects exceed-
ingly large update. The algorithm terminates at k = 0 and returns the final iterate y0. In this way,
we ensure every update is well-defined in normal coordinates during the algorithm.

Before presenting the main theorem, we formalize the assumptions needed for the convergence
guarantee.
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Assumption 1 (Regularity). Let (M, g) be a connected, compact d-dimensional Riemannian man-
ifold. We assume the following conditions onM:

(A1) Positive injectivity radius: there exists some constant K ≥ 1 such that the injective radius
≥ 1/K.

(A2) Uniform curvature bounds: for the same constantK (which can be enlarged if necessary),
we have

max
{
Diam(M), ∥Rm∥L∞ , ∥∇Rm∥L∞ , ∥∇2Rm∥L∞

}
≤ K.

(A3) Regularity of score estimates: there exists a polynomial poly(d,K), such that

∥ŝtk(x)∥ ≤ poly(d,K)
(
∥∇ log ptk(x)∥+ t−1

k

)
, ∀x ∈M.

In Assumption 1, we made the standard “bounded geometry” assumption; similar assumptions also
occur in Cheng et al. (2022); De Bortoli et al. (2022). A positive injective radius ensures that we
have sufficient room to operate on the tangent spaces as a proxy of operating on manifolds, since for
every x ∈ M, the exponential map expx is a diffeomorphism on the geodesic ball within injective
radius. Bounds on Riemannian tensors rule out pathological cases, which helps to control the error
propagation along the reverse diffusion. Lastly, compactness ensures a positive spectral gap of ∆M
with λ1 > 0, which is necessary to guarantee that the forward process mixes. The mild assumption
(A3) on the score estimates avoids excessively large drifts in diffusion, and can be implemented
easily in practice by clipping. In addition to the above, we also need a standard assumption on the
score estimation error (Chen et al., 2023).

Assumption 2 (Score estimation error). There exists εscore > 0 such that

N∑
k=1

(tk − tk−1)E∥ŝtk(Ytk)−∇ log ptk(Ytk)∥2 ≤ ε2score.

With the above assumptions, we are now ready to present our main convergence guarantee for
RSGM, as outlined in the following TV-accuracy bound.

Theorem 1. Assume Assumptions 1 and 2 hold. There exists some universal constant C,C ′ > 0
such that the following holds. If T ≥ C

λ1
(d log(Kd)+K+log(Nε )), then the output Y0 of Algorithm 1

obeys
TV(pδ, Law(Y0)) ≤ ε+ C ′εscore +

√
hT poly(d,K, δ−1),

where h is the discretization step size, λ1 > 0 is the mixing rate of the geometric Brownian Motion
onM, i.e., the smallest eigenvalue of −∆M in L2(µ).

A few remarks are in order.

Iteration complexity. The error bound decomposes cleanly into three terms: ε results from mixing
of the heat semigroup at the spectral gap λ1, εscore captures error from imperfect score estimation,
and
√
hT poly(d,K, δ−1) is the discretization error controlled by the step size and curvature. Con-

sequently, choosing T ≍ λ−1
1 (d log d + log(d/ε)) and h = ε2

poly(d,K,δ−1)T , then the TV error is
bounded by ε+ εscore after polynomially many iterations

N = T/h ≍ poly(d,K, δ−1)

(λ1ε)2
.

Compared to prior convergence rates in the Wasserstein metric (De Bortoli et al., 2022), which re-
quire exponential complexity, we achieve polynomial convergence of Riemannian diffusion models
for the first time. Nonetheless, we emphasize that TV and Wasserstein distances are incomparable
with each other in general, and our guarantee complements prior Wasserstein results (De Bortoli
et al., 2022) by ensuring distributional closeness in a different notion with a much smaller number
of iterations.
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Possible improvements. We note that the bound established in Theorem 1 holds under very mild
geometric assumptions, requiring only constraints on the injective radius and Riemannian curvature.
The purpose of this study is to demonstrate that, in the manifold setting, the exponential blow-up
in T can be avoided and polynomial complexity can be achieved. To keep the exposition as simple
as possible and to clearly highlight the key ideas, we have not attempted to optimize the current
bound on the degree of the polynomial. Potential approaches for sharper bounds include: (i) a better
design of discretization schedule, possibly adaptive to the manifold geoemetry, and a more careful
computation of discretization error, such as those in Li & Jiao (2024), Benton et al. (2024) (notably,
the dependence on δ might be improved to poly-logarithmic in this way); (ii) a tailored analysis
for TV error that does not rely on Pinsker’s inequality, like those in Li & Yan (2025), may also be
extended to manifolds; (iii) a tighter version of our Minakshisundaram-Pleijel parametrix bound.
We leave these improvements as future work.

4 PROOF OUTLINE

Throughout the proof, we assume that

h ≤ 1

poly(d,K, δ−1)
, (3)

since otherwise the bound in Theorem 1 would be trivial (recall that TV distance is always bounded
by 2). We start by recalling the sequence considered in RSGM. Let (Yk)k∈{0,...,N} be given by
YN ∼ µ and for any k ∈ {0, . . . , N − 1}:

Yk−1 =

{
expYk

[
hŝtk(Yk) +

√
hGk

]
, ∥hŝtk(Yk) +

√
hGk∥ ≤ h1/4,

drawn from µ, otherwise.

This defines a sequence of probability transition kernels K̂tk,tk−1
. For simplicity, we denote this by

K̂k. Let qk be the law of Yk. We have

q0 = qN K̂N K̂N−1 · · · K̂1.

Similarly, the probability transition kernel from time tk to tk−1 in (2) is denoted by Ktk,tk−1
or Kk

in short. We have
p0 = pNKNKN−1 · · ·K1.

Our goal would be to bound TV(p0, q0) as in Theorem 1, by decomposing the total error into four
components:

(initialization error) + (score error) + (drift discretization error) + (BM simulation error).

More concretely:

• Initialization error arises from initializing YN with µ instead of the true marginal pN ;
• Score error arises from imperfect score estimation;
• Drift discretization error arises from approximating the continuous-time drift ŝt(Yt) by

its “time-frozen” counterpart ŝtk(Ytk);
• Brownian motion (BM) simulation error is a distinctive feature of the manifold set-

ting. Unlike in Euclidean space — where the transition kernel of Brownian motion over
[tk, tk−1] is exactly Gaussian with variance (tk−tk−1) — the transition kernel of manifold-
valued Brownian motion cannot be simulated exactly by any discrete-time process, even
after time discretization. This inherent inexactness gives rise to this final error term.

The first two components are relatively easier to bound using well-established tools: mixing rate
bounds of heat flow (Urakawa, 2006) and Girsanov transform (Chen et al., 2023). For the drift dis-
cretization error, recent techniques developed in the Euclidean setting (Benton et al., 2024) can also
be adapted with modifications that account for the manifold curvature. However, the last component
— the Brownian motion simulation error — represents the core challenge in the manifold setting,
which fundamentally denies a direct extension of Euclidean analysis.
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Step I. Constructing auxiliary kernels via localization. In view of this, we first introduce an
intermediate random process that separates the drift discretization error from the BM simulation
error. Constructing such a process, however, involves additional technicality. In particular, the
frozen drift ŝtk(Ytk) is a vector in the tangent space TYkM, and is therefore only well-defined at the
fixed point Yk. This poses a compatibility issue: as Brownian motion evolves continuously on the
manifold, it immediately departs from Yk, rendering the frozen drift ill-defined. Careful geometric
considerations are thus required to reconcile the piecewise-constant drift approximation with the
intrinsic curvature of the manifold.

In our analysis, this is handled using localization by the construction of an auxiliary sequence of
transition kernels Kaux

k . These kernels do not appear in the algorithm itself; they serve solely as an
analytical tool to facilitate the proof. These kernels expose the behavior of the time-reverse SDE (2)
when the estimated score ŝt is frozen to be a constant vector field in between discretization steps,
meanwhile keeping the continuous Brownian motion.

Let η : [0,∞)→ [0, 1] be a smooth cutoff function, i.e., η is decreasing, η|[0,1] ≡ 1 and η|[4,∞) ≡ 0.
Such a function can be chosen such that |η′|+ |η′′|+ |η′′′| ≤ 100. Recall that the injective radius of
M is lower bounded by 1/K, and the curvature is upper bounded by K. Define

ω :=
cω
Kd4

, ηω(r) = η

(
4r2

ω2

)
, r ≥ 0, (4)

where cω > 0 is a small universal constant. We have ηω|[0,ω2 ] ≡ 1 and ηω|[ω,∞) ≡ 0. For t > 0,
x, y ∈M, define the following vector field onM:

St,x(y) = (d expx)logx y (ηω(ρ(x, y)) · ŝt(x)) ∈ TyM.

Intuitively speaking, St,x(·) is the “constant” velocity field ŝt(x) in normal coordinates, which rep-
resents our idea of freezing the drift term for a time period. The d expx in the formula is responsible
for identifying TyM with TxM. 2 On the other hand, the cut-off function ηω is necessary to keep
all our discussions restricted to the injective radius, so as to avoid pathologies of cut locus.

With this in mind, we are ready to define Kaux
k as the transition kernel from time tk to tk−1 of the

reverse-time SDE

dYτ = Stk,Ytk
(Yτ )dt+ UYτ ◦ dWt, τ = T − t, τ ∈ [tk−1, tk], (5)

and in addition,
pauxk = pNKaux

N Kaux
N−1 · · ·Kaux

k+1, k = N,N − 1, · · · , 0.

Step II. Decomposing different sources of error. We now decompose

TV(p0, q0) ≤ TV(p0, p
aux
0 ) + TV(paux0 , q0) ≤

√
2KL(p0 ∥ paux0 ) + TV(paux0 , q0),

where the last inequality used Pinsker’s inequality. To control KL(p0 ∥ paux0 ), we further introduce
the counterpart of St,x using the exact score function ∇ log pt:

S ⋆
t,x(y) = (d expx)logx y (ηω(ρ(x, y)) · ∇ log pt(x)) ∈ TyM.

We apply Girsanov’s theorem (Hsu, 2002) to compare (5) with (2), in a way that is standard in recent
literature (Chen et al., 2023; De Bortoli et al., 2022). Denote the path law of the solution of (2) by
Law(Y ), and the path law of the solution of (5) by Law(Y aux). Girsanov’s theorem asserts that the
KL divergence KL(Law(Y ) ∥ Law(Y aux)) is upper bounded by the expectation of the squared norm
of the difference between the drift terms in the two SDEs.3 More concretely,

KL
(
Law(Y ) ∥ Law(Y aux)

)
≤

N∑
k=1

∫ tk

tk−1

E
∥∥∥∇ log pt(Yt)−Stk,Ytk

(Yt)
∥∥∥2 dt.

2Generally speaking, it is more natural to use parallel transport to identify different tangent spaces. However,
this would later lead to a more complicated treatment of the perturbed heat equation with variable drifts. We
choose to use parallelism in normal coordinates instead for simplicity.

3In its classical form, Girsanov’s theorem requires integrability such as Novikov’s condition to hold. In our
setting, this can be bypassed with a localization argument as in Chen et al. (2023).
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Since p0 and paux0 are marginals of Law(Y ) and Law(Y aux) respectively at time t = t0, by post-
processing inequality, we have

KL(p0 ∥ paux0 ) ≤
N∑
k=1

∫ tk

tk−1

E
∥∥∥∇ log pt(Yt)−Stk,Ytk

(Yt)
∥∥∥2 dt

≤ 2

N∑
k=1

∫ tk

tk−1

E∥∇ log pt(Yt)−S ⋆
tk,Ytk

(Yt)∥2dt︸ ︷︷ ︸
drift discretization

+ 2

N∑
k=1

∫ tk

tk−1

E∥Stk,Ytk
(Yt)−S ⋆

tk,Ytk
(Yt)∥2dt︸ ︷︷ ︸

score matching

.

(6)

It remains to decompose TV(paux0 , q0). To isolate the initialization error, we introduce
q⋆0 = pN K̂N K̂N−1 · · · K̂1.

By triangle inequality and post-processing inequality, we have

TV(paux0 , q0) ≤ TV(paux0 , q⋆0) + TV(q⋆0 , q0) ≤ TV(paux0 , q⋆0)︸ ︷︷ ︸
BM simulation

+TV(pN , qN )︸ ︷︷ ︸
initialization

.

Step III. Controlling initialization and score errors. By our design, qN = µ, and
TV(pN , qN ) = TV(pN , µ). This is known as the mixing rate of heat flow in total variation norm,
and has well-established bounds, e.g., Urakawa (2006). The score-matching error, on the other hand,
can be controlled with an analysis on the distortion on the Riemannian metric in normal coordinates.
We compile the bounds into the following lemma.
Lemma 1. There exists a universal constant C > 0, such that whenever T ≥ 1, we have

TV(pN , qN ) ≤ eC(K+d log d)e−
λ1
2 (T− 1

2 ),

and
N∑
k=1

∫ tk

tk−1

E∥Stk,Ytk
(Yt)−S ⋆

tk,Ytk
(Yt)∥2dt ≤ 2ε2score.

Step IV. Controlling drift discretization error with Itô/Stratonovich calculus and Li-Yau esti-
mates. The drift discretization error defined in (6) has a similar form to the discretization error
for the Euclidean setting (Benton et al., 2024), though additional complications arise due to non-
constant S ⋆

tk,Ytk
. The idea is to study the time derivative of E∥∇ log pt(Yt)−S ⋆

tk,Ytk
(Yt)∥2, which

in view of ∂τ log pt = − 1
2∆Mpt (negative sign due to reverse time) involves space derivatives of

log pt up to third order. Fortunately, after applying Itô/Stratonovich calculus to simplify the ex-
pression, a key property in the proof of the Euclidean setting carries over: third-order derivatives
of log pt cancel out. The remaining first and second-order derivatives can be controlled by Li-Yau
estimates on the log-gradient of the heat kernel. We obtain
Lemma 2. Under the assumptions in Theorem 1, there is a universal constant C > 0 such that

N∑
k=1

∫ tk

tk−1

E∥∇ log pt(Yt)−S ⋆
tk,Ytk

(Yt)∥2dt ≤
Cd6K8

δ3
h2N.

Step V. Controlling BM simulation error using parametrix estimates. Our approach is inspired
by the following consequence of post-processing inequality and Pinsker’s inequality:

TV(paux0 , q⋆0) ≤
√
2KL(paux0 ∥ q⋆0) ≤

√√√√2

N∑
k=1

KL(pauxk Kaux
k ∥ pauxk K̂k).

This leads us to compare the kernel Kaux
k and K̂k. In normal coordinates, the Fokker-Planck equation

shows that these two are the solutions of the heat equations with the Euclidean Laplacian and with
the manifold Laplace-Beltrami operator. We utilize the Minakshisundaram-Pleijel parametrix theory
(Berline et al., 2003) in geometric analysis for this comparison, and establish a quantitative bound
in polynomially small radius and polynomially short time (cf. Lemma 20).
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5 CONCLUSION

We developed a discrete-time theory for Riemannian diffusion models showing that a polynomial
stepsize suffices for TV-accurate sampling under mild geometric conditions. In particular, our re-
sults show that choosing a stepsize polynomially small in manifold parameters achieves any pre-
scribed TV target without exponential blow-ups in dimension or curvature. This complements prior
Wasserstein-type guarantees which require exponentially many steps. Several important future di-
rections remain open.

• Sharper bounds. For simplicity, we did not attempt to establish sharp bounds for the error
terms in our analysis, and it is likely that the degree of the polynomial in the bound could be
improved significantly by refining our analysis, and some of the polynomial dependencies
can be improved to logarithmic ones (Benton et al., 2024; Li & Jiao, 2024).

• Analysis of deterministic samplers. We focused on DDPM-style stochastic samplers in
our analysis. For practical purpose, it is also tempting to develop an analogous theory for
DDIM-style deterministic samplers (Song et al., 2021; Li et al., 2024).

• Conditional sampling. Our theory was for unconditional diffusion models. Applications
like solving inverse problems require conditional sampling, which calls for both new algo-
rithm design and new theoretical analysis (Xu & Chi, 2024).

6 ACKNOWLEDGMENT

The work of X. Xu and Y. Chi is supported in part by Air Force Office of Scientific Research
under FA9550-25-1-0060, and by National Science Foundation under ECCS-2126634/2537078. Z.
Zhang, Y. Nakahira, and G. Qu are supported in part by NSF CAREER Award 2339112, NSF
Award 2512805, NSF Award 2442948, and the Pennsylvania Infrastructure Technology Alliance.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Air Force.

REFERENCES

Kwangjun Ahn and Sinho Chewi. Efficient constrained sampling via the mirror-Langevin algorithm.
Advances in Neural Information Processing Systems, 34:28405–28418, 2021.

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Ap-
plications, 12(3):313–326, 1982. ISSN 0304-4149. doi: https://doi.org/10.1016/0304-4149(82)
90051-5.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly $d$-linear
convergence bounds for diffusion models via stochastic localization. In The Twelfth International
Conference on Learning Representations, 2024.

Nicole Berline, Ezra Getzler, and Michele Vergne. Heat kernels and Dirac operators. Springer
Science & Business Media, 2003.

Eliot Beyler and Francis Bach. Convergence of deterministic and stochastic diffusion-model sam-
plers: A simple analysis in Wasserstein distance. arXiv preprint arXiv:2508.03210, 2025.

Karthik Bharath, Alexander Lewis, Akash Sharma, and Michael V Tretyakov. Sampling and esti-
mation on manifolds using the langevin diffusion. In Advances in Neural Information Processing
Systems, 2025.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R. Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2023.

Xiang Cheng, Jingzhao Zhang, and Suvrit Sra. Efficient sampling on Riemannian manifolds via
Langevin MCMC. Advances in Neural Information Processing Systems, 35:5995–6006, 2022.

10



Published as a conference paper at ICLR 2026

Xiang Cheng, Jingzhao Zhang, and Suvrit Sra. Theory and algorithms for diffusion processes on
riemannian manifolds, 2023.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in neural information
processing systems, 34:17695–17709, 2021.

Valentin De Bortoli, Emile Mathieu, Michael John Hutchinson, James Thornton, Yee Whye Teh,
and Arnaud Doucet. Riemannian score-based generative modelling. In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021.

Nic Fishman, Leo Klarner, Valentin De Bortoli, Emile Mathieu, and Michael Hutchinson. Diffusion
models for constrained domains. arXiv preprint arXiv:2304.05364, 2023.

Khashayar Gatmiry and Santosh S. Vempala. Convergence of the riemannian langevin algorithm.
ArXiv, abs/2204.10818, 2022.

Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73:123 –
214, 03 2011. doi: 10.1111/j.1467-9868.2010.00765.x.

Alfred Gray. Tubes, volume 221. Springer Science & Business Media, 2003.

Yunrui Guan, Krishnakumar Balasubramanian, and Shiqian Ma. Riemannian proximal sampler for
high-accuracy sampling on manifolds. arXiv preprint arXiv:2502.07265, 2025.

Richard S Hamilton. Matrix harnack estimate for the heat equation. Communications in analysis
and geometry, 1(1):113–126, 1993.

Qing Han and Qi S Zhang. An upper bound for hessian matrices of positive solutions of heat
equations. The Journal of Geometric Analysis, 26(2):715–749, 2016.

Ulrich G. Haussmann and Étienne Pardoux. Time reversal of diffusions. Annals of Probability, 14:
1188–1205, 1986.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

E.P. Hsu. Stochastic Analysis on Manifolds. Graduate studies in mathematics. American Mathemat-
ical Society, 2002. ISBN 9780821808023.

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron C Courville. Rie-
mannian diffusion models. Advances in Neural Information Processing Systems, 35:2750–2761,
2022.

Zhihan Huang, Yuting Wei, and Yuxin Chen. Denoising diffusion probabilistic models are optimally
adaptive to unknown low dimensionality. arXiv preprint arXiv:2410.18784, 2024.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Jürgen Jost. Riemannian Geometry and Geometric Analysis. Universitext. Springer, Cham, 7 edition,
2017. ISBN 978-3-319-61859-3. doi: 10.1007/978-3-319-61860-9.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for
general data distributions. In Proceedings of the 34th International Conference on Algorithmic
Learning Theory, volume 201 of PMLR, pp. 946–985, 2023.

11



Published as a conference paper at ICLR 2026

Gen Li and Yuchen Jiao. Improved convergence rate for diffusion probabilistic models. In The
Thirteenth International Conference on Learning Representations, 2024.

Gen Li and Yuling Yan. Adapting to unknown low-dimensional structures in score-based diffusion
models. Advances in Neural Information Processing Systems, 37:126297–126331, 2024.

Gen Li and Yuling Yan. O(d/t) convergence theory for diffusion probabilistic models under minimal
assumptions. In The Thirteenth International Conference on Learning Representations, 2025.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards non-asymptotic convergence for
diffusion-based generative models. In International Conference on Learning Representations
(ICLR), 2024.

Junfang Li and Xiangjin Xu. Differential harnack inequalities on riemannian manifolds i: Linear
heat equation. Advances in Mathematics, 226(5):4456–4491, 2011. ISSN 0001-8708. doi: https:
//doi.org/10.1016/j.aim.2010.12.009.

Mufan Bill Li and Murat A. Erdogdu. Riemannian langevin algorithm for solving semidefinite
programs. Bernoulli, 29:3093 – 3113, 2023.

Peter Li and Shing Yau. On the parabolic kernel of the schödinger operator. Acta Mathematica, 156:
153–201, 07 1986. doi: 10.1007/BF02399203.

Jiadong Liang, Zhihan Huang, and Yuxin Chen. Low-dimensional adaptation of diffusion models:
Convergence in total variation. arXiv preprint arXiv:2501.12982, 2025.

Yang Liang, Peng Ju, Yingbin Liang, and Ness Shroff. Non-asymptotic convergence of discrete-time
diffusion models: New approach and improved rate. arXiv preprint arXiv:2402.13901, 2024.

Guan-Horng Liu, Tianrong Chen, Evangelos Theodorou, and Molei Tao. Mirror diffusion models for
constrained and watermarked generation. Advances in Neural Information Processing Systems,
36:42898–42917, 2023.

Aaron Lou, Minkai Xu, Adam Farris, and Stefano Ermon. Scaling Riemannian diffusion models.
Advances in Neural Information Processing Systems, 36:80291–80305, 2023.

Michelle Muniz, Matthias Ehrhardt, Michael Günther, and Renate Winkler. Higher strong order
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A NUMERICAL EXPERIMENTS

In this section, we verify the results in Theorem 1 on compact manifolds by measuring the exit
probability in the reverse steps of Algorithm 1, which is extensively used in the proof of Lemma 19
to ensure the convergence of Algorithm 1, and the TV distance between the target distribution (a
Gaussian mixture) and the recovered distribution.

Reset probability on S2 and T2 . We start by examining the total reset probability on the unit
2-sphere S2 and on the 2-torus T2. We run the backward process in Algorithm 1 with different
stepsizes h in each setting with p0 being Gaussian mixture (see below for definition), and record the
fraction of trials whose tangent update ∆k = h stk(Yk) +

√
hGk violates ∥∆k∥ ≤ h1/4 at least

once among all steps. On both manifolds, Figure 1a shows a clear linear trend of the logarithm of
reset probability of against h−1/2, which can be obtained by Gaussian tails. This confirms that the
rejection sampling has no practical impact on the performance of Algorithm 1.

High-dimensional torus. We extend this experiment to the d-dimensional flat torus Td for differ-
ent stepsizes. Figure 1b reports the logarithm of the reset probability versus h−1/2 for d ∈ {2, 4, 8}.
Increasing d raises the baseline reset rate, yet the slope of the decay remains essentially un-
changed—resets remain exponentially rare as h ↓ 0, which aligns with our analysis.

TV accuracy on Td with warped Gaussian mixture. Finally, we assess the distributional accu-
racy in TV for a warped Gaussian mixture target on Td, d ∈ {1, 2, 3}. Here, the warped Gaussian
distribution is defined to be the push-forward of the Gaussian distribution by the universal covering
Rd → Td given by (x1, · · · , xd) 7→ (ei2πx1 , · · · , ei2πxd), and warped Gaussian mixture is similarly
the push-forward of Gaussian mixture in Rd. The result is depicted in Figure 2, which confirms that
the total variation decays fast with the increase of the number of steps.

B PRELIMINARIES

We first introduce some tools we use in the rest of the proof.
Lemma 3 (Pinsker’s inequality, Polyanskiy & Wu (2025)). For any two probability distributions
p, q onM, we have

TV(p, q) ≤
√

2KL(p ∥ q).
Lemma 4. Let v be a vector field onM. In a local coordinate onM, we have

∂αvβ = (∇αv)β − Γβαγvγ .

Here Γβαγ is the Christoffel symbol, defined as

Γβαγ =
1

2
gβδ(∂αgγδ + ∂γgαδ − ∂δgαγ).
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Figure 1: Reset probabilities on spheres and tori. In Figure 1a, we examine the relationship between
h−1/2 and the log of the reset probability of Algorithm 1 on both sphere S2 and torus T2 under
the reset rules of Algorithm 1. In both cases, we see that the reset probability decays exponentially,
confirming the conclusion in (43). In Figure 1b, we examine the same statistics on high-dimensional
tori, and we find increasing d only shifts the curves to the right but leaves the exponential decay rate
in h−1/2 unchanged.
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Figure 2: TV distance on Td with a warped Gaussian-mixture target. The total variation is estimated
with a kernel density estimator.

Lemma 5 (Metric distortion in normal coordinates). There exist coefficients c, C > 0 polynomial
in d and constant in other parameters, such that the following holds. Let x ∈ M. In the normal
coordinates (∂α) at x, for any y ∈M such that ρ(x, y) ≤ c/K, we have

∥g(y)− I∥ ≤ CKd2(x, y),
∥∂αgβγ∥ ≤ CKρ(x, y),
∥∂αβgγξ∥ ≤ CK.

Proof. This is a quantitative version of the well-known Taylor expansion of g in normal coordinates
(cf. Berline et al. (2003, Proposition 1.28)):

gαβ(expx(u)) = δαβ −
1

3
Rαγβξ(x)u

γuξ +O
(
(∥Rm∥+ ∥∇Rm∥)∥u∥3

)
, ∥u∥ ≤ c/K.

Let (eα)dα=1 be an orthonormal basis of TxM; normal coordinates at x are defined by identifying a
point expx(z

αeα) with its coordinate vector (zα). Denote by ∂α the coordinate vector fields.
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Step I: Representation by Jacobi fields. Define the geodesic segment with unit parameter s ∈
[0, 1]:

γ(s) := expx(sv), γ(0) = x, γ(1) = y, γ̇(s) =
d

ds
γ(s).

Then ∇sγ̇ = 0 and |γ̇(s)| ≡ |v| = r.

Fix an orthonormal basis (eα)dα=1 of TxM and parallel transport it along γ to obtain an orthonormal
frame (Eα(s)) along γ:

∇sEα(s) = 0, Eα(0) = eα.

Let Jβ(s) be the Jacobi field along γ corresponding to varying the initial point in direction eβ in the
normal coordinate chart, i.e.

Jβ(s) := d(expx)sv(seβ) ∈ Tγ(s)M.

Equivalently, Jβ is the unique Jacobi field solving

∇2
sJβ +Rm(Jβ , γ̇)γ̇ = 0, Jβ(0) = 0, ∇sJβ(0) = eβ . (7)

Note that in normal coordinates, ∂β |x = eβ and the geodesic variation expx(s(v + εeβ)) yields (7).

Write Jβ(s) in the parallel frame:

Jβ(s) =

d∑
α=1

Jαβ(s)Eα(s),

and let J(s) ∈ Rd×d be the matrix with entries Jαβ(s). Since Eα is parallel, (7) becomes the matrix
Jacobi equation

J′′(s) + R(s) J(s) = 0, J(0) = 0, J′(0) = I, (8)
where the curvature matrix R(s) is defined by(

R(s)u
)
α
:=
〈
Rm
(∑

µ

uµEµ(s), γ̇(s)
)
γ̇(s), Eα(s)

〉
.

From ∥Rm∥ ≤ K and |γ̇| = r we have

∥R(s)∥ ≤ K |γ̇(s)|2 = Kr2, s ∈ [0, 1]. (9)

In normal coordinates, the coordinate vector fields at y = γ(1) are

∂β |y = d(expx)v(eβ) = Jβ(1).

Since the frame at s = 1 is orthonormal, the metric coefficients are

gβγ(y) = ⟨∂β |y, ∂γ |y⟩ = ⟨Jβ(1), Jγ(1)⟩ =
d∑

α=1

Jαβ(1) Jαγ(1) =
(
J(1)⊤J(1)

)
βγ
.

Hence, as matrices,
g(y) = J(1)⊤J(1). (10)

Step II: Control of J(1) − I via Grönwall inequality. From (8), integrating twice and using
J(0) = 0, J′(0) = I , we get the exact Volterra equation

J(s) = sI −
∫ s

0

(s− τ)R(τ) J(τ) dτ, s ∈ [0, 1]. (11)

Taking operator norms and using (9) gives for s ∈ [0, 1]:

∥J(s)∥ ≤ s+Kr2
∫ s

0

(s− τ) ∥J(τ)∥ dτ.

A standard Grönwall argument yields

∥J(s)∥ ≤ Cs and ∥J′(s)∥ ≤ C for all s ∈ [0, 1], provided r ≤ c/
√
K. (12)
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Now subtract sI in (11):

J(s)− sI = −
∫ s

0

(s− τ)R(τ) J(τ) dτ.

Using (9) and (12),

∥J(1)− I∥ ≤
∫ 1

0

(1− τ) ∥R(τ)∥ ∥J(τ)∥ dτ ≤ C
∫ 1

0

(1− τ) (Kr2) τ dτ ≤ CKr2.

Combine with (10):

g(y)− I =
(
J(1)⊤J(1)− I

)
=
(
J(1)− I

)⊤
+
(
J(1)− I

)
+
(
J(1)− I

)⊤(
J(1)− I

)
,

so
∥g(y)− I∥ ≤ C∥J(1)− I∥ ≤ CKr2. (13)

Step III: Control of first derivatives. We first control ∂αJ(1) as a function of the coordinate v.
Let v 7→ Jv(s) denote the Jacobi matrix for the geodesic γv(s) = expx(sv). Differentiate the ODE
(8) w.r.t. vα:

∂αJ
′′ + R ∂αJ = −(∂αR) J, ∂αJ(0) = 0, ∂αJ

′(0) = 0. (14)

Bound on ∂αR. Recall R(s) represents the operator u 7→ Rm(u, γ̇)γ̇ in the parallel frame. Varying v
changes both γ and γ̇; the corresponding variation field Vα(s) := ∂αγv(s) along γ is itself a Jacobi
field with Vα(0) = 0, ∇sVα(0) = eα, hence by the same estimate as (12)

∥Vα(s)∥ ≤ Cs, ∥∇sVα(s)∥ ≤ C. (15)

Using the product rule on Rm(·, γ̇)γ̇ and our Assumption 1, together with |γ̇| = r and (15), one
obtains the uniform operator bound

∥∂αR(s)∥ ≤ C
(
∥∇Rm∥ ∥Vα(s)∥ |γ̇|2 + ∥Rm∥ |γ̇| ∥∂αγ̇(s)∥

)
≤ C

(
K · s · r2 +K · r · 1

)
≤ CKr,

(16)
for all s ∈ [0, 1] (since s ≤ 1). Here we used ∂αγ̇ = ∇sVα.

Now solve (14) by the same Duhamel principle: integrating twice with zero initial data gives

∂αJ(s) = −
∫ s

0

(s− τ)
(
R(τ) ∂αJ(τ) + (∂αR)(τ) J(τ)

)
dτ. (17)

Using (9), (16), and (12), we obtain

∥∂αJ(s)∥ ≤ Kr2
∫ s

0

(s−τ) ∥∂αJ(τ)∥ dτ+CKr
∫ s

0

(s−τ) ∥J(τ)∥ dτ ≤ Kr2
∫ s

0

(s−τ) ∥∂αJ(τ)∥ dτ+CKr s3.

Apply the same Grönwall comparison as before (now with a forcing term CKr s3) to conclude, for
r ≤ c/

√
K,

∥∂αJ(1)∥ ≤ CKr. (18)

Finally differentiate g = J⊤J:
∂αg = (∂αJ)

⊤J+ J⊤(∂αJ),

so by (12) (at s = 1) and (18),

∥∂αg(y)∥ ≤ 2∥∂αJ(1)∥ ∥J(1)∥ ≤ C(Kr) · 1 ≤ CKr. (19)

Step IV: Control of second derivatives. Differentiate (14) once more:

∂αβJ
′′ + R ∂αβJ = −(∂αβR) J− (∂αR) ∂βJ− (∂βR) ∂αJ, (20)

with zero initial data at s = 0.

Bound on ∂αβR. Under Assumption 1, ∂αβR can be bounded uniformly by CK on [0, 1] as follows:
expanding the second parameter derivative of Rm(·, γ̇)γ̇ produces terms of the schematic form

(∇Rm)(V ) · γ̇ · (∂γ̇), Rm(·, ∂γ̇) · (∂γ̇), (∇Rm)(∂V ) · γ̇ · γ̇,
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and also terms involving ∇s(∂V ), all of which are controlled using ∥V ∥ ≲ 1, ∥∇sV ∥ ≲ 1 and the
fact that each appearance of γ̇ contributes a factor r. Concretely, one shows (using (15) for both
Vα, Vβ and the same Jacobi estimates for their derivatives) that

∥∂αβR(s)∥ ≤ CK for all s ∈ [0, 1]. (21)

Now apply Duhamel’s principle to (20) with zero initial data:

∂αβJ(s) = −
∫ s

0

(s− τ)
(
R ∂αβJ+ (∂αβR) J+ (∂αR) ∂βJ+ (∂βR) ∂αJ

)
(τ) dτ.

Take norms and use (9), (21), (12), (16), (18):

∥∂αβJ(s)∥ ≤ Kr2
∫ s

0

(s−τ) ∥∂αβJ(τ)∥ dτ+CK
∫ s

0

(s−τ) ∥J(τ)∥ dτ+C(Kr)(Kr)
∫ s

0

(s−τ) dτ.

Since ∥J(τ)∥ ≤ Cτ , the second integral is bounded by CKs3, and the third is bounded by
CK2r2s2 ≤ CKs2 provided r ≤ c/

√
K. Thus for s ≤ 1,

∥∂αβJ(s)∥ ≤ Kr2
∫ s

0

(s− τ) ∥∂αβJ(τ)∥ dτ + CK.

Applying Grönwall argument once more yields

∥∂αβJ(1)∥ ≤ CK. (22)

Finally differentiate g = J⊤J twice:

∂αβg = (∂αβJ)
⊤J+ J⊤(∂αβJ) + (∂αJ)

⊤(∂βJ) + (∂βJ)
⊤(∂αJ).

Hence by (12), (18), (22) (and K2r2 ≤ CK for r ≤ c/
√
K),

∥∂αβg(y)∥ ≤ C∥∂αβJ(1)∥ · ∥J(1)∥+ C∥∂αJ(1)∥ ∥∂βJ(1)∥ ≤ CK + C(Kr)2 ≤ CK. (23)

This completes the proof.

Lemma 6. Fix x ∈M. Define

J(x, u) :=
∣∣det d expx(u)∣∣ =

√
det gij(expx u).

There exist universal constants c, C > 0, such that for u ∈ TxM with ∥u∥ ≤ c
Kd , we have the

following bound on J(x, u): ∣∣∣J(x, u)− 1
∣∣∣ ≤ CdK∥u∥2. (24)

In particular, we have
1

2
≤ J(x, u) ≤ 2, ∥u∥ ≤ c

Kd
.

Proof. Work in normal coordinates at x so that expx : Beuc(0, 1/K) ⊂ TxM→ Bgeo(x, 1/K) is a
diffeomorphism and gij(0) = δij , Γkij(0) = 0.

From Lemma 5, we know that ∥g(expx u)− I∥ ≤ CK∥u∥2. In the region ∥u∥ ≤ c
Kd , we have

∥g(expx u)− I∥ ≤
c

d
.

Therefore, by Taylor expansion of determinants, we know

|det g(expx u)− 1| = |det(I + g(expx u)− I)− 1|
≤ C tr(g(expx u)− I)
≤ Cd · ∥g(expx u)− I∥
≤ Cd · CK∥u∥2.

This concludes the proof by adjusting C if necessary.
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The metric distortion bound implies that geodesic is almost a straight line, in a sufficiently small
normal neighborhood. The following quantitative bound shall be useful.
Lemma 7 (Geodesics are almost straight in small balls). There exist coefficients c, C > 0 polyno-
mial in d and constant in other parameters, such that the following holds. Fix any x ∈ M and let
0 < r ≤ c/K. Let y, z ∈ Bx(r) and γ be the unit-speed geodesic connecting y to z. Write

y(s) := exp−1
x (γ(s)) ∈ TxM≃ Rd

for its representation in normal coordinates at x. Then:

(i) (Almost constant velocity)

sup
s∈[0,ℓ]

∣∣ẏ(s)− ẏ(0)∣∣ ≤ CKr2.

(ii) (Almost linear trajectory)

sup
s∈[0,ℓ]

∣∣y(s)− y(0)− s ẏ(0)∣∣ ≤ CKr3.

In words, in normal coordinates at x, any geodesic segment contained in Bx(r) deviates from the
Euclidean line segment connecting its endpoints by at most O(Kr3) in position and O(Kr2) in
direction.

Proof. Work in normal coordinates at x. By bounded geometry and the choice of r, the metric
coefficients satisfy, in view of Lemma 5, that

∥g(y)− I∥ ≤ CK|y|2, ∥∂g(y)∥ ≤ CK|y|, |y| ≤ r,

which implies the Christoffel symbols obey

|Γ(y)| ≤ CK|y| ≤ CKr.

The coordinate representation y(s) of the geodesic satisfies the geodesic equation

ÿk(s) + Γkij(y(s)) ẏ
i(s)ẏj(s) = 0.

Since γ is unit–speed and g(y) is uniformly equivalent to the Euclidean metric on |y| ≤ r, we have
|ẏ(s)| ≍ 1. Consequently,

|ÿ(s)| ≤ CKr for all s ∈ [0, ℓ].

Integrating once gives

|ẏ(s)− ẏ(0)| ≤
∫ s

0

|ÿ(u)|du ≤ CKr s ≤ CKr2,

proving (i). Integrating again yields

|y(s)− y(0)− sẏ(0)| ≤
∫ s

0

∫ u

0

|ÿ(w)|dw du ≤ CKr s2 ≤ CKr3,

which proves (ii).

We spell out the constants in a few classical inequalities in geometric analysis.
Lemma 8 (Schoen et al. (1994, Thm. 4.6)). Let (M, g) be a complete Riemannian manifold with
Ric(M) ≥ −K for some K ≥ 0. Let H(x, y, t) be the heat kernel, i.e., the fundamental solution of
(∆− ∂

∂t )u(x, t) = 0. Then, for every δSch > 0 and α > 1,

H(t, x, y) ≤ C(δSch, d, α)Vx
(√
t
)−1/2

Vy
(√
t
)−1/2

exp

[
− r2(x, y)

(4 + δSch)t
+ C1 δSchKt

]
,

where Vx(R) = µ(Bx(R)), C(δSch, d, α) = (1 + δSch)
dα exp

(
1+α
δSch

)
, and C1 = αd

α−1 .
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To unleash the power of Lemma 8, we need the following lower bound on volume of geodesic balls
assuming bounded geometry.
Lemma 9 (Günther’s comparison theorem). Under Assumption 1, we have

Vx(r) ≥
(2π)d/2

Γ(d/2)

∫ r

0

(
sin(t
√
K)√

K

)d−1

dt, 0 ≤ r ≤ 1/K.

Here Γ is the Gamma function. In particular, when r ≤ c/K for some small universal constant
c > 0, we have

Vx(r) ≥
πd/2

dΓ(d/2)
rd ≥ 1

dd/2
rd.

Proof. We observe that ∥Rm∥ ≤ K implies that the sectional curvature is upper bounded by K,
since by definition sec(u, v) = Rm(u, v, u, v). The first inequality follows from the classical form of
Günther’s comparison theorem, see for example Gray (2003, Theorem 3.17). The second inequality
follows from the elementary bound that sin(x) ≥ 1

2x for x ∈ [0, c], where c is a small universal
constant, and the crude bound Γ(x) ≤ xx−1 for x ≥ 1.

A complementary lower bound to Lemma 8 is as follows.
Lemma 10 (Li & Xu (2011, Thm. 1.5)). Let (M, g) be complete, possibly with Ric(M) ≥ −K.
For the (Neumann) heat kernel H(x, y, t) and all x, y ∈M, t > 0,

H(t, x, y) ≥ (4πt)−d/2
(2Kt)d/2

(e2Kt − 2Kt− 1)d/4
exp

[
−ρ(x, y)

2

4t

(
1 +

Kt coth(Kt)− 1

Kt

)]
,

H(t, x, y) ≥ (4πt)−d/2 exp

[
−ρ(x, y)

2

4t

(
1 + 1

3Kt
)
− d

4
Kt

]
. (25)

The above bounds for heat kernel translates seamlessly to pt, since pt is a convolution of p0 with
H(t, ·, ·). We formalize this in the following lemma.
Lemma 11. We have

inf
x,y∈M

H(t, x, y) ≤ inf
x∈M

pt(x) ≤ sup
x∈M

pt(x) ≤ sup
x,y∈M

H(t, x, y).

Proof. This follows from taking infimum and supremum respectively in the formula (Duhamel prin-
ciple)

pt(y) =

∫
M
p0(x)H(t, x, y)µ(dx).

The following lemma compiles a few follow-ups of Li-Yau estimates (Hamilton, 1993; Han &
Zhang, 2016) with constants made explicit.
Lemma 12. Under Assumption 1, we have Han-Zhang’s inequality

∇2pt
pt
⪯ CHZ

(
1

t
+K

)(
1 + log

sup pt/2

pt

)
.

On the other hand, we also have Hamilton’s Harnack inequality

∇2 log pt =
∇2pt
pt
− (∇pt)(∇pt)⊤

p2t
⪰ − 1

2t
g − CHam

(
1 + log

sup pt/2

pt

)
g

and

∥∇ log pt∥2 =
∥∇pt∥2

p2t
≤ C

(
1

t
+K

)
log

sup pt/2

pt
.

Here C > 0 is a universal constant, CHZ = CdK, CHam = CdK2.
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Proof. The last inequality follows from Hamilton (1993, Theorem 1.1). The proof of the rest two
inequalities require tracing the proofs of Hamilton (1993); Han & Zhang (2016). The details would
be too tedious to reproduce here, so we leave pointers to relevant proofs for interested readers.

To prove the second inequality, we trace the proof of Hamilton (1993, Theorem 4.3) to see that if
A > 0 is such that

∆Mpt
pt

≤ A

t

(
d+ log

sup pt/2

pt

)
and

∥∇pt∥2

p2t
≤ A

t

(
d+ log

sup pt/2

pt

)
,

then
∇2pt
pt
− (∇pt)(∇pt)⊤

p2t
⪰ − 1

2t
g − CA(∥Rm∥+ ∥∇Rm∥)g.

Here C > 0 is an absolute constant. By Assumption 1, this implies

CHam ≤ CKCHZ.

Tracing the proof the main theorem in Han & Zhang (2016, Page 9), we can see

CHZ ≤ CLY(1 +K) = CdK,

where CLY is the maximum of the coefficients before t−1 and K in Li & Yau (1986, Theorem 1.2).
This was explicitly defined as Cd therein, by setting α = 2 there. This completes the proof.

Lemma 13. For any three points x, y, z ∈M, we have

ρ(x, z)2

1− t
+
ρ(z, y)2

t
≥ ρ(x, y)2, ∀t ∈ (0, 1).

The equality is attainable at some point z⋆ on the minimum-length geodesic from x to y. Moreover,
if x, y, z are within ι ≤ 1/poly(d,K) distance to each other, then the function

ψ(z) :=
ρ(x, z)2

1− t
+
ρ(z, y)2

t
− ρ(x, y)2

is 1−Cd2K2ι
t(1−t) -strongly convex in the normal coordinates at x (or y), where C > 0 is a universal

constant.

Proof. The first inequality follows from Cauchy-Schwarz inequality and triangle inequality:

(1− t+ t)

(
ρ(x, z)2

1− t
+
ρ(z, y)2

t

)
≥ (ρ(x, z) + ρ(z, y))2 ≥ ρ(x, y)2.

Let γ : [0, 1] → M be the constant-speed, minimum-length geodesic from x to y. It is then
straightforward to check that

ρ(x, z⋆)
2

1− t
+
ρ(z⋆, y)

2

t
= ρ(x, y)2, z⋆ := γ(λ⋆),

where λ⋆ ∈ (0, 1) solves the quadratic equation

λ2

1− t
+

(1− λ)2

t
= 1.

Proving the strong convexity requires Lemma 5 and Lemma 6, which implies that ρ(x, z)2 and
ρ(z, y)2 are both (1−Cd2K2ι)-strongly convex in the normal coordinates. The desired conclusion
then follows from

1

1− t
+

1

t
=

1

t(1− t)
.

The proof is completed.

20



Published as a conference paper at ICLR 2026

C INITIALIZATION ERROR

We require the following result from Urakawa (2006, Proposition 2.6).

Lemma 14. Denote H(t, x, y) the heat kernel onM. Assume

A := sup
t≤1

sup
x∈M

td/2H(t, x, x).

Then for any probability distribution p0, its evolution along heat flow ∂tpt =
1
2∆M satisfies

TV(pt, µ) ≤
√
A e−

1
2λ1

(t− 1
2 ), t ≥ 1.

We combine this with the Li-Yau upper bound (Lemma 8) to obtain

Lemma 15 (First part of Lemma 1). Under Assumption 1, there exists a universal constant C > 0
such that

TV(pN , µ) ≤ eC(K+d log(Kd))e−
1

2λ1
(T− 1

2 ).

Proof. Plug the bound in Lemma 9 into Lemma 8 and use the fact that supx,yH(t, x, y) is decreas-
ing in t (by convolution inequality), we obtain

A ≤ (Cd/K)deCK

≤ exp(C ′K + C ′d log(Kd)),

for some universal constants C,C ′ > 0. Note that we absorbed d logK into K + d log d. The
desired claim follows.

D SCORE MATCHING ERROR

We now prove the second inequality in Lemma 1.

Lemma 16. Under the same assumptions as in Theorem 1, we have

N∑
k=1

∫ tk

tk−1

E∥Stk,Ytk
(Yt)−S ⋆

tk,Ytk
(Yt)∥2dt ≤ 2ε2score.

Proof. This is relatively straightforward. Notice that in normal coordinates, by Lemma 5, we have

∥Stk,Ytk
(Yt)−S ⋆

tk,Ytk
(Yt)∥2 = gαβ(Yt)(ŝt −∇ log pt)

α(ŝtk(Ytk)−∇ log ptk(Ytk))
β

≤ ∥g(Yt)∥ · ∥ŝtk(Ytk)−∇ log ptk(Ytk)∥2

≤ 2∥ŝtk(Ytk)−∇ log ptk(Ytk)∥2

for ρ(Yt, Ytk) ≤ c/K, and is 0 otherwise due to our cutoff ηω . Therefore

E∥Stk,Ytk
(Yt)−S ⋆

tk,Ytk
(Yt)∥2 ≤ 2E∥ŝtk(Ytk)−∇ log ptk(Ytk)∥2,

and consequently,

N∑
k=1

∫ tk

tk−1

E∥Stk,Ytk
(Yt)−S ⋆

tk,Ytk
(Yt)∥2dt

≤ 2

N∑
k=1

(tk − tk−1)E∥ŝtk(Ytk)−∇ log ptk(Ytk)∥2 = 2ε2score.

This proves the claim, as desired.
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E DISCRETIZATION ERROR

Lemma 17. Under the same assumptions as in Theorem 1 and assuming (3) without loss of gener-
ality, there is a universal constant C > 0 such that for tk − h ≤ t ≤ tk, we have

E∥∇ log pt(Yt)−S ⋆
tk,Ytk

(Yt)∥2 ≤
Cd6K8

t3
(tk − t).

Proof. For convenience, set the reverse time

τ := tk − t.
The main challenge is that Li-Yau estimates provide sharp uniform control up to second-order
derivatives of log pt, but a naı̈ve calculation of the difference ∇ log pt(Yt) −S ⋆

tk,Ytk
(Yt) involves

third-order derivatives. More precisely, a straightforward Taylor expansion will introduce a factor of
∂τ∇ log pt, which, by reverse-time heat equation ∂τpt = − 1

2∆Mpt, contains third-order derivatives
of pt. We bypass this difficulty by making use of Itô’s calculus to show that third-order derivatives
cancel out; this is inspired by Benton et al. (2024), where a similar strategy was employed to the
Euclidean setting.

Step I. Applying Itô/Stratonovish formula. We first compute ∂τ∇ log pt. Since the forward heat
equation is ∂tpt = 1

2∆Mpt, we have

∂τ∇ log pt = − ∂t∇ log pt = −∇
(
∂tpt
pt

)
= −1

2
∇
(
∆Mpt
pt

)
.

Use the manifold quotient rule and the identity ∆M log pt =
∆Mpt
pt
− ∥∇ log pt∥2 to rewrite

∆Mpt
pt

= ∆M log pt + ∥∇ log pt∥2.

Therefore, we have

∂τ∇ log pt = −
1

2
∇
(
∆Mpt
pt

)
= −1

2
∇∆M log pt −

1

2
∇∥∇ log pt∥2

= −1

2
∇∆M log pt −∇2 log pt · ∇ log pt.

On the other hand, it is straightforward to calculate

∇2 log pt =
∇2pt
pt
− (∇pt)(∇pt)⊤

p2t
.

Now, from Itô’s formula, we know

d∇ log pt(Yt) = (∂τ∇ log pt)(Yt)dτ +∇2 log pt(Yt)(∇ log pt(Yt)dτ + UYt ◦ dWt) +
1

2
∆M∇ log pt(Yt)dτ

= −1

2
∇∆M log ptdτ −∇2 log pt · ∇ log ptdτ +∇2 log pt · ∇ log ptdτ

+∇2 log pt · UYt ◦ dWt +
1

2
∆M∇ log ptdτ

=
1

2
(∆M∇−∇∆M) log ptdτ +∇2 log pt · UYt ◦ dWt

=
1

2
Ric♯(∇ log pt, ·)dτ +∇2 log pt · UYt ◦ dWt,

where the last line follows from Bochner’s identity (∆M∇−∇∆M)f = Ric♯(∇f, ·), and Ric♯ de-
notes the (1, 1)-tensor obtained by raising one index in Ricci curvature. Notice here the cancellation
of third-order derivatives.

On the other hand,

dS ⋆
tk,Ytk

(Yt) = ∇S ⋆
tk,Ytk

(Yt) · (∇ log ptdτ + UYt ◦ dWt) +
1

2
∆MS ⋆

tk,Ytk
(Yt)dτ.
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In normal coordinates, S ⋆
tk,Ytk

is a constant vector field inside B(0, ω/3), therefore we have (cf.
Lemma 4):

∇αS ⋆
tk,Ytk

(Yt)
β = ΓβαγS

⋆
tk,Ytk

(Yt)
γ = Γβαγ∇γ log ptk(Ytk), ρ(Yt, Ytk) ≤ ω/3,

and similarly, when ρ(Yt, Ytk) ≤ ω/3, we have

∆MS ⋆
tk,Ytk

(Yt)
α = −Ricαβ∇β log ptk(Ytk)−gβγ

(
∂γΓ

α
βξ + ΓαγζΓ

ζ
βξ + ΓαζξΓ

ζ
βγ

)
∇ξ log ptk(Ytk).

Step II. Bounding the coefficients. Combine the above formulas with the estimates given in
Lemma 5, we obtain for some universal constant C > 0:∥∥∥Ric♯(∇ log pt, ·)

∥∥∥ ≤ CK∥∇ log pt(Yt)∥,∥∥∥∇S ⋆
tk,Ytk

∥∥∥ ≤ CK∥∇ log ptk(Ytk)∥, ρ(Yt, Ytk) ≤ ω/2,∥∥∥∆MS ⋆
tk,Ytk

∥∥∥ ≤ CK2∥∇ log ptk(Ytk)∥, ρ(Yt, Ytk) ≤ ω/2.

Outside the geodesic ball BYtk (ω/2), the field S ⋆
tk,Ytk

is non-zero only inside BYtk (ω). Between
these two balls, we have to take into account the radial derivative of the cutoff function ηω , whose
first order derivative is bounded by Cω−1 and second order derivative by Cω−2 by our construction
of ηω (recall that |η′|+ |η′′| ≤ 100). Apply Lemma 4 and Lemma 5 again, this time we bound∥∥∥∇S ⋆

tk,Ytk

∥∥∥ ≤ CKω−1∥∇ log ptk(Ytk)∥,∥∥∥∆MS ⋆
tk,Ytk

∥∥∥ ≤ CK2ω−2∥∇ log ptk(Ytk)∥.

We now apply Itô’s formula on manifold (i.e., take expectation and invoke the martingale property
in (1)) and collect the above bounds to obtain (cf. Benton et al. (2024))∣∣∣∣ ddτ E∥∇ log pt(Yt)−S ⋆

tk,Ytk
(Yt)∥2

∣∣∣∣
≤ CK2

(
E∥∇ log pt(Yt)∥2 + E∥∇ log ptk(Ytk)∥2 + E∥∇2 log pt(Yt)∥2

)
+ CK2ω−2E

[
(∥∇ log pt(Yt)∥2 + ∥∇ log ptk(Ytk)∥2 + ∥∇2 log pt(Yt)∥2)1ρ(Yt,Ytk )>ω/3

]
≤ CK2

(
E∥∇ log pt(Yt)∥2 + E∥∇ log ptk(Ytk)∥2 + E∥∇2 log pt(Yt)∥2

)
+ CK2ω−2

√
E∥∇ log pt(Yt)∥4 + E∥∇ log ptk(Ytk)∥4 + E∥∇2 log pt(Yt)∥4

√
P(ρ(Yt, Ytk) > ω/3)

≤ CK2d

(
1

t
+ dK2

)2

sup
t≤s≤tk

√
E log4

sup ps/2

ps(Ys)
·
(
1 + ω−2

√
P(ρ(Yt, Ytk) > ω/3)

)
. (26)

Here the last line follows from Lemma 12.

Step III. Controlling expectations via Chebyshev and Li-Yau estimates. To bound
E log4

sup ps/2
ps(Ys)

, we note that

E
(

1

pt(Yt)

)
=

∫
1

pt
ptdµ =

∫
dµ = 1.

By Chebyshev’s inequality, we have

P
(

1

pt(Yt)
≥ λ

)
≤ λ−1, λ > 0,

and then

P
(
log4

1

pt(Yt)
≥ λ

)
≤ e−

4√
λ, λ ≥ 0.
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Integrate with respect to λ, we see

E log4
1

pt(Yt)
≤ C.

We then apply Li-Yau’s estimate (Lemma 8) combined with Lemma 9, Lemma 11 to obtain
sup log ps/2 ≤ sup logH(s/2, x, y) ≲ d log d

s +Ks, where the first inequality follows from ps/2
being the convolution of p0 with H(s/2, x, y). These together shows

E log4
sup ps/2

ps(Ys)
≤
(
Cd log

d

s
+ CKs

)4

≤ Cd5K4

δ
.

Here we used log d
s ≤ C

(
d
s

)1/4
, and s ≥ t ≥ δ.

Step IV. Controlling exit probability via stopping time. It remains to bound the probability
P(ρ(Yt, Ytk) > ω/3). This would follow from a stopping time argument. We claim that given
tk − t ≤ h, we have

P(ρ(Yt, Ytk) > ω/3) ≤ exp

(
− cω2

tk − t

)
≤ ω4. (27)

where the last inequality follows from (3). Plug this back into the desired conclusion of the lemma
is proved.

We now prove (27). Let σ be the largest t ≤ tk such that ρ(Yt, Ytk) > ω/3. We have

P(ρ(Yt, Ytk) > ω/3) ≤ P(σ ≥ t).
In the interval [σ, tk], Yt stays in the geodesic ball BYtk (ω/3), and follows the SDE (2). In normal
coordinates, this can be spelled out explicitly:

dY αt = ∇α log pt(Yt)dt+Aαβ(Yt) ◦ dW
β
t

=

(
∇α log pt(Yt) +

1

2
(∂γA

α
β)A

βγ

)
dt+AαβdW

β
t , (28)

where A is the square root of the matrix representing the coefficients of the Laplace-Beltrami oper-
ator

1√
det g

∂α(
√
det g · gαβ∂β).

It can be checked with the help of Lemma 5 that ∥A − I∥ ≤ CdKω2, and ∥∂αA∥ ≤ Cd2Kω;
we omit the computation that has a similar pattern as many of the previous arguments. Further-
more, we have ∥∇ log pt(Yt)∥ ≲ (δ−1 + K) log

supt/2
pt

by the same argument via Lemma 12 as
before. This time we combine the uniform bound provided by Lemma 10 with Lemma 8 to con-
clude log sup pt/2

pt
≲ (δ−1+K+d log d)2 Diam(M)2 ≲ (δ−1+K+d log d)2K2 by Assumption 1.

This shows
sup ∥∇ log pt∥ ≲ (δ−1 +K + d log d)3K2. (29)

Therefore, in view of Lemma 5 to convert the above bound to normal coordinates, and together with
the aforementioned bound for A and ∂αA, we see that the drift term up to time σ will not exceed

sup
∥∥∇α log pt(Yt)+ 1

2
(∂γA

α
β)A

βγ
∥∥ · (tk−σ) ≤ C(δ−1+K+ d log d)3K2(tk−σ) ≤

ω

12
, (30)

where the last inequality used (3). On the other hand, the bound on A implies that the quadratic
variation of the martingale part does not exceed∫ tk

σ

AαγA
γ
βdt ⪯ 2(tk − σ)I.

By Burkholder-Davis-Gundy inequality (Revuz & Yor, 2013), the tail of
∫ tk
σ
AαβdW

β
t is O(1)-

subgaussian, thus we have

P
(
σ ≥ t,

∥∥∥∫ tk

σ

AαβdW
β
t

∥∥∥ > ω

12

)
≤ exp

(
−c(ω − 2

√
ρ(tk − t))2

tk − t

)
.

In view of (3), combine this with (30) and (28), we have proved (27) as claimed.
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Lemma 18. Under the same assumptions as in Theorem 1 and assuming (3) without loss of gener-
ality, the discretization error obeys the following upper bound:

N∑
k=1

∫ tk

tk−1

E∥∇ log pt(Yt)−S ⋆
tk,Ytk

(Yt)∥2dt ≤
Cd6K8

δ3
h2N,

where C > 0 is a universal constant.

Proof. This follows directly from Lemma 17.

F BROWNIAN MOTION SIMULATION ERROR

In this section, we handle the Brownian motion simulation error using the machinery of
Minakshisundaram-Pleijel parametrix. A complete introduction to this heavy machinery would re-
quire establish a whole system of notations and lemmas in geometric analysis, which is unduly
burdensome. We instead refer the interested reader to Berline et al. (2003) for a comprehensive
treatment, and point to results there whenever needed.

F.1 OVERVIEW

Our aim is to prove the following lemma.
Lemma 19. Under the same assumptions as in Theorem 1, and assuming (3) without loss of gener-
ality, we have

TV(paux0 , q⋆0) ≤
√
hT poly(d,K, δ−1).

To better explain the idea of the proof, we ignore the rejection sampling procedure in the construction
of K̂k temporarily. Our starting point is the observation that by Fokker-Planck equation, K̂k is the
heat kernel associated to the Euclidean Laplacian with drift Stk,Ytk

, in normal coordinates. On the
other hand, Kaux

k is also a heat kernel with the same drift, but associated to the manifold Laplace-
Beltrami operator. The following lemma shows that the two solutions coincide up to first order in
time, at least in a polynomially small neighborhood of initial point and in a polynomially short time.
Lemma 20. Let FH(t, x, y) be the (generalized) heat kernel for the operator H = 1

2∆M +
⟨Stk,Ytk

,∇⟩. Define the Euclidean density

φt(u;x) :=
1

(2πt)d/2
exp

(
−
∥u−Stk,Ytk

(x)t∥2

2t

)
, u ∈ TxM,

and let Φ(t, x, y) be the density of the push-forward by expx of ηωφt(·;x) with respect to the volume
measure, where ηω is the cutoff function defined in (4). Then there exists polynomial poly(d,K)
with universally constant coefficients, such that for all 0 < t ≤ 1

poly(d,K,δ−1) and for all ρ(y, Ytk) ≤
t5/12, we have ∣∣∣∣FH(t, Ytk , y)

Φ(t, Ytk , y)
− 1

∣∣∣∣ ≤ poly(d,K, δ−1)t.

With Lemma 20 in hand, it is tempting to calculate the KL error with the following heuristic:

KL(pauxk Kaux
k ∥ pauxk K̂k) ≲ −E

∫
FH(h, Ytk , ·) log

Φ(h, Ytk , ·)
FH(h, Ytk , ·)

≲ E
∫
FH(h, Ytk , ·)

(
FH(h, Ytk , ·)
Φ(h, Ytk , ·)

− 1

)2

≲ poly(d,K, δ−1)h2,

where we ignore the fact that Lemma 20 holds only in a small neighborhood; the first line is post-
processing inequality, and the second line stems from the fact that for two distributions p, q, we
have ∫

p log
q

p
=

∫
p log

(
1 +

q − p
p

)
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≥
∫
p

(
q − p
p
− C (q − p)2

p2

)
= −C

∫
p

(
q

p
− 1

)2

,

given q
p − 1 is sufficiently small, where the last line follows from

∫
p =

∫
q = 1. From this, we

conclude that the accumulated error alongN steps is bounded by poly(d,K)h2N = poly(d,K)hT ,
and the desired bound follows from Pinsker’s inequality.

Apart from Lemma 20, the above computation is the essence of this proof. The rest of this section
is mainly devoted to proving Lemma 20, and then formalizing the above computation by handling
exceptional events of exiting the polynomially small neighborhood.

F.2 PROOF OF LEMMA 20: A PARAMETRIX ESTIMATE

We begin the proof of Lemma 20. For simplicity, denote by vα the normal coordinate representa-
tion of ŝtk(Ytk). Naturally, our initial test solution is the drifted heat kernel, as simulated by our
discretized process:

φt(u) :=
1

(2πt)d/2
exp

(
−∥u− vt∥

2

2t

)
, u ∈ Rd.

Before we compare this with the manifold heat kernel, there is one subtlety we need to keep in mind.
The density φt is with respect to the Lebesgue measure on TxM, not with respect to the volume on
M. We compute and define the corresponding density onM as follows:

Φ(t, x, y) = φt(logx y)
√

∆(x, y), ∆(x, y) :=
|det d logx y|2

det g(y)
, y ∈ Bx(ω).

Here all quantities are computed in normal coordinates. The factor ∆(x, y) is known as the van
Vleck-Morette determinant. From Lemma 5 and Lemma 6, we know that

1

2
≤ ∆(x, y) ≤ 2, if ρ(x, y) ≤ c

Kd
. (31)

We consider the generalized Laplacian

H :=
1

2
∆M + ⟨Stk,Ytk

,∇⟩.

As in Lemma 20, denote by FH the heat kernel of H at time tk − tk−1. We also propose an
approximation of FH by

Ψ(t, x, y) := G(t, x, y) exp(ψ(x, y))
√
∆(x, y), G(t, x, y) :=

1

(2πt)d/2
exp

(
−d

2(x, y)

2t

)
,

where for any two point x, y ∈ M, letting γ : [0, 1] → be a constant-speed geodesic connecting x
to y, we define

ψ(x, y) :=

∫ 1

0

〈
Stk,Ytk

(γ(s)),
d

ds
γ(s)

〉
g

ds.

The auxiliary function Ψ bridges FH and Φ in the following sense. On the one hand, we relate Φ
and Ψ with the following lemma:

Lemma 21. There exists a polynomial poly(d,K) with universally constant coefficients such that
the following holds. For any 0 < r ≤ 1

poly(d,K,δ−1) , 0 < t ≤ 1
poly(d,K,δ−1) and for all x, y ∈

BYtk (r), we have ∣∣∣∣Φ(t, x, y)Ψ(t, x, y)
− 1

∣∣∣∣ ≤ poly(d,K, δ−1)(r3 + t).
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On the other hand, we have the following asymptotic expansion:

FH(t, x, y) = Ψ(t, x, y) ·

(
1 +

∞∑
i=1

tiui(x, y)

)
, t→ 0+,

where ui are smooth functions that can be computed explicitly via a recursive formula (Berline
et al., 2003). We will not need the formula here, but instead require u1 and the remainder terms to
be bounded properly. Such bounds have been well-established, which we wrap up into the following
lemma. Recall the cutoff function ηω with radius ω defined in (4). It is clear we can replace ω with
any ι > 0 to define a cutoff ηι of radius ι.
Lemma 22 (adapted from Berline et al. (2003)). Fix a positive ι ≤ 1/ poly(d,K). There exists a
smooth function u1(x, y) onM×M such that

∥u1∥∞ + ∥∇yu1∥∞ ≤ poly(d,K, δ−1),

and for all 0 < t ≤ 1/ poly(d,K), y ∈ Bx(ι), we have∣∣(∂t −H) [ηι(ρ(x, y))Ψ(t, x, y)(1 + tu1(x, y))]
∣∣ ≤ rη(t, x, y) + rψ(t, x, y), (32)

where

rη(t, x, y) ≤
1

ιt
poly(d,K)1 ι

2≤ρ(x,y)≤ιG(t, x, y), (33a)

rψ(t, x, y) ≤ t · poly(d,K, δ−1)1ρ(x,y)≤ιG(t, x, y). (33b)

Proof. The inequality on u1 follows from Theorem 2.26 in Berline et al. (2003), with H the same
as our H and therefore F = ⟨Stk,Ytk

,∇⟩. Note that all the coefficients in H are bounded in C2 by
poly(d,K)(1 + ∥Stk,Ytk

∥C2(M)), which is further bounded by poly(d,K, δ−1) as we will show
momentarily. In fact, by Lemma 5 and Assumption 1, (A3), we have
∥Stk,Ytk

∥C2(M) = ∥Stk,Ytk
∥∞+∥∇Stk,Ytk

∥∞+∥∇2Stk,Ytk
∥∞ ≤ poly(d,K)ω−2(1+∥∇ log ptk(Ytk)∥),

and then we control ∥∇ log ptk(Ytk)∥ ≤ poly(d,K, δ−1) via (29), yielding the claimed bound
(recall that ω−1 = poly(d,K) by definition).

We proceed to prove (32). We follow the proof of Theorem 2.29, item (iii) in Berline et al. (2003),
and choose the cutoff function ψ there to be ηι as defined in (4), and with the differential operator
B defined in Berline et al. (2003), we have∣∣(∂t −H) [Ψ(t, x, y)(1 + tu1(x, y))]

∣∣ ≤ 1

ιt
poly(d)G(t, x, y)︸ ︷︷ ︸

=:rη, ∇ηι related terms

+ t ·G(t, x, y) · |(Byu2)(x, y)|︸ ︷︷ ︸
=:rψ

.

Here By can be viewed as a coordinate-transformed version ofH, applied to the variable y (precise
definition can be found in the reference), and u2 is the second order term in the expansion. Similar
to the argument we used to bound ∥u1∥, in virtue of Theorem 2.26 in Berline et al. (2003), we have

∥Bxu2∥L∞(µ) ≤ poly(d,K, δ−1).

The claimed bound follows from combining the above inequalities.

We now state the Volterra series representation of heat kernel.
Lemma 23 (Volterra series, Theorem 2.23 in Berline et al. (2003)). Fix a ι > 0. Let

Ψ1(t, x, y) := ηι(ρ(x, y))Ψ(t, x, y)(1 + tu1(x, y)),

r1(t, x, y) := (∂t −H)Ψ1(t, x, y).

Define the time-space convolution operator ∗ as

(f ∗ g)(t, x, y) =
∫ t

0

∫
f(t− s, x, z)g(s, z, y)µ(dz)ds.

Then we have

FH = Ψ1 +

∞∑
k=1

(−1)k Ψ1 ∗ r∗k1 , where r∗k1 := r1 ∗ · · · ∗ r1︸ ︷︷ ︸
k times

,

on any domain such that the series on the right hand side converges absolutely uniformly.
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Lemma 24 (Iterative bounds for Volterra series). There exists a polynomial poly(d,K, δ−1) with
universally constant coefficients such that the following holds. Assume 0 < t ≤ 1/poly(d,K.δ−1),
take ι = 4t5/12d in the definition of Ψ. Then we have, for all ρ(x, y) ≤ t5/12 = ι/(4d), that

∞∑
k=1

∣∣Ψ1 ∗ r∗k1
∣∣ (t, x, y) ≤ t · poly(d,K, δ−1)G(t, x, y).

Proof. Recall Lemma 22, and denote by P the polynomial factor poly(d,K) therein. Denote by
λ∆k the dilated standard simplex

λ∆k = {(s1, · · · , sk+1) : si ≥ 0,

k+1∑
i=1

si = λ}, λ > 0.

Fix some k ≥ 1. Set z0 = x and zk = y, we have∣∣Ψ1 ∗ r∗k1
∣∣ (t, x, y)

≤ tkP k
∫
t∆k−1

ds

∫
Mk−1

(
k∏
i=1

G(si, zi−1, zi)
(
1ρ(zi−1,zi)≤ι +

1

ιsi
1ρ(zi−1,zi)>ι/2

))
µ⊗(k−1)(dz).

(34)

We split the integral in (34) into a local part and an outlier part. Define a small “local” region

R :=
{
(z1, · · · , zk−1) : ρ(zi, x) ≤ 2ι, ρ(zi−1, zi) ≤ ι/2, i = 1, · · · , k

}
.

We further define

Iloc(s) :=

∫
R

(
k∏
i=1

G(si, zi−1, zi)

)
µ⊗(k−1)(dz),

Iout(s) :=

∫
Rc

(
k∏
i=1

G(si, zi−1, zi)1ρ(zi−1,zi)≤ι

(
1 +

1

ιsi
1ρ(zi−1,zi)>ι/2

))
µ⊗(k−1)(dz).

It is clear that ∣∣Ψ1 ∗ r∗k1
∣∣ (t, x, y) ≤ tkP k ∫

t∆k−1

(Iloc(s) + Iout(s)) ds. (35)

We will establish bounds for Iloc and Iout respectively.

Bounding the local integral. For ease of understanding, we begin by computing the first integral
in Iloc with respect to z1. Extracting the factors containing z1, we need to calculate∫

{ρ(z1,x)≤2ι}

1

(2πs1)d/2
1

(2πs2)d/2
exp

(
−ρ(x, z1)

2

2s1
− ρ(z1, z2)

2

2s2

)
µ(dz1). (36)

To proceed, we will invoke Lemma 13. Let z⋆ be a minimizer of

V (z) =
ρ(x, z)2

s1(s1 + s2)−1
+

ρ(z, z2)
2

s2(s1 + s2)−1
− ρ(x, z2)2.

By Lemma 13, V (z⋆) = 0. Since V (z) > 0 whenever ρ(x, z) ≥ ρ(x, z2), we know that z⋆ ∈
Bx(2ι). Moreover, Lemma 13 and Lemma 5 together imply

V (z) ≥ (1− Cd2K2ι) · (s1 + s2)
2

s1s2
ρ(z, z⋆)

2, ∀z ∈ Bx(4ι).

Here, the second inequality follows from strong convexity given by Lemma 13 and a comparison of
geometric distance and Euclidean distance in normal coordinates fueled by Lemma 5. Denote for
the moment that

θ := 1− Cd2K2ι.
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Plugging this back into (36), we obtain∫
{ρ(z1,x)≤2ι}

1

(2πs1)d/2
1

(2πs2)d/2
exp

(
−ρ(x, z1)

2

2s1
− ρ(z1, z2)

2

2s2

)
µ(dz)

=

∫
{ρ(z1,x)≤2ι}

1

(2πs1)d/2
1

(2πs2)d/2
exp

(
− V (z1)

2(s1 + s2)

)
µ(dz1)

≤
∫
{ρ(z1,x)≤2ι}

1

(2π(t− s))d/2
1

(2πs)d/2
exp

(
−θ(s1 + s2)ρ(z1, z⋆)

2

2s1s2
− ρ(x, z2)

2

2(s1 + s2)

)
µ(dz1)

≤ 4 exp

(
− ρ(x, z2)

2

2(s1 + s2)

)
·
∫

1

(2πs1)d/2
1

(2πs2)d/2
exp

(
−θ(s1 + s2)∥Z∥2

2s1s2

)
dZ

= 4(2π(s1 + s2))
d/2G(s1 + s2, x, z2) ·

1

(2πs1)d/2
1

(2πs2)d/2

(
2π · s1s2

θ(s1 + s2)

)d/2
≤ 4θ−d/2G(s1 + s2, x, z2),

where the third-to-last line follows from change of variable to normal coordinates at z⋆ and from
using (31) to bound the determinant; the penultimate line follows from Gaussian integration. Now,
we note that

θ−d/2 = (1− Cd2K2ι)−d/2 ≤ exp(2Cd3K2ι) ≤ 2,

give ι ≤ 1
100Cd3K2 . Putting these pieces together, we proved∫

{ρ(z1,x)≤2ι}

1

(2πs1)d/2
1

(2πs2)d/2
exp

(
−ρ(x, z1)

2

2s1
− ρ(z1, z2)

2

2s2

)
µ(dz1) ≤ 8G(s1 + s2, x, z2).

Iterate the above argument for the integration over z2, · · · , zk−1 to obtain

Iloc(s) ≤ 8k ·G

(
k∑
i=1

si, x, y

)
= 8k ·G(t, x, y). (37)

Bounding the outlier integral. Next, we show how to control Iout. We first write
k∏
i=1

G(si, zi−1, zi) =
1∏k

i=1(2πsi)
d/2

exp

(
−

k∑
i=1

ρ(zi−1, zi)
2

2si

)
. (38)

We claim that for any z ∈ Rc, we have

T :=

k∏
i=1

exp

(
−

k∑
i=1

ρ(zi−1, zi)
2

2si(d+ 1)

)
1ρ(zi−1,zi)≤ι

(
1 +

1

ιsi
1ρ(zi−1,zi)>ι/2

)
≤ exp

(
− ι2

16td

)
.

(39)
The claim is proved at the end of this proof. It is tempting to plug this back into (38), and argue
that when t is polynomially small, the integrand in Iout becomes exponentially small. However,
this would not work since it does not resolve the singular factors

∏k
i=1 s

−d/2
i in the integrand.

For this purpose, we need the following crucial “freezing” trick, which follows trivially from 1 =
1

1+d−1 + 1
d+1 :

k∏
i=1

G(si, zi−1, zi)1ρ(zi−1,zi)≤ι

(
1 +

1

ιsi
1ρ(zi−1,zi)>ι/2

)
=

(
k∏
i=1

(1 + d−1)d/2G
(
(1 + d−1)si, zi−1, zi

)
1ρ(zi−1,zi)≤ι

)
T.

The idea is to keep the Gaussian behavior to resolve the s−d/2i factors, and only single out a very
small proportion to demonstrate exponential smallness. Plug (39) into the above identity to obtain

Iout(s) ≤ exp

(
− ι2

16td

)
·
∫
Rc

(
k∏
i=1

(1 + d−1)d/2G
(
(1 + d−1)si, zi−1, zi

)
1ρ(zi−1,zi)≤ι

)
µ⊗(k−1)(dz).
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Integrate successively for each variable, convert to normal coordinates, and apply Lemma 5,
Eqn. (31), and Gaussian integration as we did in bounding Iloc, we obtain∫
Rc

(
k∏
i=1

G
(
(1 + d−1)si, zi−1, zi

)
1ρ(zi−1,zi)≤ι

)
µ⊗(k−1)(dz) ≤ 8k(1+d−1)dk/2(ct)−d/2 ≤ 32k(ct)−d/2.

Therefore

Iout(s) ≤ 32k(ct)−d/2 · exp
(
− ι2

16td

)
≤ 32kG(t, x, y), (40)

where in the last inequality we used the assumption ρ(x, y) ≤ t5/12 = ι/(4d) and t ≤
1/ poly(d,K), so that exp(−ι2/(32td)) ≤ exp(−ρ(x, y)2/(2t)) and exp(−ι2/(32td)) =
exp(− 1

2dt
−1/6) ≤ (2πt)−d/2.

Putting things together. We plug the bounds (37) and (40) into (35) to obtain∣∣Ψ1 ∗ r∗k1
∣∣ (t, x, y)| ≤ tkP k ∫

t∆k−1

(8k + 32k)G(t, x, y)ds ≤ 40

(k − 1)!
(40t)2k−1P kG(t, x, y).

The desired conclusion of Lemma 24 follows from the above inequality by summing over k and
taking t ≤ 1/poly(d,K).

Proof of Claim (39). For z ∈ Rc, let

J = {i : ρ(zi−1, zi) > ι/2}.

By definition ofRc, either J is nonempty, or there is i0 such that ρ(x, zi0) > 2ι. For i ∈ J , we note
that

exp

(
−ρ(zi−1, zi)

2

2sid

)(
1 +

1

ιsi

)
≤ exp

(
− ι2

8sid

)(
1 +

1

ιsi

)
≤ exp

(
− ι2

16td

)
, (41)

where the last inequality follows from si ≤ t, ι = 4t5/12d, and that t ≤ 1/poly(d,K). When J is
nonempty, we readily deduce (39) as all the other factors are ≤ 1.

When J is empty, let i0 be such that ρ(x, zi0) > 2ι. We apply Cauchy-Schwarz to obtain

k∑
i=1

ρ(zi−1, zi)
2

si
≥ 1∑k

i=1 si

(
k∑
i=1

ρ(zi−1, zi)

)2

=
1

t

(
k∑
i=1

ρ(zi−1, zi)

)2

.

Then, by triangle inequalities, we have

i0∑
i=1

ρ(zi−1, zi) ≥ ρ(z0, zi0) = ρ(x, zi0) > 2ι, therefore
k∑
i=1

ρ(zi−1, zi)
2

si
≥ 2ι2

t
.

The desired claim (39) follows immediately, given that J is empty.

We now have all the ingredients to prove Lemma 20.

Proof of Lemma 20. This follows immediately from Lemma 21, Lemma 23 and Lemma 24. Note
that in applying Lemma 21, we used r ≤ t5/12, thus r3 ≤ t5/4 ≤ t.

F.3 PROOF OF LEMMA 21

By definition, we can compute

Φ(t, x, y)

Ψ(t, x, y)
= exp ((logx y) · v − ψ(x, y)) exp

(
−∥v∥2t/2

)
.

30



Published as a conference paper at ICLR 2026

Note that ∥v∥ ≤ C∥∇ log ptk(Ytk)∥ by Lemma 5, which in turn is bounded by poly(d,K, δ−1) by
(29). When t ≤ 1

poly(d,K,δ−1) ≤
1

4∥v∥2 , we have | exp(−∥v∥2t/2)−1| ≤ ∥v∥2t ≤ poly(d,K, δ−1)t.
Therefore, it suffices to show

|(logx y) · v − ψ(x, y)| ≤ poly(d,K, δ−1)r3.

Recall the definition of ψ. Note that since r ≤ 1
poly(d,K,δ−1) , when the polynomial poly(d,K, δ−1)

is sufficiently large, the geodesic γ from x to y is unique and is inside BYtk (r). In the normal
coordinate on Ytk within radius r, the vector field Stk,Ytk

is represented by the constant vector v.
We also recognize that in normal coordinate, γ(1)− γ(0) = logx y. We thus have

|(logx y) · v − ψ(x, y)| =
∣∣∣∣δαβvα(γβ(1)− γβ(0))− ∫ 1

0

gαβ(γ(s))v
α d

ds
γβ(s)ds

∣∣∣∣
=

∣∣∣∣∫ 1

0

(gαβ(γ(s))− δαβ)vα
d

ds
γβ(s)ds

∣∣∣∣
≤ C

∫ 1

0

∥g(γ(s))− I∥ · ∥v∥ · ∥ d
ds
γ(s)∥ds

≤ C∥v∥ · ρ(x, y)
∫ 1

0

CK(sρ(x, y))2ds

≤ poly(d,K, δ−1)ρ(x, y)3,

as desired. Here the penultimate line follows from Lemma 5.

F.4 PROOF OF LEMMA 19: HANDLING EXCEPTIONAL EVENTS

Proof of Lemma 19. Recall that paux0 = pNKaux
N Kaux

N−1 · · ·Kaux
1 and q⋆0 = pN K̂N K̂N−1 · · · K̂1. We

need to compare the kernel Kaux
k with K̂k, k = 1, · · · , N . To apply Lemma 20, we define two

auxiliary kernels K̃aux
k , K̃k that are “localized” version of Kaux

k and K̂k. We show the auxiliary kernels
are close to Kaux

k and K̂k respectively in total variation, and establish bound on KL(K̃aux
k ∥ K̃k).

Denote
Rx := {y ∈M : ρ(x, y) ≤ h5/12}, Rcx :=M\Rx.

Recall the notation Φ in the proof of Lemma 24. To distinguish the kernels at different step, we
denote Φk as the corresponding Φ at step k. Define K̃aux

k , K̃k by

K̃aux
k (x, dy) = Kaux

k (x, dy)1Rx
(y) +

Kaux
k (x,Rcx)
µ(Rcx)

µ(dy)1Rc
x
,

K̃k(x, dy) = Φk(h, x, y)1Rx
(y) +

∫
Rc
x
Φk(h, x, z)µ(dz)

µ(Rcx)
µ(dy)1Rc

x
,

By converting to normal coordinate and invoking Gaussian integration in the same way as in the
proof of Lemma 24, we obtain

exp
(
− 2

h1/6

)
≤
∫
Rc
x

Φk(h, x, z)µ(dz) ≤ exp
(
− 1

16h1/6

)
. (42)

When h ≤ 1/ poly(d,K, δ−1), it is apparent (e.g., follows from Gromov’s volume comparison
theorem) that µ(Rx) ≤ 1/2, thus

1

2
≤ µ(Rcx) ≤ µ(M) = 1.

We observe that K̂k differs from K̃k by a rejection sampling with radius h1/4. With the above bounds
and the same Gaussian integration technique, we see that the probability of rejection is bounded by

P(rejection at step k) ≤ exp
(
− (h1/4)2

16h

)
≤ exp

(
− 1

16h1/2
)
. (43)

31



Published as a conference paper at ICLR 2026

Summing up, We readily obtain

TV(K̂k, K̃k) ≤ exp

(
− 1

16h1/6

)
. (44)

On the other hand, by using the stopping time argument as in the proof of (27), we have

Kaux
k (x,Rcx) ≤ exp

(
− 1

16h1/6

)
. (45)

Therefore, the following TV bound is obvious:

TV(Kaux
k , K̃aux

k ) ≤ exp

(
− 1

16h1/6

)
, . (46)

Now we compute KL
(
K̃aux
k (x, ·) ∥ K̃k(x, ·)

)
. By definition, we have

KL
(
K̃aux
k (x, ·) ∥ K̃k(x, ·)

)
=

∫
Rx

(
log

K̃aux
k (x, dy)

K̃k(x, dy)

)
K̃aux
k (x, dy)︸ ︷︷ ︸

=:T1

+

(
log

Kaux
k (x,Rcx)∫

Rc
x
Φk(h, x, z)µ(dz)

)
K̃k(x,Rcx)︸ ︷︷ ︸

=:T2

.

We control the two terms separately.

Controlling T1. We invoke Lemma 20 to see∣∣∣∣∣ K̃aux
k (x, dy)

K̃k(x, dy)
− 1

∣∣∣∣∣ ≤ poly(d,K, δ−1)h.

Therefore, we use the elementary fact that log(1 + x) ≥ x− 2x2 for x ∈ [−1/2, 1/2] to obtain

log
K̃aux
k (x, dy)

K̃k(x, dy)
= − log

K̃k(x, dy)

K̃aux
k (x, dy)

≤ 1− K̃k(x, dy)

K̃aux
k (x, dy)

+ 2

(
K̃k(x, dy)

K̃aux
k (x, dy)

− 1

)2

≤ 1− K̃k(x, dy)

K̃aux
k (x, dy)

+ poly(d,K, δ−1)h2,

provided h ≤ 1/ poly(d,K, δ−1). Integrate with respect to K̃aux
k (x, dy) over y ∈ Rx to obtain

T1 ≤ K̃aux
k (x,Rx)− K̃k(x,Rx) + poly(d,K, δ−1)h2

≤ 2 exp
(
− 1

16h1/6
)
+ poly(d,K, δ−1)h2

≤ poly(d,K, δ−1)h2,

where the second line follows from (42) and (45), and the last line follows from h ≤
1/ poly(d,K, δ−1) so that the exponential term is sufficiently small.

Controlling T2. This is strightforward given (45) and (42). We obtain in the same way as above
that

T2 ≤ exp
(
− 1

32h1/6
)
≤ poly(d,K, δ−1) ≤ h2.

Summarizing the above, we have shown that

KL
(
K̃aux
k (x, ·) ∥ K̃k(x, ·)

)
≤ poly(d,K, δ−1)h2.

Accumulate the error over all N steps using post-processing inequality and apply Pinsker’s inequal-
ity, we obtain

TV(paux0 ∥q⋆0) ≤
√
poly(d,K, δ−1)h2N ≤

√
hT poly(d,K, δ−1),

since hN = T − δ ≤ T , as claimed.
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G PROOF OF MAIN RESULTS

Proof of Lemma 1. This follows from combining Lemma 15 and Lemma 16.

Proof of Lemma 2. This follows from Lemma 18 and our choice of schedule hN = T −δ ≤ T .

Proof of Theorem 1. This follows from Lemma 1, Lemma 2, and Lemma 19.
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