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Abstract

We study the relationship between sample ef-
ficiency and out-of-distribution performance—
if two models have the same in-distribution
performance, does the model trained on fewer
labeled training examples (higher sample ef-
ficiency) perform better out-of-distribution?
First, we find that models with higher sample
efficiency can have worse out-of-distribution
robustness than models that are less sample-
efficient. We then empirically study the cor-
relation between sample efficiency and out-
of-distribution robustness across three tasks,
23 total ID-OOD settings, and four broadly-
applicable methods that change sample effi-
ciency: (1) changing the pre-training data
source; (2) using natural language prompts;
(3) increasing model size; and (4) increasing
the amount of pre-training data. Given that bet-
ter sample efficiency does not necessarily give
rise to robust models, our results underscore
the importance of developing and evaluating
whether interventions jointly improve both.

1 Introduction

State-of-the-art NLP models perform well when
evaluated on data drawn from their training dis-
tribution (in-distribution / ID), but they typically
suffer large drops in performance when evaluated
on data distributions unseen during training (out-of-
distribution / OOD) (Blitzer, 2008; Jia and Liang,
2017). One potential cause of this ID-OOD per-
formance gap is that models may learn to use ID-
specific patterns that are predictive in-distribution
but do not hold out-of-distribution. For example,
the presence of the token “sleeping” is a strong
indicator of the contradiction label in the SNLI
dataset, but this feature is unlikely to hold in OOD
test data (Gururangan et al., 2018). Models that
rely on such ID-specific patterns may attain high
ID performance, but at the cost of considerably
lower OOD performance.
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Figure 1: A summary of representative results from our
empirical survey. Higher sample efficiency does not
imply higher effective robustness.

Does improving (in-distribution) sample effi-
ciency, thereby reducing exposure to ID examples,
also improve effective robustness on NLP tasks?
As an extreme example, zero-shot models are much
less likely to learn and use ID-specific patterns that
do not hold in OOD settings because they are not
exposed to any labeled ID examples. In a simi-
lar vein, one might expect that few-shot models
trained on very small datasets may also rely less
on ID-specific patterns. For example, if a model
never sees the token “sleeping” while training on
SNLI, then it is unlikely to learn that its presence
is spuriously predictive of the contradiction label
(Utama et al., 2021). Supporting this intuition, re-
cent computer vision results show that zero-shot
prediction with large pre-trained models can yield
much better OOD performance than fine-tuning the
same models on ID examples—fine-tuning on ID
examples can actually decrease OOD performance
(Radford et al., 2021).



In this paper, we study this relationship between
sample efficiency and OOD robustness. Given
models with the same ID performance, will the
models trained on fewer ID examples (higher sam-
ple efficiency) also have better OOD performance
(higher effective robustness; Taori et al., 2020)? For
example, BERTgasE trained on 50,000 MultiNLI
examples achieves 79% MultiNLI accuracy, but
BERT arcE requires only 10,000 examples to ob-
tain the same accuracy. Which model will have
higher OOD performance on SNLI? Despite the
difference in sample efficiency, we find that these
two models have roughly the same OOD perfor-
mance on SNLIL.

Although higher sample efficiency itself does
not always imply higher effective robustness, the
two may be empirically correlated for a wide range
of ID and OOD datasets. We experimentally survey
the extent of this correlation across three NLP tasks
(23 total ID-OQOD settings) and four methods that
affect sample efficiency:

1. Changing the pre-training data source (§4.1).
2. Using natural language prompts for zero-
shot prediction and during fine-tuning (Brown
et al., 2020; Schick and Schiitze, 2021; Gao
etal., 2021; §4.2).

Fine-tuning models of increasing size (§4.3).
4. Fine-tuning models pre-trained on increasing

amounts of data (§4.4).

et

First, we show that models pre-trained on data
similar to the ID dataset can have higher sample ef-
ficiency, but worse effective robustness, than mod-
els pre-trained on data similar to the OOD dataset.
This demonstrates that higher sample efficiency
by itself does not always yield better effective ro-
bustness, since ID-specific inductive biases may
improve sample efficiency, but not improve effec-
tive robustness because they do not apply OOD.

Next, we find that models trained with prompt-
based fine-tuning often have better sample effi-
ciency and effective robustness than models trained
with standard fine-tuning. When evaluating OOD
on diagnostic datasets (e.g., HANS; McCoy et al.,
2019), zero-shot prompting yields even better effec-
tive robustness—in fact, we find that prompt-based
fine-tuning on ID examples reduces effective ro-
bustness, corroborating the intuition that zero-shot
models may be less reliant on ID-specific patterns.
In contrast, when evaluating OOD on standard
benchmarks (e.g., MultiNLI and SNLI), zero-shot
prompting yields lower effective robustness than

prompt-based fine-tuning.

Fianally, increasing the pre-trained model size
or amount of pre-training data improves sample
efficiency, but may not increase effective robust-
ness. For example, while larger models consistently
improve sample efficiency, they improve effec-
tive robustness when training on SNLI and testing
on MultiNLI but not when training on MultiNLI
and testing on SNLI. Similarly, while pre-training
on more data yields higher sample efficiency, it
slightly improves effective robustness in natural
language inference experiments, but leads to no im-
provement on some extractive question answering
datasets.

In general, the existence and magnitude of effec-
tive robustness gains depends on the particular sam-
ple efficiency intervention in question, the choice
of ID and OOD dataset, and the amount of ID train-
ing data used (Hendrycks et al., 2021). Since it is
empirically difficult to predict whether a particular
intervention will reduce the ID-OOD performance
gap, our results also emphasize the importance of
collecting evaluation data from particular OOD dis-
tributions of interest. In order to better predict
when interventions reduce the ID-OOD gap, future
work should strive to better characterize ID-OOD
shifts and better understand how interventions af-
fect models.

Taken together, our results show that improving
sample efficiency will not necessarily improve ef-
fective robustness, underscoring the importance of
assessing whether proposed interventions jointly
improve both.!

2 Measuring and Comparing Sample
Efficiency and Robustness

Consider two models A and B with equivalent per-
formance on held-out ID data. We say that a model
A has higher sample efficiency than a model B if
obtaining A requires fewer labeled ID examples
than obtaining B, and we say that a model A has
higher effective robustness than a model B if A
outperforms B on held-out OOD data.

Given these definitions, we can only compare the
sample efficiency and effective robustness of two
models A and B if they have equivalent ID perfor-
mance. This equivalent-ID constraint controls for
the effect of ID performance on OOD performance,
since ID gains usually yield commensurate OOD

"We plan to release all datasets, code, and models at
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Figure 2: In this schematic example, model B has
higher effective robustness and sample efficiency than
model A. By plotting OOD performance (effective ro-
bustness) and the number of ID training examples used
(sample efficiency) against ID performance, we can
control for ID performance (vertical slice of plot) to
relate sample efficiency to effective robustness.

gains (Taori et al., 2020; Miller et al., 2021).

We train models on varying-size subsamples of
a given ID dataset and record the ID and OOD ac-
curacy. We plot our results on effective robustness
scatter plots, where each point is a model trained
on some amount of data—the model’s ID perfor-
mance is its z-axis value, and its OOD performance
is its y-axis value. To relate sample efficiency to
ID and OOD performance, we also plot the num-
ber of training examples used against each models’
ID performance. By placing this sample efficiency
plot above the ID-OOD scatter plot, we can ex-
amine vertical slices to see (1) which equivalent-
ID-performance model(s) have higher OOD perfor-
mance, and (2) whether these models that do better
OOD also use less ID training data.

Figure 2 provides an schematized example. In
this example, model B has higher sample efficiency
than model A. This is reflected in the top subfigure
by the dashed orange series being below the solid
blue series (uses less ID training data, given equiv-
alent ID performance). Model B also has higher ef-
fective robustness than model A. In the bottom fig-

ure, the orange series is accordingly above the blue
series (better absolute OOD performance, given
equivalent ID performance).

3 Experimental Setup

3.1 Tasks and Datasets

To investigate the correlation between sample effi-
ciency and effective robustness improvements for
various interventions, we experiment with natu-
ral language inference (NLI; Dagan et al., 2005;
Bowman et al., 2015), sentiment analysis, and ex-
tractive question answering (QA). We use “[ID
dataset] — [00D dataset]” to denote training
and evaluating on a particular ID-OOD setting. See
Appendix A for further details.

Natural Language Inference. We use MultiNLI
(Williams et al., 2018) and SNLI (Bowman et al.,
2015) as ID datasets. We use MultiNLI, SNLI,
MedNLI (Romanov and Shivade, 2018), and
HANS (McCoy et al., 2019) as OOD test sets.

Sentiment Analysis. We use the IMDD reviews
dataset of (Maas et al., 2011), SST-2 (Socher et al.,
2013) as ID datasets. We use IMDb, SST-2, and
reviews from the “Movies and TV” subsection of
the Amazon Reviews corpus (Ni et al., 2019) as
OOD datasets.

Extractive Question Answering. We use
SQuAD (Rajpurkar et al., 2016) and NaturalQues-
tions (Kwiatkowski et al., 2019) as ID datasets.
We use SQuAD, NaturalQuestions, TriviaQA,
BioASQ (Tsatsaronis et al., 2015), and the
SQuADShifts test sets of Miller et al. (2020) as
OQOD datasets.

3.2 Models

We experiment with various pre-trained masked
language models. To understand the effect of a
particular pre-training or fine-tuning intervention
on sample efficiency and effective robustness, we
evaluate models that differ along only the axis of
interest (e.g., model size or pre-training corpus).

Since the optimal fine-tuning model hyperpa-
rameters depend on the ID training dataset size, we
separately tune hyperparameters for each model
on each training dataset subsample size, taking the
models that achieve the best held-out ID perfor-
mance for each subsample size.



4 Is Sample Efficiency Empirically
Correlated with Effective Robustness?

We empirically survey four methods for modulat-
ing sample efficiency (changing the pre-training
data source, using natural language prompts, in-
creasing pre-trained model size, and pre-training
on more data) across 23 ID-OOD settings, showing
that increasing sample efficiency can sometimes
help but sometimes even hurt effective robustness.
For the sake of brevity, we report on a representa-
tive subset of our results here—see Appendix B for
results on all ID-OOD settings.

4.1 Changing the Pre-Training Data Source

Setup. To investigate how changing the pre-
training data source affects sample efficiency and
OOD robustness, we experiment with models pre-
trained, fine-tuned, and evaluated on different
data sources. We compare three different mod-
els: (1) BERTgasg, which is pre-trained on the
BookCorpus and English Wikipedia (Devlin et al.,
2019); (2) SciBERT, which is pre-trained on scien-
tific papers (Beltagy et al., 2019); and (3) Legal-
BERT, which is pretrained on a variety of English
legal texts (Chalkidis et al., 2020). We run exper-
iments on NLI and extractive QA, since there are
no suitable binary sentiment classification datasets
for biomedical or legal text (to our knowledge).

Results and Discussion. When training on
MultiNLI and testing on SNLI, we find that
BERTgAsE has higher sample efficiency and higher
effective robustness than SciBERT or Legal-BERT
(Figure 3a). Intuitively, pre-training on data similar
to the ID dataset will improve sample efficiency,
and pre-training on data similar to the OOD dataset
will improve effective robustness. Indeed, when
training on MultiNLI and testing on SNLI, we
find that BERTgAsEg has higher sample efficiency
and higher effective robustness than SciBERT or
Legal-BERT (Figure 3a), possibly because the pre-
training corpus for BERTpasE is most similar to
the data in MultiNLI and SNLI (which contain
premises from varying genres and internet captions,
respectively). On the other hand, on MultiNLI —
MedNLI, BERTgasg has higher sample efficiency
but lower effective robustness than SciBERT (Fig-
ure 3b), since the BERTgasE pre-training corpus is
similar to MultiNLI (improving sample efficiency),
but dissimilar to the MedNLI OOD dataset, leading
to lower effective robustness than SciBERT.

We see similar trends in extractive QA experi-

ments. On SQuAD — NaturalQuestions, we see
that BERTgasg has higher sample efficiency and
effective robustness than SciBERT or Legal-BERT
because the passages in both datasets are from
English Wikipedia. (Figure 3c). However, on
SQuAD — BioASQ (biomedical passages), SciB-
ERT models have much higher effective robustness
than BERTgasg models, despite being less sample-
efficient (Figure 3d).

4.2 Natural Language Prompting

Setup. Models that use natural language prompts
may have higher sample efficiency than models
trained with standard fine-tuning, but do such mod-
els also have higher effective robustness? We in-
vestigate this question by comparing BERTgAsg
models using (1) standard fine-tuning, (2) zero-
shot prompting, and (3) prompt-based fine-tuning.
We refer readers to Gao et al. (2021) for additional
background on these methods. We run experiments
on NLI and sentiment analysis, since prompt-based
fine-tuning with masked language models has not
yet been applied to extractive QA.

Results and Discussion. To better understand
how prompting affects the extent to which mod-
els learn ID-specific patterns, we first evaluate
MultiNLI- and SNLI-trained models on the HANS
diagnostic dataset. We first find that zero-shot
prompting yields the highest effective robustness—
prompt-based fine-tuning on MultiNLI or SNLI ex-
amples rapidly reduces HANS performance (while
improving ID performance). Next, we see that mod-
els trained with prompt-based fine-tuning can have
higher sample efficiency than models trained with
standard fine-tuning models, and such models also
have higher effective robustness. (Figure 4a-b).

In contrast to our results on diagnostic datasets,
experiments on standard sentiment analysis and
NLI benchmark datasets show that zero-shot
prompting does not always yield higher effective
robustness than prompt-based fine-tuning, despite
its higher sample efficiency—prompt-based fine-
tuning frequently improves both absolute ID and
OOD performance over zero-shot prompting (Fig-
ure 4c-f). Even zero-shot prompting of GPT-3
(175B), a dramatically larger model trained on sub-
stantially more data, yields lower effective robust-
ness than models trained with either prompt-based
fine-tuning or standard fine-tuning, underscoring
that zero-shot prediction does not always yield the
best effective robustness.
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On standard benchmarks, we continue to see that
prompt-based models with higher sample efficiency
also often have higher effective robustness than
their counterparts trained with standard fine-tuning
(Figure 4d-f). However, as prompt-based models
are trained with more examples, they lose their
sample efficiency advantage and produce similar
results to standard fine-tuning.

However, there exist ID-OOD settings where
few-shot prompt-based fine-tuning improves sam-
ple efficiency, but not effective robustness, over
standard fine-tuning. For example, on MultiNLI
— SNLI, few-shot prompt-based fine-tuning mod-
els can have higher sample efficiency than models
trained with standard fine-tuning, but the models
achieve approximately the same absolute ID and
OOD performance (Figure 4c).

4.3 Increasing Pretrained Model Size

Setup. To study how increasing pre-trained
model size affects sample efficiency and effective
robustness, we run experiments with the check-
points of Turc et al. (2019), who pre-train BERT
models with various numbers of transformer lay-
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Figure 3: Although models pre-trained on data similar to the ID dataset
have higher sample efficiency than models pre-trained on data similar
to the OOD dataset, the latter yields better effective robustness. Better
sample efficiency does not necessarily imply better effective robustness,
since models with ID-specific inductive biases may have higher sample
efficiency, but worse OOD performance, than models with OOD-specific
inductive biases.

ers (L) and hidden embedding sizes (H) on a fixed
pre-training dataset with a fixed optimization pro-
cedure. We run experiments on NLI, sentiment
analysis, and extractive QA over five different pre-
trained model sizes: (1) Large (L=24, H=1024),
(2) Base (L=12, 768), (3) Medium (L=8, H=512),
(4) Mini (L=4, H=256), and (5) Tiny (L=2, H=128).

Results and Discussion. In experiments on NLI
datasets, we find that using larger models does not
consistently improve effective robustness, despite
improving sample efficiency. For example, larger
models have higher sample efficiency and higher
effective robustness on SNLI — MultiNLI (Fig-
ure 5b), but similar effective robustness as smaller
models on MultiNLI — SNLI (Figure 5a).

In sentiment analysis experiments, larger mod-
els improve both sample efficiency and effective
robustness on IMDb — SST (Figure 5c¢). How-
ever, on IMDb — Amazon reviews, increasing
model size yields diminishing effective robust-
ness gains as the ID-OOD gap shrinks (i.e., the
models approach y x; Figure 5d). Moving
from BERTiny to BERTyunt to BERTvepIuMm
improves both sample efficiency and effective ro-
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Figure 4: (a-b): When evaluating OOD on diagnostic datasets, zero-shot prompting yields the highest absolute
OOD performance (and effective robustness)—prompt-based fine-tuning decreases OOD performance (while in-
creasing ID performance). However, when prompt-based fine-tuning models are more sample-efficient than stan-
dard fine-tuning, they also have higher effective robustness. (c-f): In contrast, when evaluating OOD on standard
NLI and sentiment analysis datasets, zero-shot prompting does not have better effective robustness than prompt-

based fine-tuning.

bustness, but further increasing model size to
BERTgase and BERTy argg yields substantially
smaller gains. In fact, the effective robustness of
BERT ArGE can decrease when using the full ID
training set, since absolute OOD performance satu-
rates before ID performance.

Finally, in extractive QA experiments, we find
that larger models often do not yield effective ro-
bustness improvements, despite their higher sam-
ple efficiency. For example, on SQuAD — Natu-
ralQuestions and SQuAD — TriviaQA, larger mod-
els have the same effective robustness as smaller
models (Figure Se-f).

4.4 Pre-Training on More Data

Setup. To study how pre-training on more data af-
fects sample efficiency and effective robustness, we
experiment with the RoOBERTa models pre-trained
on 10M, 100M, and 1B tokens of data drawn from

Wikipedia and SmashWords (Zhang et al., 2021).

Results and Discussion. In our NLI experi-
ments, we find that increasing the amount of pre-
training data slightly improves sample efficiency
and effective robustness. For example, using more
pre-training data improves both sample efficiency
and effective robustness on SNLI — MultiNLI (Fig-
ure 6b). However, there are diminishing returns on
effective robustness from adding more pre-training
data—pre-training on 10M vs. 100M tokens has
a much larger impact than pre-training on 100M
or 1B tokens. We see these same relative trends
on MultiNLI — SNLI, though the absolute OOD
performance improvements are smaller (Figure 6a).

Additional pre-training data also slightly im-
proves sample efficiency and effective robustness
on sentiment analysis datasets. On IMDb — SST
and IMDb — Amazon reviews, increasing the pre-
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Figure 5: Increasing model size improves sample efficiency, but larger models may not have higher effective robust-
ness. For example, larger models have higher sample efficiency and effective robustness on SNLI — MultiNLI, but
they do not improve effective robustness on MultiNLI — SNLI. Similarly, increasing model size when training on
IMDDb and evaluating on Amazon reviews does not improve effective robustness, perhaps because smaller models

already have a small ID-OOD gap in this setting.

training dataset size from 10M to 100M has little
effect, but moving to 1B tokens yields proportion-
ally larger effective robustness improvements (Fig-
ure 6¢-d).

On extractive QA datasets, we find that pre-
training on larger datasets improves sample effi-
ciency but only marginally improves effective ro-
bustness, if at all. On SQUAD — NaturalQuestions,
models pre-trained on 10M tokens have higher ef-
fective robustness than those pre-trained on 100M
or 1B tokens; the latter two models have largely the
same effective robustness (Figure 6e). In a similar
vein, on SQUAD — TriviaQA, models pre-trained
on 10M, 100M, and 1B tokens have largely the
same effective robustness (Figure 6f).

5 Discussion

Predicting Intervention Efficacy Requires Bet-
ter Characterizing ID-OOD Shifts. Our results

are dependent on the particular ID-OOD pair, be-
cause choosing different ID or OOD datasets can
dramatically change the challenges involved in
overcoming the distribution shift. For example,
while sample efficiency and effective robustness are
positively correlated when training on IMDb and
evaluating OOD on SST, having higher sample ef-
ficiency actually reduces effective robustness when
training on SST and evaluating OOD on IMDb.

Since examples in SST are sentences, whereas
examples in IMDb are multi-paragraph reviews,
generalizing from SST to IMDDb requires extrapo-
lating from shorter sequences to much longer ones.
Interventions that improve sample efficiency but do
not help with length extrapolation—a seemingly or-
thogonal skill—therefore would not also improve-
ment effective robustness.

To better predict whether interventions will in-
crease effective robustness and sample efficiency,
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Figure 6: Pre-training on more data improves sample efficiency, but does not always improve effective robustness.
The two are correlated in NLI experiments, but the effective robustness improvements are only apparent when

moving to 1B tokens for sentiment analysis experiments and barely noticeable in extractive QA experiments.

future work should strive to better characterize ID-
OOD shifts and better understand how interven-
tions improve models, paving a path for reasoning
about whether particular interventions are appro-
priate or useful for particular shifts. In the absence
of such predictive powers, these results underscore
the importance of collecting evaluation data from
the OOD distribution(s) of interest.

Why Study Effective Robustness? Since ID
performance is often strongly correlated with OOD
performance, training the strongest model with the
most data will generally yield the best absolute
OOD performance (Fisch et al., 2019; Taori et al.,
2020; Miller et al., 2021). However, training mod-
els with strong OOD performance in the face of
practical resource constraints (e.g., the desire to
minimize data annotation cost, engineering person-
hours, and computation time) requires better under-
standing how different methods for improving ID
performance might also affect OOD improvements;
effective robustness is a useful tool for understand-

ing this relationship.

6 Conclusion

In this work, we empirically study the relationship
between sample efficiency and effective robustness.
We find that better sample efficiency unto itself
does not imply improved effective robustness, and
survey the extent of their correlation for four inter-
ventions. Even on natural distribution shifts, we
find that better sample efficiency is often not cor-
related with better effective robustness, underscor-
ing the importance of developing and evaluating
whether interventions jointly improve both sample
efficiency and robustness.
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A Experimental Setup Details

Natural Language Inference. We use MultiNLI
(Williams et al., 2018) and SNLI (Bowman et al.,
2015) as ID datasets. We use MultiNLI, SNLI and
MedNLI (Romanov and Shivade, 2018) as OOD
test sets. All of our ID datasets have three labels
(entailment, contradiction, neutral).

We also evaluate OOD on HANS (McCoy et al.,
2019), a diagnostic dataset targeting lexical overlap,
an ID-specific pattern in SNLI and MultiNLI. In
MultiNLI and SNLI, the majority of examples with
high lexical overlap between the NLI premise and
hypothesis have the “entailment” label. In HANS,
50% of examples support this heuristic, and 50%
contradict it, so a model that exclusivly relies on
the word overlap heuristic would have an accuracy
of 50%.but HANS has two labels (entailment, non-
entailment). To evaluate our 3-class models on
2-class HANS, we follow McCoy et al. (2019) and
translate contradiction or neutral model predictions
to non-entailment.

We train on the MultiNLI and SNLI training
sets. We evaluate on the MultiNLI matched devel-
opment set, the SNLI test set, and the HANS evalu-
ation split. When evaluating OOD on MedNLI, we
evaluate on the training set (~11K examples) be-
cause the development and test sets are quite small
(~1.5K examples each).

Sentiment Analysis. We use the IMDD reviews
dataset of (Maas et al., 2011), SST-2 (Socher et al.,
2013) as ID datasets. We use IMDb, SST-2, and
reviews from the “Movies and TV” subsection of
the Amazon Reviews corpus (Ni et al., 2019) as
OOD datasets.

These datasets are all binary classification,
where reviews are labeled as positive or negative
sentiment. To construct the “Movies and TV” Ama-
zon review sentiment dataset, we randomly select
one- or two-star (negative) reviews and four- or
five-star (positive) reviews from the full Amazon
Reviews corpus, using 25,000 examples for train-
ing, 10,000 examples for development, and 10,000
examples for testing. Each of these splits is bal-
anced.

We train on the IMDb, SST, and Amazon Re-
views training splits, and use the corresponding
evaluation splits to measure ID performance. When
evaluating OOD on SST, we use the concatenation
of the train and test sets (8471 examples in total),
since the original test set is quite small (1821 exam-
ples). Beyond this exception, we use each dataset’s
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evaluation split for OOD evaluation.

Extractive Question Answering. We use
SQuAD (Rajpurkar et al., 2016) and NaturalQues-
tions (Kwiatkowski et al., 2019) as ID datasets.
We use SQuAD, NaturalQuestions, TriviaQA,
BioASQ (Tsatsaronis et al., 2015), and the
SQuADShifts test sets of Miller et al. (2020) as
OOD datasets.

The SQuADShifts test sets were constructed fol-
lowing the original SQuAD crowdsourcing proce-
dure, but with passages drawn from both the orig-
inal Wikipedia domain, as well as the New York
Times (NYT), Amazon reviews, and Reddit. For
NaturalQuestions, we only consider questions over
paragraphs (as opposed to those over tables and
lists). We use the MRQA 2019 Shared Task ver-
sions of TriviaQA and BioASQ (Fisch et al., 2019).
We also use the MRQA 2019 Shared Task version
of NaturalQuetsions, but only include examples
questions over paragraphs (removing those with
questions over tables or lists). In all of these extrac-
tive QA datasets, models are given a passage and a
question and tasked with identifying a substring of
the passage that answers the question.

We train on the SQuAD and NaturalQuestions
training splits, and use the corresponding evalua-
tion splits to measure ID performance. When eval-
uating OOD on BioASQ, we use the concatenation
of the train, development, and test sets (3977 ex-
amples in total), since the original test set is quite
small (1518 examples). Beyond this exception, we
use each dataset’s evaluation split for OOD evalua-
tion.



B Results of All Methods on All ID-OOD Settings
B.1 Changing the Pre-Training Data Source
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Figure 7: Results on all NLI ID-OOD settings when changing the pre-training data source.
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B.2 Natural Language Prompting
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Figure 10: Results on all NLI ID-OOD settings when comparing zero-shot prompting, prompt-based fine-tuning,

and standard fine-tuning.
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B.3 Increasing Pre-Trained Model Size
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Figure 12: Results on all NLI ID-OOD settings when increasing pre-trained model size.
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B.4 Pre-Training on More Data
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Figure 16: Results on all NLI ID-OOD settings when increasing the amount of pre-training data.
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Figure 17: Results on all sentiment ID-OOD settings when increasing the amount of pre-training data.
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Figure 18: Results on all extractive QA OOD settings when training on SQuAD with models pre-trained on varying

amounts of data.
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Figure 19: Results on all extractive QA OOD settings when training on NaturalQuestions with models pre-trained

on varying amounts of data.
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