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Abstract

Large Language Models (LLMs) are increas-001
ingly used for generating code solutions, em-002
powered by features like self-debugging and003
self-reflection. However, LLMs often struggle004
with complex programming problems without005
human guidance. This paper investigates the006
strategies employed by expert programmers to007
steer code-generating LLMs toward successful008
outcomes. Through a study involving experts009
using natural language to guide GPT-4, Gem-010
ini Ultra, and Claude Opus on highly difficult011
programming challenges, we frame our analy-012
sis using the "Socratic Feedback" paradigm for013
understanding effective steering strategies. By014
analyzing 30 conversational transcripts across015
all three models, we map observed feedback016
strategies to five stages of Socratic Question-017
ing: Definition, Elenhus, Maieutic, Dialectic,018
and Counter-factual reasoning. We find evi-019
dence that by employing a combination of dif-020
ferent Socratic feedback strategies across multi-021
ple turns, programmers successfully guided the022
models to solve 58% of the problems that the023
models initially failed to solve on their own.024

1 Introduction025

The rapid advancements in Large Language Mod-026

els (LLMs) have revolutionized the field of nat-027

ural language processing (NLP) and automated028

code generation. These powerful models, such as029

GPT-4 (OpenAI, 2023), Claude Opus (Anthropic,030

2024) and Gemini Ultra (Gemini Team, 2024) have031

demonstrated remarkable capabilities in generating032

code snippets based on natural language prompts,033

significantly enhancing programmer productivity034

and transforming daily programming practices.035

However, despite their impressive performance,036

LLMs still face challenges when it comes to han-037

dling complex coding problems that require a deep038

understanding of the task (Yeadon et al., 2024), ef-039

fective problem decomposition, and the nuanced040

application of algorithms and libraries within spe- 041

cific constraints. 042

Recent research has shed light on the self- 043

debugging abilities of newer LLMs (Chen et al., 044

2023b), which enable them to iteratively analyze 045

and refine generated code based on the outcomes 046

of unit tests, mimicking the trial-and-error ap- 047

proach commonly employed by human program- 048

mers. While this self-debugging capability has 049

shown promise, it is not without limitations. LLMs 050

may struggle to accurately identify the root cause 051

of code failures or generate effective feedback to 052

guide subsequent code refinements, resulting in 053

modest performance improvements when tackling 054

complex programming tasks, such as certain Leet- 055

Code’s medium and hard-level problems. However, 056

with certain human feedback during the iterative 057

analysis, we are able to find that we are able to suc- 058

cessfully steer models into providing a successful 059

solution. Thus, understanding how humans cur- 060

rently interact with these models and the category 061

of steering strategies that lead to successful steering 062

is essential for future Human-AI model interaction 063

design. 064

Along this goal in this paper, we present an em- 065

pirical study that explores how expert program- 066

mers can effectively steer SOTA LLMs, such as 067

GPT-4, Gemini Ultra, and Claude Opus, to gen- 068

erate functionally correct code for programming 069

problems that the models initially failed to solve 070

independently. We focus on the Socratic feedback 071

approach, a technique commonly used in argumen- 072

tation and tutoring, where targeted questions or 073

prompts are used to stimulate critical thinking and 074

guide learners towards formulating their own so- 075

lutions. This approach mirrors the dynamics of 076

college programming tutoring sessions, with the 077

instructor providing incremental feedback based on 078

the learner’s most recent attempt, while the learner 079

engages in multiple rounds of debugging before 080

seeking further guidance. 081

1



Our study, involving 8 expert programmers solv-082

ing 30 problems across three modern LLMs GPT-4,083

Gemini Ultra, and Claude Opus provided a total of084

90 conversational data points. Our study demon-085

strates that these modern LLMs can successfully086

solve originally failed competition-level program-087

ming problems with just a few rounds of human088

Socratic feedback. Furthermore, we reveal a set089

of Socratic feedback techniques employed by pro-090

grammers to guide the LLM effectively. We also091

discuss the failed attempts for successful steering092

and discuss the challenges faced by programmers093

in steering LLMs for coding task.094

1.1 Socratic Questioning095

Socratic Questioning (Beversluis, 1974) is a096

method of inquiry and dialogue that involves ask-097

ing a series of questions to explore complex ideas,098

stimulate critical thinking, and guide individuals099

towards their own understanding of a concept. This100

approach is based on the belief that knowledge101

cannot be simply imparted but must be discov-102

ered through a process of questioning and self-103

reflection.104

Recent research has shown promising results105

in applying Socratic Questioning to interact with106

Large Language Models (LLMs) (Shridhar et al.,107

2022). For instance, Xu et al. proposed a self-108

directed Socratic questioning framework that en-109

courages LLMs to recursively decompose complex110

reasoning problems into solvable sub-problems.111

Compared to other multi-turn prompting strate-112

gies such as few-shot learning or Chain of Thought113

(CoT) (Wei et al., 2022) prompting, Socratic Ques-114

tioning offers several advantages. Few-shot learn-115

ing relies on providing a limited number of ex-116

amples to the language model to guide its output,117

while CoT prompting generates intermediate rea-118

soning steps before arriving at the final answer,119

this leads to accumulation of error. In contrast,120

Socratic Questioning engages the language model121

in a dynamic, back-and-forth dialogue, allowing122

for a more adaptive and targeted exploration of the123

problem space. This interactive approach enables124

the model to break down complex problems into125

smaller, more manageable sub-problems, facilitat-126

ing a deeper understanding of the task at hand.127

Our research aims to address the following ques-128

tion: "What types of Socractic feedback are cur-129

rently used by expert programmers to resolve errors130

produced by code-generating LLMs?" We hypothe-131

size that there exist common sequences of steering132

behaviors, or "steering strategies," employed by 133

programmers to guide LLMs in generating correct 134

and efficient code. By uncovering these strategies, 135

we seek to gain insights into the most effective 136

ways to interact with code-generating LLMs and 137

ultimately improve their performance in solving 138

complex programming problems. 139

1.2 Categories of Socratic Questions: 140

Chang et al. (Chang, 2023) investigated the inte- 141

gration of various Socratic methods, such as defi- 142

nition, elenchus, and counterfactual reasoning, to 143

develop effective prompt templates for tasks involv- 144

ing inductive, deductive, and abductive reasoning. 145

However, to the best of our knowledge, no prior 146

work has investigated the application of human 147

Socratic feedback to enhance the code generation 148

capabilities of LLMs. In order to better categories 149

the different types of human feedback, we general- 150

ized the different strategies and have mapped them 151

to various categories of questions from Socratic 152

method. 153

• Definition: Use of definition to clarify and ex- 154

plain the meaning of key terms and concepts. 155

• Elenchus: This method involves cross- 156

examination, where a series of questions is 157

used to test the consistency and coherence of 158

hypotheses and beliefs. Elenchus aims to test 159

the validity of someone’s arguments and to 160

help them refine their thinking and eventually 161

come up with well-supported hypotheses. 162

• Maieutics: This method involves helping in- 163

dividuals bring out the knowledge and under- 164

standing they already possess. Maieutics is 165

conducted by asking questions that encourage 166

the person to reflect on their own experience, 167

knowledge, beliefs and to explore alternative 168

perspectives. Maieutics fosters self-discovery, 169

creative writing, and innovation. 170

• Counterfactual Reasoning: This method 171

involves imagining alternative scenarios or 172

"what-if" situations that are contrary to the 173

facts of what actually occurred. It involves 174

modifying prior events and then assessing the 175

consequences of those alternative scenarios. 176

• Dialectic: This method involves exploring 177

opposing view points through dialogue or de- 178

bate to arrive at a deeper understanding of a 179

subject. 180
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Figure 1: An overview of the study that was conducted to investigate effective steering strategies in code-generation
LLMs. Users interact with the LLMs through multi-turn prompts, and various strategies that have been identified
are categorized based on Socratic feedback presented on the right.

2 Related Work181

Recent studies (OpenAI, 2023; Li et al., 2023b;182

Rozière et al., 2023; Chen et al., 2021) suggest183

that incorporating code into training data enables184

general-purpose LLMs to generate programs from185

natural language prompts or to complete incom-186

plete code snippets. Alternatively, specialized mod-187

els like Codex (Chen et al., 2021), AlphaCode (Li188

et al., 2022), StarCoder (Li et al., 2023b), and Code189

LLAMA (Rozière et al., 2023) have also been de-190

veloped or fine-tuned specifically for coding tasks.191

Though they have achieved SOTA performance on192

code generation benchmarks (Zheng et al., 2023;193

Chen et al., 2021), LLMs still exhibit limited per-194

formance on medium and hard competition-level195

programming problems. These complex problems196

typically require a programmer’s adept skills in197

understanding, planning, and implementing sophis-198

ticated reasoning tasks. Furthermore, approaches199

such as AlphaCode (Li et al., 2022) are impracti-200

cal for real applications due to the dependency on201

available unit tests and extreme amounts of compu-202

tational resources.203

To address this limitation, some works used204

prompt-based techniques to boost LLMs’ reason-205

ing for correct code. For example, strategies like206

the chain-of-thought (Li et al., 2023a) and tree-of-207

thought (Yao et al., 2023) were employed to prompt208

models to break down the planning process into209

manageable intermediate subproblems. Addition-210

ally, self-debugging or reflection techniques (Chen211

et al., 2023b; Shinn et al., 2023; Madaan et al., 212

2023; Jiang et al., 2023) encouraged models to an- 213

alyze their own outputs and divide the debugging 214

process into stages of code explanation and self- 215

feedback generation. Then LLMs refined their plan- 216

ning and execution grounded on the insights ob- 217

tained from their self-generated feedback. Besides 218

stimulating models’ self-reflection, some works 219

used human prompts to support the code refine- 220

ment process. For example, Austin et al. (2021) 221

explored human-model collaborative coding on 222

MBPP dataset. They found that LLMs can improve 223

or correct code based on human feedback, benefit- 224

ing from human clarification of under-specified 225

prompts and correction of small context errors. 226

However, our focus diverges as we concentrate on 227

tackle competition-level problems, which are no- 228

tably more complex than those found in the MBPP 229

dataset. Apart from incorporating human feedback 230

as prompts, Chen et al. (2023a) improved Code- 231

Gen using imitation learning from human language 232

feedback, where human feedback is used to learn a 233

refinement model that generates modification from 234

human feedback and previous incorrect code. 235

3 Methodology 236

To investigate the application of Socratic feedback 237

in steering code-generating Large Language Mod- 238

els (LLMs), we conducted a study involving three 239

state-of-the-art models: GPT-4, Gemini Ultra, and 240

Claude Opus. The study focused on the models’ 241

3



ability to generate Python code solutions for algo-242

rithmic and data structure problems sourced from243

LeetCode, spanning various difficulty levels and244

topics. We randomly selected 223 problems from245

LeetCode and filtered them to identify instances246

where the models were unable to independently247

generate correct solutions. This filtering process248

yielded a set of 45 hard problems that the mod-249

els failed to solve on their first attempt. These250

problems were chosen as the basis for our study251

among which 30 were solved due to availability of252

the programmers. We recruited 8 expert program-253

mers to participate in the study. Each programmer254

was tasked with steering the three LLMs to solve255

the selected problems through successive conver-256

sational prompting, employing Socratic feedback257

techniques. The experts were first asked to solve258

or at least have an understanding on how to solve259

each problem on their own before starting to steer260

the model. The final code is considered a success if261

it passes all test cases provided in the initial prob-262

lem description and the final solution was accepted263

by LeetCode. The code was tested and submitted264

manually to the LeetCode platform.265

Programmers were provided with a prompt tem-266

plate that addressed key aspects of the problem,267

including the problem description, function signa-268

ture, test cases, and constraints. They were also269

given a digital document containing task instruc-270

tions and sample prompt templates to guide their271

interactions with the LLMs. Programmers engaged272

in an iterative prompting process, providing So-273

cratic feedback to the LLMs based on the gener-274

ated code’s performance. They were instructed to275

continue the prompting process for a maximum of276

10 iterations or until a correct solution was gen-277

erated, whichever occurred first. The collected278

conversational data was analyzed to identify and279

categorize the various strategies employed by the280

programmers. These strategies were then mapped281

to corresponding Socratic feedback themes.282

4 Steering strategies283

After analyzing all 90 sub-tasks (3 models across284

30 problems), we have identified various strategies285

employed by users in their interactions with the286

model. Figure 8 presents a snippet of the conver-287

sation with the model, and we will elucidate these288

different strategies using samples from these con-289

versation snippets.290

(A) Test Reiteration: When the provided code291

fails a unit test, users prompt the model by 292

reiterating that one or more unit tests have 293

not passed. In Figure 8A, users prompt the 294

model about the failure of a specific unit test, 295

successfully steering the model by reiterating 296

the code. 297

(B) New Test Definition: If the model’s provided 298

code is partially or fully correct but less op- 299

timal solution, users refine it by introducing 300

new unit test samples. In Figure 8B, the code 301

produces the correct output but lacks optimiza- 302

tion. Users, therefore, provide additional test 303

cases, prompting the model to consider a dif- 304

ferent strategy and leading to successful steer- 305

ing. 306

(C) Revising Unit Test: Some users modify unit 307

test conditions to add more constraints for the 308

model to consider. In Figure 8C, the initial 309

code does not yield the correct output, but 310

by revising the unit test conditions, the user 311

successfully steers the model output. 312

(D) Pointing out Specific Programmatic Error: 313

Users identify specific errors by specifying the 314

location and nature of the error in the output. 315

For instance, in Figure 8D, the user points out 316

an "index out of bound error" on line 17, suc- 317

cessfully steering the model to fix the issue. 318

(E) Addressing Code Inefficiency: Users enhance 319

program efficiency by requesting an alterna- 320

tive approach from the model. In Figure 8E, 321

the user asks for an alternative approach due 322

to the code’s slow computation, leading to a 323

more efficient solution. 324

(F) Requirement Reiteration: Similar to test 325

case reiteration, users emphasize specific con- 326

straints if the model initially overlooks them. 327

Figure 8F illustrates a successful code steer 328

where the user reiterates the need for a partic- 329

ular requirement to be satisfied. 330

(G) Requirement Clarification: Users clarify re- 331

quirements, as seen in Figure 8G, where the 332

user specifies the range of an index that was 333

unclear initially. 334

(H) Approach Re-orientation: Users reorient the 335

model by suggesting an approach not consid- 336

ered previously. Figure 8H exemplifies a user 337

providing a hint on a potential approach, lead- 338

ing to a successful code steering. 339
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Figure 2: Examples of code steering strategies with model (Left) New Test Definition (B); (Center) Pointing out
Specific Programmatic Error (D); (Right) Requirement Clarification (G); The modified portion of the code,
crucial for achieving successful steering, is highlighted by the red boxes.

(I) Specific Approach Instruction: Finally, users340

provide a specific code block or instructions341

on how to solve a problem. In Figure 8I,342

the user offers a specific implementation ap-343

proach along with a code block for an erro-344

neous function, and the model successfully345

incorporates this input to solve the problem.346

4.1 Aligning the Socratic Method to Human347

Feedback Strategies:348

Although the Socratic method encompasses vari-349

ous question categories, not all were pertinent or350

observed in the empirical study. Figure 1 provides351

an overview of the identified categories, mapping352

them to general strategies observed, and includes353

a list of corresponding sample IDs exhibiting the354

associated strategy in the data.355

The Socratic questioning method labeled "Def-356

inition" pertains to clarification, which could in-357

volve elucidating testing conditions, as seen in the358

"revising unit test" strategy, or specifying require-359

ments. Elenchus involves cross-examining results360

to assess the consistency and coherence of argu-361

ments, essentially employing logical refutation,362

such as providing a testing condition (Strategy:363

New Unit test) to logically evaluate whether the364

condition satisfies the result.365

Maieutic is a technique wherein ideas are tested366

to elicit existing knowledge and understanding pos-367

itively. This mirrors how some test cases and re-368

quirements/constraints are reiterated to reveal the 369

system’s inherent knowledge. Counterfactual rea- 370

soning, involving the exploration of alternative per- 371

spectives, can be observed as users consider alter- 372

native options to enhance code efficiency. 373

Dialectic questioning is a systematic reasoning 374

method that places opposed or contradictory ideas 375

side by side, seeking to resolve their conflict. This 376

is akin to a user pinpointing a specific error loca- 377

tion or approach in a solution, where conflicting 378

ideas between the previous prompt response and 379

the user’s input prompt overlap, leading to a suc- 380

cessful resolution. 381

4.2 Multi-turn code steering: 382

Most interactions with the model involve multi- 383

turn prompts, employing a sequence of inputs to 384

guide the model towards a successful outcome. To 385

illustrate this process, we examine a full specific 386

example in Figure 3. 387

The initial prompt (Figure 3-1) presents a 388

challenging programming problem categorized as 389

"Hard" on LeetCode. The user’s initial input com- 390

prehensively outlines the problem statement, pro- 391

vides examples, emphasizes constraints, and pro- 392

vides unit tests for validation. The user then in- 393

structs the model to articulate its understanding, 394

outline a planned approach, and proceed to imple- 395

ment and test the code. However, the initial model 396
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Figure 3: Example of successfully implemented multi-turn code steering.

response proves incorrect, lacking the appropriate397

solving approach.398

In the user’s first attempt to guide the model (Fig-399

ure 3-2), they rectify the situation by offering the400

correct approach and reorienting the model toward401

the proper direction. Specifically, the user suggests402

using a specific data structure, such as the "Trie"403

data structure. The model incorporates this sugges-404

tion, updating its solution accordingly (highlighted 405

in red in Figure 3-2). Although the revised output 406

still fails certain unit tests, the user iterates on the 407

failed test and prompts the model to address the 408

issue by modifying its solution. 409

In this iteration, the model correctly identifies 410

the problem with its approach, acknowledging it 411

in the observation presented within its response 412
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plan. Furthermore, the model correctly recognizes413

that the appropriate approach is dynamic program-414

ming, proceeding to update its solution. However,415

this modified program still falls short due to an416

implementation error. In the user’s third attempt417

to guide the model (Figure 3-4), they pinpoint the418

implementation issues and provide a code block to419

rectify them. The final response in Figure 3-4 indi-420

cates that this intervention successfully resolves all421

issues. The model incorporates the user-provided422

code block into its final implementation, resulting423

in a concise and clean solution.424

5 Results & Discussion425

A total of 90 conversations were recorded across426

the three models: GPT-4, Gemini Ultra, and Claude.427

The conversations comprised a total of 617 turns,428

during which programmers employed various steer-429

ing strategies to guide the LLMs towards correct so-430

lutions. Among these conversations, 53 (58%) led431

to successful code generation after steering, with432

the model producing a solution that was accepted433

by LeetCode. GPT-4 had the highest success rate,434

with 26 out of 30 conversations resulting in correct435

solutions, followed by Claude Opus and Gemini436

Ultra with 15 and 12 respectively.437

As shown in figure 5, the most commonly used438

strategy was "Point Out Specific Error," which439

was applied in 22% of the turns (136 out of 617).440

This strategy involved programmers identifying441

and highlighting specific errors in the code gener-442

ated by the LLMs, prompting the models to rectify443

those issues. The second most frequently employed444

strategy was "Specific Approach Instruction," used445

in 18% of the turns (112 out of 617). In this ap-446

proach, programmers provided the LLMs with spe-447

cific guidelines, algorithms, or techniques to solve448

the problem at hand. By offering targeted guidance,449

programmers aimed to steer the models towards450

more efficient and effective solutions. Interest-451

ingly, "Revising Unit Test" and "Requirement Re-452

iteration" were the least preferred strategies among453

the programmers, applied in only 4% and 5% of the454

turns, respectively. This suggests that programmers455

found it more effective to directly address the code456

generated by the LLMs, rather than modifying the457

test cases or restating the problem requirements.458

Other strategies employed by the programmers in-459

cluded "New Unit Test," used in 8% of the turns,460

and "Requirement Clarification," used in 13% of461

the turns. "New Unit Test" involved providing ad-462

ditional test cases to help the LLMs understand the 463

problem better and cover edge cases, while "Re- 464

quirement Clarification" focused on explaining the 465

problem statement or constraints more clearly to 466

the models. "Address Code Inefficiency" and "Test 467

Re-iteration" were used in 9% and 13% of the turns, 468

respectively. The former strategy aimed at guiding 469

the LLMs to generate more efficient and optimized 470

code, while the latter involved re-running the test 471

cases to validate the correctness of the generated 472

solutions. 473

The results of our study demonstrate the effec- 474

tiveness of Socratic feedback in enabling expert 475

programmers to steer code-generating Large Lan- 476

guage Models (LLMs) towards correct solutions 477

for complex programming problems. By employ- 478

ing a combination of strategies, with a focus on 479

pointing out specific errors and providing targeted 480

guidance, programmers successfully guided the 481

models to overcome initial failures and generate 482

code that met the required specifications. GPT- 483

4 exhibited a higher success rate when prompted 484

to self-debugging and self-reflection, while other 485

models required more human feedback. This dif- 486

ference may be attributed to GPT-4’s ability to run 487

its own code, while Opus clearly states its current 488

inability to execute its generated code. 489

An essential aspect of successful steering identi- 490

fied is the ability to identify the specific program- 491

ming stage at which the model is struggling. Par- 492

ticipants who provided relevant feedback to help 493

the model overcome hurdles at different stages, 494

such as understanding, planning, implementation, 495

and testing, were more likely to achieve successful 496

outcomes. Clear communication about misunder- 497

standings or overlooked details proved to be crucial 498

in guiding the LLMs towards the correct solution. 499

In one example, clarifying a misunderstood prob- 500

lem condition led to successful steering, while in 501

another case, overlooking a crucial detail resulted 502

in a failed discourse. This finding emphasizes the 503

importance of programmers being attentive to the 504

specific challenges faced by the LLMs at each stage 505

of the problem-solving process and providing tar- 506

geted feedback to address those issues. It is unclear 507

however, if novice programmers will have the same 508

level of success similar to that of the experts in this 509

study. 510
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Figure 4: Steering success rates for the problems through steering after initially failed by the code-generating Large
Language Models (LLMs). Green indicates the number of problems successfully steered, while red bars represent
the number of problems that remained unsolved after 10 interactions.

Figure 5: Percentage breakdown of the steering strate-
gies employed by expert programmers to guide code-
generating Large Language Models (LLMs)

6 Limitation & Future Work511

Our study presents an initial investigation into the512

application of Socratic feedback in steering code-513

generating Large Language Models (LLMs). To514

establish an upper bound on the feasibility of LLM515

interaction, we focused our data collection on ex-516

pert programmers. While the observed strategies517

demonstrated success across three different models,518

suggesting their generalizability in improving the519

models’ problem-solving abilities through human520

steering, some strategies, such as "Point out spe-521

cific error" or "Approach Re-orientation," may only522

be feasible for experts. Future research could con-523

duct a longitudinal study involving novice users524

to determine if they can effectively employ the525

same strategies identified by experts and if their526

productivity improves with the understanding and527

application of Socratic feedback in their prompting528

techniques.529

We acknowledge the limitations in the quantity530

of data points gathered for making larger general-531

ized claims. However, this preliminary work pro-532

vides valuable insights that can be expanded upon533

through more extensive data collection efforts in534

the future. One potential direction is to create a535

mapping between the different types of errors in536

the model feedback and the programmers’ chosen 537

strategies for steering the models. Such a mapping 538

would be instrumental in designing future Human- 539

LLM interfaces, enabling the model to recommend 540

follow-up prompts, ask clarifying questions, or pro- 541

vide prompt templates that align with the Socratic 542

feedback paradigm. 543

The findings from this study pave the way for 544

future research to explore the dynamics of steering 545

language models in code generation tasks further, 546

enhancing our understanding of user challenges 547

and optimizing human-AI collaboration. While 548

our study participants employed various strategies, 549

there is potential for developing and evaluating 550

more sophisticated steering techniques. Future 551

work could investigate the integration of machine 552

learning or reinforcement learning approaches to 553

dynamically adapt steering strategies based on the 554

model’s responsiveness and the evolving context 555

of the conversation. 556

7 Conclusion 557

In this paper, we conducted an empirical study to 558

investigate the use of Socratic feedback by expert 559

programmers in steering code-generating Large 560

Language Models (LLMs) to solve complex pro- 561

gramming problems. By examining the interac- 562

tions between programmers and three state-of-the- 563

art LLMs - GPT-4, Gemini Ultra, and Claude Opus 564

- we identified common strategies and feedback 565

techniques employed to guide the models towards 566

generating correct and efficient solutions. Our find- 567

ings demonstrate that Socratic feedback plays a 568

crucial role in enabling programmers to effectively 569

steer LLMs when the models are unable to indepen- 570

dently generate correct solutions. Our findings con- 571

tribute to the growing body of research on human- 572

AI interaction and provide valuable insights for 573

the development of more effective collaboration 574

techniques. 575
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A Example Appendix680

A.1 Initial prompt Template provided:681

You are given a function signature and description682

the programming tasks. Complete the function683

body that pass all the unit tests. Task description:684

<Paste the problem task description here: in-685

clude examples and constraints if available >686

Your task:687

First, describe your plan for solving this problem688

in natural language and then your implementation689

with a explanation of your code.690

Take the following three stage approach in solv-691

ing the problem:692

1. Understand the problem. Ask any clarifying693

questions if you do not understand the prob-694

lem well.695

2. Please clearly describe how your would ap-696

proach this problem.697

3. When you describe your plan, please clarify698

what specific steps the algorithm includes and699

how you would implement them.700

4. Provide your implementation code of your701

solution to the problem. Do not move to the702

next stage if you can’t do the previous stage.703

Then implement your plan in Python to solve704

this problem and make sure your algorithm passes705

all the given unit tests and comply with given con-706

straints707

A.2 Examples of Steering strategies708
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Figure 6: Examples of code steering strategies with model (Left) Requirement Reiteration (F); (Right) Addressing
Code Inefficiency (E); The modified portion of the code, crucial for achieving successful steering, is highlighted by
the red boxes.

Figure 7: Examples of code steering strategies with model (Left) Test Reiteration (A); (Center) Requirement
Clarification (G); (Right) Revising Unit Test (C). The modified portion of the code, crucial for achieving
successful steering, is highlighted by the red boxes.
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Figure 8: Examples of code steering strategies with model (Left) Approach Re-orientation (H); (Right) Specific
Approach Instruction (I). The modified portion of the code, crucial for achieving successful steering, is highlighted
by the red boxes.
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