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Abstract

We study the problem of identifiability of the total
effect of an intervention from observational time
series in the situation, common in practice, where
one only has access to abstractions of the true
causal graph. We consider here two abstractions:
the extended summary causal graph, which con-
flates all lagged causal relations but distinguishes
between lagged and instantaneous relations, and
the summary causal graph which does not give any
indication about the lag between causal relations.
We show that the total effect is always identifiable
in extended summary causal graphs and provide
sufficient conditions for identifiability in summary
causal graphs. We furthermore provide adjustment
sets allowing to estimate the total effect whenever
it is identifiable.

1 INTRODUCTION

Over the last century and across numerous disciplines, ex-
perimentation has emerged as a potent methodology for
estimating without bias the total effect of an intervention
on a specific component of a given system [Neyman et al.,
1990]. However, experimentation can be costly, unethical
or even unfeasible. Both researchers and experts are thus
interested in estimating the effect of an intervention directly
from observational data. This can be done under some as-
sumptions when relying on a complete causal graph [Pearl
et al., 2000], and typically relies on two sequential steps:
identifiability and estimation [Pearl, 2019]. The identifia-
bility step involves distinguishing cases where a solution
is possible and, when it exists, providing an estimand - an
expression enabling the estimation of intervention effects
from observational data. The subsequent step involves the
actual estimation of this estimand from the available data.

The identifiability step received much attention for non-

temporal causal graphs [Pearl, 1993, 1995, Spirtes et al.,
2000, Pearl et al., 2000, Shpitser and Pearl, 2008]. For ab-
straction of causal graphs, Perkovic [2020] derived neces-
sary and sufficient conditions for identifying total effects
in maximally oriented partially directed acyclic graphs and
Anand et al. [2023] provided necessary and sufficient con-
ditions when dealing with a directed acyclic graphs, where
each vertex represent a cluster of variables and where re-
lationships between clusters of variables are specified, but
relationships between the variables within a cluster are left
unspecified.

For temporal causal graph, Blondel et al. [2016] developed
the do-calculus for the full-time causal graphs (FTCGs,
Figure 1.1a). However, in dynamic systems, experts have
difficulties in building full time causal graphs, while they
can usually build an abstraction of those graphs such as an
extended summary causal graph (ESCG, as in Figure 1.1b)
where all lagged causal relations are conflated but lagged
and instantaneous relations are clearly distinguished or such
as a summary causal graph (SCG, as in Figure 1.1c) where
all temporal information is omitted. Assuming no instanta-
neous relations, Eichler and Didelez [2007] demonstrated
that the total effect is identifiable from an ESCG or an SCG,
and Assaad et al. [2023] established identifiability in the
presence of instantaneous relations for acyclic SCGs. Fer-
reira and Assaad [2024] addressed the identifiability prob-
lem for general SCGs, including cycles and instantaneous
relations for the direct effect; however, the identifiability of
total effects in this context remains unexplored.

Our main contributions consist in demonstrating, under
causal sufficiency, that the total effect is always identifi-
able when working with an extended summary causal graph
and providing sufficient conditions for identifying the total
effect when working with a summary causal graph. The
main difficulty lies in the fact that these abstractions may
represent different full-time causal graphs with potentially
different skeletons and orientations.

The remainder of the paper is structured as follows: Section
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Figure 1.1: Illustration: (a) three FTCGs, (b) three ESCGs
derived from them, (c) the SCG which can be derived
from any FTCG in (a) and any ESCG in (b). Consider
f(yt|do(xt−1)), red vertex: the variable we intervene on,
blue vertex: the response we are considering. Bold edges
correspond to directed paths from Xt−1 to Yt, and gray ver-
tices correspond to nodes with different status depending on
the FTCG (see Definition 6).

2 introduces the main notions, Section 3 presents the prob-
lem setup, identifiability conditions in ESCGs and SCGs
are respectively presented in Sections 4 and 5. Section 6
discusses real applications for our theoretical results, and
Section 7 concludes the paper. Omitted proofs can be found
in the Supplementary Material.

2 PRELIMINARIES

Graph notions For a directed acyclic graph G, a path
from X to Y in G is a sequence of distinct vertices <
X, . . . , Y > in which every pair of successive vertices is
adjacent. A directed path from X to Y is a path from X
to Y in which all edges are directed towards Y in G, that
is X → . . .→ Y . A backdoor path between X and Y is a
path between X and Y with an arrowhead into X in G. If
X → Y , then X is a parent of Y . If there is a directed path
from X to Y , then X is an ancestor of Y , and Y is a descen-
dant of X . A vertex counts as its own descendant and as
its own ancestor. The sets of parents, ancestors and descen-
dants of X in G are denoted by Par(X,G), Anc(X,G) and
Desc(X,G) respectively. If a path π contains X → Z ← Y
as a subpath, then Z is a collider on π. A vertex Z is a

definite non-collider on a path π if the edge X ← Z, or the
edge Z → Y is on π. A vertex is of definite status on a path
if it is a collider, a definite non-collider or an endpoint on
the path. A path π is of definite status if every vertex on π is
of definite status. A path π from X to Y of definite status is
active given a vertex set Z , with X,Y /∈ Z if every definite
non-collider on π is not in Z , and every collider on π has a
descendant in Z . Otherwise, Z blocks π. By a slight abuse
of notation, we denote G\{Y } as the subgraph of G when
removing the vertex Y and its corresponding edges. Lastly,
the skeleton of a graph corresponds to all vertices and edges
of the graph without considering edge orientations.

For a directed graph G, a directed path from X to Y and
a directed path from Y to X form a directed cycle in G. A
self-loop on X also forms a directed cycle. We denote by
Cycles(X,G) the set of all directed cycles containing X in
G, and by Cycles>(X,G) the subset of Cycles(X,G) with
at least two different vertices (i.e., excluding self-loops). In
addition, all notions introduced before for directed acyclic
graphs hold for directed graphs, with potential cycles. To
avoid any ambiguity we would like to make some clarifi-
cations. For a directed graph G, a backdoor path between
X and Y is a path between X and Y which starts by either
X ← or X ⇆. A path is blocked by an empty set if there
exists a vertex Z such that→ Z ← is on the path. Note that
the above does not hold for ⇆ Z ←,→ Z ⇆ or ⇆ Z ⇆.
For clarity, whenever a path is blocked by an empty set in a
directed graph we will say that it is σ-blocked1. Note that
X ⇄ Y and X ← Y are the only σ-active backdoor paths
of size 2 in G.

If each vertex in a directed acyclic graph corresponds to
an observed variable then, given an ordered pair of vertices
(X,Y ) in G, a set of vertices Z satisfies the standard back-
door criterion relative to (X,Y ) if no vertex in Z is a de-
scendant of X , and Z blocks every backdoor path between
X and Y .

Causal graphs in time series Consider V a set of p ob-
servational time series and Vf = {Vt−ℓ|ℓ ∈ Z} the set of
temporal instances of V where Vt−ℓ correspond to the vari-
ables of the time series at time t−ℓ. We suppose that the time
series are generated from an unknown dynamic structural
causal model (DSCM, Rubenstein et al. [2018]), an exten-
sion of structural causal models (SCM, Pearl et al. [2000])
to time series. This DSCM defines a full-time causal graph
(FTCG, see below) which we call the true FTCG [Runge
et al., 2019, Runge, 2021, Assaad et al., 2022a] and a joint
distribution P over its vertices which we call the true proba-
bility distribution.

1The notion of σ-blocked path by a set Z is a generalization
of the notion of blocked path by a set Z (which was introduced
for directed acyclic graphs) to directed graphs [Forré and Mooij,
2017]. These two notions becomes equivalent when Z = ∅. In this
paper, we will use the notion of σ-blocked only when Z = ∅.



Definition 1 (Full-time causal graph (FTCG), Figure 1.1a).
Let V be a set of p observational time series and Vf =
{Vt−ℓ|ℓ ∈ Z}. The full-time causal graph (FTCG) Gf =
(Vf , Ef ) representing a given DSCM is defined by: Xt−γ →
Yt ∈ Ef if and only if X directly causes Y at time t with a
time lag of γ > 0 if X = Y and with a time lag of γ ≥ 0
for X ̸= Y .

As common in causality studies on time series, we consider
in the remainder acyclic FTCGs with potential instantaneous
causal relations. Note that acyclicity is guaranteed for rela-
tions between variables at different time stamps. In addition,
note that for any time series X , ∀i > 0, Xt−i can cause Xt;
for example, the stock price yesterday can affect the stock
price today. We furthermore assume causal sufficiency:

Assumption 1 (Causal sufficiency). There is no hidden
common cause between any two observed variables.

In practice, it is usually impossible to work with FTCGs and
people have resorted to simpler causal graphs, exploiting the
fact that causal relations between time series hold through-
out time, as formalized in the following assumption which
allows one to focus on a finite number of past slices, given
by the maximum lag. We fix it to γmax in the remainder.

Assumption 2 (Consistency throughout time). All the
causal relationships in the the FTCG Gf remain constant in
direction and magnitude throughout time2.

Experts are used to working with abstractions of causal
graphs which summarize the information into a smaller
graph that is interpretable, often with the omission of pre-
cise temporal information. We consider in this study two
known causal abstractions for time series, namely extended
summary causal graphs and summary causal graphs. An
extended summary causal graph [Assaad et al., 2022c] dis-
tinguishes between past time slices, denoted as Ve

t− , and
present time slices, denoted as Ve

t , thus enabling the differ-
entiation between lagged and instantaneous causal relations.

Definition 2 (Extended summary causal graph (ESCG),
Figure 1.1b). Let Gf = (Vf , Ef ) be an FTCG built from the
set of time series V satisfying Assumption 2 with maximal
temporal lag γmax. The extended summary causal graph
(ESCG) Ge = (Ve, Ee) associated to Gf is given by Ve =
(Ve

t− ,V
e
t ) and Ee defined as follows:

• for any X in V , we define two vertices, Xt− and Xt,
respectively in Ve

t− and Ve
t ;

2In our context we consider a dynamic system with several
univariate observational time series, thus the problem of finding
a unique total effect would be ill-posed if Assumption 2 is not
satisfied since violating the assumption would mean that the total
effect would change over time.

• for all Xt, Yt ∈ Ve
t , Xt → Yt ∈ Ee if and only if

Xt → Yt ∈ Ef ;

• for all X,Y ∈ Ve
t− , Xt− → Yt ∈ Ee if and only if

there exists at least one temporal lag 0 < γ ≤ γmax

such that Xt−γ → Yt ∈ Ef .

In that case, we say that Ge is derived from Gf .

At a higher level of abstraction, a summary causal graph [Pe-
ters et al., 2013, Meng et al., 2020, Assaad et al., 2022a,b]
represents causal relationships among time series, regardless
of the time delay between the cause and its effect.

Definition 3 (Summary causal graph (SCG), Figure 1.1c).
Let Gf = (Vf , Ef ) be an FTCG built from the set of time
series V satisfying Assumption 2 with maximal temporal
lag γmax. The summary causal graph (SCG) Gs = (Vs, Es)
associated to Gf is such that

• Vs corresponds to the set of time series V ,

• X → Y ∈ Es if and only if there exists at least one
temporal lag 0 ≤ γ ≤ γmax such that Xt−γ → Yt ∈
Ef .

In that case, we say that Gs is derived from Gf as well as
from the ESCG derived from Gf .

Since an FTCG is assumed to be a directed acyclic graph,
an ESCG is inherently a directed acyclic graph. In contrast,
an SCG is a directed graph as it may include directed cy-
cles and even self-loops. For example, the three FTCGs in
Figure 1.1a and the three ESCGs in Figure 1.1b are acyclic,
while the SCG in Figure 1.1c has a cycle. We use the no-
tation X ⇄ Y to indicate situations where there are time
lags where X causes Y and other lags where Y causes X .
Additionally, if an SCG is an abstraction of an ESCG, in
cases where there is no instantaneous relation, ESCGs and
SCGs convey the same information.

It is worth noting that if there is a single ESCG or SCG
derived from a given FTCG, different FTCGs, with possi-
bly different orientations and skeletons, can yield the same
ESCG or SCG. For example, the SCG in Figure 1.1c can be
derived from any FTCG and any ESCG in Figures 1.1a and
1.1b, even though they may have different skeletons (for ex-
ample, Gf1 and Gf3 or Ge1 and Ge3) and different orientations
(for example, Gf1 and Gf2 or Ge1 and Ge2). Therefore, even if
each vertex in an FTCG is assumed to represent a single
observed variable, a vertex in the past slice of an ESCG
represent a set of variables while a vertex in the present time
slice represents a single variable, and a vertex in the SCG
corresponds to a time series. In the remainder, for a given
ESCG or SCG G, we call any FTCG from which G can be
derived as a candidate FTCG for G. For example, in Figure
1.1, Gf1 , Gf2 and Gf3 are all candidate FTCGs for Gs. The set
of all candidate FTCGs for G is denoted by C(G).



3 PROBLEM SETUP

We focus in this paper on the total effect [Pearl et al., 2000]
of the singleton variable Xt−γ on the singleton variable
Yt, written P (Yt = yt|do(Xt−γ = xt−γ)) (as well as
P (yt|do(xt−γ)) by a slight abuse of notation), when the
only knowledge one has of the underlying DSCM consists
in the ESCG or SCG derived from the unknown, true FTCG.
Yt corresponds to the response and do(Xt−γ = xt−γ) rep-
resents an intervention (as defined in Pearl et al. [2000] and
Eichler and Didelez [2007, Assumption 2.3]) on the variable
X at time t− γ, with γ ≥ 0.

The above setting is very common in practice and entails that
one neither knows the true FTCG nor the true probability
distribution. Futhermore, even if one has access to observed
data, in practice such observations are finite, which prevents
one from discovering the true FTCG, and even from detect-
ing it in the set of candidate FTCGs, as no existing causal
discovery method is guaranteed to yield the true FTCG
in the finite data setting [Aït-Bachir et al., 2023]. In the
purely theoretical context of infinite data, discovering the
true FTCG is only possible with additional assumptions,
beyond the scope of this study [Assaad et al., 2022b].

Each candidate FTCG proposes a particular decomposi-
tion of the true joint probability distribution which is given
by the standard recursive decomposition that characterizes
Bayesian networks. Not all decompositions are however
correct with respect to the true probability distribution P .

In general, a total effect P (yt | do(xt−γ)) is said to be
identifiable from a graph if it can be uniquely computed
with a do-free formula from the observed distribution [Pearl,
1995, Perkovic, 2020]. In our context, this means that the
same do-free formula should hold in all candidate FTCG so
as to guarantee that it holds for the true one.

Definition 4 (Identifiability of total effects in ESCGs and
SCGs). In a given ESCG or SCG G, P (yt | do(xt−γ)) is
identifiable iff it can be rewritten with a do-free formula that
is valid for any FTCG in C(G).

One way to rewrite P (yt | do(xt−γ)) with a do free-formula
is by finding an adjustment set of variables for which:

P (yt|do(xt−γ)) =
∑
z

P (yt|xt−γ , z)P (z). (1)

Whenever a set of variables satisfy Equation (1), we call it a
valid adjustment set. The standard backdoor criterion, intro-
duced in Pearl [1995], allows one to obtain valid adjustment
sets using the true FTCG. We provide here another version
of the backdoor criterion that allows us to find a valid ad-
justment set given all candidate FTCGs without knowing
which one is the true FTCG.

Definition 5 (Backdoor criterion over all candidate FTCGs).
Let G = (V, E) be an ESCG or SCG. A set of vertices Z

satisfies the backdoor criterion over all candidate FTCGs
relative to (Xt−γ , Yt) if

(i) Z blocks all backdoor paths between Xt−γ and Yt in
any FTCG in C(G),

(ii) Z does not contain any descendant of Xt−γ in any
FTCG in C(G).

Note that when there is no backdoor path between Xt−γ

and Yt in any FTCG in C(G), Z = ∅ satisfies the backdoor
criterion over all candidate FTCGs.

The backdoor criterion over all candidate FTCGs is sound
for the identification of the total effect P (yt|do(xt−γ)) in
an ESCG or SCG, as stated in the following corollary that
can be deduced from [Pearl, 1995, Theorem 1].

Corollary 1. Let X and Y be distinct vertices in an ESCG
or SCG G of a DSCM with true (unknown) probability P .
Under Assumptions 1 and 2 for G, if there exists a set Z
satisfying the backdoor criterion over all possible FTCGs
relative to (Xt−γ , Yt), then the total effect of Xt−γ on Yt

is identifiable in G, and Z is a valid adjustment set for the
formulae given in Equation (1).

However, enumerating all candidate FTCGs is computation-
ally expensive [Robinson, 1977], even when considering the
constraints given by an ESCG or an SCG.

Formally, we address the following technical problem:

Problem 1. Consider an ESCG or an SCG G and the total
effect P (yt|do(xt−γ)). We aim to find out conditions to
identify P (yt|do(xt−γ)) when having access solely to an
ESCG or an SCG without enumerating all candidate FTCGs
in C(G).

Remarks

1. Our context is different from the one considered in
Perkovic [2020] since the graphs we have to con-
sider for a given ESCG or SCG, namely the candidate
FTCGs, may have different skeletons and may not all
be compatible with the true underlying distribution.
Furthermore, in ESCGs and SCGs, each vertex does
not necessarily correspond to a single variable.

2. Our context is different from the one considered in
Anand et al. [2023]. They consider cluster of vari-
ables, even for the response and the intervention vari-
able, while we are interested in the total effect P (yt |
do(xt−γ)) where the response variable and the inter-
vention variable are singletons. Furthermore, we may
have cycles in the SCGs, while they assume acyclic
graphs.

3. The cycles that we consider in this work, namely in
SCGs, do not hold the same conceptual meaning as the
cycles considered in Bongers et al. [2021], as in our



case, cyclicity comes from the abstraction of an acyclic
graph.

4 IDENTIFIABILITY IN ESCG

The total effect is always identifiable by adjustment in ES-
CGs, as stated in the following theorem.

Theorem 1. (Identifiability in ESCG) Consider an ESCG
Ge. Under Assumptions 1 and 2 for Ge, the total effect
P (yt|do(xt−γ)) is identifiable in Ge for any γ ≥ 0. Fur-
thermore, the set

Bγ ={(Zt−γ−ℓ)1≤ℓ≤γmax |Zt− ∈ Par(Xt,Ge)}
∪ {Zt−γ |Zt ∈ Par(Xt,Ge)},

is a valid adjustment set for P (yt|do(xt−γ)) for the formu-
lae given in Equation (1).

If Bγ is a valid adjustment set, it may still be very large.
Additional adjustment sets, potentially smaller than Bγ , can
however be obtained in the densest candidate FTCG, which
is the candidate FTCG which contains all potential edges
and is thus maximal in the number of edges.

Proposition 1. Consider an ESCG Ge and a maximal lag
γmax and let γ ≥ 0. Any adjustment set B′γ for the total
effect P (yt|do(xt−γ)) that satisfies the standard backdoor
criterion on the densest candidate FTCG in C(Ge) is a
valid adjustment set for the total effect. In addition, Bγ is a
valid adjustment set with respect to the standard backdoor
criterion on the densest candidate FTCG.

Note however that smaller (in the number of variables) ad-
justment sets may exist in the true FTCG when it is different
from the densest candidate FTCG.

5 IDENTIFIABILITY IN SCG

In this section, we start by presenting the main result of the
paper which provides sufficient conditions for identifying
the total effect only by using an SCG and providing an
adjustment set that can be used whenever the sufficient
conditions are satisfied. Then we provide another adjustment
set that is more suitable in practice. Finally, we discuss
several examples where the total is not identifiable using an
SCG.

Note that we are only considering sufficient conditions be-
cause the backdoor criterion is not complete, meaning it
does not provide all possible valid adjustment sets. There-
fore, the backdoor criterion over all candidate FTCGs is not
necessarily complete.

5.1 MAIN RESULT: SUFFICIENT CONDITIONS
FOR IDENTIFIABILITY

We provide sufficient conditions3 for the identifiability in
SCG. Recall that Cycles(X,Gs) is the set of all directed cy-
cles containing X in Gs, and Cycles>(X,Gs) is the subset
where cycles contain at least 2 different vertices.

Theorem 2. (Identifiability in SCG) Consider an SCG
Gs = (Vs, Es) associated with a DSCM with true (un-
known) probability distribution P . Under Assumptions 1
and 2, the total effect P (yt|do(xt−γ)), with γ ≥ 0, is iden-
tifiable if X /∈ Anc(Y,Gs) or X ∈ Anc(Y,Gs) and none
of the following holds:

1. γ ̸= 0 and Cycles>(X,Gs\{Y }) ̸= ∅, or

2. there exists a σ-active backdoor path

πs = ⟨V 1 = X, · · · , V n = Y ⟩

from X to Y in Gs such that ⟨V 2, · · · , V n−1⟩ ⊆
Desc(X,Gs) and one of the following holds:

(a) n > 2, i.e. ⟨V 2, · · · , V n−1⟩ ≠ ∅, or
(b) n = 2 and γ ̸= 1, or
(c) n = 2, γ = 1 and Cycles(Y,Gs\{X}) ̸= ∅.

In the remainder, we prove the above theorem through Lem-
mas 5.1-5.3. To do so, for the total effect P (yt|do(xt−γ)),
we consider the following set:

Aγ ={(Zt−γ−ℓ)1≤ℓ≤γmax
|Z ∈ Desc(X;Gs)}

∪ {(Zt−γ−ℓ)0≤ℓ≤γmax
|Z ∈ Vs\Desc(X,Gs)} (2)

and we prove that it is a valid adjustment set when the total
effect is identifiable. As one can note, it contains all possible
parents of Xt−γ in all candidate FTCGs of Gs. Thus, Aγ

blocks any backdoor path π between Xt−γ and Yt in any
candidate FTCG through the parent of Xt−γ on that path.

We first introduce the notion of ambiguous vertices, repre-
sented in gray in every figure, that will be useful for the
proofs of most of the lemmas.

Definition 6 (Ambiguous vertices). Consider an SCG Gs
and the total effect P (yt | do(xt−γ)), for γ ≥ 0. A vertex
Vt′ belonging to an active backdoor path for (Xt−γ , Yt)
in a candidate FTCG is ambiguous if there exists another
candidate FTCG in which Vt′ is a descendant of Xt−γ .

Ambiguous vertices are crucial for identifiability. In addition
to ambiguous vertices, one can also define ambiguous paths,
as follows.

3In Supplementary Material, we provide an equivalent version
of Theorem 2 which might be easier to read to certain readers.
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Lemma 5.2 (Figure a-b) and Lemma 5.3 (Figure c).

Definition 7 (Ambiguous paths). Consider an SCG Gs and
a candidate FTCG Gf . A path πf ∈ Gf between Xt−γ and
Yt, for γ ≥ 0, is an ambiguous path if it does not contain
any vertex at time t− γ − ℓ for ℓ ≥ 1. We note Πf

γ the set
of all ambiguous paths in Gf .

When π is not an ambiguous path (π /∈ Πf
γ), then at least

one vertex on π is in the past of Xt−γ and thus cannot be
ambiguous. One thus has the following property:

Property 1. Consider an SCG Gs and the total effect
P (yt | do(xt−γ)), for γ ≥ 0. Suppose πf is a backdoor
path between Xt−γ and Yt in a candidate FTCG Gf . If
πf ̸∈ Πf

γ , then πf is blocked by a subset of Aγ containing
at least one non-ambiguous vertex.

Example 5.1. For example, in Figure 5.5c, πf
1 =

⟨Xt−1, Xt−2, Yt−1, Yt⟩ is not an ambiguous path between
Xt−1 and Yt since Xt−2 precedes Xt−1 in time. On the
other hand, πf

2 = ⟨Xt−1, Yt−1, Yt⟩ is an ambiguous path
between Xt−1 and Yt. The path πf

1 is blocked by Xt−2.

We now introduce the notion of compatible path that will
allow us to relate backdoor paths in a given SCG and its
candidate FTCGs.

Definition 8 (Compatible path). Consider an SCG
Gs, a candidate FTCG Gf , and the total effect
P (yt | do(xt−γ)), for γ ≥ 0. We say that a
path πf = ⟨Xt−γ ,W

2
t2 , · · · ,W

m−1
tm−1 , Yt⟩ in Gf is

compatible with a path πs = ⟨X,V 2, · · · , V n−1, Y ⟩
in Gs if for all (W j

tj )2≤j≤m−1: either W j ∈
⟨V 2, · · · , V n−1⟩ or ∃V ∈ ⟨V 2, · · · , V n−1⟩ such that
W j ∈ Cycles(V,Gs)\Cycles(X,Gs).

The following property relates backdoor paths in a given
SCG and in any of its candidate FTCG.

Property 2. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)) for γ ≥ 0. Then (i)⇒ (ii), where:

(i) γ = 0 or Cycles>(X,Gs\{Y }) = ∅,
(ii) in any candidate FTCG Gf , there exists no backdoor

path πf ∈ Πf
γ that is not compatible with any backdoor

path in Gs.

The two above properties allow one to prove the following
lemmas which prove that each condition of Theorem 2 is
sufficient. The first lemma is rather straightforward and
concern the case where X ̸∈ Anc(Y,Gs) for a given SCG
Gs.

Lemma 5.1. Consider an SCG Gs, γ ≥ 0 fixed and the total
effect P (yt | do(xt−γ)). If X ̸∈ Anc(Y,Gs) then P (yt |
do(xt−γ)) is identifiable, and P (yt | do(xt−γ)) = P (yt).

The following lemma excludes both Conditions 1 and 2 of
Theorem 2 by considering the negation of Condition 1 (in
(i)) and the situation in which there is no σ-active backdoor
path from X to Y with Z = ∅.

Lemma 5.2. Consider an SCG Gs, γ ≥ 0 fixed and the
total effect P (yt | do(xt−γ)). If X ∈ Anc(Y,Gs) and

(i) either γ = 0 or Cycles>(X,Gs\{Y }) = ∅ and

(ii) ∄σ-active backdoor path πs = ⟨V 1 = X, · · · , V n =
Y ⟩ from X to Y in Gs such that ⟨V 2, · · · , V n−1⟩ ⊆
Desc(X,Gs),

then P (yt | do(xt−γ)) is identifiable by Aγ .

This lemma is illustrated in Figure 5.1a - 5.1b.

When there is a σ-active backdoor path from X to Y with
Z = ∅, the negation of Condition 2 of Theorem 2 is ob-
tained with n = 2, γ = 1 and Cycles(Y,Gs\{X}) = ∅.
The negation of Condition 1 of Theorem 2 is obtained in
this setting with Cycles>(X,Gs\{Y }) = ∅. Note that, as
before, having a σ-active backdoor path from X to Y with
Z = ∅ and n = 2 is equivalent to X ⇆ Y .

Lemma 5.3. Consider an SCG Gs and the total effect P (yt |
do(xt−1)) (γ = 1). If the only σ-active backdoor path from
X to Y in Gs with Z = ∅ is X ⇆ Y ∈ Gs and

(i) Cycles>(X,Gs\{Y }) = ∅ and

(ii) Cycles(Y,Gs\{X}) = ∅,

then P (yt | do(xt−1)) is identifiable by Aγ .

This lemma is illustrated in Figure 5.1c.
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1 and the total effect P (yt|do(xt−1)).
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Figure 5.2: An example of an SCG Gs1 in (a) satisfying
Condition 1 in Theorem 2 and two candidate FTCGs in (b)
and (c). Each pair of red and blue vertices in the FTCGs
represents the total effect we are interested in. Gray vertices
are ambiguous: they are on an active backdoor path in (b)
and belong to a directed path in (c) (bold edges indicate
direct paths from Xt−1 to Yt).

5.2 ADJUSTMENT SET

When the total effect is identifiable and when X ∈
Anc(Y,Gs), the set Aγ defined in Equation (2) is a valid ad-
justment set, but it has a large size, so we provide a smaller
valid adjustment set, defined as follows:

A′
γ = {Vt′ ∈ Aγ |V ∈ Anc(X,Gs) ∪Anc(Y,Gs)}.

Proposition 2. Consider an SCG Gs and the total effect
P (yt | do(xt−γ)), with γ ≥ 0. Under conditions of iden-
tifiability provided by Theorem 2, the set A′

γ is a valid
adjustment set for the total effect.

5.3 NON IDENTIFIABLE EXAMPLES

In this section, we provide several examples of SCGs where
the total effect cannot be identified by finding a valid adjust-
ment set.

Example 5.2. Consider the SCG in Figure 5.2a and the
two candidate FCTGs given in Figure 5.2b and 5.2c.
Suppose we are interested in the total effect P (yt |
do(xt−1)). In the first FCTG depicted in Figure 5.2b, the
path ⟨Xt−1, Zt−1, Yt⟩ is an active back-door path. Since
Zt−1 is the only vertex on this path that is not an endpoint,
we need to adjust for it to eliminate the confounding bias
induced by this path. However, in the second FTCG de-
picted in 5.2c, ⟨Xt−1, Zt−1, Yt⟩ forms a directed path. This
implies that we should not adjust for Zt−1 to preserve the
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Figure 5.3: An example of an SCG Gs2 in (a) satisfying
Condition 2a in Theorem 2 and two candidate FTCGs in
(b) and (c). Each pair of red and blue vertices in the FTCGs
represents the total effect we are interested in. Gray vertices
are ambiguous: they are on an active backdoor path in (b)
and belong to a directed path in (c) (bold edges indicate
direct paths from Xt−1 to Yt).

influence of Xt−1 on Yt through the path passing by Zt−1.
Since we do not know which FTCG is the true one, then we
cannot determine whether we should adjust for Zt−1 or not.
Consequently, there is no valid adjustment set to identify the
total effect P (yt | do(xt−1)).

Example 5.3. Consider the SCG in Figure 5.3a and the
two candidate FTCGs in Figures 5.3b and 5.3c. Suppose
we are interested in the total effect P (yt | do(xt−1)). The
path ⟨Xt−1, Zt−1, Xt, Yt⟩ is an active back-door path in
the first FTCG depicted in (b). Since Zt−1 is the only ver-
tex on this path that is not an endpoint and that does not
belong to a directed path in the same graph, we need to
adjust for it to eliminate the confounding bias induced by
this path. However, in the second FTCG depicted in 5.3c,
⟨Xt−1, ⟨Yt−1, Zt−1, Xt, Yt⟩ forms a directed path. This im-
plies that we should not adjust for Zt−1 to preserve the
influence of Xt−1 on Yt through the path passing by Zt−1.
Since we do not know which FTCG is the true one, then we
cannot determine whether we should adjust for Zt−1 or not.
Consequently, there is no valid adjustment set to identify the
total effect P (yt | do(xt−1)).

Example 5.4. Consider the SCG in Figure 5.4a and the
two candidate FTCGs in Figures 5.4b and 5.4c. Suppose we
are interested in the the total effect P (yt | do(xt−2)). The
path ⟨Xt−2, Yt−2, Xt−1, Yt⟩ is an active back-door path
in the first FTCG depicted in 5.4b. Since Yt−2 is the only
vertex on this path that is not an endpoint and that does
not belong to a directed path in the same graph, we need
to adjust for it to eliminate the confounding bias induced
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Figure 5.4: An example of an SCG Gs3 in (a) satisfying Con-
dition 2b in Theorem 2 with respect to Pr(yt | do(xt−2))
and two candidate FTCGs in (b) and (c). Each pair of red
and blue vertices in the FTCGs represents the total effect
we are interested in. Gray vertices are ambiguous: they con-
stitute a backdoor path in (b) and belong to a directed path
in (c) (bold edges indicate direct paths from Xt−2 to Yt).

by this path. However, in the second FTCG depicted in
5.4c, ⟨Xt−2, Yt−2, Xt−1, Yt⟩ forms a directed path. This
implies that we should not adjust for Yt−2 to preserve the
influence of Xt−2 on Yt through the path passing by Yt−2.
Since we do not know which FTCG is the true one, then we
cannot determine whether we should adjust for Yt−2 or not.
Consequently, there is no valid adjustment set to identify the
total effect P (yt | do(xt−2)).

Example 5.5. Consider the SCG in Figure 5.5a and the
two candidate FTCGs in Figures 5.5b and 5.5c. Suppose we
are interested in the the total effect P (yt | do(xt−1)). The
path ⟨Xt−1, Yt−1, Yt⟩ is an active back-door path in the
first FTCG depicted in 5.5b. Since Yt−1 is the only vertex on
this path that is not an endpoint, we need to adjust for it to
eliminate the confounding bias induced by this path. How-
ever, in the second FTCG depicted in 5.5c, ⟨Xt−1, Yt−1, Yt⟩
forms a directed path. This implies that we should not adjust
for Yt−1 to preserve the influence of Xt−1 on Yt through the
path passing by Yt−1. Since we do not know which FTCG is
the true one, then we cannot determine whether we should
adjust for Yt−1 or not. Consequently, there is no valid ad-
justment set to identify the total effect P (yt | do(xt−1)).

Notice that in Figure 5.5, removing the self-loop on Y makes
the total effect identifiable. This is because the active back-
door path and the directed path discussed in Example 5.5
would no longer exist, leaving only directed paths or blocked
(due to a collider) backdoor paths between Xt−1 and Yt.

6 DISCUSSION ON REAL-WORLD
APPLICATIONS

Nephrology. Hypertension has long been considered as a
risk factor for kidney function decline. At the same time, the
kidney is known to have a major role in affecting blood pres-
sure through sodium extraction and regulating electrolyte
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Figure 5.5: An example of an SCG Gs4 in (a) satisfying Con-
dition 2c in Theorem 2 with respect to Pr(yt | do(xt−1))
and two candidate FTCGs in (b) and (c). Each pair of red
and blue vertices in the FTCGs represents the total effect
we are interested in. Gray vertices are ambiguous: they con-
stitute a backdoor path in (b) and belong to a directed path
in (c) (bold edges indicate direct paths from Xt−1 to Yt).

balance [Yu et al., 2020]. This can be represented with
the SCG in Figure 6.1a where the kidney function is repre-
sented by the creatinine level. Epidemiologists are interested
to know if preventing kidney function decline can reduce
the public health burden of hypertension and at the same
time nephrologists are interested in knowing how much a
treatment related to hypertension can improve the state of
the kidney. Using Theorem 2 and assuming no hidden con-
founding, we can identify the total effect in each direction
with a lag equal to 1 (if there are confounders that do not
form additional cycles, the total effect remains identifiable
if we measure them and take them into account in the SCG).
We can collect data for estimation by conducting weekly
blood tests on patients with kidney insufficiency, especially
those whose hypertension and creatinine levels fluctuate.

Finance. It has been suggested that there exists a bidirec-
tional causal relationship between the number of unique
active wallets associated with bridge protocols and the mean
transaction fees within the Ethereum network [Ante and
Saggu, 2024]. Additionally, we consider that transaction
fees causes itself over time, as depicted in the SCG shown
in Figure 6.1b. In this scenario, the total effect of mean
transaction fees on the number of unique active wallets is
identifiable using Theorem 2 with a lag of 1. However, the
same does not hold true for the opposite direction: the total
effect of the number of unique active wallets on the mean
transaction fees is not identifiable using Theorem 2.

System monitoring. Consider a subgraph of the SCG de-
scribed in [Bystrova et al., 2024], representing the web activ-
ity in an IT system. Suppose that system experts observed a
high number of queries at midnight for several weeks, likely
due to a Distributed Denial of Service attack. Simultane-
ously, they noticed that CPU usage at midnight was very
high, preventing the system from running some processes.
Therefore, the system experts would like to determine (be-
fore intervening in the system) how much a reduction in



bandwidth in the network would reduce the global CPU
usage. Theorem 2 shows that the total effect of Network
input on CPU Global is identifiable for any lag. In addition,
Theorem 2 implies that the total effect between all pairs
of variables is identifiable since in the SCG there exists no
cycles of size greater than 2. We can estimate those total
effect using the data introduced in Bystrova et al. [2024].

Thermoregulation. Inspired by the experiment conducted
in Peters et al. [2013], we consider maintaining a steady
temperature in an apartment composed of four rooms: a
living room, a kitchen, a bathroom, and an office. The living
room is the only room containing a radiator, and all rooms
are connected to each other through the living room. Addi-
tionally, all rooms contain a window except for the office.
Temperature sensors were placed in the four rooms, plus
one outside the apartment, and temperatures were recorded
on an hourly basis. We consider the SCG presented in Fig-
ure 6.1d as the true one. Clearly, the outside temperature
directly influences all rooms containing a window and the
temperature in each room cannot cause the outside tempera-
ture. Since the living room contains a radiator, it can affect
the temperatures in all other rooms. Additionally, since we
may use fire in the kitchen for cooking, which can increase
the temperature, we consider that the temperature in the
kitchen can affect the temperature in the living room. Sim-
ilarly, since we may use hot water in the bathroom, which
can increase the temperature, we consider that the temper-
ature in the bathroom can influence the temperature in the
living room. All other vertices representing rooms in the
graph are not connected to each other because they are
not physically directly connected; they are all connected
through the living room. Suppose we are specifically in-
terested in estimating the total effect of the temperature in
living room on the temperature in the office. Theorem 2
states that this total effect is identifiable for any lag since
Cycles(Living Room,G\{Office}) = ∅ and there exists no
σ-active backdoor path between Living Room and Office.

7 CONCLUSION

We studied in this paper the identification of total effects
between singleton variables, under causal sufficiency, for
both extended summary causal graphs and summary causal
graphs. We showed that the total effect is always identifiable
for extended summary causal graphs. The same does not
hold for summary causal graphs for which we established
graphical conditions which are sufficient, in any underlying
probability distribution, for the identifiability of the total
effect. In addition, in case of identifiability, we provided
several valid adjustment sets for estimating the total effect
in extended summary causal graphs, and two adjustment
sets when considering summary causal graphs.

These results have significant implications, such as impact
analysis in dynamic systems, particularly in scenarios where
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Cpu Http

Nb Process HttpNb Sql Connect Nb Process Php

Cpu Php Disk Write

Network Input

(c) System monitoring.

Outside

Living RoomKitchen Bathroom

Office

(d) Thermoregulation.

Figure 6.1: Real summary causal graphs from (a) Nephrol-
ogy, (b) Finance, (c) System Monitoring, and (d) Thermoreg-
ulation. Each pair of red and blue vertices represents the
total effect(s) of interest where the red vertex represents
the intervention and the blue vertex represents the response.
According to Theorem 2, each of these total effects is either
identifiable in general or identifiable under certain condi-
tions on γ.



experts are unable to provide either a full temporal causal
graph or an extended summary causal graph. They are also
valuable in cases where the assumptions underlying causal
discovery methods for inferring causal graphs with time lags
are deemed overly restrictive. Furthermore, these results of-
fer insights that can be useful in different disciplines such as
Nephrology, Finance, System Monitoring, and Thermoregu-
lation.

For future works, it would be valuable to establish neces-
sary and sufficient conditions for the identifiability of total
effects using SCGs, to extend this work to the case where
the responses and interventions can be multivariate, and to
the case where there are hidden confounding.
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A SUPPLEMENTARY MATERIAL

A.1 PROOFS OF SECTION 4

Theorem 1. (Identifiability in ESCG) Consider an ESCG
Ge. Under Assumptions 1 and 2 for Ge, the total effect
P (yt|do(xt−γ)) is identifiable in Ge for any γ ≥ 0. Fur-
thermore, the set

Bγ ={(Zt−γ−ℓ)1≤ℓ≤γmax
|Zt− ∈ Par(Xt,Ge)}

∪ {Zt−γ |Zt ∈ Par(Xt,Ge)},

is a valid adjustment set for P (yt|do(xt−γ)) for the formu-
lae given in Equation (1).

Proof. If X ̸∈ Anc(Y,Ge), then in every candidate FTCG
Gf , Xt−γ ̸∈ Anc(Yt,Gf ). Thus, P (yt | do(xt−γ)) is al-
ways identifiable in Ge, and P (yt | do(xt−γ)) = P (yt).

Assume now that X ∈ Anc(Y,Ge). Let γmax be the maxi-
mal lag, and Gf be a candidate FTCG. We prove that

Bγ ={(Zt−γ−ℓ)1≤ℓ≤γmax |Zt− ∈ Par(Xt,Ge)}
∪ {Zt−γ |Zt ∈ Par(Xt,Ge)}

is an adjustment set for P (yt|do(xt−γ)) in Gf .

First, we have to prove that Par(Xt−γ ,Gf ) ⊆ Bγ . Let
Zt−γ−ℓ ∈ Par(Xt−γ ,Gf ). If ℓ = 0, then Zt causes Xt

in Ge by consistency throughout time, which means that
Zt−γ ∈ Bγ . If ℓ > 0, then Zt− causes Xt in Ge, that is
Zt−ℓ−γ ∈ Bγ . This shows that the set Bγ blocks all back-
door paths relatively to P (yt|do(xt−γ)).

Then, we have to prove Bγ does not contain any descendant
of Xt−γ in Gf . If this is true, there exists Wt−γ ∈ Bγ ∩
Desc(Xt−γ ,Gf ), at time slice t− γ because it is a parent
and a descendant of Xt−γ . By consistency throughout time,
Wt ∈ Desc(Xt, G

f ). However, by definition of Bγ , Xt ∈
Desc(Wt, G

f ), which contradicts the acyclicity assumption
of Ge. It means that neither it blocks any directed path
between Xt−γ and Yt, nor it contains any descendant of
Yt.



Proposition 1. Consider an ESCG Ge and a maximal lag
γmax and let γ ≥ 0. Any adjustment set B′γ for the total
effect P (yt|do(xt−γ)) that satisfies the standard backdoor
criterion on the densest candidate FTCG in C(Ge) is a
valid adjustment set for the total effect. In addition, Bγ is a
valid adjustment set with respect to the standard backdoor
criterion on the densest candidate FTCG.

Proof. Let Gfd be the densest candidate FTCG, and B′γ be
an adjustment set in Gfd . Let Gf be another candidate FTCG.
By definition of Gfd , any back-door path in Gf is also in Gfd
(the last graph contains all possible edges). Then, B′γ blocks
all back-door paths in Gf . Moreover, since no vertex in B′γ
is a descendant of Xt−γ in Gfd , the same holds for Gf . Thus,
B′γ is also an adjustment set in Gf .

A.2 PROOFS OF SECTION 5

Property 1. Consider an SCG Gs and the total effect
P (yt | do(xt−γ)), for γ ≥ 0. Suppose πf is a backdoor
path between Xt−γ and Yt in a candidate FTCG Gf . If
πf ̸∈ Πf

γ , then πf is blocked by a subset of Aγ containing
at least one non-ambiguous vertex.

Proof. Suppose πf is path between Xt−γ and Yt for γ ≥ 0.
If πf ̸∈ Πf

γ and then πf contains at least one vertex Zt−γ−ℓ

for ℓ ≥ 1. Zt−γ−ℓ is temporally prior to Xt−γ which means
πf that if πf is a backdoor path then adjusting on Zt−γ−ℓ

and the parents of Zt−γ−ℓ on the path will block the path.
Furthermore, for the same reason, there cannot be a directed
path from Xt−γ to Zt−γ−ℓ in any FTCG. Finally, again for
the same reason, Zt−γ−ℓ and the parents of Zt−γ−ℓ are in
Aγ .

Property 2. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)) for γ ≥ 0. Then (i)⇒ (ii), where:

(i) γ = 0 or Cycles>(X,Gs\{Y }) = ∅,
(ii) in any candidate FTCG Gf , there exists no backdoor

path πf ∈ Πf
γ that is not compatible with any backdoor

path in Gs.

Proof. Assume first Cycles>(X,Gs\{Y }) = ∅. Suppose
∃πf = Xt−γ ← Wt−γ · · · → Yt ∈ Πf

γ which is a back-
door path between Xt−γ and Yt that is not compatible with
any back-door path πs = ⟨V 1 = X,V 2, · · · , V n−1, V n =
Y ⟩ in Gs.

If n = 2, then the path compatible with the cycle ⟨X,X⟩ is
of the form Xt−γ → Xt−γ+i → · · · → Xt−γ+j → Yt: it
means that πf cannot be a back-door path.

If n > 2, Wt−γ is such that W ̸∈ {V 2, · · · , V n−1} and
∄V ∈ {V 2, · · · , V n−1} such that W ∈ Cycles(V,Gs). If
the path between Wt−γ and Yt does not pass by Xt−γ+ℓ

with ℓ > 0, then there exists a back- door path between X
and Y passing by W in Gs as πf lies in a candidate FTCG,
which contradicts our assumption. So the path necessarily
passes by Xt−γ+ℓ. Thus there is a cycle Cx on X such that
size(Cx) > 2, which leads again to a contradiction. Thus,
there does not exist a back-door path πf ∈ Πf

γ between
Xt−γ and Yt that is not compatible with any back-door path
in Gs.

The case γ = 0 is treated in the same way, with the fact
that the path considered cannot go back to Xt as this would
create a cycle in the FTCG.

Lemma 5.1. Consider an SCG Gs, γ ≥ 0 fixed and the total
effect P (yt | do(xt−γ)). If X ̸∈ Anc(Y,Gs) then P (yt |
do(xt−γ)) is identifiable, and P (yt | do(xt−γ)) = P (yt).

Proof. If X ̸∈ Anc(Y,Gs), then in every candidate FTCG
Gf , Xt−γ ̸∈ Anc(Yt,Gf ). Thus, P (yt | do(xt−γ)) is
always identifiable in Gs, and P (yt | do(xt−γ)) =
P (yt).

Lemma 5.2. Consider an SCG Gs, γ ≥ 0 fixed and the
total effect P (yt | do(xt−γ)). If X ∈ Anc(Y,Gs) and

(i) either γ = 0 or Cycles>(X,Gs\{Y }) = ∅ and

(ii) ∄σ-active backdoor path πs = ⟨V 1 = X, · · · , V n =
Y ⟩ from X to Y in Gs such that ⟨V 2, · · · , V n−1⟩ ⊆
Desc(X,Gs),

then P (yt | do(xt−γ)) is identifiable by Aγ .

Proof. We will prove that Aγ is an adjustment set for
P (yt | do(xt−γ)) in any candidate FTCG under condi-
tions (i) and (ii). Let Gf be a candidate FTCG, and Πf

γ the
set of ambiguous paths. By Property 1, any back-door path
πf /∈ Πf

γ can be blocked by Aγ . Furthermore, by definition,
elements of Aγ cannot be descendant of Xt−γ .

We now turn our attention to paths in Πf
γ . Let πf ∈ Πf

γ

be a back-door path between Xt−γ and Yt. Since γ = 0
or Cycles>(X,Gs\{Y }) = ∅ then by Property 2, all back-
door paths in Πf

γ are compatible with back-door paths in Gs.
Let πs = ⟨V 1 = X, · · · , V n = Y ⟩ be a σ-active back-door
path in Gs compatible with πf . By (ii), there exists m ≥
1 vertices such that {V i1 , · · · , V im} ⊆ ⟨V 2, · · · , V n−1⟩
and {V i1 , · · · , V im} ̸⊂ Desc(X,Gs). Then, ∀Vt−γ such
that V ∈ {V i1 , · · · , V im}, Vt−γ ̸∈ Desc(Xt−γ ,Gf ) and
since X ∈ Anc(Y,Gs) then it must be the case that V ̸∈
Desc(Y,Gs) and by consequence Vt−γ ̸∈ Desc(Yt,Gf ).
Thus, Vt−γ cannot be an ambiguous vertex. Its parent in πf

furthermore blocks πf , is not ambiguous (as otherwise Vt−γ

would be ambiguous) and is a member of Aγ by definition
of Aγ . Thus Aγ blocks all back-door paths between Xt−γ

and Yt in any candidate FTCG Gf . Furthermore, no node in
Aγ can block a directed path between Xt−γ and Yt or is a
descendant of Yt as nodes in Aγ are either defined before



t − γ or are not descendant of Xt−γ , and thus of Yt. This
concludes the proof.

Lemma 5.3. Consider an SCG Gs and the total effect P (yt |
do(xt−1)) (γ = 1). If the only σ-active backdoor path from
X to Y in Gs with Z = ∅ is X ⇆ Y ∈ Gs and

(i) Cycles>(X,Gs\{Y }) = ∅ and

(ii) Cycles(Y,Gs\{X}) = ∅,

then P (yt | do(xt−1)) is identifiable by Aγ .

Proof. We will prove that A1 is an adjustment set for
P (yt | do(xt−1)) in any candidate FTCG under conditions
(i) and (ii). Let Gf be a candidate FTCG, and Πf

1 the set of
ambiguous paths.

Since (ii) then by Property 2, all back-door paths in Πf
1 are

compatible with back-door paths in Gs. In addition, by Prop-
erty 1, any path πf /∈ Πf

1 can be blocked by A1. Therefore,
in the following, we focus on paths in Πf

1 compatible with
back-door paths in Gs.

Consider the σ-active back-door path πs = ⟨X,Y ⟩. As
there cannot be a loop on Y by (i), the only path πf ∈ Πf

1

from Xt−1 to Yt compatible with πs that pass by Yt−1

is πf = ⟨Xt−1, Yt−1, Xt, Yt⟩. Then, under consistency
throughout time, acyclicity and temporal priority, the only
choices are Xt−1 → Yt−1 → Xt → Yt and Xt−1 ←
Yt−1 → Xt ← Yt. The first is a directed path, the sec-
ond a back-door path already blocked due to the collider
Yt−1 → Xt ← Yt. Thus, all potential back-door paths be-
tween Xt−1 and Yt in any candidate Gf are blocked, and
A1 does not activate them.

Theorem 2. (Identifiability in SCG) Consider an SCG
Gs = (Vs, Es) associated with a DSCM with true (un-
known) probability distribution P . Under Assumptions 1
and 2, the total effect P (yt|do(xt−γ)), with γ ≥ 0, is iden-
tifiable if X /∈ Anc(Y,Gs) or X ∈ Anc(Y,Gs) and none
of the following holds:

1. γ ̸= 0 and Cycles>(X,Gs\{Y }) ̸= ∅, or

2. there exists a σ-active backdoor path

πs = ⟨V 1 = X, · · · , V n = Y ⟩

from X to Y in Gs such that ⟨V 2, · · · , V n−1⟩ ⊆
Desc(X,Gs) and one of the following holds:

(a) n > 2, i.e. ⟨V 2, · · · , V n−1⟩ ≠ ∅, or
(b) n = 2 and γ ̸= 1, or
(c) n = 2, γ = 1 and Cycles(Y,Gs\{X}) ̸= ∅.

Proof. The proof of this theorem is given by Lemmas 5.1-
5.3.

Proposition 2. Consider an SCG Gs and the total effect
P (yt | do(xt−γ)), with γ ≥ 0. Under conditions of iden-
tifiability provided by Theorem 2, the set A′

γ is a valid
adjustment set for the total effect.

Proof. Let Gf be an candidate FTCG. Consider Vt′ ∈
Aγ\A′

γ : by definition of A′
γ , it follows that Vt′ ̸∈

Anc(Xt−γ ,Gf ) ∪Anc(Yt,Gf ). Therefore Vt′ does not lie
on any back-door path between Xt−γ and Yt: Vt′ is not
necessary in the adjustment set, confirming that A′

γ is also
an adjustment set.

A.3 ANOTHER VERSION OF THEOREM 2

Theorem 2 - Version 2. Consider an SCG Gs = (Vs, Es).
The total effect P (yt | xt−γ) with γ is identifiable from
Gs if X ̸∈ Anc(Y,Gs) or X ∈ Anc(Y,Gs) and one of the
following conditions holds:

1. Cycles>(X,Gs\{Y }) = ∅ and there exists no σ-active
backdoor path πs = ⟨V 1 = X, . . . , V n = Y ⟩ from X
to Y in Gs such that ⟨V 2, . . . , V n−1⟩ ⊆ Desc(X,Gs)
or

2. γ = 0 and there exists no σ-active backdoor path
πs = ⟨V 1 = X, . . . , V n = Y ⟩ from X to Y in Gs
such that ⟨V 2, . . . , V n−1⟩ ⊆ Desc(X,Gs) or

3. Cycles>(X,Gs\{Y }) = ∅ and there exists a σ-active
backdoor path πs = ⟨V 1 = X, . . . , V n = Y ⟩ from X
to Y in Gs such that ⟨V 2, . . . , V n−1⟩ ⊆ Desc(X,Gs),
and n = 2, and γ = 1, and Cycles(Y,Gs\{X}) = ∅.
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