
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHY ADVERSARIALLY TRAIN DIFFUSION MODELS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial Training (AT) is a known, powerful, well-established technique for
improving classifier robustness to input perturbations, yet its applicability beyond
discriminative settings remains limited. Motivated by the widespread use of score-
based generative models and their need to operate robustly under substantial noisy
or corrupted input data, we propose an adaptation of AT for these models, providing
a thorough empirical assessment. We introduce a principled formulation of AT for
Diffusion Models (DMs) that replaces the conventional invariance objective with
an equivariance constraint aligned to the denoising dynamics of score matching.
Our method integrates seamlessly into diffusion training by adding either random
perturbations–similar to randomized smoothing–or adversarial ones–akin to AT.
Our approach offers several advantages: (a) tolerance to heavy noise and corruption,
(b) reduced memorization, (c) robustness to outliers and extreme data variability
and (d) resilience to iterative adversarial attacks. We validate these claims on
proof-of-concept low- and high-dimensional datasets with known ground-truth
distributions, enabling precise error analysis. We further evaluate on standard
benchmarks (CIFAR-10, CelebA, and LSUN Bedroom), where our approach
shows improved robustness and preserved sample fidelity under severe noise, data
corruption, and adversarial evaluation. Code available upon acceptance.

1 INTRODUCTION

Large-scale datasets are cornerstones to the success of generative AI, yet they simultaneously present
a significant challenge. Often web-scraped and minimally curated, they frequently contain multiple
forms of corruption: inlier noise–subtle perturbations within samples; outlier noise–samples that
significantly deviate from the target distribution; missing or corrupted data–commonly affected by
Gaussian noise; and adversarial noise–deliberately crafted perturbations. While recent approaches
have attempted to address training under noisy conditions, they are constrained by restrictive theoreti-
cal assumptions. For instance, Daras et al. (2024c) relies on precise knowledge of noise variance,
Daras et al. (2024d) exclusively targets missing data scenarios, and Daras et al. (2024a) presupposes
access to both clean and corrupted samples. These approaches fall under the umbrella of “noise-aware
training”, solving a problem with strong assumptions: the methods assume access to clean/noisy
sample labels at a sample level, assuming to know the applied noise distribution and its intensity, fully
exploiting these assumptions at training time. This controlled scenario greatly limits the practical
applicability of the proposed methods, as also specified by the authors in the limitation section of
their work. The present work aims to define the principles of robust training for Diffusion Models,
highlighting how this technique enables generative models to be robust against unknown corruption,
whether applied to the training data or as inference-time perturbations, such as adversarial attacks.
In the classification domain, Adversarial Training (AT) (Szegedy et al., 2014) yields robust classifiers
that maintain performance despite input perturbations. Notably, recent research has revealed that AT
confers additional capabilities beyond robustness, including generative capabilities (Mujtaba Hussain
et al., 2024). Despite its demonstrated efficacy in classification tasks, AT has not been systematically
extended to other families of deep learning models, particularly generative models. Beyond handling
noisy data, generative AI models face further challenges, including data memorization (Jagielski
et al., 2023; Somepalli et al., 2023; Carlini et al., 2023b), leading to information leakage, and their
propensity to learn spurious correlations from training data that do not reflect real underlying pat-
terns. In this work, we address this challenge by extending AT to score-based generative models, in
particular to Diffusion Models (DM) (Ho et al., 2020). Our contribution bridges the gap between AT
for classification and the generation paradigm. This extension also reveals new hidden capabilities of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

pnoise(x0)

pdata(x0)q(xT)

xT

+

xt xt−1 x0

xt+δ

xt

xt+δ
xt−1

ϵθ(xt, t)
δ

Figure 1: Smooth trajectories. We train the denoising network to follow the score function i.e.,
xt 7→ xt−1 using just ϵθ(xt, t), but we also perturb locally xt as xt+δ inside a ℓp ball and then
imposing equivariance: xt+δ 7→ ϵθ(xt, t) + δ ≜ xt−1. This equals adding an intermediate step in
the Markov Chain, behaving as an additional denoising step, making the model resilient to possible
outliers or noise in the dataset—pnoise(x0)—not proper of pdata(x0). The local perturbation can be
implemented as adversarial or as random (randomized smoothing). Perturbation strength starts large
and progressively shrinks when T → 0. indicates the forward process; the reverse process.

AT applied to the generative domain, offering a practical and theoretically sound approach to training
robust generative models on real, imperfect datasets. Our contribution is then three-fold:

⋄ We are the first to reconnect AT to denoising, linking it to Daras et al. (2024d;c;a). Despite some
works on adversarial aspects in DM training(Yang et al.; Sauer et al.), we formally introduce
adversarial training for DMs, discussing its practical implications on the learned denoising process.

⋄ Inspired by Zhang et al. (2019), we develop an AT algorithm tailored for score-based models. Dif-
ferent from classifiers, which require enforcing invariance, score-based models require enforcing
equivariance to properly learn the data distribution, as formalized in our key finding in Eq. (14).

⋄ We show our method’s flexibility in handling noisy data, facing extreme variability like outliers,
preventing memorization, and improving robustness. Besides low-dimensional (3D) controlled data,
we test our method on CIFAR-10, CelebA, LSUN and ImageNet, achieving strong performance.

2 ADVERSARIAL TRAINING SMOOTHS TRAJECTORIES

2.1 PRELIMINARIES

Diffusion Models (DMs) aim to learn a data distribution, pdata(x) by noising data with a fixed
procedure, mapping them to N (0, I) using a Markov Chain q(xT , . . . ,x1|x0) =

∏T
t=1 q(xt|xt−1),

where, given a noisy input xt−1, the next state xt is reached through the following gaussian transition:

q(xt|xt−1) = N
(
xt;

√
1− σ(t)xt−1, σ(t)I

)
, (1)

σ(t) is the noise scheduler: a monotonically decreasing time-varying function chosen s.t. σ(0) = σmin,
σ(T) = σmax and 0 < σmin < σmax < 1. The generation is achieved with a learnable “decoding step”
that reverts data from noise estimation p(xt−1|xt). If the noise scheduler is chosen carefully to take
small noising steps, then the approximation q(xT |x0) ≈ N (0, I) and the following equation holds:

q(xt|x0) = N
(
xt;
√
αtxt−1, (1− αt)I

)
where αt

.
=

t∏
s=1

1− σ(t)

This means we can encode directly from x0 7→ xt as:

xt =
√
αtx0 +

√
1− αt ϵ where ϵ ∼ N (0, I). (2)

Samples generation is then performed by solving the probability flow ODE (PF-ODE) Song et al.
(2021b), from t = T to 0 and starting from xT ∼ N (0, σ2

maxI), whose solution is learned from the
DM. For a given x0, the training objective LDM reported in Ho et al. (2020) is thus defined as:

LDM = Eϵ∼N (0,I)
t∼U(0,I)

[∥∥ϵ− ϵθ
(
xt(x0, ϵ), t

)∥∥2
2

]
(3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 500 1000
T

0.00

0.25

0.50

0.75

1.00

r(
t)

—————–

Input DDPM Invadv Robustadv

U
ni

fo
rm

O
ut

lie
rs

St
ro

ng
In

lie
rs

Ground-Truth DDPM Robustadv

(a) (b) (c)

δ ray deviation scheduler

√
1
−

α
t

r
(t
)

T

Linear
ω = 2
ω = 3
ω = 4
ω = 8

Figure 2: (a) The plot shows leftmost training data either with strong inlier noise (top) or uniform
outliers (bottom). The trajectories reveal that DDPM struggles with both, while if you train with
invariance (Invadv) the process diverges. Instead, ours (Robustadv) is more robust, avoiding diverging
trajectories and better reaching the data centroid. (b) Score vector fields: versors represent the score
field, colormap shows magnitude, less more intense. (left) Ground-truth (middle) DDPM; (right)
Our Robustadv. AT yields smoother, more consistent scores, better matching the data shape, shrinking
variability and increasing field intensity. (c) Perturbation ray. The parameter ω controls the slope of√
1− αt r(t) to shorten the content phase and reduce the curve’s steepness in DDPM.

whose objective is to infer the noise ϵ applied to the initial image, ensuring that the starting point
x0 is correctly reconstructed, enabling the model—the denoising network ϵθ—to correctly generate
in-distribution data during inference. For inference we solve the SDE using ϵθ and the recurrency:

xt−1(θ) =
1√

1− σ(t)

(
xt(θ)−

σ(t)√
1− αt

ϵθ
(
xt(θ), t

))
+ σ(t)z, z ∼ N (0, I), ∀t ∈ [0, · · · , T].

(4)

2.2 MOTIVATION, “IN VITRO” EXPERIMENTS, AND NOISE TYPES

Motivation and overview. Adversarial training has proven highly effective in the classification domain
for handling perturbed training data, imposing a model invariant response across genuine and
adversarially manipulated inputs. Unlike classifiers, its application to DMs requires fundamental
reformulation due to their regression-based nature. Our work aims to investigate the properties and
applications of adversarially trained DMs, with particular emphasis on the case of corrupted training
data. Fig. 2 (a,b) describes the investigated settings of uniform outlier and strong inlier noise, where
our approach was demonstrated to be learning the correct data distribution and a smoother score field.

“In vitro” analysis setup. We propose a first analysis of the framework on synthetic 3D data, spanning
from “linear” and unimodal to more complex multi-modal ones. oblique-plane assumes the
data distribution pdata lives on a 2D subspace with equation x+ y + z = 30, while 3-gaussians,
a multi-modal 3D Mixture of Gaussians defined as 1

3N ([10, 10, 10], σ) + 1
3N ([20, 20, 20], σ) +

1
3N ([10, 30, 30], σ) and σ = 0.25. Regarding higher-dimensional data, we built the analysis on the
data generated after linearizing, using PCA (Abdi & Williams, 2010), the “Smithsonian Butterflies" 1

image dataset. After fitting a 25 dimensional subspace, retaining 70% of the sample’s variance, we
sampled data according to x′ = µ+

∑
i λiαiUi. Sampling stochasticity comes from α ∼ N (0;σ),

while µ ∈ R3072, U ∈ R25×3072, and λi are the mean, dataset’s principal components and its
singular values. Finally, we discard the real data, fitting the DM on {x′}Ni=1. This allows to perfectly
measure distance between the DM generated samples and the linearized distribution, measuring
the closed-form reconstruction error ρ =

∥∥x0(θ) − UU⊤x0(θ)
∥∥ between the data subspace

and the generations, where x0(θ) is generated iterating on Eq. (4). We also use the measure Peak
Signal-to-Noise Ratio (PSNR) from image processing (Hore & Ziou, 2010).

Noise model tested. We analyze the framework on different noise models. First, we consider inlier
noise, implemented by increasing the sampling variance σ or, in the case of subspace µ+

∑
i λiαiUi,

increasing the α. We then include outliers by adding strong noise in the ambient space: for 3D data,
we add a point cloud with dense, grid-like, uniform noise; for butterflies, we add Gaussian
noise on the linearized data as x′+z where z ∼ N (0, σI). Figs. 2 and 3 show the proposed ablations.

1huggingface.co/datasets/huggan/smithsonian_butterflies_subset

3

https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

PSNR ↑ ρ =
∥∥x0(θ) − UU⊤x0(θ)

∥∥ ↓

Epochs Epochs

DDPM Robustran Robustadv Invλ=0.03 Invλ=0.3

R
eg

ul
ar

da
ta

se
t

N
oi

sy
da

ta
se

t

x′

x′ + z

x0(θ) - DDPM

x0(θ) - Robustadv

Figure 3: (left) On butterflies, we report the closed-form reconstruction error. From top to
bottom: training data, corrupted data, DDPM-generated samples, and Robustadv results. (right) The
chart columns display PSNR and closed-form reconstruction error measured on clean data (top)
and on data corrupted at 90% with Gaussian noise (σ = 0.1) (bottom). We also include results for
invariance regularization with λ = {0.3, 0.03}; these settings prevent the model from properly pdata.

2.3 ADVERSARIAL TRAINING FOR DIFFUSION MODELS

Diffusion processes rely on the denoising function mapping the noisy distribution qt to the data
distribution pdata, learned from optimizing LDM (see Eq. (3)), which ensures the model to learn the
score field correctly, guiding the trajectories toward the data distribution. When defining the AT
procedure, applying the standard AT (Szegedy et al., 2014) could hinder the learning process. We,
indeed, propose an AT technique that inherits its principles from TRADES (Zhang et al., 2019), and
accordingly acts as a distribution-level regularization.

Naïve invariance does not work. As for AT, we aim to guarantee that the model maintains a
constant behavior in its predictions, whether the input sample is corrupted or not. To accom-
plish this, standard AT imposes invariance in the classification domain; conversely, for DMs,

Linv = λ argmin
θ

∥∥ϵθ(xt + δ, t
)
− ϵθ

(
xt, t

)∥∥2

2

(5)

performing a regression task, invariance does not
guarantee the same result. Fig. 2 shows that applying
classical AT invariance as in Eq. (5), causes DMs
to learn a different distribution than pdata(x), rooting the generation to produce noisy data. This
finding translates also to higher-dimensional data: Fig. 3 (right, bottom row) shows both qualitative
samples and quantitative results applying the invariance to butterflies noisy data (90% corrupted
samples, σ = 0.1). The model, indeed, only recovers the distribution knowledge as the weight λ
decreases. When moving to real data, applying invariance resulted in worse FID, achieving 356.9 on
50K generated samples from a DM trained on the CIFAR-10 dataset.

Algorithm 1 AT for Diffusion Models

Input: dataset D, model θ, max timestep T ,
scheduler αt, strength λ, ray scheduler rβ(t)
repeat

Sample x0 ∼ D, ϵ ∼ N (0, I),
t ∼ U({0, . . . , T}), β ∼ U [0.5, 2],
δ ∼ U [−rβ(t), rβ(t)]
xt =

√
ᾱtx0 +

√
1− ᾱtϵ

Compute δadv using Eq. (8)
xadv
t =

√
ᾱtx0 +

√
1− ᾱt(δadv + ϵ)

θ ← θ − η∇θLAT(xt,x
adv
t , t, ϵ) Eq. (6)

until convergence

Key change is equivariance. Starting from an ϵ-
predicting DM, we defined the AT taking into ac-
count the need for input sensitivity of the model
by enforcing equivariance. The intuition is de-
picted in the introductory Fig. 1 and a theoretical
discussion is given in Section A.1. Since the main
aim is to keep the model rooted to the data distri-
bution, despite the additional perturbations δ, the
network must learn to correctly recover the previ-
ous state xt−1 starting from xt + δ. This objective
is reached by taking into account δ in the AT loss
as argminθ

∥∥ϵθ(xt+δ, t
)
− [ϵ+ δ]

∥∥2
2
. While this

equation enforces equivariance, it does not yet en-
force smoothness, since two outputs of the network
do not interact with each other.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Our Training. In this work, we propose an adversarial loss suited for ϵ-predicting DMs. Given a
timestep t and an initial sample x0 ∼ pdata, we define xt as in Eq. (2), and its perturbed counterpart
xt + δ. AT is then defined as a regularization of the standard DM objective. The adversarial
regularization term, Lreg, aims to promote local equivariance and smoothness along the regular DM
trajectories, which is achieved by locally minimizing the difference between the model’s prediction
on xt and xt + δ. The complete loss is given in Eq. (6), where the adversarial component is weighted
by a time-dependent coefficient λt. AT procedure is detailed in Algorithm 1.

LAT(xt,xt + δ, t, ϵ) = argmin
θ

∥∥ϵθ(xt, t
)
− ϵ

∥∥2
2︸ ︷︷ ︸

LDM to fit data distr.

+λt

∥∥ϵθ(xt + δ, t
)
− [ϵθ

(
xt, t

)
+ δ]

∥∥2
2︸ ︷︷ ︸

Lreg to enforce smoothness

(6)

2.4 ADVERSARIAL PERTURBATION IN THE DIFFUSION PROCESS

Injecting noise in the trajectory space. Learning a diffusion process requires itself to corrupt natural
data iteratively during its training. In this context, the adversarial perturbation can be considered as
an additional noise component injected into xt during the training. Therefore, defining the sample’s
adversarial counterpart xt + δ so that it does not interfere with the diffusion process, requires a
proper and careful tuning of the perturbation parameters, accounting for both the DM objective
and the intermediate noisy data distributions xt ∼ N (xt−1, σtI). To ensure compatibility with the
diffusion process (Wang & Vastola, 2023; Wang & Vastola), we bound the adversarial noise by a
time-varying radius r(t) =

∥∥δ(t)∥∥
p
, dependent on σ(t) values, to maintain model stability and avoid

mode collapse due to diffusion trajectories merging. Specifically, allowing the ray to grow too large
in some diffusion phases, like the content phase of generation (Choi et al., 2022), can lead to data
over-smoothing, causing the model not to capture the correct distribution. We define xt + δ as:

xt+δ =
√
αtx0+

√
1− αt (ϵ+δ),where δ ∈

[
−rβ(t), rβ(t)

]
, rβ(t)

.
=

(
√
1− αt)

ω + γ · β√
1− αt

(7)

where ϵ ∼ N (0, I) and the exponent ω ≥ 1 guiding the ray scheduling, whose effect is shown in
Fig. 2 (c). Finally, we propose retaining a randomized bias term γ · β with β ∼ U [0.5, 2], γ ∈ R+,
whose aim is to prevent regularization annealing as t→ 0 and avoid data under-smoothing.

Smoothing perturbations. The adopted smoothing perturbation could be either random δran, akin to
randomized smoothing Cohen et al. (2019), or adversarial δadv, as in AT Goodfellow et al. (2015).

Random: This approach requires the perturbation δran to be sampled randomly in a uniform distribution,
limited by rβ(t), defined as in Eq. (7). Being the ray itself randomized through the variable β, δran

would then be a uniform random variable whose standard deviation is rβ(t)/
√
3, proof in Section C.3.

Adversarial: In the adversarial setting, we employ the Fast Gradient Sign Method (FGSM) with a
random start (Kurakin et al., 2017). The perturbation is first initialized as δran, then followed by a
single FGSM step. The resulting perturbation is then projected back onto the ℓ∞ ball of radius rβ(t)
to ensure ∥δadv∥∞ ≤ rβ(t). The optimization δadv considers the following cost function:

Jθ(xt, δ, t) =
∥∥ϵθ(xt+δ, t

)
−ϵθ

(
xt, t

)∥∥2
2
, δadv = Prβ(t)

[
δran+

rβ(t)√
3
S
(
∇xt
Jθ(xt, δran, t)

)]
(8)

where Prβ(t) projects the adversarial perturbation onto the surface of xt’s neighbor ℓ∞-ball , S is
the sign operator and rβ(t)/

√
3 is the standard deviation of the attack. Once the attack magnitude is

defined, we define the AT regularization strength as λt =
λ·

√
3

β·r(t) , dependent on the perturbation norm
via its standard deviation and on a global constant λ ∈ R+.

3 EXPERIMENTAL RESULTS

Experimental setup. We present results on datasets ranging from controlled synthetic 3D data to com-
plex, real-world multi-modal data, presenting results “in vitro” to precisely measure errors in both low-
and high-dimensional settings We further offer results on real datasets such as CIFAR-10 (Krizhevsky
et al., 2009) (50K images, 32× 32 pixels), CelebA (Liu et al., 2015) (202K images, 64× 64 pixels),
LSUN Bedroom (Yu et al., 2015) (303K images, 256× 256 pixels), and ImageNet (1.28M images,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Ho et al. (2020), σ = 0.2 Robustadv, σ = 0.2 Ho et al. (2020)

σ
=

0.
1

Robustadv

σ
=

0
.2

DDPM, σ = 0.1 DDPM, σ = 0.2 Robustadv, σ = 0.1 Robustadv, σ = 0.2

Figure 4: (top-left) Despite 90% of training data being corrupted with Gaussian noise, Robustadv
generates smooth objects without artifacts, while DDPM retains noise. σ = 0.2 equals adding 40%
of CIFAR-10 variability (σdata = 0.5). (top-right) DDPM generates bedrooms that are irregular and
unrealistic propagating the noise whereas Robustadv bedrooms are smooth and neat. (bottom) Results
on CelebA. DDPM replicates noise, while ours discards it and produces cleaner faces.

64× 64 pixels as in Daras et al. (2024a)), quantitatively evaluating samples, using established metrics
such as IS (Salimans et al., 2016) and FID (Heusel et al., 2017). Following Daras et al. (2024c;a),
we experiment with Gaussian noise as corruption pnoise(x) and only work in challenging settings,
testing a percentage p of corrupted data of p = 90% with two levels of σ = {0.1, 0.2}. However,
our method does not take into account the distinction between clean and noisy samples nor requires
knowledge of the corruption variance σ. When computing FID, we always test on the clean dataset
despite training with noisy datasets. Our methods are indicated by Robustadv when using adversarial
perturbation and Robustran if random. We show additional experiments that support our claims on less
memorization, faster sampling, and robustness to attacks. We set ω = 2, γ = 8/255 and λ = 0.3:
across datasets, we have observed that when raising it to 0.5 we get an over-smoothing effect while
low values prevent too much denoising. The adopted DDPM baseline is Nichol & Dhariwal (2021),
whose available implementation was adopted as codebase.

3.1 EVALUATION USING DDPM AND DDIM

Controlled Experiments. Fig. 3 (right) shows the results when training on high dim. data living on a
subspace. When training on the clean, regular dataset, the baseline and our Robust DMs perform
similarly though Robustran has slightly better PSNR. When we train on the noisy dataset, {x′+ z}Ni=1,
then both Robust DMs offer superior performance (orange and blue curves) with wide gaps compared
to the baseline (green curve) in both PSNR and reconstruction error. Specifically Robustadv appears
to be better at noise unlearning. DDPM generations often consist in samples with saturated colors
that are unlikely to be found in the training set while our method has better fidelity—see Fig. 3(left).

DDPM Ho et al. (2020) Robustadv

Figure 5: Despite the FID increasing once
trained on clean data, images by Robustadv appear
smoother and background clutter is removed.

Random or adversarial perturbation? We can
also reply to this question by ablating on δadv
and δran. Table 1 (top) shows that the adversar-
ial perturbation can guarantee a much stronger
denoising effect than random, yet is more expen-
sive for training. The impact of our Eq. (6) is
remarkable even in the case of random perturba-
tion with an FID far below the baselines.

Resistant to noise by design. Table 2 compares
our approach with the baseline DDPM and
DDIM on CIFAR-10, CelebA, and LSUN Bedroom, yet corrupted with shite noise. We show
that , if we apply our method to the original dataset with no noise (p = 0%), we only get a slight
increase in the FID. However, if we visually inspect the results, we discover that ours is actually

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Top: Random vs adv. noise. Bot-
tom: Robustadv allows fewer steps for bet-
ter FID. Results on CIFAR-10.

σ → 0.1 0.2
metrics→ FID IS FID IS

Robustran 79.21 5.21 68.04 4.34
Robustadv 24.70 7.21 24.81 7.07

steps→ 300 500
metrics→ FID IS FID IS

DDPM 224.38 3.33 28.07 8.46
Robustadv 37.89 6.39 24.34 7.53

Table 2: Performance under different noise levels on
different real datasets. Values indicate FID ↓ / IS ↑.

p % σ DDPM Robustadv DDIM Robustadv

CIFAR-10
0 0 7.2 / 8.95 28.68 / 7.04 11.62 / 8.36 31.20 / 6.38
0.9 0.1 58.05 / 6.93 24.70 / 7.21 59.28 / 6.89 25.48 / 6.85
0.9 0.2 102.68 / 4.19 24.81 / 7.07 105.43 / 4.09 24.93 / 6.69

CelebA
0 0 3.49 / 2.61 19.83 / 2.13 6.19 / 2.61 17.59 / 2.18
0.9 0.1 54.90 / 2.40 14.54 / 2.09 41.29 / 2.48 17.98 / 2.22
0.9 0.2 96.03 /2.65 16.53 / 2.11 89.28 / 2.62 20.24 / 2.20

LSUN Bedroom
0 0 9.90 / 2.31 57.13 / 2.34 27.00 / 3.15 48.80 / 2.39
0.9 0.1 53.81 / 3.33 44.07 / 2.35 50.53 / 3.19 48.90 / 3.96
0.9 0.2 95.85 / 4.08 44.27 / 2.50 82.20 / 4.39 61.98 / 3.66

smoothing background features, but still outlines of the objects are visible, as shown in Fig. 5
and Section E. When we switch to noisy settings, we have a large improvement over the baseline for
both DDPM and DDIM. We highlight that while the baseline FIDs skyrocket to very high values for
p = 90%, σ = 0.2, the Robustadv can keep it in a reasonable range, generating images unaffected by
the noise. We also provide early results on the ImageNet (Russakovsky et al., 2014) dataset, which
comprises 1.28M images, downsampled at a resolution of 64×64 pixels following Daras et al. (2024a).
The regularization also works effectively on this more complex dataset, resulting in a decrease in FID
from 97.6 to 83.8 for p = 90%, σ = 0.1 and from 129.4 to 80.3 for p = 90%, σ = 0.2. Quantitative
evaluations are provided in Table 2, showing major improvement of the regularized training over
standard training. Fig. 4 illustrates our method’s benefits on the proposed datasets under noisy data
conditions. More results and images are available in the appendix.

Time complexity. Training with AT strongly impacts training time due to the overhead of computations
needed. DDPM training operations comprehend a single forward pass to get model prediction and a
backward pass for weights update. Our regularization adds a backward pass to obtain adversarial
loss gradients over the perturbation and doubles the same DDPM operations. The time complexity is
×2.5 for Robustadv, whereas Robustran is less time-consuming since it does not have to backpropagate
for the adversarial perturbation. Despite the training time being higher than the baseline, remarkably,
the inference time is the same as other methods, and we can attain faster sampling—see Section 3.3.

3.2 ROBUST DIFFUSION MODELS MEMORIZE LESS

Following Daras et al. (2024d) we show that Robust DMs are naturally less prone to memorize the
training data. We perform an experiment following Somepalli et al. (2023): using DDPM and our
Robustadv trained on clean CIFAR-10, we synthesize 50K images from each of them and measure
the similarities of those images with the one in the training set, embedding the images with DINO-
v2 Oquab et al. (2023). In Daras et al. (2024d) a similar experiment was done yet using DeepFloyd IF
instead of U-Net DDPM. Although U-Net has much less parameters than DeepFloyd IF—millions vs
billions—one could assume that U-Net will overfit less. Fig. 6 (left) shows that still a decent amount
of generated samples have similarity higher than 0.90. Similarity ≥ 0.9 roughly corresponds to the
same CIFAR image. Robust models have a histogram that is drastically shifted on the left and the
curve of the histogram in the right part decays more rapidly, having less samples in the region ≥ 0.9.

3.3 IMPLICATIONS OF SMOOTH DIFFUSION FLOW

Smooth diffusion flow. Fig. 6 (right) shows the diffusion flow from the standard normal distribution to
the data distribution. To do so, we use DDPM framework and low-dimensional 3D data, projected to
2D for clarity. In oblique-plane, we can see how Robustadv captures less variability, filtering out
noise, while DDPM heatmap is more faded. Moreover, DDPM, misled by the noise, introduces a
very subtle additional mode, whereas ours maintains a unimodal generation. The same remarks hold
for a multi-modal dataset: in 3-gaussians DDPM’s trajectories are distorted by noise, while ours
remain straight, preserving the multi-modal structure (only two modes are visible due to projection).
Trade-off analysis on clean and noisy data. This sharpening of the trajectories leads to a reduction in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.50 0.60 0.70 0.80 0.90 1.00
Similarity Score

0

500

1000

1500

Co
un

t
0.90 0.95
0

100

200

Zoomed View (>0.9)
DDPM

RobustDMadv

Baseline Adv.Baseline Adv.

Baseline Adv.Baseline Adv.Baseline Adv.

RobustadvDDPM Ho et al. (2020)

o
b
l
i
q
u
e
-
p
l
a
n
e

3
-
g
a
u
s
s
i
a
n
s

Figure 6: (left) The histogram shows similarities between generated samples and CIFAR-10, with
values above 0.9 indicating near-duplicates. DDPM memorizes more, while Robustadv reduces near-
replicas. (right) Regular training tends to have diverging trajectories w.r.t. the data distribution, while
Robustadv trades off variability for resilience with trajectories more clustered, sharp, and less faded.

the variance of the generated data, but it does not induce mode collapse. As a result, the generated
images may lose some high-frequency noise and fine details, producing outputs that appear smoother
overall. Nevertheless, by applying regularization as determined by the parameter λ, we can effectively
modulate its action and thus its smoothing effect. The analysis of the regularization effect, depending
on λ of Eq. (6), enables us to define an existing trade-off between image quality and robustness, as
well as denoising capabilities, similar to the widely examined trade-off between robust and clean
accuracy in robust classifiers. Qualitative examples supporting this are provided in Figs. 7 and 25,
where we illustrate how model performance varies when the λ is changed and how it affects both
generation and denoising capabilities.

LSUN Bedroom

λ
=

0
.1

LSUN Bedroom σ = 0.1 LSUN Bedroom σ = 0.2

λ
=

0
.2

λ
=

0
.3

Figure 7: Robustadv trained on LSUN Bedroom dataset, with different noisy data (p = 90%, different
σ are visible in the image) and varying hyperparameter λ ={0.1, 0.2, 0.3}.

Faster sampling. Fig. 6 (right) shows that the diffusion flow of Robustadv is more compact and sharp,
less faded. This could imply that the inference process may still recover the right path in case the
regressed score vector is corrupted or is noisy or in case we deliberately use fewer steps in Eq. (4) for
faster sampling. We tested this hypothesis and the trade-off table of FID in function of the number
of steps taken is shown in Table 1 (bottom). Even more, if we cross compare Table 1 (bottom) with
Table 2, on clean data Robustadv scores a better FID with 500 steps (24.34) vs 1000 steps (28.68).
This experiment supports our claim showing that Robustadv is still able to generate samples with good

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

fidelity even if using fewer inference steps. The degradation using less steps is widely more graceful
than DDPM especially when we take only 300 steps over 1000.

3.4 ROBUSTNESS TO ADVERSARIAL ATTACKS

Algorithm 2 DM Trajectory Attack

Input: attack ratio p, max timesteps T , model
ϵθ, scheduler αt, σ(t), attack strength ϕ;
Sample xT ∼ N (0, I)
for t = T to 0 do
xt−1 ← ϵθ(xt, t)

x̂0 ← xt−
√
1−ᾱtϵθ(xt,t)√

ᾱt

µ̃t(xt, x̂0)←
√
ᾱt−1σ(t)
1−ᾱt

x̂0+
√
αt(1−ᾱt−1)

1−ᾱt
xt

x′
t = xt + δ, δ ∼ N (0, ϕ2σ(t)2I)

x′
t−1 ← ϵθ(x

′
t, t)

x̂′
0 ←

x′
t−

√
1−ᾱtϵθ(x

′
t,t)√

ᾱt

L←
∥∥µ̃t(xt, x̂0)− µ̃t(x

′
t, x̂

′
0)
∥∥2
2

xadv
t = xt + σ(t) · sign(∇xt

L)
xt−1 ← ϵθ(x

adv
t , t)

end for

Our method is naturally resistant to attacks. Like
classifiers, AT enforces robustness to adversar-
ial perturbations in the diffusion flow. We pro-
pose an attack primarily as an analytical tool
to better understand the fundamental sensitivity
of the generative process to perturbations. The
attack takes into account the stochastic nature
of DM inference and the fundamental hypothe-
sis of gaussianity for each diffusion stage. We
propose attacking a DM in a white-box setting
defining a sequence of adversarial perturbations
that could maximally disrupt the trajectory at
some of the intermediate inference steps, defined
as described in Algorithm 2. We also propose
a procedure to determine the range of values of
the perturbation in order to maintain the assump-
tion of the diffusion process; more information
can be found in Section A.2. Fig. 8 shows that
our method is much more robust to attacks in
diffusion flow: Robustadv can tolerate up to 50% of time step attacked and still generate samples with
decent fidelity. Only at 75% time steps attacked, the generation fails for both. The attack illustrated
in Algorithm 2 is a single-iteration attack. In Section A.3, we extend the pool of considered attacks
to include iterative PGD (Madry et al., 2018), and provide the model’s performance in that setting.
In addition, to account for the inherent stochasticity of the diffusion-based inference process, we
evaluate robustness under an Expectation-over-Transformation (EoT) (Athalye et al., 2018). We adopt
this framework in the stronger setting of the PGD attack, as previously introduced. In particular, the
EoT is applied by averaging gradients over five stochastic noise samples. The average gradient is then
used to update the perturbation. The detailed attack implementation can be found in Section A.4. The
table in Fig. 8(b) (bottom) shows that the Robustadv model also effectively demonstrates its resilience
to major disruptions in the diffusion process, as well as robustness to EoT-based attacks.

0.25 0.50 0.75 1.00

50

100

150

200

250

0.25 0.50 0.75 1.00

2

4

6

8

0.25 0.50 0.75 1.00

50

100

150

200

250

0.25 0.50 0.75 1.00

2

4

6

8

25% 50% 75% 100%

D
D

PM
R

ob
us

t ad
v

(a)

FID ↓ w/ FGSM — Algorithm 2 and Section A.2
steps attacked→ 250 500 750 1000

DDPM 49.8 131.7 190.4 243.4
Robustadv 19.29 52.0 90.7 127.7

FID ↓ w/ PGD — Algorithm 3 and Section A.3
steps attacked→ 250 500 750 1000

DDPM 55.7 134.5 200.3 248.1
Robustadv 22.7 55.8 98.1 128.6

FID ↓ w/ EoT-PGD — Algorithm 4 and Section A.4
steps attacked→ 250 500 750 1000

DDPM 57.6 132.7 195.99 248.6
Robustadv 25.9 61.2 100.2 132.6

(b)

Figure 8: (a) Robustness to Adversarial Attacks. While the baseline DDPM is susceptible to
adversarial attacks, Robust DMs better resist them, yielding superior FID and IS for different
percentages of time steps attacked (e.g., 25% means 250 out of 1000 DDPM steps are attacked). (b)
FID under FGSM, PGD and EoT applied to PGD, varying the percentage of attacked timesteps.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4 RELATED WORK

Diffusion models. Score-based generative models (Song & Ermon, 2019) express the inference process
through a Stochastic Differential Equations (SDE) Dhariwal & Nichol (2021). Denoising Diffusion
Probabilistic Models (DDPMs) Ho et al. (2020) first introduced diffusion process as a score-based
generative framework, becoming a standard algorithm in generative modeling on high-dimensional
data, overcoming Goodfellow et al. (2020). DMs not only achieve higher fidelity but also provide a
more stable training. DMs have been extensively improved: working on the logarithmic likelihood
estimate Nichol & Dhariwal (2021), faster sampling Song et al. (2021a), and performing the diffusion
process in the latent space Rombach et al. (2022). Karras et al. (2022; 2024) provide insightful
clarifications on several DMs design choices, introducing improved U-Net architectures that ensure
consistent activation, weight, and update magnitude, achieving state-of-the-art FID on CIFAR and
other benchmarks. Lastly, Song et al. (2023) proposed consistency models, a distillation method for
one-step inference by directly mapping noise to data. The name consistency arises from the fact that
they enforce different noisy versions in the same trajectory to map to the same data. Unlike them, we
do not aim to distill a model, but rather to train one enforcing local smoothness of trajectories within
the same timestep t, so that their score field remains locally consistent.

Denoising and inverse problems with DMs. The attention to apply DMs on corrupted data has in-
creased in recent years (Aali et al., 2023; Xiang et al., 2023; Daras et al., 2024d;a). Given the
specific challenges related to training with noisy data, this problem is closely related to inverse
problems (Tachella et al., 2024; Kawar et al., 2024). Recently, a line of research focused on applying
Stein’s Unbiased Risk Estimator (SURE) (Metzler et al., 2020) and its subsequent improvements,
including UNSURE (Tachella et al., 2024), GSURE (Kawar et al., 2024), Soft Diffusion (Daras et al.,
2024b), and methods leveraging optimal transport for training with noise (Dao et al., 2024).

Adversarial robustness. This topic is loosely linked to denoising since AT can be seen as a way to
remove spurious correlations (Ye et al., 2024) with improved out-of-domain generalization when
transferring to a new domain (Ilyas et al., 2019) or related to causal learning (Zhang et al., 2020;
2022). AT variants have been used to improve domain shift (Salman et al., 2020a) and out of
distribution (Wang et al., 2022). While it is reasonable to say that AT has been extensively studied
on classifiers, its application to DMs remains unexplored, except for Sauer et al. (2024), where it is
applied for fast sampling, Yang et al. (2024), which investigates the batch samples interconnection,
and Lorenz et al. (2024) which found adversarial samples do not align with the learned DM manifold.

Adversarial defenses with denoising or randomized smoothing. Several adversarial defenses leverage
denoising (Salman et al., 2020b; Carlini et al., 2023a) and randomized smoothing (Cohen et al., 2019),
mainly in the context of classifiers. Regarding DMs, Song et al. (2024); Liang et al. (2023); Liang &
Wu (2023) have shown that adversarial perturbations, if applied at inference time, can significantly
disrupt their generative capabilities, leading to deviations from clean data distributions. Further works
introduce the concept of robustness when fine-tuning DMs to make them robust in the context of
adversarial purification (Song et al., 2018; Nie et al., 2022; Lin et al., 2024). While these methods
differ in adversarial samples definition (Li et al., 2025; Liu et al., 2025), they share similar underlying
objectives. Our work introduces AT in Diffusion Models to enforce local smoothness in the score
field, which may help counteract such deviations during the inference procedure. Indeed, unlike Guo
et al. (2024), our work aims to smooth model trajectories, not embeddings (see Section A.5), which
differs from the SmoothDiffusion objective.

5 CONCLUSIONS AND FUTURE WORK

We presented the first attempt to incorporate AT into DM training, demonstrating that AT for
generative modeling entails smoothing the data distribution and can be effectively utilized for
denoising the data. We also show that we need to reinterpret it as equivariant property and not
invariance. Our method has been proven to be highly robust even under 90% of corrupted data with
strong Gaussian noise. In terms of future work, we aim to extend this work to a robust fine-tuning
technique that is applicable to larger, new models with reduced training costs. Preliminary results
are presented in Section F.2. We also plan to extend our method to work in fully corrupted settings
(p = 100%) and port our approach to EDM (Karras et al., 2022; 2024) to scale to larger datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics Statement. Based on our comprehensive analysis, we assert that this work does not raise
identifiable ethical concerns or foreseeable negative societal consequences within the scope of our
study. On the contrary, our contributions aim to enhance the robustness of Diffusion Models against
attacks.

Reproducibility. To ensure reproducibility, we provide a detailed description of our experimental
setup in Section 3 including datasets, models, and adversarial attacks, along with their sources.
The codebase we adopted for building the AT framework is Nichol & Dhariwal (2021), and the
regularization code will be released upon acceptance.

LLM Usage. Large language models were used exclusively for text polishing and minor exposition
refinements. All substantive research content, methodology, and scientific conclusions were developed
entirely by the authors

REFERENCES

Asad Aali, Marius Arvinte, Sidharth Kumar, and Jonathan I Tamir. Solving inverse problems with
score-based generative priors learned from noisy data. In Asilomar Conference on Signals, Systems,
and Computers, 2023.

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In Proceedings of the 35th International Conference on Machine Learning, Proceedings
of Machine Learning Research. PMLR, 2018.

Nicholas Carlini, Florian Tramer, Krishnamurthy Dj Dvijotham, Leslie Rice, Mingjie Sun, and J Zico
Kolter. (certified!!) adversarial robustness for free! In ICLR, 2023a.

Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In
USENIX Security Symposium, 2023b.

Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon.
Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11472–11481, 2022.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In ICML, pp. 1310–1320. PMLR, 2019.

Quan Dao, Binh Ta, Tung Pham, and Anh Tran. A high-quality robust diffusion framework for
corrupted dataset. In ECCV, 2024.

Giannis Daras, Yeshwanth Cherapanamjeri, and Constantinos Daskalakis. How much is a noisy
image worth? data scaling laws for ambient diffusion. arXiv e-prints, pp. arXiv–2411, 2024a.

Giannis Daras, Mauricio Delbracio, Hossein Talebi, Alex Dimakis, and Peyman Milanfar. Soft
diffusion: Score matching with general corruptions. TMLR, 2024b.

Giannis Daras, Alex Dimakis, and Constantinos Costis Daskalakis. Consistent diffusion meets
tweedie: Training exact ambient diffusion models with noisy data. In ICML, 2024c.

Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Klivans.
Ambient diffusion: Learning clean distributions from corrupted data. In NeurIPS, 2024d.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In NeurIPS,
2021.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiayi Guo, Xingqian Xu, Yifan Pu, Zanlin Ni, Chaofei Wang, Manushree Vasu, Shiji Song, Gao
Huang, and Humphrey Shi. Smooth diffusion: Crafting smooth latent spaces in diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS,
volume 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
volume 33, 2020.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pp. 2366–2369. IEEE, 2010.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. In NeurIPS, 2019.

Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Carlini,
Eric Wallace, Shuang Song, Abhradeep Guha Thakurta, Nicolas Papernot, et al. Measuring
forgetting of memorized training examples. In ICLR, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In NeurIPS, 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. In CVPR, 2024.

Bahjat Kawar, Noam Elata, Tomer Michaeli, and Michael Elad. Gsure-based diffusion model training
with corrupted data. TMLR, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, CIFAR, 2009.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In
ICLR, 2017.

Xiao Li, Wenxuan Sun, Huanran Chen, Qiongxiu Li, Yingzhe He, Jie Shi, and Xiaolin Hu. ADBM:
Adversarial diffusion bridge model for reliable adversarial purification. In ICLR, 2025.

Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-df: A new dataset for deepfake
forensics. arXiv preprint arXiv:1909.12962, 2019.

Chumeng Liang and Xiaoyu Wu. Mist: Towards improved adversarial examples for diffusion models.
arXiv preprint arXiv:2305.12683, 2023.

Chumeng Liang, Xiaoyu Wu, Yang Hua, Jiaru Zhang, Yiming Xue, Tao Song, Zhengui Xue, Ruhui
Ma, and Haibing Guan. Adversarial example does good: preventing painting imitation from
diffusion models via adversarial examples. In Proceedings of the 40th International Conference on
Machine Learning (ICML 2023), ICML’23. JMLR.org, 2023.

Guang Lin, Chao Li, Jianhai Zhang, Toshihisa Tanaka, and Qibin Zhao. Adversarial training on
purification (ATop): Advancing both robustness and generalization. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=u7559ZMvwY.

Yiming Liu, Kezhao Liu, Yao Xiao, ZiYi Dong, Xiaogang Xu, Pengxu Wei, and Liang Lin. Towards
understanding the robustness of diffusion-based purification: A stochastic perspective. In ICLR,
2025.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
ICCV, 2015.

12

https://openreview.net/forum?id=u7559ZMvwY
https://openreview.net/forum?id=u7559ZMvwY

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Peter Lorenz, Ricard Durall, and Janis Keuper. Adversarial examples are misaligned in diffusion
model manifolds. In 2024 International Joint Conference on Neural Networks (IJCNN), pp. 1–8.
IEEE, 2024.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

Christopher A Metzler, Ali Mousavi, Reinhard Heckel, and Richard G Baraniuk. Unsupervised
learning with stein’s unbiased risk estimator. arXiv preprint arXiv:1805.10531, 2020.

Mirza Mujtaba Hussain, Briglia Maria Rosaria, Beadini Senad, and Masi Iacopo. Shedding more
light on robust classifiers under the lens of energy-based models. In ECCV, 2024.

Andre T Nguyen and Edward Raff. Adversarial Attacks, Regression, and Numerical Stability
Regularization. In The AAAI-19 Workshop on Engineering Dependable and Secure Machine
Learning Systems, 2019. URL https://arxiv.org/pdf/1812.02885.pdf.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, 2021.

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.
Diffusion models for adversarial purification. In ICML, 2022.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. TMLR, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. IJCV, pp. 1–42, 2014.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for training gans. In NeurIPS, 2016.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversari-
ally robust imagenet models transfer better? In NeurIPS, 2020a.

Hadi Salman, Mingjie Sun, Greg Yang, Ashish Kapoor, and J Zico Kolter. Denoised smoothing: A
provable defense for pretrained classifiers. NeurIPS, 2020b.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. In ECCV, 2024.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In NeurIPS, 2019.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
art or digital forgery? investigating data replication in diffusion models. In CVPR, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021a.

Kaiyu Song, Hanjiang Lai, Yan Pan, and Jian Yin. Mimicdiffusion: Purifying adversarial perturbation
via mimicking clean diffusion model. In CVPR, 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples. In ICLR,
2018.

13

https://arxiv.org/pdf/1812.02885.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023.

Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and R. Venkatesh Babu. Guided adversarial
attack for evaluating and enhancing adversarial defenses. In NeurIPS, 2020.

Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, et al. Towards efficient and effective
adversarial training. NeurIPS, 2021.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

Julián Tachella, Mike Davies, and Laurent Jacques. Unsure: Unknown noise level stein’s unbiased
risk estimator. arXiv preprint arXiv:2409.01985, 2024.

Binxu Wang and John Vastola. The unreasonable effectiveness of gaussian score approximation for
diffusion models and its applications. Transactions on Machine Learning Research.

Binxu Wang and John J Vastola. Diffusion models generate images like painters: an analytical theory
of outline first, details later. CoRR, 2023.

Qixun Wang, Yifei Wang, Hong Zhu, and Yisen Wang. Improving out-of-distribution generalization
by adversarial training with structured priors. NeurIPS, 2022.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In ICLR, 2020.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
models further improve adversarial training. In ICML, 2023.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. In
ICLR, 2020.

Tiange Xiang, Mahmut Yurt, Ali B Syed, Kawin Setsompop, and Akshay Chaudhari. Ddm2̂:
Self-supervised diffusion mri denoising with generative diffusion models. arXiv preprint
arXiv:2302.03018, 2023.

Ling Yang, Haotian Qian, Zhilong Zhang, Jingwei Liu, and Bin Cui. Structure-guided adversarial
training of diffusion models. In CVPR, 2024.

Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, Xia Hu, and Aidong Zhang. Spurious
correlations in machine learning: A survey. arXiv preprint arXiv:2402.12715, 2024.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-
scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365,
2015.

Cheng Zhang, Kun Zhang, and Yingzhen Li. A causal view on robustness of neural networks. In
NeurIPS, 2020.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In ICML, 2019.

Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard
Schölkopf, and Kun Zhang. Adversarial robustness through the lens of causality. In ICLR, 2022.

Yao Zhu, Jiacheng Ma, Jiacheng Sun, Zewei Chen, Rongxin Jiang, Yaowu Chen, and Zhenguo Li.
Towards understanding the generative capability of adversarially robust classifiers. In ICCV, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THEORETICAL CONSIDERATIONS ON ADVERSARIAL TRAINING FOR DIFFUSION MODELS

To craft an appropriate adversarial loss, at first, forward and reverse processes are redefined in light of
this further intermediate state. The main aim of performing adversarial training on a diffusion model
is to enhance the robustness capability against adversarial attacks in its reverse process by providing
the algorithm with some data that has previously been corrupted. We model this corruption process as
an additional chain state, and in this section, we provide a theoretical discussion for this assumption.

A.1.1 THE FORWARD PROCESS

The theoretical definition of the DDPM forward process is the following:

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) , q(xt|xt−1) = N
(
xt;

√
1− σ(t)xt−1, σ(t)I

)
.

where q(xt | xt−1) represents the transition probability of the process to move from the state xt−1 at
the timestep t−1 to the state xt at the timestep t. To achieve the aim of integrating the perturbation in
the framework, the forward chain can be redefined considering a different dynamic of the adversarial
forward process. A sample at the time step t is first derived as defined above, and then to it is added
an adversarial perturbation δθ,t that depends on the model’s actual state and on the value of xt. The
overall attack procedure to the model intermediate steps can be represented as a concatenation of two
transitions. The primary step is the ordinary DDPM transition from xt−1 to xt, which is modeled
as q(xt | xt−1). The attack transition can be modeled as the step that goes from xt to xt + δt in
the t-th timestep, being defined similarly as above q′(xt + δ | xt). The two transitions are designed
to happen in the same time step t of the chain and, being independent of each other, it is possible
to model their interaction as a sub-sequence of steps of a Markov Chain. This is possible since the
transition xt−1 → xt is already modeled like this and xt → xt + δt depends only on the weights of
the model (which are constant when crafting the attack, so considerable as constant within the same
evaluation) and the value of xt conceived as “previous state”. The resulting transition probability
q′′(xt + δt | xt−1) is:

q′′(xt + δt | xt−1) = q′(xt + δt | xt) · q(xt | xt−1).

The overall chain can be written as:

q′′ (x1:T + δ1:T | x0) =

T∏
t=1

q′(xt + δt | xt) · q (xt | xt−1) .

with q(xt|xt−1) = N
(
xt;

√
1− σ(t)xt−1, σ(t)I

)
. Being q(·) a Gaussian transition and being the

perturbation addition still modeled as a Gaussian transition, the DM hypothesis of having only
intermediate Gaussian transitions still holds.

A.1.2 REVERSE PROCESS

The reverse process in the diffusion models aims to define an algorithm that approximates the forward
function and makes it possible to reconstruct the input. In the DDPM formulation, the backward
process is defined as:

pθ (x0:T) := p (xT)

T∏
t=1

pθ (xt−1 | xt) , pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) .

Following the previous substitutions, the desired equivalence when applying perturbations in the
forward process would be :

p(xt + δt | xt−1) = q′′(xt + δt | xt−1).

that, if considering its approximation, reduces to:

p(xt−1 | xt + δt) ∝ p(xt + δt | xt−1) · p(xt−1).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

This consideration holds also in this case, so if we substitute the objective distributions p(·) with the
desired ones we get:

p(xt−1 | xt + δt) ∝ p(xt−1) · q′′(xt + δt | xt−1) = p(xt−1) · q′(xt + δt | xt) · q(xt | xt−1).

The above equations hold in case the reverse process is defined in closed form, while in our case the
reverse function is a learned function by pθ(·), which is designed and learned to properly converge to
pdata(x) at a specific timestep 0 of the chain. To properly learn this objective, the network is trained
to learn to regress the amount of noise added in the forward process by minimizing the following
simplified objective:

L(xt;θ) =
∥∥ϵ− ϵθ(xt, t)

∥∥2
2

where ϵ ∼ N (0, I) given t ∈ [0, . . . , T]. (9)

where q′(xt + δt | xt) represents the transition probability of going from the state xt to the state
x′
t = xt + δt in the same timestep t, the transition from an uncorrupted state to a corrupted one

through δt. In this case, there is no modeling available as the distribution depends on the kind of
attack being performed during the training proces,s but also depends on the state of the model, as the
attack is crafted in white box mode:

δθ,t = arg
∥δ∥≤ε

max
∥∥ϵθ(xt + δ, t

)
− ϵθ

(
xt, t

)∥∥2
2
.

Given the proposed setting, the aim is to define a cost function that allows for modeling the correct
xt−1 when considering the inverted process. The probability distribution that the reverse process
needs to learn is:

pθ(xt−1 | xt + δθ,t) ∝ pθ(xt−1 | xt)p
′
θ(xt | xt + δθ,t).

A.1.3 VARIATIONAL LOWER BOUND IN CASE OF PERTURBATION

The Diffusion Models loss function is derived from an optimization regarding the variational lower
bound. The ELBO is defined canonically as:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T)

q(x1:T | x0)

]
= Eq

[
− log(pxt

)−
∑
t≥1

log
pθ(xt−1 | xt)

q(xt | xt−1)

]
:= L

(10)
and the Diffusion Model loss derivation is the following:

L = Eq

[
− log

pθ (x0:T)

q (x1:T | x0)

]

= Eq

− log p (xT)−
∑
t≥1

log
pθ (xt−1 | xt)

q (xt | xt−1)


= Eq

[
− log p (xT)−

∑
t>1

log
pθ (xt−1 | xt)

q (xt | xt−1)
− log

pθ (x0 | x1)

q (x1 | x0)

]

= Eq

[
− log p (xT)−

∑
t>1

log
pθ (xt−1 | xt)

q (xt−1 | xt,x0)
· q (xt−1 | x0)

q (xt | x0)
− log

pθ (x0 | x1)

q (x1 | x0)

]

= Eq

[
− log

p (xT)

q (xT | x0)
−
∑
t>1

log
pθ (xt−1 | xt)

q (xt−1 | xt,x0)
− log pθ (x0 | x1)

]

= Eq

[
DKL (q (xT | x0) ∥p (xT)) +

∑
t>1

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))− log pθ (x0 | x1)

]
.

In light of the previous considerations of the forward and backward process, it is possible to reconsider
ELBO derivation as follows:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

L = Eq

[
− log

pθ(x0:T)

q′′(x1:T | x0)

]
= Eq

[
− log

pθ(xT)
∏T

t=1 pθ(xt−1 | xt + δt)∏T
t=1 q(xt | xt−1) q′(xt + δt | xt)

]

= Eq

− log p(xT)−
∑
t≥1

log
pθ(xt−1 | xt + δt)

q(xt | xt−1) q′(xt + δt | xt)


= Eq

− log p(xT)−
∑
t≥1

log
pθ(xt−1 | xt)

q(xt | xt−1)
−

∑
t≥1

log
p′θ(xt | xt + δt)

q′(xt + δt | xt)


= Eq

[
− log p(xT)−

∑
t>1

log
pθ(xt−1 | xt)

q(xt−1 | xt,x0)

q(xt−1 | x0)

q(xt | x0)

−
∑
t>1

log
p′θ(xt | xt + δt)

q′(xt | xt + δt,x0)

q′(xt | x0)

q′(xt + δt | x0)

]

= Eq

[
− log

p(xT)

q′′(xT | x0)
−
∑
t>1

log
pθ(xt−1 | xt)

q(xt−1 | xt,x0)

−
∑
t>1

log
p′θ(xt | xt + δt)

q′(xt | xt + δt,x0)

q′(xt | x0)

q′(xt + δt | x0)

]
− Eq [log pθ(x0 | x1)− log p′θ(x0 | x1 + δ1)]

= Eq

[
− log

p(xT)

q′′(xT | x0)
−
∑
t>1

log
pθ(xt−1 | xt)

q(xt−1 | xt,x0)

−
∑
t>1

log
p′θ(xt | xt + δt)

q′(xt | xt + δt,x0)
− log pθ(x0 | x1)− log p′θ(x0 | x1 + δ1)

]
. (11)

The components to be optimized can be seen as two KL-divergences, recalling the formal definition
of DDPM optimization. To lower the loss functions the two resulting KL divergences have to be
reduced by optimizing both the measure of divergence between the forward xt and the approximated
one, by correctly estimating the ϵ and the measure of the δt noise is added to xt at the timestep t.
This distance measure is represented by the second KL divergence. To transition from the notation
q(xt | xt−1) to q(xt−1 | xt,x0) it is first necessary to apply Bayes theorem and the chain rule of
probability—the exact same reasoning can be used for the second sum.

1. Start with the conditional probability distribution q′(xt | xt−1).

2. Apply Bayes’ theorem to express q′(xt | xt−1) in terms of q′(xt−1 | xt):

q(xt | xt−1) =
q(xt−1 | xt) · q(xt)

q(xt−1)
.

3. Now, consider conditioning on an additional variable x0. According to the chain rule of
probability, we have:

q(xt−1,xt) = q(xt−1 | xt) · q(xt).

4. We want to express q(xt−1 | xt) in terms of x0 as well. So, we can rewrite the joint
distribution q(xt−1,xt) as q(xt−1 | xt,x0) · q(xt,x0).

5. Use the chain rule again to break down q(xt,x0):

q(xt,x0) = q(xt | x0) · q(x0).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

6. Substituting these expressions back into our Bayes’ theorem-derived expression, we get:

q(xt | xt−1) =
q(xt−1 | xt,x0) · q(xt | x0)

q(xt−1 | x0)
.

7. Rearrange terms to isolate q(xt−1 | xt,x0), yielding the desired expression:

q(xt−1 | xt,x0) =
q(xt | xt−1) · q(xt−1 | x0)

q(xt | x0)
.

A.2 ATTACK FORMULATION

In inference mode, it is possible to represent the inverse Markov Chain as the sequence of intermediate
realizations of Gaussian distributions with fixed parameters regarding mean scaling and variance
scaling. From the paper Ho et al. (2020) in Eqs. 6 and 7 the t-th step of the inference can be written
as the sampling from the posterior distribution q(xt−1|xtt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), where:

µ̃t(xt,x0) :=

√
αt−1σ(t)

1− αt
x0 +

√
αt(1− αt−1)

1− αt
xt, β̃t :=

1− αt−1

1− αt
σ(t).

This implies that, at each time step, the expected variance and mean of the distribution are defined
in a specific manner. During inference, the value of x0 corresponds to the output obtained after the
network’s prediction. In the context of the DDPM framework, x0 is replaced by the estimated value,
which depends on the epsilon-predicting network:

x̂0 =
xt −

√
1− αtϵθ(xt)√

αt
,

To properly craft the attack and still consider it legitimate, it is essential to scale it to the correct
standard deviation to align with the diffusion process. Failing to do so would result in the network’s
inference being affected not by the perturbation itself but by the incorrect range of the perturbation,
causing errors due to the inability to maintain the process within its Gaussian assumptions.

In this context, the attack procedure follows the FGSM approach with a random start. However, the
perturbation is then scaled to match the appropriate variance at timestep t to maintain consistency
with the diffusion process. The FGSM attack generates an adversarial example by perturbing the
noisy sample xt in the direction of the gradient of a cost function L with respect to xt. Specifically,
the adversarial perturbation is given by:

x′
t = xt + ϕ · sign

(
∇xt
L(xt)

)
,

where ϕ controls the magnitude of the perturbation, sign(·) represents the element-wise sign function.

The adversarial attack in this approach is integrated into the diffusion process by leveraging the
predictive functions, including a variance-handling mechanism defined in the model, in order to guar-
antee concretely adapting to the Gaussian hypothesis of the reverse Markov Chain. The adversarial
attack begins with perturbing the input xt defining its x′

t as:

x′
t = xt + δ, δ ≜ N (0, ϕ2 · σ(t)2).

The cost function for the adversarial attack is theoretically defined based on the mean prediction:

LFGSM =
∥∥µ̃t(xt,x0)− µ̃t(x

′
t,x0)

∥∥2
2

where µ̃t represents the predicted mean of the diffusion process at time step t, which depends on
both the input, respectively the clean sample xt and the adversarial one x′

t, and the original sample
x0. The optimization goal is to maximize the discrepancy between the predicted means of the clean
and adversarial inputs, ensuring that the perturbation effectively disrupts the reverse diffusion process.
This cost function, if considered in light of the model’s prediction in the ϵ-prediction setting, can be
formulated as:

Jθ(xt, δ, t) =
∥∥ϵθ(xt + δ, t

)
− ϵθ

(
xt, t

)∥∥2
2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

To compute the adversarial perturbation δ, the gradient of the loss Jθ with respect to x′
t is used:

δ = σ(t) · sign (∇xt
Jθ(xt, δ, t)) ,

where σ(t) scales the perturbation to ensure it adheres to the variance of the Gaussian noise in the
reverse diffusion process at the t-th step. This step aligns the adversarial attack with the stochastic
nature of the model, ensuring the perturbation remains consistent with the Gaussian hypothesis.

The final adversarial example is then obtained as:

xadv
t = xt + δ.

The adversarially perturbed sample xadv
t is fed back into the reverse diffusion process, following the

recurrence of the inference.

A.3 ITERATIVE ATTACK

In Algorithm 2, we described the attack version that applies a single-step attack procedure applied to
each and every inference timestep. In this section, we propose a multi-step attack approach based
on the PGD iterative attack that, similarly to what was described in the previous algorithm, aims to
attack model generation at the timestep level. We again highlight that this attack is not intended as a
practical attack proposed in this paper; the main aim of showing this attack approach is to provide a
procedure to assess the abilities of the DM to be resilient against minor perturbations applied to every
sampling iteration. In Algorithm 3 we propose the multi-step approach, implemented by applying at
every iteration the PGD-20 attack. In this case, being the attack iterative, it is necessary to project at

Algorithm 3 Adversarial Attack on a Diffusion Model.

Input: percentage of attacked timesteps p, total timesteps T , model ϵθ, scheduler values αt and
σ(t), perturbation strength ϕ, iterations N, the projection operator P
xT ∼ N (0, I)
for t = T to 0 do
σ(t)← exp

(
1
2 log σ

2
t

)
xt−1 ← ϵθ(xt, t)

x̂0 ← xt−
√
1−ᾱtϵθ(xt,t)√

ᾱt

µ̃t(xt, x̂0)←
√
ᾱt−1σ(t)
1−ᾱt

x̂0 +
√
αt(1−ᾱt−1)

1−ᾱt
xt

δ0 ∼ N (0, ϕ2σ2(t)I)
for n = 0 to N − 1 do

x′
t,n = xt + δn;

x′
t−1,n ← ϵθ(x

′
t,n, t)

x̂′
0,n ←

x′
t,n−

√
1−ᾱtϵθ(x

′
t,n,t)√

ᾱt

L =
∥∥µ̃t(xt, x̂0)− µ̃t(x

′
t,n, x̂

′
0,n)

∥∥2
2

δn+1 = σ(t)/N · sign(∇xt
L)

end for
δ = P(δ,−σ(t), σ(t))
xadv
t = xt + δ

Sample ζ ∼ N (0, I)
xt−1 ← ϵθ(x

adv
t , t) + 1t>0 σ(t) ζ

end for

the end the perturbation in order to keep its values within the range [−σ(t), σ(t)]. These values have
been chosen following the Gaussianity hypothesis of the intermediate MC states. Diffusion models
model intermediate data through intermediate Gaussian distributions where the possible values would
have standard deviation σ(t). In order not to diverge too much from data distribution and be in a
suitable range of possible values, we decided to impose as a ray of the projection interval the same
standard deviation, making it also adaptive to the considered timestep. The table Section 3.4 shows
model performance under this PGD-like version of a diffusion model attack.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.4 EOT ATTACK

In this section, we present a PGD-based implementation of the Expectation over Transformation
attack (EoT). We build on top of the previously introduced PGD attack (Algorithm 3) in order to
define an EoT adapted version that would include stochasticity into the optimization of the adversarial
noise. We define e as the parameter setting the maximum number of samples to approximate the
expectation. The implementation adopts the same outline as the one adopted by the PGD attack; as a

Algorithm 4 EoT Adversarial Attack on a Diffusion Model.

Input: percentage of attacked timesteps p, total timesteps T , model ϵθ, scheduler values αt and
σ(t), perturbation strength ϕ, PGD iterations N, the projection operator P, EoT iterations e
xT ∼ N (0, I)
for t = T to 0 do
δ0 ∼ N (0, ϕ2σ2(t)I) , ξ ∼ N (0, I)

xt−1 = 1√
αt

(
xt − σ(t)√

1−ᾱt
ϵθ(xt, t)

)
+ σtξ

δ ∼ N (0, ϕ2σ2(t)I)
for n = 0 to N− 1 do
G ← []
xadv
t = xt +

√
αtδn

for i = 1 to e do
ζ ∼ N (0, I)

xadv
t−1 = 1√

αt

(
xadv
t − σ(t)√

1−ᾱt
ϵθ(x

adv
t , t)

)
+ σtζ

gi ← ∇δn

∥∥xt − xadv
t

∥∥2
2

Append gi to G
end for
ḡ ← 1

e

∑
g∈G g

δn+1 ← P(δn + σ(t)/N · sign(ḡ), −σ(t), σ(t))
end for
δ ← δn+1

xt−1 = 1√
αt

(
xt +

√
αtδ − σ(t)√

1−ᾱt
ϵθ(xt +

√
αtδ, t)

)
+ σtξ

end for

consequence, all the previously described details about the attack notation still hold.

A.5 RELATIONSHIP WITH SMOOTH DIFFUSION (GUO ET AL., 2024)

The method by Guo et al. (2024) also introduces a method for smoothing the latent space of Diffusion
Models. While both papers utilize the term “smothness”, we emphasize that the underlying concept
of smoothness, its enforcement mechanism, and our primary objectives fundamentally differ. In
particular:

⋄ Guo et al. (2024) did not demonstrate that their optimization could inherently include being
resilient to attacks, focusing more on smooth generation, interpolation, and inverse problems

⋄ Guo et al. (2024) does not mention any robustness to adversarial attacks

⋄ Guo et al. (2024) does not claim that it could be used to train with corrupted data

Table 3 reports the main differences between the two approaches.

B SUPPLEMENTARY MATERIAL

This supplementary material is intended to complement the main paper by providing further motiva-
tion for our assumptions and design choices, as well as additional ablation studies on the proposed
datasets to demonstrate the effectiveness of our method. It is organized into the following sections.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Component Smooth Diffusion Ours
Arch/Training Stable.Diff. + LoRA UNet with attention + scratch
Equation

∣∣∣∣∇ϵ

(√
1− αt x̂0(ϵ) ·∆x̂0

)∣∣∣∣
2

∣∣∣∣ϵθ(xtadv, t
)
− [ϵθ (xt, t) + δ]

∣∣∣∣
2

Objective Reduce gradient norm Equivariance
Perturbation normally sampled pix. int. normalized to unit length adversarial under ℓ∞
Benefit Smooth Latent Resilient to adv. attacks
Benefit Image inversion Train on corrupted data
Benefit Stable Interpolation Faster sampling

Table 3: Differences between ours methods and Guo et al. (2024)

Section C discusses the main differences among the considered approaches, offering a deeper analysis
that includes both geometrical and empirical motivations behind the adopted design choices. It
also clarifies the distinction between invariance and equivariance, and presents statistics on the
adversarial perturbation δ; Section D presents a more detailed analysis of the diffusion flow dynamics
by examining the trajectories obtained from low-dimensional datasets under different conditions.
Section E provides an extensive qualitative ablation across the real-world datasets introduced in
the paper, showcasing a wide variety of samples and comparisons; Section F offers additional
observations and insights into the proposed approach. We encourage readers to zoom in and
compare the results for a better understanding of their quality.

C OBSERVATIONS AND MOTIVATIONS ON OUR ADVERSARIAL TRAINING
FRAMEWORK

C.1 EQUIVARIANT AND INVARIANT FUNCTIONS FOR ADVERSARIAL TRAINING

Adversarial training in classification has been widely studied over years Goodfellow et al. (2015);
Madry et al. (2018); Zhang et al. (2019); Wang et al. (2020); Shafahi et al. (2019); Wong et al. (2020);
Sriramanan et al. (2021; 2020); Wang et al. (2023); Zhu et al. (2021); Mujtaba Hussain et al. (2024) in
different settings, threat models and under different perspectives. These methods share the objective
to enforce invariance in the neural network fθ, since the final objective is to enforce the output of the
network not to vary in the presence of minor changes in the network input. However, in generative
modeling, particularly diffusion models (DMs), enforcing invariance hinders learning the correct
distribution, making the model unable to take into account input changes in its prediction. Ignoring
the adversarial perturbations applied during a perturbed training leads to deviations in trajectories,
resulting in an inaccurate learned distribution. Conversely, training the model to incorporate the
negative of the perturbation helps it recognize and manage potential deviations, enabling it to handle
noise with broader standard deviations more effectively. In Nguyen & Raff (2019), the authors
extend the concept of adversarial attacks to regression tasks, even though considering regression tasks
on tabular datasets. Their proposed method addresses these attacks by introducing an adversarial
training loss based on numerical stability, improving performance under adversarial conditions.
Even though the latter bridges the concepts of regression and AT, an analysis of implications in
the case of randomized and adversarial training applied to the generative model is still a topic to
cover, particularly with reference to generative models. In this spirit, we propose a new training
framework inspired by AT with the aim of shedding light on the concept of adversarial training for
DMs, exploiting knowledge from both functional analysis and classification neural networks.

Formally defining the two properties, we can define both invariance and equivariance. Given a
function f : X → Y , as well as a specified group actions A, f is said to be equivariant with respect
to a transform a ∈ A if and only if

f(a ◦ x) = a ◦ f(x), x ∈ X (12)

Given a function f : X → Y , as well as a specified group action A, f is said to be invariant with
respect to an a ∈ A transform if and only if

f(a ◦ x) = f(x), x ∈ X (13)

In Fig. 9 we extend Fig.1 of the paper and depict what happens at the trajectory level if we enforce
invariance instead of equivariance. The vector ϵ represents the noise that is added by the diffusion

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

process, δ represents the added noise by the adversarial training. Finally, we will have two different
versions of the noisy point, namely xt and xt + δ. The model, if unattacked, would like to regress a
portion of noise equivalent to −ϵ so that it is able to correctly go back to x0. When applying δ, the
network’s objective still has to be the same. The figure shows that if, given the noisy staring point
xt+ δ, the model is enforced to learn again −ϵ, so if the invariance is applied, the ending point would
be some other point in the space different wrt. x0. On the contrary, if equivariance is applied, the
network is forced to regress −(ϵ+ δ), making the model able to correctly regress x0.

Figure 9: Not applying equivariance ϵEQUIV
θ (xt, t), the model drifts and ends up in a different point

of the space than the desired one, learning then the perturbation that we added as in ϵINV.
θ (xt, t)

C.2 INVARIANCE REGULARIZATION DOES NOT WORK

As empirical evidence of the inconsistency of invariance training in AT for DMs, we prove it on
low-dimensional data. As a proof-of-concept, we consider the oblique-plane 3D dataset as data
to train on, and then we impose adversarial training, following the same setting as in Algorithm 1,
enforcing instead invariance by minimizing the loss function:

LAT(xt,x
adv
t , t, ϵ) = argmin

θ

∥∥ϵθ(xt, t
)
− ϵ

∥∥2
2︸ ︷︷ ︸

LDM to fit data distr.

+λt

∥∥ϵθ(xadv
t , t

)
− [ϵθ

(
xt, t

)
]
∥∥2
2︸ ︷︷ ︸

Lreg to enforce invariance

(14)

We decided to implement this example on 3D data in order to have the possibility of observing the
behavior of 3D trajectories. The plot shows it displaying side-to-side DDPM Ho et al. (2020) and
invariance in the same data settings as the one displayed in Fig. 2. The model, by enforcing invariance,
loses the ability to correctly reconstruct the data manifold, not being able to generate points in the
data distribution, whereas the model trained through standard DDPM learns the data distribution
but still suffers from learning the noise in case of noisy data. The same behavior can be observed
when looking at the trajectories. This analysis clarifies even more what is the generation dynamics.
The model creates sparse trajectories that do not tend to be clustered, neither at the beginning of the
generation nor at the end, thereby causing generated samples to be completely off the data subspace.

A comparison between the plots in Fig. 10 and those in Fig. 11 further emphasizes the benefits
of adversarial training with equivariance. The contrast shown in the compared trajectories clearly
illustrates how our approach consistently produces trajectories that are more clustered, sharper, and
better aligned with the underlying data manifold, thereby reinforcing the inadequacy of conventional
adversarial training methods.

C.3 NOTES ON DEFINITION OF THE ADVERSARIAL PERTURBATION

One of the main points of our work is defining a suitable perturbation δ for unconditional diffusion
models that aims at disrupting generation trajectories without relying on acting on the model’s inputs.
In order to craft this kind of attack, we focused on exploiting generation dynamics in order to correctly

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D
D

PM
In
va
ri
an
ce

Strong Inlier Noise OutliersPoor Inlier Noise Trajectory plots Poor inlier noise Strong inlier noise Outliers Model trajectories

H
o

et
al

.(
20

20
)

In
v a

dv

Figure 10: The application of invariance on 3D data highlights the incorrect behavior of the training
procedure: the learnt data distribution is completely different from the reference one.

perturb it at each of its steps. Inspired by adversarial attacks with random start (such as R-FGSM
Wong et al. (2020)), δ is first initialized by randomly sampling from a uniform distribution, whose
bounds are [−rβ(·), rβ(·)]. The initialization distribution is chosen to be a uniform distribution with
varying bounds but always centered at zero. This choice ensures that the perturbation has zero mean,
which is essential when applied within the diffusion process. A non-zero mean would not only
bias the estimation of the noise but also violate the Gaussian transition assumption, which requires
the noise to be zero-centered. The parameter β is sampled from uniform distribution as follows
β ∼ U [0.5, 2]. Its aim is to enhance the model’s robustness to trajectory deviations by randomly
varying the perturbation’s bounds. Once the perturbation bounds are defined, it is straightforward to
calculate the standard deviation of the initialization distribution. The mean value of δ is given by:

E[δ] =
[(−rβ(·)) + (rβ(·))]

2
= 0.

The variance of the distribution is defined as:

VAR[δ] =
[(−rβ(·)) + (rβ(·))]2

12
=

(2rβ(·))2

12
=

rβ(·)2

3

The variance is consequently defined as a β-dependent quantity as it is rescaled batch-wise by this
parameter, assuring a random dynamic change of the perturbation bounds.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D COMPREHENSIVE ANALYSIS OF THE DIFFUSION FLOW DYNAMICS

In order to better understand data behavior during the generation procedure, we report in this
section further trajectory plots. The plots can only be visualized if the data taken into account
is low-dimensional in order to properly track points’ behavior in the generation. We exploit the
low-dimensional datasets proposed in the paper to further investigate trajectory behavior. Additional
qualitative samples of the Diffusion Flow are shown in Fig. 11, supplementing Fig. 4 and Fig. 6,
which can be found in the main paper. Unlike this one, here we have the chance to show also the
difference between models’ behavior when data distribution is affected by strong inlier noise and
outliers on both unimodal distribution oblique-plane and 3-gaussians.

The plot shows that even though the DDPM model reaches the distribution of the final part of the
trajectories, those are sparse and, even in the case of inlier noise, they appear not to be densely clus-
tered, with some completely diverging from the data distribution. When applying the regularization,
particularly in this case, the model is trained with adversarial noise, the density increases in the
trajectories, defining sharper and clustered paths, strongly discouraging significant deviations from
their central modes. This feature is especially useful when the initial data distribution is noisy, as it
helps the model avoid learning erroneous points that stray from the true data distribution, preventing
it from capturing the noise present in the starting data. In particular, when outlier noise is present,
regularization minimizes its influence, resulting in denser and sharper trajectories that better align
with the true data distribution clusters.

E ADDITIONAL QUALITATIVE SAMPLES UNDER MULTIPLE SETTINGS

E.1 TRAINED ON CLEAN CIFAR-10 WITH p = 0%

DDPM vs Robustadv. In Fig. 12 of this supplementary material, we extend Fig. 4 in the paper and
show 300 samples from DDPM vs 300 samples from Robustadv, both trained on the original dataset.
Although our method has not been designed to work directly with uncorrupted data, the images
that ours generates result in smooth images, the clutter in the background has been canceled, yet
the objects and animals are still clearly recognizable, and part of the noise in the background of
CIFAR-10 has been removed. We think that it is reasonable to justify the drop we have in the FID
with our method denoising action, which is, for example, the removal of part of the characteristic
background noise proper of CIFAR-10. This effect can be the reason for the evaluation penalizing us.

500 vs 1000 steps. We expand the current section by including some samples that focus on enriching
the paper’s discussion about faster sampling. In Fig. 13 we offer on the left the results by Robustadv
with 1000 inference steps trained on uncorrupted data. On the right instead, we show the qualitative
samples still with Robustadv yet using a scheduler with 500 inference steps, thereby cutting 50% of
the inference time. Surprisingly, the faster sampling yields better FID. We get 28.68 FID with 1000
steps and 24.34 with 500 steps. In terms of differences, taking more steps generates images with
warmer and natural colors, whereas taking fewer steps seems to improve the details of the objects,
and the colors look brighter and saturated, probably being closer to the actual CIFAR-10 images.

E.2 TRAINED ON NOISY CIFAR-10 WITH p = 90%, σ = 0.1

In Fig. 14 of this supplementary material, we provide additional figures not present in the main
paper. The figures show 300 samples from DDPM vs Robustadv both trained on noisy CIFAR-10 with
p = 90%, σ = 0.1. The images that ours generates (right) are smooth, similar to the one in Fig. 12,
inheriting the smoothing effect of the previous setting. In this case, the smoothing action helps absorb
the Gaussian noise present in the dataset. This results in improved performance: unlike DDPM (left),
ours is able to unlearn the noise and keep images still with natural colors.

E.3 TRAINED ON NOISY CIFAR-10 WITH p = 90%, σ = 0.2

In Fig. 15 of this supplementary material we extend Fig. 8 of the paper, enriching it with 300 more
samples per method yet trained on noisy CIFAR-10 with p = 90%, σ = 0.2. Looking at the standard
deviation of the added noise, in this case σ = 0.2 represents a very strong one: it means we are
adding 40% of the variability that is naturally present in CIFAR-10, being σdata = 0.5. Despite the

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Baseline Adv.Baseline Adv.

Baseline Adv.Baseline Adv.

Baseline Adv.Baseline Adv.

Baseline Adv.Baseline Adv.

RobustadvDDPM Ho et al. (2020)

In
lie

rn
oi

se
In

lie
rn

oi
se

O
ut

lie
rn

oi
se

O
ut

lie
rn

oi
se

o
b
l
i
q
u
e
-
p
l
a
n
e

3
-
g
a
u
s
s
i
a
n
s

Figure 11: Diffusion flow: DMs vs Robustadv. Left column shows the results by Ho et al. (2020)
under two different types of noise. Regular training tends to incorporate the noise inside the diffusion
flow, making it more prone to generate undesirable and unexpected results; Right column is Robustadv
that trades off variability for resilience. Indeed, heatmaps on the right are more concentrated, clear,
and less faded.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

clean CIFAR-10 with p = 0%
DDPM Ho et al. (2020) Robustadv

Figure 12: Trained on clean CIFAR-10 with p = 0%. Despite the FID decreases once trained on
clean data, generated images by Robustadv look smooth, and the clutter in the background has been
canceled.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

clean CIFAR-10 with p = 0%
Robustadv w/ 1000 steps (28.68 FID ↓) Robustadv w/ 500 steps (24.34 FID ↓)

Figure 13: Trained on clean CIFAR-10 with p = 0% but comparing less steps (500) vs the default
DDPM scheduler used for training (1000). Although we run Robustadv with a scheduler with fewer
steps (500) and do not use it in training, the images on the right with 500 steps have better FID than
with the original scheduler on the left.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

noisy CIFAR-10 with p = 90%, σ = 0.1
DDPM Ho et al. (2020) Robustadv

Figure 14: Trained on noisy CIFAR-10 with p = 90%, σ = 0.1. Despite added noise, Robustadv
images look smooth, and the clutter in the background has been canceled along with the Gaussian
noise added. Instea,d DDPM on the left propagates the noise back in the output.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

strong ambient noise, the images that ours generates (right) are smooth similar to the one in Fig. 12
and presence of the strong Gaussian is very rare. Unlike DDPM (left), ours is able to unlearn the
noise and keep images still with natural colors.

E.4 TRAINED ON NOISY CELEB-A WITH p = 90%, σ = 0.1

We provide a more extensive qualitative analysis on the dataset CelebA Li et al. (2019) in Fig. 16
of this supplementary material. To further motivate the denoising effect, we here show same 300
samples per method yet trained on noisy Celeb-A with p = 90%, σ = 0.1. The faces that ours
generates (right) are smooth, but now instead of absorbing the Gaussian noise present in the dataset,
unlike DDPM (left), ours is able to unlearn the noise and keep images still with natural colors.

E.5 TRAINED ON NOISY CELEB-A WITH p = 90%, σ = 0.2

We provide a more extensive qualitative analysis on the dataset CelebA Li et al. (2019) in Fig. 17
of this supplementary material. To further motivate the denoising effect, we here show same 300
samples per method yet trained on noisy Celeb-A with p = 90%, σ = 0.2. The faces that ours
generates (right) are smooth but now instead of absorbing the Gaussian noise present in the dataset,
unlike DDPM (left), ours is able to unlearn the noise and keep images still with natural colors.

E.6 TRAINED ON NOISY LSUN BEDROOM WITH p = 90%, σ = 0.1

We provide a more extensive qualitative analysis on the dataset LSUN Bedroom Yu et al. (2015) in
Fig. 19 of this supplementary material. To further motivate the denoising effect, we here show same
150 samples per method yet trained on noisy LSUN dataset with p = 90%, σ = 0.1. The generated
images by Robustadv (right) result to be smoother wrt. to the datasets ones and the DDPM generated
ones (left) ones, but the smoothing effect allows absorbing the Gaussian noise present in the dataset:
unlike DDPM, ours is able to unlearn the noise and keep images still with natural colors.

E.7 TRAINED ON NOISY LSUN BEDROOM WITH p = 90%, σ = 0.2

We further enrich the qualitative ablation on the dataset LSUN Bedroom Yu et al. (2015) in Fig. 20 of
this supplementary material. To further motivate the denoising effect, we here show the same 150
samples per method yet trained on the noisy LSUN dataset with p = 90%, σ = 0.2. The generated
images by Robustadv (right) result to be smoother wrt. to the datasets ones and the DDPM generated
ones (left) ones, but the smoothing effect allows absorbing the Gaussian noise present in the dataset:
unlike DDPM, ours is able to unlearn the noise and keep images still with natural colors.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

noisy CIFAR-10 with p = 90%, σ = 0.2
DDPM Ho et al. (2020) Robustadv

Figure 15: Trained on noisy CIFAR-10 with p = 90%, σ = 0.2. Despite added noise, Robustadv
images look smooth and the clutter in the background has been canceled along with the Gaussian
noise added. Instead DDPM on the left propagates the noise back in the output.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

noisy Celeb-A with p = 90%, σ = 0.1
DDPM Ho et al. (2020) Robustadv

Figure 16: Trained on noisy Celeb-A with p = 90%, σ = 0.1. Despite added noise, Robustadv faces
look smooth and the clutter in the background has been canceled along with the Gaussian noise added.
Instead, DDPM on the left propagates the noise back in the output.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

noisy CelebA with p = 90%, σ = 0.2
DDPM Ho et al. (2020) Robustadv

Figure 17: Trained on noisy Celeb-A with p = 90%, σ = 0.2. Despite added noise, Robustadv faces
look smooth, and the clutter in the background has been canceled along with the Gaussian noise
added. Instead, DDPM on the left propagates the noise back in the output.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

LSUN Bedroom early stage training

DDPM Ho et al. (2020) Robustadv

Figure 18: Trained on clean LSUN Bedroom. Despite the added noise, Robustadv produces images
that appear smooth and exhibit fewer intricate details. When noise is absent from the training data,
this smoothing effect results in the removal of fine-grained information from the learned distribution,
ultimately reducing data variability.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

LSUN Bedroom with p = 90%, σ = 0.1, early stage training

DDPM Ho et al. (2020) Robustadv

Figure 19: Trained on noisy LSUN Bedroom with p = 90%, σ = 0.1. Despite added noise, Robustadv
images look smooth and with fewer intricate details that have been canceled along with the Gaussian
noise added. Instead, DDPM on the left propagates the noise back into the output.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

LSUN Bedroom with p = 90%, σ = 0.2, early stage training

DDPM Ho et al. (2020) Robustadv

Figure 20: Trained on noisy LSUN Bedroom with p = 90%, σ = 0.2. Despite added noise, Robustadv
images look smooth and with less intricate details that have been canceled along with the Gaussian
noise added. Instead, DDPM on the left propagates the noise back into the output.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

LSUN Bedroom late training

DDPM Ho et al. (2020) Robustadv

Figure 21: Trained on clean LSUN Bedroom. Despite added noise, Robustadv images look smooth
and with less intricate details, even though more detailed than in earlier stages.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

LSUN Bedroom with p = 90%, σ = 0.1, late stage training

DDPM Ho et al. (2020) Robustadv

Figure 22: Trained on noisy LSUN Bedroom with p = 90%, σ = 0.1. With extended training,
Robustadv not only effectively removes the noise introduced into the dataset—in contrast to DDPM—
but also restores fine details, resulting in multi-view images with natural colors and enhanced realism.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

LSUN Bedroom with p = 90%, σ = 0.2, late stage training

DDPM Ho et al. (2020) Robustadv

Figure 23: Trained on noisy LSUN Bedroom with p = 90%, σ = 0.2. With extended training,
Robustadv effectively removes the noise introduced into the dataset, in contrast to DDPM. As a result,
it produces cleaner images, albeit with less intricate details.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

F ADVERSARIAL TRAINING ANALYSIS

This method aims at proposing an AT approach to the diffusion model’s training whose design choices
have been motivated extensively in previous sections as well as in the main paper. In this section, we
want to highlight some interesting points we observed during the framework formulation.

F.1 TRAINING DYNAMICS

Adversarial training diffusion models inevitably influences DM training dynamics. Indeed, the
proposed regularization acts as a smoothing factor for the diffusion process in the trajectory space. In
order to evaluate the training dynamics, we propose an ablation on DM generated samples at different
training iterations. Fig. 24 is intended to show the evolution of generated samples by AT models at
different training iterations. The first row shows samples generated by models trained in an early
stage, while the second shows generations from models trained for longer. On the right column, the
dataset has not been corrupted; the generations, after more training iterations, start losing the bright
colors, tending towards more natural-looking colors. Moreover, the generated data starts acquiring its
details. The same effects can be seen for models trained on corrupted data, σ = 0.1 in the middle
and σ = 0.2 on the right (both with p = 0.9%). In those cases, it is also possible to see that some
generated samples, which at earlier epochs still resulted in being noisy, are completely denoised. This
dynamic suggests that the model first focuses on fitting the overall data model, focusing more on the
smoothing effect. Once done, the model goes back to learning the details of the data distribution,
including some variability, but still not taking into account the noise present in the data. Furthermore,
a clearer picture of the training dynamics can be obtained by examining images Figs. 18 to 23, that
effectively compare the robust approach with the DDPM model at both early and late training stages.

F.2 FINETUNING ANALYSIS

Adversarial training notably introduces a training time overhead. In our case, the increased training
time is an investment for improved robustness and faster inference, which is particularly relevant in
real-world pipelines where inference is repeated continually, while training is performed once for all.
This is a standard trade-off in modern generative modeling, as seen in classifier guidance, which also
increases training and complexity but is widely adopted.

In this section, we present preliminary results concerning the application of adversarial training in the
fine-tuning setting. We point out that fine-tuning does help to alleviate the problem of training cost,
so it could be a strong future improvement to allow the application of AT to heavier training pipelines.
The table below shows FID and IS results evaluated on the CelebA dataset. For the fine-tuning, the
model has been trained for all it training epochs according to the DDPM framework, except for the
last 100 ones, when the adversarial regularization loss was applied. The table Table 4 showcases
finetuning evaluation results. If compared with results in Table 2 we observe that we have similar
results to the paper but with a fraction of the computational time.

Configuration Fine-tuned From Scratch
p%/σ DDPM Robustadv DDPM Robustadv

0.9 / 0.1 65.4 / 2.6 23.3 / 2.1 54.90 / 2.40 14.54 / 2.09
0.9 / 0.2 100.68 / 2.7 25.8 / 2.1 96.03 / 2.65 16.53 / 2.11

Table 4: Performance comparison (FID/IS) between DDPM and Robustadv when finetuning on
CelebA

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

LSUN Bedroom

e
a
r
l
y
s
t
a
g
e
t
r
a
i
n
i
n
g

LSUN Bedroom σ = 0.1 LSUN Bedroom σ = 0.2

LSUN Bedroom

l
a
t
e
s
t
a
g
e
t
r
a
i
n
i
n
g

LSUN Bedroom σ = 0.1 LSUN Bedroom σ = 0.2

Figure 24: Qualitative results analysis on samples generated by Robustadv at different training stages.

F.3 HOW λ IN EQ. (9) OF THE MAIN PAPER INFLUENCES THE MODEL’S DENOISING
CAPABILITY

In the method section, we stress that the choice of the hyperparameter λ heavily influences the model’s
smoothing ability. To further motivate the previous statement, we provide straightforward evidence
of this by observing generated samples produced by different models, with the same architectures
and minimum regularization ray among all the shown samples. The varying parameter is λ, which

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

LSUN Bedroom

λ
=

0
.1

LSUN Bedroom σ = 0.1 LSUN Bedroom σ = 0.2

λ
=

0
.2

Figure 25: Robustadv trained on LSUN Bedroom dataset, with different noisy data (p = 90%, different
σ are visible in the image). The first row sets the regularization hyperparameter λ to 0.1, the second
to 0.2.

is set to the values {0.1, 0.2, 0.3}. Fig. 25 shows the results at an early training stage of the models.
Despite being at an early stage, the λ influence in models’ performance already appears clear. When
the data is not noisy (first column), increasing its value results in oversmoothing data, losing subject
details, due to the smoothing factor introduced by the regularization. When the data becomes noisy,
the regularization becomes fundamental in learning the correct distribution. In the first row, we see
that the smoothing action is limited due to the small λ = 0.1, indeed the noise is still present in

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

the generated samples both in σ = 0.1 and σ = 0.2, whereas the noise decreases drastically when
increasing λ to 0.2. In fact, the images shown in the bottom row show a minor presence of noise,
which is expected to disappear in later training. On the other side, the increase of the parameter λ also
causes a loss of details in the image subjects. This phenomenon is due to the smoothing effect, which
not only affects noise but also data variability. This smoothing effect becomes even more apparent
when compared to Figs. 18 to 23, all generated with λ = 0.3. These comparisons further support the
previous observations by extending the analysis across different levels of noise and training stages.

G COMPARISON WITH NOISE-AWARE DIFFUSION TRAINING

The primary objective of Daras et al. (2024a) is to develop noise-informed algorithms for training
models in the presence of noisy training data. More in detail, the noise-informed training algorithm
operates under two fundamental assumptions: (i) the assumption that the noise in the dataset is
Gaussian and prior knowledge of the Gaussian variance, and (ii) identification of the specific training
samples affected by noise corruption. To rigorously assess the robustness of this approach under
the unknown corruption setting, we developed two distinct training configurations that relax these
stringent assumptions and modify the original training framework of Daras et al. (2024a).

⋄ In Conf. 1, the method always knows the exact σ level of the noise in the dataset but the
assumption on which sample is clean x ∈ Xclean and which sample is noisy x ∈ Xnoisy is
forced to be correct only (1− p)% of the time.
⋄ In Conf. 2, the assumption of knowing whether a sample is noisy or not is never considered,

effectively forcing the same behavior for all the training data, when the data are noised with
probability p.

For both configurations, we trained the models on CIFAR-10, considering clean data and noisy data
with σ = {0.1, 0.2} and p = 90%. Quantitative results are summarized in Table 5 while qualitative
examples are shown in Fig. 26.

p % σ Robustadv Daras et al. (2024a) Conf. 1 Daras et al. (2024a) Conf. 2

0 – 28.7 14.0 14.9
0.9 0.1 24.7 94.5 102.7
0.9 0.2 24.8 109.7 105.3

Table 5: Experiments on CIFAR-10 under unknown corruption.

These experiments confirm that relaxing even one of the assumptions made in the noise-aware
solution proposed by Daras et al. (2024a) reduces the method’s robustness to unknown noise in the
data, producing very high FID values. This confirms the practical limitations already highlighted
by Daras et al. (2024a). On the contrary, our method is able to work in this more challenging setting,
where the corruption is unknown, and achieves a stable trend in the FID across different σ and p,
without requiring access to clean/noisy labels or corruption parameters.

H LLM USAGE

Large language models were used exclusively for text polishing and minor exposition refinements.
All substantive research content, methodology, and scientific conclusions were developed entirely by
the authors.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

CIFAR-10

R
ob

us
t a

dv

CIFAR-10 p = 0.9, σ = 0.1 CIFAR-10 p = 0.9, σ = 0.2

D
ar

as
et

al
.(

20
24

a)
C

on
fig

.1
D

ar
as

et
al

.(
20

24
a)

C
on

fig
.2

Figure 26: Robustadv trained on CIFAR-10 dataset compared with the two proposed configurations
of Daras et al. (2024a) in the unknown noise setting. Training data are either clean (first column) or
noised with different noise levels (p = 0.9, σ = {0.1, 0.2}). The images demonstrate that Robustadv
effectively learns the target data distribution, ignoring the applied noise, even without making any
assumptions about the applied perturbation.

43

	Introduction
	Adversarial training smooths trajectories
	Preliminaries
	Motivation, ``in vitro'' experiments, and noise types
	Adversarial training for diffusion models
	Adversarial perturbation in the diffusion process

	Experimental results
	Evaluation using DDPM and DDIM
	Robust diffusion models memorize less
	Implications of smooth diffusion flow
	Robustness to adversarial attacks

	Related work
	Conclusions and future work
	Appendix
	Theoretical considerations on adversarial training for diffusion models
	The forward process
	Reverse process
	Variational lower bound in case of perturbation

	Attack formulation
	Iterative attack
	EoT attack
	Relationship with Smooth Diffusion guo2024smooth

	Supplementary Material
	Observations and motivations on our adversarial training framework
	Equivariant and invariant functions for adversarial training
	Invariance regularization does not work
	Notes on definition of the adversarial perturbation

	Comprehensive analysis of the diffusion flow dynamics
	Additional qualitative samples under multiple settings
	Trained on clean CIFAR-10 with p=0%
	Trained on noisy CIFAR-10 with p=90%, =0.1
	Trained on noisy CIFAR-10 with p=90%, =0.2
	Trained on noisy Celeb-A with p=90%, =0.1
	Trained on noisy Celeb-A with p=90%, =0.2
	Trained on noisy LSUN Bedroom with p=90%, =0.1
	Trained on noisy LSUN Bedroom with p=90%, =0.2

	Adversarial training analysis
	Training dynamics
	Finetuning Analysis
	How in Eq. (9) of the main paper influences the model's denoising capability

	Comparison with noise-aware diffusion training
	LLM Usage

