

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  

# WHY ADVERSARIALLY TRAIN DIFFUSION MODELS?

**Anonymous authors**

Paper under double-blind review

**ABSTRACT**

Adversarial Training (AT) is a known, powerful, well-established technique for improving classifier robustness to input perturbations, yet its applicability beyond discriminative settings remains limited. Motivated by the widespread use of score-based generative models and their need to operate robustly under substantial noisy or corrupted input data, we propose an adaptation of AT for these models, providing a thorough empirical assessment. We introduce a principled formulation of AT for Diffusion Models (DMs) that replaces the conventional *invariance* objective with an *equivariance* constraint aligned to the denoising dynamics of score matching. Our method integrates seamlessly into diffusion training by adding either random perturbations—similar to randomized smoothing—or adversarial ones—akin to AT. Our approach offers several advantages: **(a)** tolerance to heavy noise and corruption, **(b)** reduced memorization, **(c)** robustness to outliers and extreme data variability and **(d)** resilience to iterative adversarial attacks. We validate these claims on proof-of-concept low- and high-dimensional datasets with *known* ground-truth distributions, enabling precise error analysis. We further evaluate on standard benchmarks (CIFAR-10, CelebA, and LSUN Bedroom), where our approach shows improved robustness and preserved sample fidelity under severe noise, data corruption, and adversarial evaluation. Code available upon acceptance.

**1 INTRODUCTION**

Large-scale datasets are cornerstones to the success of generative AI, yet they simultaneously present a significant challenge. Often web-scraped and minimally curated, they frequently contain multiple forms of corruption: *inlier noise*—subtle perturbations within samples; *outlier noise*—samples that significantly deviate from the target distribution; *missing or corrupted data*—commonly affected by Gaussian noise; and *adversarial noise*—deliberately crafted perturbations. While recent approaches have attempted to address training under noisy conditions, they are constrained by restrictive theoretical assumptions. For instance, [Daras et al. \(2024c\)](#) relies on precise knowledge of noise variance, [Daras et al. \(2024d\)](#) exclusively targets missing data scenarios, and [Daras et al. \(2024a\)](#) presupposes access to both clean and corrupted samples. These approaches fall under the umbrella of “noise-aware training”, solving a problem with strong assumptions: the methods assume access to clean/noisy sample labels at a sample level, assuming to know the applied noise distribution and its intensity, fully exploiting these assumptions at training time. This controlled scenario greatly limits the practical applicability of the proposed methods, as also specified by the authors in the limitation section of their work. The present work aims to define the principles of robust training for Diffusion Models, highlighting how this technique enables generative models to be robust against unknown corruption, whether applied to the training data or as inference-time perturbations, such as adversarial attacks. In the classification domain, Adversarial Training (AT) ([Szegedy et al., 2014](#)) yields robust classifiers that maintain performance despite input perturbations. Notably, recent research has revealed that AT confers additional capabilities beyond robustness, including generative capabilities ([Mujtaba Hussain et al., 2024](#)). Despite its demonstrated efficacy in classification tasks, AT has not been systematically extended to other families of deep learning models, particularly generative models. Beyond handling noisy data, generative AI models face further challenges, including data memorization ([Jagielski et al., 2023](#); [Somepalli et al., 2023](#); [Carlini et al., 2023b](#)), leading to information leakage, and their propensity to learn spurious correlations from training data that do not reflect real underlying patterns. In this work, we address this challenge by extending AT to score-based generative models, in particular to Diffusion Models (DM) ([Ho et al., 2020](#)). Our contribution bridges the gap between AT for classification and the generation paradigm. This extension also reveals new *hidden capabilities* of

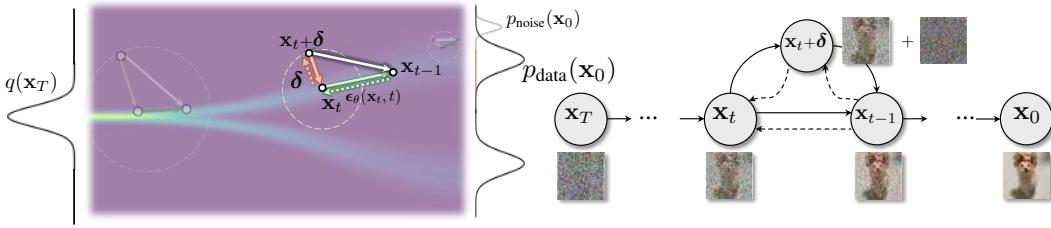


Figure 1: **Smooth trajectories.** We train the denoising network to follow the *score function* *i.e.*,  $x_t \mapsto x_{t-1}$  using just  $\epsilon_\theta(x_t, t)$ , but we also perturb locally  $x_t$  as  $x_t + \delta$  inside a  $\ell_p$  ball and then imposing equivariance:  $x_t + \delta \mapsto \epsilon_\theta(x_t, t) + \delta \triangleq x_{t-1}$ . This equals adding an intermediate step in the Markov Chain, behaving as an additional denoising step, making the model resilient to possible outliers or noise in the dataset— $p_{\text{noise}}(x_0)$ —not proper of  $p_{\text{data}}(x_0)$ . The local perturbation can be implemented as adversarial or as random (randomized smoothing). Perturbation strength starts large and progressively shrinks when  $T \rightarrow 0$ .  $\rightarrow$  indicates the forward process;  $\leftarrow$  the reverse process.

AT applied to the generative domain, offering a practical and theoretically sound approach to training robust generative models on real, imperfect datasets. Our contribution is then three-fold:

- We are the first to reconnect AT to denoising, linking it to [Daras et al. \(2024d;c;a\)](#). Despite some works on adversarial aspects in DM training([Yang et al.](#); [Sauer et al.](#)), we formally introduce adversarial training for DMs, discussing its practical implications on the learned denoising process.
- Inspired by [Zhang et al. \(2019\)](#), we develop an AT algorithm tailored for score-based models. Different from classifiers, which require enforcing *invariance*, score-based models require enforcing *equivariance* to properly learn the data distribution, as formalized in our key finding in Eq. (14).
- We show our method’s flexibility in handling noisy data, facing extreme variability like outliers, preventing memorization, and improving robustness. Besides low-dimensional (3D) controlled data, we test our method on CIFAR-10, CelebA, LSUN and ImageNet, achieving strong performance.

## 2 ADVERSARIAL TRAINING SMOOTHHS TRAJECTORIES

### 2.1 PRELIMINARIES

Diffusion Models (DMs) aim to learn a data distribution,  $p_{\text{data}}(\mathbf{x})$  by noising data with a fixed procedure, mapping them to  $\mathcal{N}(\mathbf{0}, \mathbf{I})$  using a Markov Chain  $q(\mathbf{x}_T, \dots, \mathbf{x}_1 | \mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1})$ , where, given a noisy input  $\mathbf{x}_{t-1}$ , the next state  $\mathbf{x}_t$  is reached through the following gaussian transition:

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \sigma(t)} \mathbf{x}_{t-1}, \sigma(t) \mathbf{I}), \quad (1)$$

$\sigma(t)$  is the noise scheduler: a monotonically decreasing time-varying function chosen s.t.  $\sigma(0) = \sigma_{\min}$ ,  $\sigma(T) = \sigma_{\max}$  and  $0 < \sigma_{\min} < \sigma_{\max} < 1$ . The generation is achieved with a learnable “decoding step” that reverts data from noise estimation  $p(\mathbf{x}_{t-1} | \mathbf{x}_t)$ . If the noise scheduler is chosen carefully to take small noising steps, then the approximation  $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$  and the following equation holds:

$$q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t} \mathbf{x}_{t-1}, (1 - \alpha_t) \mathbf{I}) \quad \text{where} \quad \alpha_t \doteq \prod_{s=1}^t 1 - \sigma(s)$$

This means we can encode directly from  $\mathbf{x}_0 \mapsto \mathbf{x}_t$  as:

$$\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_0 + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon} \quad \text{where} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (2)$$

Samples generation is then performed by solving the probability flow ODE (PF-ODE) [Song et al. \(2021b\)](#), from  $t = T$  to 0 and starting from  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \sigma_{\max}^2 \mathbf{I})$ , whose solution is learned from the DM. For a given  $\mathbf{x}_0$ , the training objective  $\mathcal{L}_{\text{DM}}$  reported in [Ho et al. \(2020\)](#) is thus defined as:

$$\mathcal{L}_{\text{DM}} = \mathbb{E}_{\substack{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ t \sim \mathcal{U}(0, T)}} \left[ \|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_\theta(\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}), t)\|_2^2 \right] \quad (3)$$

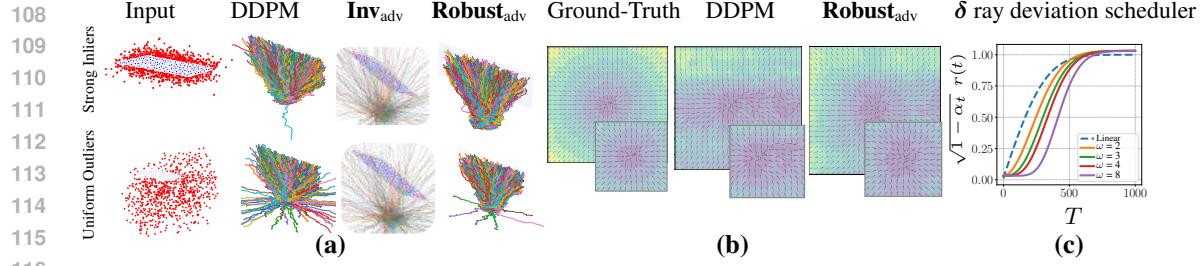


Figure 2: (a) The plot shows leftmost training data either with strong inlier noise (*top*) or uniform outliers (*bottom*). The trajectories reveal that DDPM struggles with both, while if you train with invariance (**Inv**<sub>adv</sub>) the process diverges. Instead, ours (**Robust**<sub>adv</sub>) is more robust, avoiding diverging trajectories and better reaching the data centroid. (b) Score vector fields: versors represent the score field, colormap shows magnitude, ■ less ■ more intense. (*left*) Ground-truth (*middle*) DDPM; (*right*) Our **Robust**<sub>adv</sub>. AT yields smoother, more consistent scores, better matching the data shape, shrinking variability and increasing field intensity. (c) Perturbation ray. The parameter  $\omega$  controls the slope of  $\sqrt{1 - \alpha_t} r(t)$  to shorten the content phase and reduce the curve’s steepness in DDPM.

whose objective is to infer the noise  $\epsilon$  applied to the initial image, ensuring that the starting point  $\mathbf{x}_0$  is correctly reconstructed, enabling the model—the denoising network  $\epsilon_\theta$ —to correctly generate in-distribution data during inference. For inference we solve the SDE using  $\epsilon_\theta$  and the recurrency:

$$\mathbf{x}_{t-1}(\theta) = \frac{1}{\sqrt{1 - \sigma(t)}} \left( \mathbf{x}_t(\theta) - \frac{\sigma(t)}{\sqrt{1 - \alpha_t}} \epsilon_\theta(\mathbf{x}_t(\theta), t) \right) + \sigma(t) \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \forall t \in [0, \dots, T]. \quad (4)$$

## 2.2 MOTIVATION, “IN VITRO” EXPERIMENTS, AND NOISE TYPES

**Motivation and overview.** Adversarial training has proven highly effective in the classification domain for handling perturbed training data, imposing a model invariant response across genuine and adversarially manipulated inputs. Unlike classifiers, its application to DMs requires fundamental reformulation due to their regression-based nature. Our work aims to investigate the properties and applications of adversarially trained DMs, with particular emphasis on the case of corrupted training data. Fig. 2 (a,b) describes the investigated settings of uniform outlier and strong inlier noise, where our approach was demonstrated to be learning the correct data distribution and a smoother score field.

**“In vitro” analysis setup.** We propose a first analysis of the framework on synthetic 3D data, spanning from “linear” and unimodal to more complex multi-modal ones. *oblique-plane* assumes the data distribution  $p_{\text{data}}$  lives on a 2D subspace with equation  $x + y + z = 30$ , while *3-gaussians*, a multi-modal 3D Mixture of Gaussians defined as  $\frac{1}{3}\mathcal{N}([10, 10, 10], \sigma) + \frac{1}{3}\mathcal{N}([20, 20, 20], \sigma) + \frac{1}{3}\mathcal{N}([10, 30, 30], \sigma)$  and  $\sigma = 0.25$ . Regarding higher-dimensional data, we built the analysis on the data generated after linearizing, using PCA (Abdi & Williams, 2010), the “Smithsonian Butterflies”<sup>1</sup> image dataset. After fitting a 25 dimensional subspace, retaining 70% of the sample’s variance, we sampled data according to  $\mathbf{x}' = \boldsymbol{\mu} + \sum_i \lambda_i \boldsymbol{\alpha}_i \mathbf{U}_i$ . Sampling stochasticity comes from  $\boldsymbol{\alpha} \sim \mathcal{N}(0; \sigma)$ , while  $\boldsymbol{\mu} \in \mathbb{R}^{3072}$ ,  $\mathbf{U} \in \mathbb{R}^{25 \times 3072}$ , and  $\lambda_i$  are the mean, dataset’s principal components and its singular values. Finally, we discard the real data, fitting the DM on  $\{\mathbf{x}'\}_{i=1}^N$ . This allows to *perfectly measure* distance between the DM generated samples and the linearized distribution, measuring the **closed-form reconstruction error**  $\rho = \|\mathbf{x}_0(\theta) - \mathbf{U}\mathbf{U}^\top \mathbf{x}_0(\theta)\|$  between the data subspace and the generations, where  $\mathbf{x}_0(\theta)$  is generated iterating on Eq. (4). We also use the measure Peak Signal-to-Noise Ratio (PSNR) from image processing (Hore & Ziou, 2010).

**Noise model tested.** We analyze the framework on different noise models. First, we consider inlier noise, implemented by increasing the sampling variance  $\sigma$  or, in the case of subspace  $\boldsymbol{\mu} + \sum_i \lambda_i \boldsymbol{\alpha}_i \mathbf{U}_i$ , increasing the  $\boldsymbol{\alpha}$ . We then include outliers by adding strong noise in the ambient space: for 3D data, we add a point cloud with dense, grid-like, uniform noise; for butterflies, we add Gaussian noise on the linearized data as  $\mathbf{x}' + \mathbf{z}$  where  $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma \mathbf{I})$ . Figs. 2 and 3 show the proposed ablations.

<sup>1</sup>[huggingface.co/datasets/huggan/smithsonian\\_butterflies\\_subset](https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset)

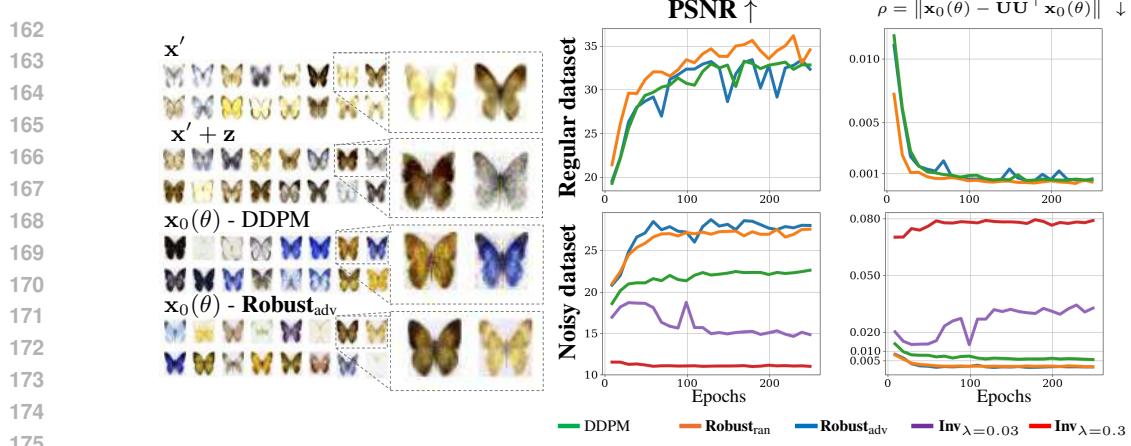


Figure 3: (left) On butterflies, we report the closed-form reconstruction error. From top to bottom: training data, corrupted data, DDPM-generated samples, and **Robust<sub>adv</sub>** results. (right) The chart columns display PSNR and closed-form reconstruction error measured on clean data (top) and on data corrupted at 90% with Gaussian noise ( $\sigma = 0.1$ ) (bottom). We also include results for *invariance regularization* with  $\lambda = \{0.3, 0.03\}$ ; these settings prevent the model from properly  $p_{\text{data}}$ .

### 2.3 ADVERSARIAL TRAINING FOR DIFFUSION MODELS

Diffusion processes rely on the denoising function mapping the noisy distribution  $q_t$  to the data distribution  $p_{\text{data}}$ , learned from optimizing  $\mathcal{L}_{\text{DM}}$  (see Eq. (3)), which ensures the model to learn the score field correctly, guiding the trajectories toward the data distribution. When defining the AT procedure, applying the standard AT (Szegedy et al., 2014) could hinder the learning process. We, indeed, propose an AT technique that inherits its principles from TRADES (Zhang et al., 2019), and accordingly acts as a distribution-level regularization.

**Naïve invariance does not work.** As for AT, we aim to guarantee that the model maintains a constant behavior in its predictions, whether the input sample is corrupted or not. To accomplish this, standard AT imposes invariance in the classification domain; conversely, for DMs, performing a regression task, invariance does not guarantee the same result. Fig. 2 shows that applying classical AT invariance as in Eq. (5), causes DMs to learn a different distribution than  $p_{\text{data}}(\mathbf{x})$ , rooting the generation to produce noisy data. This finding translates also to higher-dimensional data: Fig. 3 (right, bottom row) shows both qualitative samples and quantitative results applying the invariance to butterflies noisy data (90% corrupted samples,  $\sigma = 0.1$ ). The model, indeed, only recovers the distribution knowledge as the weight  $\lambda$  decreases. When moving to real data, applying invariance resulted in worse FID, achieving 356.9 on 50K generated samples from a DM trained on the CIFAR-10 dataset.

**Key change is equivariance.** Starting from an  $\epsilon$ -predicting DM, we defined the AT taking into account the need for input sensitivity of the model by enforcing *equivariance*. The intuition is depicted in the introductory Fig. 1 and a theoretical discussion is given in Section A.1. Since the main aim is to keep the model rooted to the data distribution, despite the additional perturbations  $\delta$ , the network must learn to correctly recover the previous state  $\mathbf{x}_{t-1}$  starting from  $\mathbf{x}_t + \delta$ . This objective is reached by taking into account  $\delta$  in the AT loss as  $\arg \min_{\theta} \|\epsilon_{\theta}(\mathbf{x}_t + \delta, t) - [\epsilon + \delta]\|_2^2$ . While this equation enforces equivariance, it does not yet enforce smoothness, since two outputs of the network do not interact with each other.

---

#### Algorithm 1 AT for Diffusion Models

---

**Input:** dataset  $\mathcal{D}$ , model  $\theta$ , max timestep  $T$ , scheduler  $\alpha_t$ , strength  $\lambda$ , ray scheduler  $r_{\beta}(t)$

**repeat**

- Sample  $\mathbf{x}_0 \sim \mathcal{D}$ ,  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ,
- $t \sim \mathcal{U}(\{0, \dots, T\})$ ,  $\beta \sim \mathcal{U}[0.5, 2]$ ,
- $\delta \sim \mathcal{U}[-r_{\beta}(t), r_{\beta}(t)]$
- $\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_0 + \sqrt{1 - \alpha_t} \epsilon$
- Compute  $\delta_{\text{adv}}$  using Eq. (8)
- $\mathbf{x}_t^{\text{adv}} = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} (\delta_{\text{adv}} + \epsilon)$
- $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_{\text{AT}}(\mathbf{x}_t, \mathbf{x}_t^{\text{adv}}, t, \epsilon)$  Eq. (6)

**until** convergence

---

216 **Our Training.** In this work, we propose an adversarial loss suited for  $\epsilon$ -predicting DMs. Given a  
 217 timestep  $t$  and an initial sample  $\mathbf{x}_0 \sim p_{\text{data}}$ , we define  $\mathbf{x}_t$  as in Eq. (2), and its perturbed counterpart  
 218  $\mathbf{x}_t + \boldsymbol{\delta}$ . AT is then defined as a regularization of the standard DM objective. The adversarial  
 219 regularization term,  $\mathcal{L}_{\text{reg}}$ , aims to *promote local equivariance and smoothness* along the regular DM  
 220 trajectories, which is achieved by locally minimizing the difference between the model’s prediction  
 221 on  $\mathbf{x}_t$  and  $\mathbf{x}_t + \boldsymbol{\delta}$ . The complete loss is given in Eq. (6), where the adversarial component is weighted  
 222 by a time-dependent coefficient  $\lambda_t$ . AT procedure is detailed in Algorithm 1.

$$\mathcal{L}_{\text{AT}}(\mathbf{x}_t, \mathbf{x}_t + \boldsymbol{\delta}, t, \boldsymbol{\epsilon}) = \arg \min_{\theta} \underbrace{\|\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) - \boldsymbol{\epsilon}\|_2^2}_{\mathcal{L}_{\text{DM}} \text{ to fit data distr.}} + \underbrace{\lambda_t \|\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t + \boldsymbol{\delta}, t) - [\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) + \boldsymbol{\delta}]\|_2^2}_{\mathcal{L}_{\text{reg}} \text{ to enforce smoothness}} \quad (6)$$

## 227 2.4 ADVERSARIAL PERTURBATION IN THE DIFFUSION PROCESS

228 **Injecting noise in the trajectory space.** Learning a diffusion process requires itself to corrupt natural  
 229 data iteratively during its training. In this context, the adversarial perturbation can be considered as  
 230 an additional noise component injected into  $\mathbf{x}_t$  during the training. Therefore, defining the sample’s  
 231 adversarial counterpart  $\mathbf{x}_t + \boldsymbol{\delta}$  so that it does not interfere with the diffusion process, requires a  
 232 proper and careful tuning of the perturbation parameters, accounting for both the DM objective  
 233 and the intermediate noisy data distributions  $\mathbf{x}_t \sim \mathcal{N}(\mathbf{x}_{t-1}, \sigma_t I)$ . To ensure compatibility with the  
 234 diffusion process (Wang & Vastola, 2023; Wang & Vastola), we bound the adversarial noise by a  
 235 time-varying radius  $r(t) = \|\boldsymbol{\delta}(t)\|_p$ , dependent on  $\sigma(t)$  values, to maintain model stability and avoid  
 236 mode collapse due to diffusion trajectories merging. Specifically, allowing the ray to grow too large  
 237 in some diffusion phases, like the content phase of generation (Choi et al., 2022), can lead to data  
 238 over-smoothing, causing the model not to capture the correct distribution. We define  $\mathbf{x}_t + \boldsymbol{\delta}$  as:

$$\mathbf{x}_t + \boldsymbol{\delta} = \sqrt{\alpha_t} \mathbf{x}_0 + \sqrt{1 - \alpha_t} (\boldsymbol{\epsilon} + \boldsymbol{\delta}), \text{ where } \boldsymbol{\delta} \in [-r_{\beta}(t), r_{\beta}(t)], r_{\beta}(t) \doteq \frac{(\sqrt{1 - \alpha_t})^{\omega} + \gamma \cdot \beta}{\sqrt{1 - \alpha_t}} \quad (7)$$

242 where  $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  and the exponent  $\omega \geq 1$  guiding the ray scheduling, whose effect is shown in  
 243 Fig. 2 (c). Finally, we propose retaining a randomized bias term  $\gamma \cdot \beta$  with  $\beta \sim \mathcal{U}[0.5, 2]$ ,  $\gamma \in \mathbb{R}^+$ ,  
 244 whose aim is to prevent regularization annealing as  $t \rightarrow 0$  and avoid data under-smoothing.

245 **Smoothing perturbations.** The adopted smoothing perturbation could be either random  $\boldsymbol{\delta}_{\text{ran}}$ , akin to  
 246 randomized smoothing Cohen et al. (2019), or adversarial  $\boldsymbol{\delta}_{\text{adv}}$ , as in AT Goodfellow et al. (2015).

247 *Random:* This approach requires the perturbation  $\boldsymbol{\delta}_{\text{ran}}$  to be sampled randomly in a uniform distribution,  
 248 limited by  $r_{\beta}(t)$ , defined as in Eq. (7). Being the ray itself randomized through the variable  $\beta$ ,  $\boldsymbol{\delta}_{\text{ran}}$   
 249 would then be a uniform random variable whose standard deviation is  $r_{\beta}(t)/\sqrt{3}$ , proof in Section C.3.

251 *Adversarial:* In the adversarial setting, we employ the Fast Gradient Sign Method (FGSM) with a  
 252 random start (Kurakin et al., 2017). The perturbation is first initialized as  $\boldsymbol{\delta}_{\text{ran}}$ , then followed by a  
 253 single FGSM step. The resulting perturbation is then projected back onto the  $\ell_{\infty}$  ball of radius  $r_{\beta}(t)$   
 254 to ensure  $\|\boldsymbol{\delta}_{\text{adv}}\|_{\infty} \leq r_{\beta}(t)$ . The optimization  $\boldsymbol{\delta}_{\text{adv}}$  considers the following cost function:

$$\mathcal{J}_{\theta}(\mathbf{x}_t, \boldsymbol{\delta}, t) = \|\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t + \boldsymbol{\delta}, t) - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t)\|_2^2, \boldsymbol{\delta}_{\text{adv}} = \mathbb{P}_{r_{\beta}(t)} \left[ \boldsymbol{\delta}_{\text{ran}} + \frac{r_{\beta}(t)}{\sqrt{3}} \mathcal{S}(\nabla_{\mathbf{x}_t} \mathcal{J}_{\theta}(\mathbf{x}_t, \boldsymbol{\delta}_{\text{ran}}, t)) \right] \quad (8)$$

255 where  $\mathbb{P}_{r_{\beta}(t)}$  projects the adversarial perturbation onto the surface of  $\mathbf{x}_t$ ’s neighbor  $\ell_{\infty}$ -ball,  $\mathcal{S}$  is  
 256 the sign operator and  $r_{\beta}(t)/\sqrt{3}$  is the standard deviation of the attack. Once the attack magnitude is  
 257 defined, we define the AT regularization strength as  $\lambda_t = \frac{\lambda \cdot \sqrt{3}}{\beta \cdot r(t)}$ , dependent on the perturbation norm  
 258 via its standard deviation and on a global constant  $\lambda \in \mathbb{R}^+$ .

## 263 3 EXPERIMENTAL RESULTS

266 **Experimental setup.** We present results on datasets ranging from controlled synthetic 3D data to  
 267 complex, real-world multi-modal data, presenting results “in vitro” to precisely measure errors in both low-  
 268 and high-dimensional settings. We further offer results on real datasets such as CIFAR-10 (Krizhevsky  
 269 et al., 2009) (50K images,  $32 \times 32$  pixels), CelebA (Liu et al., 2015) (202K images,  $64 \times 64$  pixels),  
 LSUN Bedroom (Yu et al., 2015) (303K images,  $256 \times 256$  pixels), and ImageNet (1.28M images,

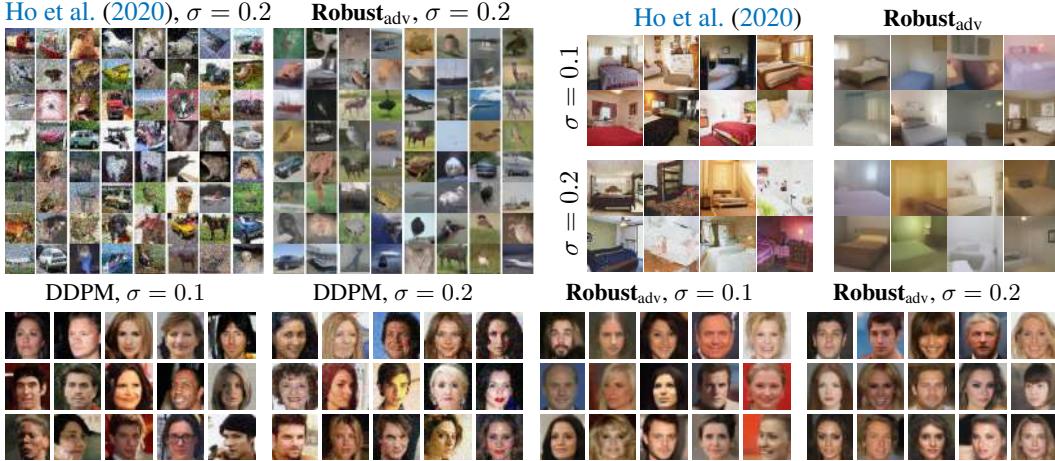


Figure 4: (top-left) Despite 90% of training data being corrupted with Gaussian noise, **Robust<sub>adv</sub>** generates smooth objects without artifacts, while DDPM retains noise.  $\sigma = 0.2$  equals adding 40% of CIFAR-10 variability ( $\sigma_{\text{data}} = 0.5$ ). (top-right) DDPM generates bedrooms that are irregular and unrealistic propagating the noise whereas **Robust<sub>adv</sub>** bedrooms are smooth and neat. (bottom) Results on CelebA. DDPM replicates noise, while ours discards it and produces cleaner faces.

64  $\times$  64 pixels as in [Daras et al. \(2024a\)](#)), quantitatively evaluating samples, using established metrics such as IS ([Salimans et al., 2016](#)) and FID ([Heusel et al., 2017](#)). Following [Daras et al. \(2024c;a\)](#), we experiment with Gaussian noise as corruption  $p_{\text{noise}}(\mathbf{x})$  and only work in challenging settings, testing a percentage  $p$  of corrupted data of  $p = 90\%$  with two levels of  $\sigma = \{0.1, 0.2\}$ . However, our method does not take into account the distinction between clean and noisy samples nor requires knowledge of the corruption variance  $\sigma$ . When computing FID, we always test on the *clean dataset* despite training with noisy datasets. Our methods are indicated by **Robust<sub>adv</sub>** when using adversarial perturbation and **Robust<sub>ran</sub>** if random. We show additional experiments that support our claims on less memorization, faster sampling, and robustness to attacks. We set  $\omega = 2$ ,  $\gamma = 8/255$  and  $\lambda = 0.3$ : across datasets, we have observed that when raising it to 0.5 we get an over-smoothing effect while low values prevent too much denoising. The adopted DDPM baseline is [Nichol & Dhariwal \(2021\)](#), whose available implementation was adopted as codebase.

### 3.1 EVALUATION USING DDPM AND DDIM

**Controlled Experiments.** Fig. 3 (right) shows the results when training on high dim. data living on a subspace. When training on the clean, regular dataset, the baseline and our Robust DMs perform similarly though **Robust<sub>ran</sub>** has slightly better PSNR. When we train on the noisy dataset,  $\{\mathbf{x}' + \mathbf{z}\}_{i=1}^N$ , then both Robust DMs offer superior performance (orange and blue curves) with wide gaps compared to the baseline (green curve) in both PSNR and reconstruction error. Specifically **Robust<sub>adv</sub>** appears to be better at noise unlearning. DDPM generations often consist in samples with saturated colors that are unlikely to be found in the training set while our method has better fidelity—see Fig. 3(left).

**Random or adversarial perturbation?** We can also reply to this question by ablating on  $\delta_{\text{adv}}$  and  $\delta_{\text{ran}}$ . Table 1 (top) shows that the adversarial perturbation can guarantee a much stronger denoising effect than random, yet is more expensive for training. The impact of our Eq. (6) is remarkable even in the case of random perturbation with an FID far below the baselines.

**Resistant to noise by design.** Table 2 compares our approach with the baseline DDPM and DDIM on CIFAR-10, CelebA, and LSUN Bedroom, yet corrupted with white noise. We show that, if we apply our method to the original dataset with no noise ( $p = 0\%$ ), we only get a slight increase in the FID. However, if we visually inspect the results, we discover that ours is actually



Figure 5: Despite the FID increasing once trained on clean data, images by **Robust<sub>adv</sub>** appear smoother and background clutter is removed.

324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377

Table 1: Top: Random vs adv. noise. Bottom: **Robust<sub>adv</sub>** allows fewer steps for better FID. Results on CIFAR-10.

| $\sigma \rightarrow$        | 0.1          |             | 0.2          |             |
|-----------------------------|--------------|-------------|--------------|-------------|
| metrics $\rightarrow$       | FID          | IS          | FID          | IS          |
| <b>Robust<sub>ran</sub></b> | 79.21        | 5.21        | 68.04        | 4.34        |
| <b>Robust<sub>adv</sub></b> | <b>24.70</b> | <b>7.21</b> | <b>24.81</b> | <b>7.07</b> |
| steps $\rightarrow$         | 300          |             | 500          |             |
| metrics $\rightarrow$       | FID          | IS          | FID          | IS          |
| DDPM                        | 224.38       | 3.33        | 28.07        | <b>8.46</b> |
| <b>Robust<sub>adv</sub></b> | <b>37.89</b> | <b>6.39</b> | <b>24.34</b> | 7.53        |

Table 2: Performance under different noise levels on different real datasets. Values indicate FID  $\downarrow$  / IS  $\uparrow$ .

| $p$                 | $\%$ | $\sigma$ | DDPM               | Robust <sub>adv</sub> | DDIM                | Robust <sub>adv</sub> |
|---------------------|------|----------|--------------------|-----------------------|---------------------|-----------------------|
| <b>CIFAR-10</b>     |      |          |                    |                       |                     |                       |
| 0                   | 0    |          | <b>7.2 / 8.95</b>  | 28.68 / 7.04          | <b>11.62 / 8.36</b> | 31.20 / 6.38          |
| 0.9                 | 0.1  |          | 58.05 / 6.93       | <b>24.70 / 7.21</b>   | 59.28 / 6.89        | <b>25.48 / 6.85</b>   |
| 0.9                 | 0.2  |          | 102.68 / 4.19      | <b>24.81 / 7.07</b>   | 105.43 / 4.09       | <b>24.93 / 6.69</b>   |
| <b>CelebA</b>       |      |          |                    |                       |                     |                       |
| 0                   | 0    |          | <b>3.49 / 2.61</b> | 19.83 / 2.13          | <b>6.19 / 2.61</b>  | 17.59 / 2.18          |
| 0.9                 | 0.1  |          | 54.90 / 2.40       | <b>14.54 / 2.09</b>   | 41.29 / 2.48        | <b>17.98 / 2.22</b>   |
| 0.9                 | 0.2  |          | 96.03 / 2.65       | <b>16.53 / 2.11</b>   | 89.28 / 2.62        | <b>20.24 / 2.20</b>   |
| <b>LSUN Bedroom</b> |      |          |                    |                       |                     |                       |
| 0                   | 0    |          | <b>9.90 / 2.31</b> | 57.13 / 2.34          | <b>27.00 / 3.15</b> | 48.80 / 2.39          |
| 0.9                 | 0.1  |          | 53.81 / 3.33       | <b>44.07 / 2.35</b>   | 50.53 / 3.19        | <b>48.90 / 3.96</b>   |
| 0.9                 | 0.2  |          | 95.85 / 4.08       | <b>44.27 / 2.50</b>   | 82.20 / 4.39        | <b>61.98 / 3.66</b>   |

smoothing background features, but still outlines of the objects are visible, as shown in Fig. 5 and Section E. When we switch to noisy settings, we have a large improvement over the baseline for both DDPM and DDIM. We highlight that while the baseline FIDs skyrocket to very high values for  $p = 90\%$ ,  $\sigma = 0.2$ , the **Robust<sub>adv</sub>** can keep it in a reasonable range, generating images unaffected by the noise. We also provide early results on the ImageNet (Russakovsky et al., 2014) dataset, which comprises 1.28M images, downsampled at a resolution of  $64 \times 64$  pixels following Daras et al. (2024a). The regularization also works effectively on this more complex dataset, resulting in a decrease in FID from 97.6 to 83.8 for  $p = 90\%$ ,  $\sigma = 0.1$  and from 129.4 to 80.3 for  $p = 90\%$ ,  $\sigma = 0.2$ . Quantitative evaluations are provided in Table 2, showing major improvement of the regularized training over standard training. Fig. 4 illustrates our method’s benefits on the proposed datasets under noisy data conditions. More results and images are available in the appendix.

**Time complexity.** Training with AT strongly impacts training time due to the overhead of computations needed. DDPM training operations comprehend a single forward pass to get model prediction and a backward pass for weights update. Our regularization adds a backward pass to obtain adversarial loss gradients over the perturbation and doubles the same DDPM operations. The time complexity is  $\times 2.5$  for **Robust<sub>adv</sub>**, whereas **Robust<sub>ran</sub>** is less time-consuming since it does not have to backpropagate for the adversarial perturbation. Despite the training time being higher than the baseline, remarkably, the inference time is the same as other methods, and we can attain faster sampling—see Section 3.3.

### 3.2 ROBUST DIFFUSION MODELS MEMORIZIZE LESS

Following Daras et al. (2024d) we show that Robust DMs are naturally less prone to memorize the training data. We perform an experiment following Somepalli et al. (2023): using DDPM and our **Robust<sub>adv</sub>** trained on clean CIFAR-10, we synthesize 50K images from each of them and measure the similarities of those images with the one in the training set, embedding the images with DINO-v2 Oquab et al. (2023). In Daras et al. (2024d) a similar experiment was done yet using DeepFloyd IF instead of U-Net DDPM. Although U-Net has much less parameters than DeepFloyd IF—millions vs billions—one could assume that U-Net will overfit less. Fig. 6 (left) shows that still a decent amount of generated samples have similarity higher than 0.90. Similarity  $\geq 0.9$  roughly corresponds to the same CIFAR image. Robust models have a histogram that is drastically shifted on the left and the curve of the histogram in the right part decays more rapidly, having less samples in the region  $\geq 0.9$ .

### 3.3 IMPLICATIONS OF SMOOTH DIFFUSION FLOW

**Smooth diffusion flow.** Fig. 6 (right) shows the diffusion flow from the standard normal distribution to the data distribution. To do so, we use DDPM framework and low-dimensional 3D data, projected to 2D for clarity. In oblique-plane, we can see how **Robust<sub>adv</sub>** captures less variability, filtering out noise, while DDPM heatmap is more faded. Moreover, DDPM, misled by the noise, introduces a very subtle additional mode, whereas ours maintains a unimodal generation. The same remarks hold for a multi-modal dataset: in 3-gaussians DDPM’s trajectories are distorted by noise, while ours remain straight, preserving the multi-modal structure (only two modes are visible due to projection). **Trade-off analysis on clean and noisy data.** This sharpening of the trajectories leads to a reduction in

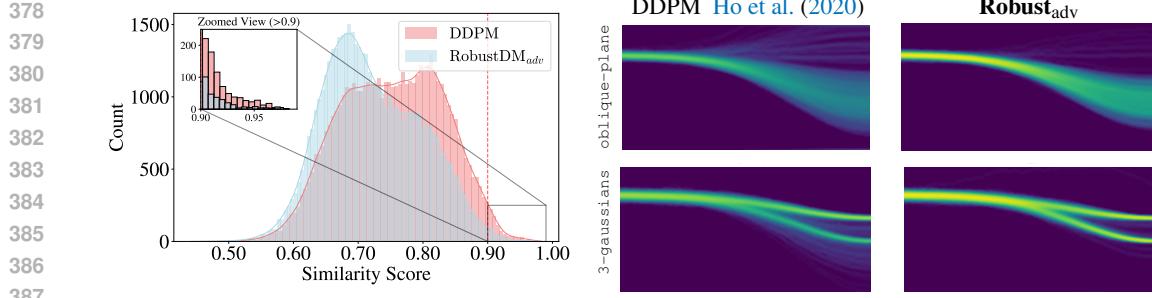


Figure 6: (left) The histogram shows similarities between generated samples and CIFAR-10, with values above 0.9 indicating near-duplicates. DDPM memorizes more, while **Robust<sub>adv</sub>** reduces near-replicas. (right) Regular training tends to have diverging trajectories w.r.t. the data distribution, while **Robust<sub>adv</sub>** trades off variability for resilience with trajectories more clustered, sharp, and less faded.

the variance of the generated data, but it does not induce mode collapse. As a result, the generated images may lose some high-frequency noise and fine details, producing outputs that appear smoother overall. Nevertheless, by applying regularization as determined by the parameter  $\lambda$ , we can effectively modulate its action and thus its smoothing effect. The analysis of the regularization effect, depending on  $\lambda$  of Eq. (6), enables us to define an existing trade-off between image quality and robustness, as well as denoising capabilities, similar to the widely examined trade-off between robust and clean accuracy in robust classifiers. Qualitative examples supporting this are provided in Figs. 7 and 25, where we illustrate how model performance varies when the  $\lambda$  is changed and how it affects both generation and denoising capabilities.

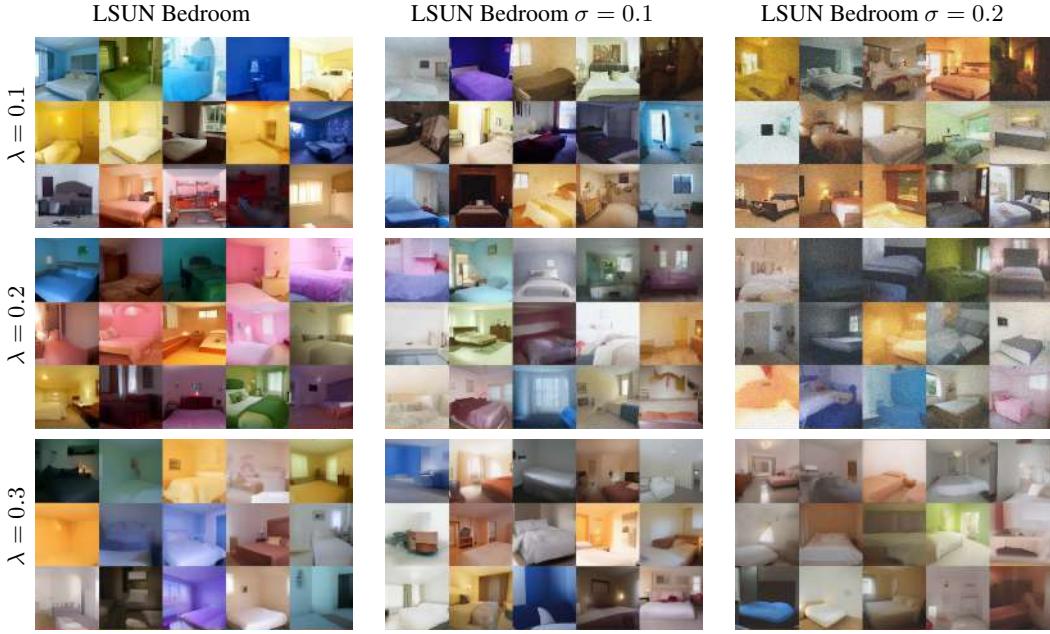


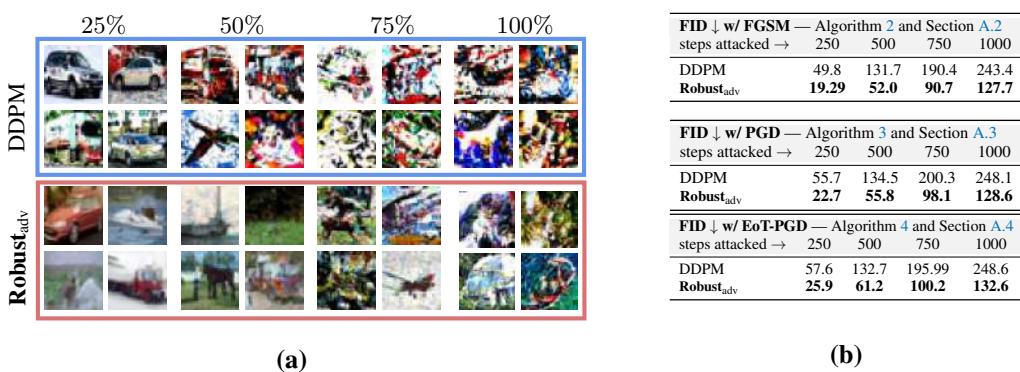
Figure 7: **Robust<sub>adv</sub>** trained on LSUN Bedroom dataset, with different noisy data ( $p = 90\%$ , different  $\sigma$  are visible in the image) and varying hyperparameter  $\lambda = \{0.1, 0.2, 0.3\}$ .

**Faster sampling.** Fig. 6 (right) shows that the diffusion flow of **Robust<sub>adv</sub>** is more compact and sharp, less faded. This could imply that the inference process may still recover the right path in case the regressed score vector is corrupted or is noisy or in case we deliberately use fewer steps in Eq. (4) for faster sampling. We tested this hypothesis and the trade-off table of FID in function of the number of steps taken is shown in Table 1 (bottom). Even more, if we cross compare Table 1 (bottom) with Table 2, on clean data **Robust<sub>adv</sub>** scores a better FID with 500 steps (24.34) vs 1000 steps (28.68). This experiment supports our claim showing that **Robust<sub>adv</sub>** is still able to generate samples with good

432 fidelity even if using fewer inference steps. The degradation using less steps is widely more graceful  
 433 than DDPM especially when we take only 300 steps over 1000.  
 434

### 435 436 3.4 ROBUSTNESS TO ADVERSARIAL ATTACKS

437 Our method is naturally resistant to attacks. Like  
 438 classifiers, AT enforces robustness to adversarial  
 439 perturbations in the diffusion flow. We propose an attack primarily as an analytical tool  
 440 to better understand the fundamental sensitivity  
 441 of the generative process to perturbations. The  
 442 attack takes into account the stochastic nature  
 443 of DM inference and the fundamental hypothesis  
 444 of gaussianity for each diffusion stage. We  
 445 propose attacking a DM in a white-box setting  
 446 defining a sequence of adversarial perturbations  
 447 that could maximally disrupt the trajectory at  
 448 *some* of the intermediate inference steps, defined  
 449 as described in Algorithm 2. We also propose  
 450 a procedure to determine the range of values of  
 451 the perturbation in order to maintain the assumption  
 452 of the diffusion process; more information  
 453 can be found in Section A.2. Fig. 8 shows that  
 454 our method is much more robust to attacks in  
 455 diffusion flow: Robust<sub>adv</sub> can tolerate up to 50% of time step attacked and still generate samples with  
 456 decent fidelity. Only at 75% time steps attacked, the generation fails for both. The attack illustrated  
 457 in Algorithm 2 is a single-iteration attack. In Section A.3, we extend the pool of considered attacks  
 458 to include iterative PGD (Madry et al., 2018), and provide the model’s performance in that setting.  
 459 In addition, to account for the inherent stochasticity of the diffusion-based inference process, we  
 460 evaluate robustness under an Expectation-over-Transformation (EoT) (Athalye et al., 2018). We adopt  
 461 this framework in the stronger setting of the PGD attack, as previously introduced. In particular, the  
 462 EoT is applied by averaging gradients over five stochastic noise samples. The average gradient is then  
 463 used to update the perturbation. The detailed attack implementation can be found in Section A.4. The  
 464 table in Fig. 8(b) (bottom) shows that the Robust<sub>adv</sub> model also effectively demonstrates its resilience  
 465 to major disruptions in the diffusion process, as well as robustness to EoT-based attacks.  
 466



481 Figure 8: (a) Robustness to Adversarial Attacks. While the baseline DDPM is susceptible to  
 482 adversarial attacks, Robust DMs better resist them, yielding superior FID and IS for different  
 483 percentages of time steps attacked (e.g., 25% means 250 out of 1000 DDPM steps are attacked). (b)  
 484 FID under FGSM, PGD and EoT applied to PGD, varying the percentage of attacked timesteps.  
 485

486  
487  
488  
489 

## 4 RELATED WORK

490 

**Diffusion models.** Score-based generative models (Song & Ermon, 2019) express the inference process  
491 through a Stochastic Differential Equations (SDE) Dhariwal & Nichol (2021). Denoising Diffusion  
492 Probabilistic Models (DDPMs) Ho et al. (2020) first introduced diffusion process as a score-based  
493 generative framework, becoming a standard algorithm in generative modeling on high-dimensional  
494 data, overcoming Goodfellow et al. (2020). DMs not only achieve higher fidelity but also provide a  
495 more stable training. DMs have been extensively improved: working on the logarithmic likelihood  
496 estimate Nichol & Dhariwal (2021), faster sampling Song et al. (2021a), and performing the diffusion  
497 process in the latent space Rombach et al. (2022). Karras et al. (2022; 2024) provide insightful  
498 clarifications on several DMs design choices, introducing improved U-Net architectures that ensure  
499 consistent activation, weight, and update magnitude, achieving state-of-the-art FID on CIFAR and  
500 other benchmarks. Lastly, Song et al. (2023) proposed *consistency* models, a distillation method for  
501 one-step inference by directly mapping noise to data. The name *consistency* arises from the fact that  
502 they enforce different noisy versions in the same trajectory to map to the same data. Unlike them, we  
503 do not aim to distill a model, but rather to train one enforcing local *smoothness* of trajectories within  
504 the same timestep  $t$ , so that their score field remains locally consistent.

505 

**Denoising and inverse problems with DMs.** The attention to apply DMs on corrupted data has in-  
506 creased in recent years (Aali et al., 2023; Xiang et al., 2023; Daras et al., 2024d;a). Given the  
507 specific challenges related to training with noisy data, this problem is closely related to inverse  
508 problems (Tachella et al., 2024; Kawar et al., 2024). Recently, a line of research focused on applying  
509 Stein’s Unbiased Risk Estimator (SURE) (Metzler et al., 2020) and its subsequent improvements,  
510 including UNSURE (Tachella et al., 2024), GSURE (Kawar et al., 2024), Soft Diffusion (Daras et al.,  
511 2024b), and methods leveraging optimal transport for training with noise (Dao et al., 2024).

512 

**Adversarial robustness.** This topic is loosely linked to denoising since AT can be seen as a way to  
513 remove spurious correlations (Ye et al., 2024) with improved out-of-domain generalization when  
514 transferring to a new domain (Ilyas et al., 2019) or related to causal learning (Zhang et al., 2020;  
515 2022). AT variants have been used to improve domain shift (Salman et al., 2020a) and out of  
516 distribution (Wang et al., 2022). While it is reasonable to say that AT has been extensively studied  
517 on classifiers, its application to DMs remains unexplored, except for Sauer et al. (2024), where it is  
518 applied for fast sampling, Yang et al. (2024), which investigates the batch samples interconnection,  
519 and Lorenz et al. (2024) which found adversarial samples do not align with the learned DM manifold.

520 

**Adversarial defenses with denoising or randomized smoothing.** Several adversarial defenses leverage  
521 denoising (Salman et al., 2020b; Carlini et al., 2023a) and randomized smoothing (Cohen et al., 2019),  
522 mainly in the context of classifiers. Regarding DMs, Song et al. (2024); Liang et al. (2023); Liang &  
523 Wu (2023) have shown that adversarial perturbations, if applied at inference time, can significantly  
524 disrupt their generative capabilities, leading to deviations from clean data distributions. Further works  
525 introduce the concept of robustness when fine-tuning DMs to make them robust in the context of  
526 adversarial purification (Song et al., 2018; Nie et al., 2022; Lin et al., 2024). While these methods  
527 differ in adversarial samples definition (Li et al., 2025; Liu et al., 2025), they share similar underlying  
528 objectives. Our work introduces AT in Diffusion Models to enforce local smoothness in the score  
529 field, which may help counteract such deviations during the inference procedure. Indeed, unlike Guo  
530 et al. (2024), our work aims to smooth model trajectories, not embeddings (see Section A.5), which  
531 differs from the SmoothDiffusion objective.

532  
533 

## 5 CONCLUSIONS AND FUTURE WORK

534 

We presented the first attempt to incorporate AT into DM training, demonstrating that AT for  
535 generative modeling entails smoothing the data distribution and can be effectively utilized for  
536 denoising the data. We also show that we need to reinterpret it as *equivariant* property and not  
537 *invariance*. Our method has been proven to be highly robust even under 90% of corrupted data with  
538 strong Gaussian noise. In terms of future work, we aim to extend this work to a robust fine-tuning  
539 technique that is applicable to larger, new models with reduced training costs. Preliminary results  
( $p = 100\%$ ) and port our approach to EDM (Karras et al., 2022; 2024) to scale to larger datasets.

540     **Ethics Statement.** Based on our comprehensive analysis, we assert that this work does not raise  
 541     identifiable ethical concerns or foreseeable negative societal consequences within the scope of our  
 542     study. On the contrary, our contributions aim to enhance the robustness of Diffusion Models against  
 543     attacks.

544     **Reproducibility.** To ensure reproducibility, we provide a detailed description of our experimental  
 545     setup in Section 3 including datasets, models, and adversarial attacks, along with their sources.  
 546     The codebase we adopted for building the AT framework is [Nichol & Dhariwal \(2021\)](#), and the  
 547     regularization code will be released upon acceptance.

548     **LLM Usage.** Large language models were used exclusively for text polishing and minor exposition  
 549     refinements. All substantive research content, methodology, and scientific conclusions were developed  
 550     entirely by the authors

552     **REFERENCES**

554     Asad Aali, Marius Arvinte, Sidharth Kumar, and Jonathan I Tamir. Solving inverse problems with  
 555     score-based generative priors learned from noisy data. In *Asilomar Conference on Signals, Systems,*  
 556     *and Computers*, 2023.

557     Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews:*  
 558     *computational statistics*, 2(4):433–459, 2010.

560     Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial  
 561     examples. In *Proceedings of the 35th International Conference on Machine Learning*, Proceedings  
 562     of Machine Learning Research. PMLR, 2018.

563     Nicholas Carlini, Florian Tramer, Krishnamurthy Dj Dvijotham, Leslie Rice, Mingjie Sun, and J Zico  
 564     Kolter. (certified!!) adversarial robustness for free! In *ICLR*, 2023a.

566     Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja  
 567     Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In  
 568     *USENIX Security Symposium*, 2023b.

569     Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon.  
 570     Perception prioritized training of diffusion models. In *Proceedings of the IEEE/CVF Conference*  
 571     *on Computer Vision and Pattern Recognition*, pp. 11472–11481, 2022.

572     Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized  
 573     smoothing. In *ICML*, pp. 1310–1320. PMLR, 2019.

575     Quan Dao, Binh Ta, Tung Pham, and Anh Tran. A high-quality robust diffusion framework for  
 576     corrupted dataset. In *ECCV*, 2024.

577     Giannis Daras, Yeshwanth Cherapanamjeri, and Constantinos Daskalakis. How much is a noisy  
 578     image worth? data scaling laws for ambient diffusion. *arXiv e-prints*, pp. arXiv–2411, 2024a.

580     Giannis Daras, Mauricio Delbracio, Hossein Talebi, Alex Dimakis, and Peyman Milanfar. Soft  
 581     diffusion: Score matching with general corruptions. *TMLR*, 2024b.

582     Giannis Daras, Alex Dimakis, and Constantinos Costis Daskalakis. Consistent diffusion meets  
 583     tweedie: Training exact ambient diffusion models with noisy data. In *ICML*, 2024c.

585     Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Klivans.  
 586     Ambient diffusion: Learning clean distributions from corrupted data. In *NeurIPS*, 2024d.

587     Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In *NeurIPS*,  
 588     2021.

589     Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial  
 590     examples. In *ICLR*, 2015.

592     Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,  
 593     Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*  
*ACM*, 63(11):139–144, 2020.

594 Jiayi Guo, Xinqian Xu, Yifan Pu, Zanlin Ni, Chaofei Wang, Manushree Vasu, Shiji Song, Gao  
 595 Huang, and Humphrey Shi. Smooth diffusion: Crafting smooth latent spaces in diffusion models.  
 596 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,  
 597 2024.

598 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.  
 599 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*,  
 600 volume 30, 2017.

602 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,  
 603 volume 33, 2020.

604 Alain Hore and Djamel Ziou. Image quality metrics: Psnr vs. ssim. In *2010 20th international  
 605 conference on pattern recognition*, pp. 2366–2369. IEEE, 2010.

607 Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander  
 608 Madry. Adversarial examples are not bugs, they are features. In *NeurIPS*, 2019.

610 Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Carlini,  
 611 Eric Wallace, Shuang Song, Abhradeep Guha Thakurta, Nicolas Papernot, et al. Measuring  
 612 forgetting of memorized training examples. In *ICLR*, 2023.

613 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-  
 614 based generative models. In *NeurIPS*, 2022.

616 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing  
 617 and improving the training dynamics of diffusion models. In *CVPR*, 2024.

619 Bahjat Kawar, Noam Elata, Tomer Michaeli, and Michael Elad. Gsure-based diffusion model training  
 620 with corrupted data. *TMLR*, 2024.

621 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.  
 622 Technical report, CIFAR, 2009.

624 Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In  
 625 *ICLR*, 2017.

626 Xiao Li, Wenzuan Sun, Huanran Chen, Qiongxu Li, Yingzhe He, Jie Shi, and Xiaolin Hu. ADBM:  
 627 Adversarial diffusion bridge model for reliable adversarial purification. In *ICLR*, 2025.

629 Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-df: A new dataset for deepfake  
 630 forensics. *arXiv preprint arXiv:1909.12962*, 2019.

632 Chumeng Liang and Xiaoyu Wu. Mist: Towards improved adversarial examples for diffusion models.  
 633 *arXiv preprint arXiv:2305.12683*, 2023.

634 Chumeng Liang, Xiaoyu Wu, Yang Hua, Jiaru Zhang, Yiming Xue, Tao Song, Zhengui Xue, Ruhui  
 635 Ma, and Haibing Guan. Adversarial example does good: preventing painting imitation from  
 636 diffusion models via adversarial examples. In *Proceedings of the 40th International Conference on  
 637 Machine Learning (ICML 2023)*, ICML’23. JMLR.org, 2023.

639 Guang Lin, Chao Li, Jianhai Zhang, Toshihisa Tanaka, and Qibin Zhao. Adversarial training on  
 640 purification (ATop): Advancing both robustness and generalization. In *The Twelfth International  
 641 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=u7559ZMvwY>.

643 Yiming Liu, Kezhao Liu, Yao Xiao, ZiYi Dong, Xiaogang Xu, Pengxu Wei, and Liang Lin. Towards  
 644 understanding the robustness of diffusion-based purification: A stochastic perspective. In *ICLR*,  
 645 2025.

647 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaou Tang. Deep learning face attributes in the wild. In  
 648 *ICCV*, 2015.

648 Peter Lorenz, Ricard Durall, and Janis Keuper. Adversarial examples are misaligned in diffusion  
 649 model manifolds. In *2024 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–8.  
 650 IEEE, 2024.

651

652 Aleksander Madry, Aleksandar Makedov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.  
 653 Towards deep learning models resistant to adversarial attacks. In *ICLR*, 2018.

654

655 Christopher A Metzler, Ali Mousavi, Reinhard Heckel, and Richard G Baraniuk. Unsupervised  
 656 learning with stein’s unbiased risk estimator. *arXiv preprint arXiv:1805.10531*, 2020.

657

658 Mirza Mujtaba Hussain, Briglia Maria Rosaria, Beadini Senad, and Masi Iacopo. Shedding more  
 659 light on robust classifiers under the lens of energy-based models. In *ECCV*, 2024.

660

661 Andre T Nguyen and Edward Raff. Adversarial Attacks, Regression, and Numerical Stability  
 662 Regularization. In *The AAAI-19 Workshop on Engineering Dependable and Secure Machine  
 Learning Systems*, 2019. URL <https://arxiv.org/pdf/1812.02885.pdf>.

663

664 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.  
 In *ICML*, 2021.

665

666 Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.  
 667 Diffusion models for adversarial purification. In *ICML*, 2022.

668

669 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,  
 670 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning  
 robust visual features without supervision. *TMLR*, 2023.

671

672 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 673 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

674

675 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,  
 676 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition  
 challenge. *IJCV*, pp. 1–42, 2014.

677

678 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and  
 679 Xi Chen. Improved techniques for training gans. In *NeurIPS*, 2016.

680

681 Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversari-  
 ally robust imagenet models transfer better? In *NeurIPS*, 2020a.

682

683 Hadi Salman, Mingjie Sun, Greg Yang, Ashish Kapoor, and J Zico Kolter. Denoised smoothing: A  
 684 provable defense for pretrained classifiers. *NeurIPS*, 2020b.

685

686 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion  
 687 distillation. In *ECCV*, 2024.

688

689 Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,  
 690 Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In *NeurIPS*, 2019.

691

692 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion  
 693 art or digital forgery? investigating data replication in diffusion models. In *CVPR*, 2023.

694

695 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*,  
 696 2021a.

697

698 Kaiyu Song, Hanjiang Lai, Yan Pan, and Jian Yin. Mimicdiffusion: Purifying adversarial perturbation  
 699 via mimicking clean diffusion model. In *CVPR*, 2024.

700

701 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.  
 In *NeurIPS*, 2019.

702

703 Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:  
 704 Leveraging generative models to understand and defend against adversarial examples. In *ICLR*,  
 705 2018.

702 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
 703 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021b.  
 704

705 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *ICML*, 2023.  
 706

707 Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and R. Venkatesh Babu. Guided adversarial  
 708 attack for evaluating and enhancing adversarial defenses. In *NeurIPS*, 2020.

709 Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, et al. Towards efficient and effective  
 710 adversarial training. *NeurIPS*, 2021.

711

712 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,  
 713 and Rob Fergus. Intriguing properties of neural networks. In *ICLR*, 2014.

714

715 Julián Tachella, Mike Davies, and Laurent Jacques. Unsure: Unknown noise level stein's unbiased  
 716 risk estimator. *arXiv preprint arXiv:2409.01985*, 2024.

717

718 Binxu Wang and John Vastola. The unreasonable effectiveness of gaussian score approximation for  
 719 diffusion models and its applications. *Transactions on Machine Learning Research*.

720

721 Binxu Wang and John J Vastola. Diffusion models generate images like painters: an analytical theory  
 722 of outline first, details later. *CoRR*, 2023.

723

724 Qixun Wang, Yifei Wang, Hong Zhu, and Yisen Wang. Improving out-of-distribution generalization  
 725 by adversarial training with structured priors. *NeurIPS*, 2022.

726

727 Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving  
 728 adversarial robustness requires revisiting misclassified examples. In *ICLR*, 2020.

729

730 Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion  
 731 models further improve adversarial training. In *ICML*, 2023.

732

733 Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. In  
 734 *ICLR*, 2020.

735

736 Tiange Xiang, Mahmut Yurt, Ali B Syed, Kawin Setsompop, and Akshay Chaudhari. Ddm $\hat{2}$ :  
 737 Self-supervised diffusion mri denoising with generative diffusion models. *arXiv preprint arXiv:2302.03018*, 2023.

738

739 Ling Yang, Haotian Qian, Zhilong Zhang, Jingwei Liu, and Bin Cui. Structure-guided adversarial  
 740 training of diffusion models. In *CVPR*, 2024.

741

742 Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, Xia Hu, and Aidong Zhang. Spurious  
 743 correlations in machine learning: A survey. *arXiv preprint arXiv:2402.12715*, 2024.

744

745 Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-  
 746 scale image dataset using deep learning with humans in the loop. *arXiv preprint arXiv:1506.03365*,  
 747 2015.

748

749 Cheng Zhang, Kun Zhang, and Yingzhen Li. A causal view on robustness of neural networks. In  
 750 *NeurIPS*, 2020.

751

752 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.  
 753 Theoretically principled trade-off between robustness and accuracy. In *ICML*, 2019.

754

755 Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard  
 756 Schölkopf, and Kun Zhang. Adversarial robustness through the lens of causality. In *ICLR*, 2022.

757

758 Yao Zhu, Jiacheng Ma, Jiacheng Sun, Zewei Chen, Rongxin Jiang, Yaowu Chen, and Zhenguo Li.  
 759 Towards understanding the generative capability of adversarially robust classifiers. In *ICCV*, 2021.

756 **A APPENDIX**  
757758 **A.1 THEORETICAL CONSIDERATIONS ON ADVERSARIAL TRAINING FOR DIFFUSION MODELS**  
759

760 To craft an appropriate adversarial loss, at first, forward and reverse processes are redefined in light of  
761 this further intermediate state. The main aim of performing adversarial training on a diffusion model  
762 is to enhance the robustness capability against adversarial attacks in its reverse process by providing  
763 the algorithm with some data that has previously been corrupted. We model this corruption process as  
764 an additional chain state, and in this section, we provide a theoretical discussion for this assumption.

765 **A.1.1 THE FORWARD PROCESS**  
766

767 The theoretical definition of the DDPM forward process is the following:  
768

$$769 q(\mathbf{x}_{1:T} | \mathbf{x}_0) := \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1}), \quad q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \sigma(t)} \mathbf{x}_{t-1}, \sigma(t) \mathbf{I}).$$

772 where  $q(\mathbf{x}_t | \mathbf{x}_{t-1})$  represents the transition probability of the process to move from the state  $\mathbf{x}_{t-1}$  at  
773 the timestep  $t-1$  to the state  $\mathbf{x}_t$  at the timestep  $t$ . To achieve the aim of integrating the perturbation in  
774 the framework, the forward chain can be redefined considering a different dynamic of the adversarial  
775 forward process. A sample at the time step  $t$  is first derived as defined above, and then to it is added  
776 an adversarial perturbation  $\delta_{\theta,t}$  that depends on the model's actual state and on the value of  $\mathbf{x}_t$ . The  
777 overall attack procedure to the model intermediate steps can be represented as a concatenation of two  
778 transitions. The primary step is the ordinary DDPM transition from  $\mathbf{x}_{t-1}$  to  $\mathbf{x}_t$ , which is modeled  
779 as  $q(\mathbf{x}_t | \mathbf{x}_{t-1})$ . The attack transition can be modeled as the step that goes from  $\mathbf{x}_t$  to  $\mathbf{x}_t + \delta_t$  in  
780 the  $t$ -th timestep, being defined similarly as above  $q'(\mathbf{x}_t + \delta_t | \mathbf{x}_t)$ . The two transitions are designed  
781 to happen in the same time step  $t$  of the chain and, being independent of each other, it is possible  
782 to model their interaction as a sub-sequence of steps of a Markov Chain. This is possible since the  
783 transition  $\mathbf{x}_{t-1} \rightarrow \mathbf{x}_t$  is already modeled like this and  $\mathbf{x}_t \rightarrow \mathbf{x}_t + \delta_t$  depends only on the weights of  
784 the model (which are constant when crafting the attack, so considerable as constant within the same  
785 evaluation) and the value of  $\mathbf{x}_t$  conceived as "previous state". The resulting transition probability  
786  $q''(\mathbf{x}_t + \delta_t | \mathbf{x}_{t-1})$  is:

$$786 q''(\mathbf{x}_t + \delta_t | \mathbf{x}_{t-1}) = q'(\mathbf{x}_t + \delta_t | \mathbf{x}_t) \cdot q(\mathbf{x}_t | \mathbf{x}_{t-1}).$$

788 The overall chain can be written as:  
789

$$790 q''(\mathbf{x}_{1:T} + \delta_{1:T} | \mathbf{x}_0) = \prod_{t=1}^T q'(\mathbf{x}_t + \delta_t | \mathbf{x}_t) \cdot q(\mathbf{x}_t | \mathbf{x}_{t-1}).$$

793 with  $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \sigma(t)} \mathbf{x}_{t-1}, \sigma(t) \mathbf{I})$ . Being  $q(\cdot)$  a Gaussian transition and being the  
794 perturbation addition still modeled as a Gaussian transition, the DM hypothesis of having only  
795 intermediate Gaussian transitions still holds.

796 **A.1.2 REVERSE PROCESS**  
797

798 The reverse process in the diffusion models aims to define an algorithm that approximates the forward  
799 function and makes it possible to reconstruct the input. In the DDPM formulation, the backward  
800 process is defined as:

$$801 p_{\theta}(\mathbf{x}_{0:T}) := p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t), \quad p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \Sigma_{\theta}(\mathbf{x}_t, t)).$$

804 Following the previous substitutions, the desired equivalence when applying perturbations in the  
805 forward process would be :

$$807 p(\mathbf{x}_t + \delta_t | \mathbf{x}_{t-1}) = q''(\mathbf{x}_t + \delta_t | \mathbf{x}_{t-1}).$$

808 that, if considering its approximation, reduces to:  
809

$$p(\mathbf{x}_{t-1} | \mathbf{x}_t + \delta_t) \propto p(\mathbf{x}_t + \delta_t | \mathbf{x}_{t-1}) \cdot p(\mathbf{x}_{t-1}).$$

810 This consideration holds also in this case, so if we substitute the objective distributions  $p(\cdot)$  with the  
 811 desired ones we get:

$$813 \quad p(\mathbf{x}_{t-1} \mid \mathbf{x}_t + \boldsymbol{\delta}_t) \propto p(\mathbf{x}_{t-1}) \cdot q''(\mathbf{x}_t + \boldsymbol{\delta}_t \mid \mathbf{x}_{t-1}) = p(\mathbf{x}_{t-1}) \cdot q'(\mathbf{x}_t + \boldsymbol{\delta}_t \mid \mathbf{x}_t) \cdot q(\mathbf{x}_t \mid \mathbf{x}_{t-1}).$$

814 The above equations hold in case the reverse process is defined in closed form, while in our case the  
 815 reverse function is a learned function by  $p_\theta(\cdot)$ , which is designed and learned to properly converge to  
 816  $p_{\text{data}}(\mathbf{x})$  at a specific timestep 0 of the chain. To properly learn this objective, the network is trained  
 817 to learn to regress the amount of noise added in the forward process by minimizing the following  
 818 simplified objective:

$$819 \quad \mathcal{L}(\mathbf{x}_t; \boldsymbol{\theta}) = \|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)\|_2^2 \quad \text{where } \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}) \quad \text{given } t \in [0, \dots, T]. \quad (9)$$

820 where  $q'(\mathbf{x}_t + \boldsymbol{\delta}_t \mid \mathbf{x}_t)$  represents the transition probability of going from the state  $\mathbf{x}_t$  to the state  
 821  $\mathbf{x}'_t = \mathbf{x}_t + \boldsymbol{\delta}_t$  in the same timestep  $t$ , the transition from an uncorrupted state to a corrupted one  
 822 through  $\boldsymbol{\delta}_t$ . In this case, there is no modeling available as the distribution depends on the kind of  
 823 attack being performed during the training process but also depends on the state of the model, as the  
 824 attack is crafted in white box mode:

$$826 \quad \boldsymbol{\delta}_{\theta, t} = \arg \max_{\|\boldsymbol{\delta}\| \leq \varepsilon} \|\boldsymbol{\epsilon}_\theta(\mathbf{x}_t + \boldsymbol{\delta}, t) - \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)\|_2^2.$$

827 Given the proposed setting, the aim is to define a cost function that allows for modeling the correct  
 828  $\mathbf{x}_{t-1}$  when considering the inverted process. The probability distribution that the reverse process  
 829 needs to learn is:

$$833 \quad p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t + \boldsymbol{\delta}_{\theta, t}) \propto p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t) p'_\theta(\mathbf{x}_t \mid \mathbf{x}_t + \boldsymbol{\delta}_{\theta, t}).$$

### 834 A.1.3 VARIATIONAL LOWER BOUND IN CASE OF PERTURBATION

835 The Diffusion Models loss function is derived from an optimization regarding the variational lower  
 836 bound. The ELBO is defined canonically as:

$$839 \quad \mathbb{E}[-\log p_\theta(\mathbf{x}_0)] \leq \mathbb{E}_q \left[ -\log \frac{p_\theta(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T} \mid \mathbf{x}_0)} \right] = \mathbb{E}_q \left[ -\log(p_{\mathbf{x}_t}) - \sum_{t \geq 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)}{q(\mathbf{x}_t \mid \mathbf{x}_{t-1})} \right] := L \quad (10)$$

842 and the Diffusion Model loss derivation is the following:

$$\begin{aligned} 843 \quad L &= \mathbb{E}_q \left[ -\log \frac{p_\theta(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T} \mid \mathbf{x}_0)} \right] \\ 844 \quad &= \mathbb{E}_q \left[ -\log p(\mathbf{x}_T) - \sum_{t \geq 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)}{q(\mathbf{x}_t \mid \mathbf{x}_{t-1})} \right] \\ 845 \quad &= \mathbb{E}_q \left[ -\log p(\mathbf{x}_T) - \sum_{t > 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)}{q(\mathbf{x}_t \mid \mathbf{x}_{t-1})} - \log \frac{p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1)}{q(\mathbf{x}_1 \mid \mathbf{x}_0)} \right] \\ 846 \quad &= \mathbb{E}_q \left[ -\log p(\mathbf{x}_T) - \sum_{t > 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)}{q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)} \cdot \frac{q(\mathbf{x}_{t-1} \mid \mathbf{x}_0)}{q(\mathbf{x}_t \mid \mathbf{x}_0)} - \log \frac{p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1)}{q(\mathbf{x}_1 \mid \mathbf{x}_0)} \right] \\ 847 \quad &= \mathbb{E}_q \left[ -\log \frac{p(\mathbf{x}_T)}{q(\mathbf{x}_T \mid \mathbf{x}_0)} - \sum_{t > 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)}{q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)} - \log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1) \right] \\ 848 \quad &= \mathbb{E}_q \left[ D_{\text{KL}}(q(\mathbf{x}_T \mid \mathbf{x}_0) \parallel p(\mathbf{x}_T)) + \sum_{t > 1} D_{\text{KL}}(q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) \parallel p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)) - \log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1) \right]. \end{aligned}$$

859 In light of the previous considerations of the forward and backward process, it is possible to reconsider  
 860 the ELBO derivation as follows:

$$\begin{aligned}
L &= \mathbb{E}_q \left[ -\log \frac{p_\theta(\mathbf{x}_{0:T})}{q''(\mathbf{x}_{1:T} \mid \mathbf{x}_0)} \right] \\
&= \mathbb{E}_q \left[ -\log \frac{p_\theta(\mathbf{x}_T) \prod_{t=1}^T p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t + \delta_t)}{\prod_{t=1}^T q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) q'(\mathbf{x}_t + \delta_t \mid \mathbf{x}_t)} \right] \\
&= \mathbb{E}_q \left[ -\log p(\mathbf{x}_T) - \sum_{t \geq 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t + \delta_t)}{q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) q'(\mathbf{x}_t + \delta_t \mid \mathbf{x}_t)} \right] \\
&= \mathbb{E}_q \left[ -\log p(\mathbf{x}_T) - \sum_{t \geq 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)}{q(\mathbf{x}_t \mid \mathbf{x}_{t-1})} - \sum_{t \geq 1} \log \frac{p'_\theta(\mathbf{x}_t \mid \mathbf{x}_t + \delta_t)}{q'(\mathbf{x}_t + \delta_t \mid \mathbf{x}_t)} \right] \\
&= \mathbb{E}_q \left[ -\log p(\mathbf{x}_T) - \sum_{t > 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)}{q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)} \frac{q(\mathbf{x}_{t-1} \mid \mathbf{x}_0)}{q(\mathbf{x}_t \mid \mathbf{x}_0)} \right. \\
&\quad \left. - \sum_{t > 1} \log \frac{p'_\theta(\mathbf{x}_t \mid \mathbf{x}_t + \delta_t)}{q'(\mathbf{x}_t \mid \mathbf{x}_t + \delta_t, \mathbf{x}_0)} \frac{q'(\mathbf{x}_t \mid \mathbf{x}_0)}{q'(\mathbf{x}_t + \delta_t \mid \mathbf{x}_0)} \right] \\
&= \mathbb{E}_q \left[ -\log \frac{p(\mathbf{x}_T)}{q''(\mathbf{x}_T \mid \mathbf{x}_0)} - \sum_{t > 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)}{q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)} \right. \\
&\quad \left. - \sum_{t > 1} \log \frac{p'_\theta(\mathbf{x}_t \mid \mathbf{x}_t + \delta_t)}{q'(\mathbf{x}_t \mid \mathbf{x}_t + \delta_t, \mathbf{x}_0)} \frac{q'(\mathbf{x}_t \mid \mathbf{x}_0)}{q'(\mathbf{x}_t + \delta_t \mid \mathbf{x}_0)} \right] \\
&\quad - \mathbb{E}_q [\log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1) - \log p'_\theta(\mathbf{x}_0 \mid \mathbf{x}_1 + \delta_1)] \\
&= \mathbb{E}_q \left[ -\log \frac{p(\mathbf{x}_T)}{q''(\mathbf{x}_T \mid \mathbf{x}_0)} - \sum_{t > 1} \log \frac{p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)}{q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)} \right. \\
&\quad \left. - \sum_{t > 1} \log \frac{p'_\theta(\mathbf{x}_t \mid \mathbf{x}_t + \delta_t)}{q'(\mathbf{x}_t \mid \mathbf{x}_t + \delta_t, \mathbf{x}_0)} - \log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1) - \log p'_\theta(\mathbf{x}_0 \mid \mathbf{x}_1 + \delta_1) \right]. \quad (11)
\end{aligned}$$

The components to be optimized can be seen as two KL-divergences, recalling the formal definition of DDPM optimization. To lower the loss functions the two resulting KL divergences have to be reduced by optimizing both the measure of divergence between the forward  $\mathbf{x}_t$  and the approximated one, by correctly estimating the  $\epsilon$  and the measure of the  $\delta_t$  noise is added to  $\mathbf{x}_t$  at the timestep  $t$ . This distance measure is represented by the second KL divergence. To transition from the notation  $q(\mathbf{x}_t \mid \mathbf{x}_{t-1})$  to  $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)$  it is first necessary to apply Bayes theorem and the chain rule of probability—the exact same reasoning can be used for the second sum.

1. Start with the conditional probability distribution  $q'(\mathbf{x}_t \mid \mathbf{x}_{t-1})$ .
2. Apply Bayes' theorem to express  $q'(\mathbf{x}_t \mid \mathbf{x}_{t-1})$  in terms of  $q'(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$ :

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \frac{q(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \cdot q(\mathbf{x}_t)}{q(\mathbf{x}_{t-1})}.$$

3. Now, consider conditioning on an additional variable  $\mathbf{x}_0$ . According to the chain rule of probability, we have:

$$q(\mathbf{x}_{t-1}, \mathbf{x}_t) = q(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \cdot q(\mathbf{x}_t).$$

4. We want to express  $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$  in terms of  $\mathbf{x}_0$  as well. So, we can rewrite the joint distribution  $q(\mathbf{x}_{t-1}, \mathbf{x}_t)$  as  $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) \cdot q(\mathbf{x}_t, \mathbf{x}_0)$ .
5. Use the chain rule again to break down  $q(\mathbf{x}_t, \mathbf{x}_0)$ :

$$q(\mathbf{x}_t, \mathbf{x}_0) = q(\mathbf{x}_t \mid \mathbf{x}_0) \cdot q(\mathbf{x}_0).$$

918 6. Substituting these expressions back into our Bayes' theorem-derived expression, we get:  
 919

$$920 \quad q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \frac{q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) \cdot q(\mathbf{x}_t \mid \mathbf{x}_0)}{q(\mathbf{x}_{t-1} \mid \mathbf{x}_0)}.$$

$$921$$

$$922$$

923 7. Rearrange terms to isolate  $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)$ , yielding the desired expression:  
 924

$$925 \quad q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \frac{q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) \cdot q(\mathbf{x}_{t-1} \mid \mathbf{x}_0)}{q(\mathbf{x}_t \mid \mathbf{x}_0)}.$$

$$926$$

927 **A.2 ATTACK FORMULATION**  
 928

929 In inference mode, it is possible to represent the inverse Markov Chain as the sequence of intermediate  
 930 realizations of Gaussian distributions with fixed parameters regarding mean scaling and variance  
 931 scaling. From the paper [Ho et al. \(2020\)](#) in Eqs. 6 and 7 the  $t$ -th step of the inference can be written  
 932 as the sampling from the posterior distribution  $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I})$ , where:  
 933

$$934 \quad \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) := \frac{\sqrt{\alpha_{t-1}}\sigma(t)}{1 - \alpha_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \alpha_{t-1})}{1 - \alpha_t} \mathbf{x}_t, \quad \tilde{\beta}_t := \frac{1 - \alpha_{t-1}}{1 - \alpha_t} \sigma(t).$$

$$935$$

936 This implies that, at each time step, the expected variance and mean of the distribution are defined  
 937 in a specific manner. During inference, the value of  $\mathbf{x}_0$  corresponds to the output obtained after the  
 938 network's prediction. In the context of the DDPM framework,  $\mathbf{x}_0$  is replaced by the estimated value,  
 939 which depends on the epsilon-predicting network:

$$940 \quad \hat{\mathbf{x}}_0 = \frac{\mathbf{x}_t - \sqrt{1 - \alpha_t} \epsilon_\theta(\mathbf{x}_t)}{\sqrt{\alpha_t}},$$

$$941$$

$$942$$

943 To properly craft the attack and still consider it legitimate, it is essential to scale it to the correct  
 944 standard deviation to align with the diffusion process. Failing to do so would result in the network's  
 945 inference being affected not by the perturbation itself but by the incorrect range of the perturbation,  
 946 causing errors due to the inability to maintain the process within its Gaussian assumptions.  
 947

948 In this context, the attack procedure follows the FGSM approach with a random start. However, the  
 949 perturbation is then scaled to match the appropriate variance at timestep  $t$  to maintain consistency  
 950 with the diffusion process. The FGSM attack generates an adversarial example by perturbing the  
 951 noisy sample  $\mathbf{x}_t$  in the direction of the gradient of a cost function  $\mathcal{L}$  with respect to  $\mathbf{x}_t$ . Specifically,  
 952 the adversarial perturbation is given by:  
 953

$$\mathbf{x}'_t = \mathbf{x}_t + \phi \cdot \text{sign}(\nabla_{\mathbf{x}_t} \mathcal{L}(\mathbf{x}_t)),$$

954 where  $\phi$  controls the magnitude of the perturbation,  $\text{sign}(\cdot)$  represents the element-wise sign function.  
 955

956 The adversarial attack in this approach is integrated into the diffusion process by leveraging the  
 957 predictive functions, including a variance-handling mechanism defined in the model, in order to guar-  
 958 antee concretely adapting to the Gaussian hypothesis of the reverse Markov Chain. The adversarial  
 959 attack begins with perturbing the input  $\mathbf{x}_t$  defining its  $\mathbf{x}'_t$  as:  
 960

$$961 \quad \mathbf{x}'_t = \mathbf{x}_t + \boldsymbol{\delta}, \quad \boldsymbol{\delta} \triangleq \mathcal{N}(0, \phi^2 \cdot \sigma(t)^2).$$

$$962$$

963 The cost function for the adversarial attack is theoretically defined based on the mean prediction:  
 964

$$965 \quad \mathcal{L}_{FGSM} = \|\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) - \tilde{\mu}_t(\mathbf{x}'_t, \mathbf{x}_0)\|_2^2$$

966 where  $\tilde{\mu}_t$  represents the predicted mean of the diffusion process at time step  $t$ , which depends on  
 967 both the input, respectively the clean sample  $\mathbf{x}_t$  and the adversarial one  $\mathbf{x}'_t$ , and the original sample  
 968  $\mathbf{x}_0$ . The optimization goal is to maximize the discrepancy between the predicted means of the clean  
 969 and adversarial inputs, ensuring that the perturbation effectively disrupts the reverse diffusion process.  
 970 This cost function, if considered in light of the model's prediction in the  $\epsilon$ -prediction setting, can be  
 971 formulated as:  
 972

$$\mathcal{J}_\theta(\mathbf{x}_t, \boldsymbol{\delta}, t) = \|\epsilon_\theta(\mathbf{x}_t + \boldsymbol{\delta}, t) - \epsilon_\theta(\mathbf{x}_t, t)\|_2^2$$

972 To compute the adversarial perturbation  $\delta$ , the gradient of the loss  $\mathcal{J}_\theta$  with respect to  $\mathbf{x}'_t$  is used:  
 973

$$974 \quad \delta = \sigma(t) \cdot \text{sign}(\nabla_{\mathbf{x}_t} \mathcal{J}_\theta(\mathbf{x}_t, \delta, t)),$$

975 where  $\sigma(t)$  scales the perturbation to ensure it adheres to the variance of the Gaussian noise in the  
 976 reverse diffusion process at the  $t$ -th step. This step aligns the adversarial attack with the stochastic  
 977 nature of the model, ensuring the perturbation remains consistent with the Gaussian hypothesis.  
 978

979 The final adversarial example is then obtained as:  
 980

$$981 \quad \mathbf{x}_t^{\text{adv}} = \mathbf{x}_t + \delta.$$

982 The adversarially perturbed sample  $\mathbf{x}_t^{\text{adv}}$  is fed back into the reverse diffusion process, following the  
 983 recurrence of the inference.  
 984

### 985 A.3 ITERATIVE ATTACK

986 In Algorithm 2, we described the attack version that applies a single-step attack procedure applied to  
 987 each and every inference timestep. In this section, we propose a multi-step attack approach based  
 988 on the PGD iterative attack that, similarly to what was described in the previous algorithm, aims to  
 989 attack model generation at the timestep level. We again highlight that this attack is not intended as a  
 990 practical attack proposed in this paper; the main aim of showing this attack approach is to provide a  
 991 procedure to assess the abilities of the DM to be resilient against minor perturbations applied to every  
 992 sampling iteration. In Algorithm 3 we propose the multi-step approach, implemented by applying at  
 993 every iteration the PGD-20 attack. In this case, being the attack iterative, it is necessary to project at  
 994  
 995

---

#### 996 Algorithm 3 Adversarial Attack on a Diffusion Model.

---

997 **Input:** percentage of attacked timesteps  $p$ , total timesteps  $T$ , model  $\epsilon_\theta$ , scheduler values  $\alpha_t$  and  
 998  $\sigma(t)$ , perturbation strength  $\phi$ , iterations  $N$ , the projection operator  $\mathbb{P}$   
 999  $\mathbf{x}_T \sim \mathcal{N}(0, I)$   
 1000 **for**  $t = T$  to 0 **do**  
 1001      $\sigma(t) \leftarrow \exp\left(\frac{1}{2} \log \sigma_t^2\right)$   
 1002      $\mathbf{x}_{t-1} \leftarrow \epsilon_\theta(\mathbf{x}_t, t)$   
 1003      $\hat{\mathbf{x}}_0 \leftarrow \frac{\mathbf{x}_t - \sqrt{1-\bar{\alpha}_t} \epsilon_\theta(\mathbf{x}_t, t)}{\sqrt{\bar{\alpha}_t}}$   
 1004      $\tilde{\mu}_t(\mathbf{x}_t, \hat{\mathbf{x}}_0) \leftarrow \frac{\sqrt{\bar{\alpha}_{t-1}} \sigma(t)}{1-\bar{\alpha}_t} \hat{\mathbf{x}}_0 + \frac{\sqrt{\alpha_t} (1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t} \mathbf{x}_t$   
 1005      $\delta_0 \sim \mathcal{N}(0, \phi^2 \sigma^2(t) I)$   
 1006     **for**  $n = 0$  to  $N - 1$  **do**  
 1007          $\mathbf{x}'_{t,n} = \mathbf{x}_t + \delta_n$   
 1008          $\mathbf{x}'_{t-1,n} \leftarrow \epsilon_\theta(\mathbf{x}'_{t,n}, t)$   
 1009          $\hat{\mathbf{x}}'_{0,n} \leftarrow \frac{\mathbf{x}'_{t,n} - \sqrt{1-\bar{\alpha}_t} \epsilon_\theta(\mathbf{x}'_{t,n}, t)}{\sqrt{\bar{\alpha}_t}}$   
 1010          $L = \|\tilde{\mu}_t(\mathbf{x}_t, \hat{\mathbf{x}}_0) - \tilde{\mu}_t(\mathbf{x}'_{t,n}, \hat{\mathbf{x}}'_{0,n})\|_2^2$   
 1011          $\delta_{n+1} = \sigma(t)/N \cdot \text{sign}(\nabla_{\mathbf{x}_t} L)$   
 1012     **end for**  
 1013      $\delta = \mathbb{P}(\delta, -\sigma(t), \sigma(t))$   
 1014      $\mathbf{x}_t^{\text{adv}} = \mathbf{x}_t + \delta$   
 1015     Sample  $\zeta \sim \mathcal{N}(0, I)$   
 1016      $\mathbf{x}_{t-1} \leftarrow \epsilon_\theta(\mathbf{x}_t^{\text{adv}}, t) + \mathbf{1}_{t>0} \sigma(t) \zeta$   
 1017 **end for**  
 1018

---

1019 the end the perturbation in order to keep its values within the range  $[-\sigma(t), \sigma(t)]$ . These values have  
 1020 been chosen following the Gaussianity hypothesis of the intermediate MC states. Diffusion models  
 1021 model intermediate data through intermediate Gaussian distributions where the possible values would  
 1022 have standard deviation  $\sigma(t)$ . In order not to diverge too much from data distribution and be in a  
 1023 suitable range of possible values, we decided to impose as a ray of the projection interval the same  
 1024 standard deviation, making it also adaptive to the considered timestep. The table Section 3.4 shows  
 1025 model performance under this PGD-like version of a diffusion model attack.

1026 A.4 EoT ATTACK  
1027

1028 In this section, we present a PGD-based implementation of the Expectation over Transformation  
1029 attack (EoT). We build on top of the previously introduced PGD attack (Algorithm 3) in order to  
1030 define an EoT adapted version that would include stochasticity into the optimization of the adversarial  
1031 noise. We define  $e$  as the parameter setting the maximum number of samples to approximate the  
1032 expectation. The implementation adopts the same outline as the one adopted by the PGD attack; as a  
1033

1034 **Algorithm 4** EoT Adversarial Attack on a Diffusion Model.

1035 **Input:** percentage of attacked timesteps  $p$ , total timesteps  $T$ , model  $\epsilon_\theta$ , scheduler values  $\alpha_t$  and  
1036  $\sigma(t)$ , perturbation strength  $\phi$ , PGD iterations  $\mathbf{N}$ , the projection operator  $\mathbb{P}$ , EoT iterations  $e$   
1037  $\mathbf{x}_T \sim \mathcal{N}(0, I)$   
1038 **for**  $t = T$  to 0 **do**  
1039      $\delta_0 \sim \mathcal{N}(0, \phi^2 \sigma^2(t) I)$ ,  $\xi \sim \mathcal{N}(0, I)$   
1040      $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{\sigma(t)}{\sqrt{1-\alpha_t}} \epsilon_\theta(\mathbf{x}_t, t) \right) + \sigma_t \xi$   
1041      $\delta \sim \mathcal{N}(0, \phi^2 \sigma^2(t) I)$   
1042     **for**  $n = 0$  to  $\mathbf{N} - 1$  **do**  
1043          $\mathcal{G} \leftarrow []$   
1044          $\mathbf{x}_t^{adv} = \mathbf{x}_t + \sqrt{\alpha_t} \delta_n$   
1045         **for**  $i = 1$  to  $e$  **do**  
1046              $\zeta \sim \mathcal{N}(0, I)$   
1047              $\mathbf{x}_t^{adv} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t^{adv} - \frac{\sigma(t)}{\sqrt{1-\alpha_t}} \epsilon_\theta(\mathbf{x}_t^{adv}, t) \right) + \sigma_t \zeta$   
1048              $g_i \leftarrow \nabla_{\delta_n} \|\mathbf{x}_t - \mathbf{x}_t^{adv}\|_2^2$   
1049             Append  $g_i$  to  $\mathcal{G}$   
1050         **end for**  
1051          $\bar{g} \leftarrow \frac{1}{e} \sum_{g \in \mathcal{G}} g$   
1052          $\delta_{n+1} \leftarrow \mathbb{P}(\delta_n + \sigma(t)/N \cdot \text{sign}(\bar{g}), -\sigma(t), \sigma(t))$   
1053     **end for**  
1054      $\delta \leftarrow \delta_{n+1}$   
1055      $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t + \sqrt{\alpha_t} \delta - \frac{\sigma(t)}{\sqrt{1-\alpha_t}} \epsilon_\theta(\mathbf{x}_t + \sqrt{\alpha_t} \delta, t) \right) + \sigma_t \xi$   
1056     **end for**

1058 consequence, all the previously described details about the attack notation still hold.

1059  
1060 A.5 RELATIONSHIP WITH SMOOTH DIFFUSION (GUO ET AL., 2024)

1061 The method by Guo et al. (2024) also introduces a method for smoothing the latent space of Diffusion  
1062 Models. While both papers utilize the term “smoothness”, we emphasize that the underlying concept  
1063 of smoothness, its enforcement mechanism, and our primary objectives fundamentally differ. In  
1064 particular:

1065     ◊ Guo et al. (2024) did not demonstrate that their optimization could inherently include being  
1066         resilient to attacks, focusing more on smooth generation, interpolation, and inverse problems  
1067     ◊ Guo et al. (2024) does not mention any robustness to adversarial attacks  
1068     ◊ Guo et al. (2024) does not claim that it could be used to train with corrupted data

1069 Table 3 reports the main differences between the two approaches.

## 1070 B SUPPLEMENTARY MATERIAL

1071 This supplementary material is intended to complement the main paper by providing further motivation  
1072 for our assumptions and design choices, as well as additional ablation studies on the proposed  
1073 datasets to demonstrate the effectiveness of our method. It is organized into the following sections.

| Component     | Smooth Diffusion                                                                               | Ours                                                                                       |
|---------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Arch/Training | Stable.Diff. + LORA                                                                            | UNet with attention + scratch                                                              |
| Equation      | $\ \nabla_\epsilon (\sqrt{1 - \bar{\alpha}_t} \hat{x}_0(\epsilon) \cdot \Delta \hat{x}_0)\ _2$ | $\ \epsilon_\theta(\mathbf{x}^{adv}, t) - [\epsilon_\theta(\mathbf{x}_t, t) + \delta]\ _2$ |
| Objective     | Reduce gradient norm                                                                           | Equivariance                                                                               |
| Perturbation  | normally sampled pix. int. normalized to unit length                                           | adversarial under $\ell_\infty$                                                            |
| Benefit       | Smooth Latent                                                                                  | Resilient to adv. attacks                                                                  |
| Benefit       | Image inversion                                                                                | Train on corrupted data                                                                    |
| Benefit       | Stable Interpolation                                                                           | Faster sampling                                                                            |

Table 3: Differences between ours methods and [Guo et al. \(2024\)](#)

Section C discusses the main differences among the considered approaches, offering a deeper analysis that includes both geometrical and empirical motivations behind the adopted design choices. It also clarifies the distinction between invariance and equivariance, and presents statistics on the adversarial perturbation  $\delta$ ; Section D presents a more detailed analysis of the diffusion flow dynamics by examining the trajectories obtained from low-dimensional datasets under different conditions. Section E provides an extensive qualitative ablation across the real-world datasets introduced in the paper, showcasing a wide variety of samples and comparisons; Section F offers additional observations and insights into the proposed approach. **We encourage readers to zoom in and compare the results for a better understanding of their quality.**

## C OBSERVATIONS AND MOTIVATIONS ON OUR ADVERSARIAL TRAINING FRAMEWORK

### C.1 EQUIVARIANT AND INVARIANT FUNCTIONS FOR ADVERSARIAL TRAINING

Adversarial training in classification has been widely studied over years [Goodfellow et al. \(2015\)](#); [Madry et al. \(2018\)](#); [Zhang et al. \(2019\)](#); [Wang et al. \(2020\)](#); [Shafahi et al. \(2019\)](#); [Wong et al. \(2020\)](#); [Sriramanan et al. \(2021; 2020\)](#); [Wang et al. \(2023\)](#); [Zhu et al. \(2021\)](#); [Mujtaba Hussain et al. \(2024\)](#) in different settings, threat models and under different perspectives. These methods share the objective to enforce invariance in the neural network  $f_\theta$ , since the final objective is to enforce the output of the network not to vary in the presence of minor changes in the network input. However, in generative modeling, particularly diffusion models (DMs), enforcing invariance hinders learning the correct distribution, making the model unable to take into account input changes in its prediction. Ignoring the adversarial perturbations applied during a perturbed training leads to deviations in trajectories, resulting in an inaccurate learned distribution. Conversely, training the model to incorporate the negative of the perturbation helps it recognize and manage potential deviations, enabling it to handle noise with broader standard deviations more effectively. In [Nguyen & Raff \(2019\)](#), the authors extend the concept of adversarial attacks to regression tasks, even though considering regression tasks on tabular datasets. Their proposed method addresses these attacks by introducing an adversarial training loss based on numerical stability, improving performance under adversarial conditions. Even though the latter bridges the concepts of regression and AT, an analysis of implications in the case of randomized and adversarial training applied to the generative model is still a topic to cover, particularly with reference to generative models. In this spirit, we propose a new training framework inspired by AT with the aim of shedding light on the concept of adversarial training for DMs, exploiting knowledge from both functional analysis and classification neural networks.

Formally defining the two properties, we can define both invariance and equivariance. Given a function  $f : X \rightarrow Y$ , as well as a specified group actions  $A$ ,  $f$  is said to be *equivariant* with respect to a transform  $a \in A$  if and only if

$$f(a \circ x) = a \circ f(x), \quad x \in X \quad (12)$$

Given a function  $f : X \rightarrow Y$ , as well as a specified group action  $A$ ,  $f$  is said to be *invariant* with respect to an  $a \in A$  transform if and only if

$$f(a \circ x) = f(x), \quad x \in X \quad (13)$$

In Fig. 9 we extend Fig. 1 of the paper and depict what happens at the trajectory level if we enforce invariance instead of equivariance. The vector  $\epsilon$  represents the noise that is added by the diffusion

process,  $\delta$  represents the added noise by the adversarial training. Finally, we will have two different versions of the noisy point, namely  $\mathbf{x}_t$  and  $\mathbf{x}_t + \delta$ . The model, if unattacked, would like to regress a portion of noise equivalent to  $-\epsilon$  so that it is able to correctly go back to  $\mathbf{x}_0$ . When applying  $\delta$ , the network's objective still has to be the same. The figure shows that if, given the noisy starting point  $\mathbf{x}_t + \delta$ , the model is enforced to learn again  $-\epsilon$ , so if the invariance is applied, the ending point would be some other point in the space different wrt.  $\mathbf{x}_0$ . On the contrary, if equivariance is applied, the network is forced to regress  $-(\epsilon + \delta)$ , making the model able to correctly regress  $\mathbf{x}_0$ .

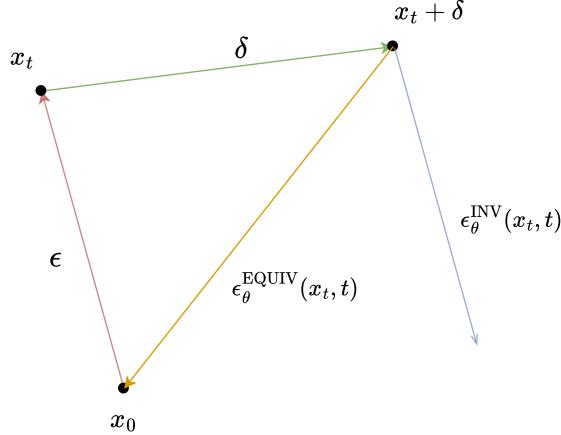


Figure 9: Not applying equivariance  $\epsilon_\theta^{\text{EQUIV}}(\mathbf{x}_t, t)$ , the model drifts and ends up in a different point of the space than the desired one, learning then the perturbation that we added as in  $\epsilon_\theta^{\text{INV}}(\mathbf{x}_t, t)$

## C.2 INVARIANCE REGULARIZATION DOES NOT WORK

As empirical evidence of the inconsistency of invariance training in AT for DMs, we prove it on low-dimensional data. As a proof-of-concept, we consider the oblique-plane 3D dataset as data to train on, and then we impose adversarial training, following the same setting as in Algorithm 1, enforcing instead invariance by minimizing the loss function:

$$\mathcal{L}_{\text{AT}}(\mathbf{x}_t, \mathbf{x}_t^{\text{adv}}, t, \epsilon) = \arg \min_{\theta} \underbrace{\|\epsilon_\theta(\mathbf{x}_t, t) - \epsilon\|_2^2}_{\mathcal{L}_{\text{DM}} \text{ to fit data distr.}} + \underbrace{\lambda_t \|\epsilon_\theta(\mathbf{x}_t^{\text{adv}}, t) - [\epsilon_\theta(\mathbf{x}_t, t)]\|_2^2}_{\mathcal{L}_{\text{reg}} \text{ to enforce invariance}} \quad (14)$$

We decided to implement this example on 3D data in order to have the possibility of observing the behavior of 3D trajectories. The plot shows it displaying side-to-side DDPM Ho et al. (2020) and invariance in the same data settings as the one displayed in Fig. 2. The model, by enforcing invariance, loses the ability to correctly reconstruct the data manifold, not being able to generate points in the data distribution, whereas the model trained through standard DDPM learns the data distribution but still suffers from learning the noise in case of noisy data. The same behavior can be observed when looking at the trajectories. This analysis clarifies even more what is the generation dynamics. The model creates sparse trajectories that do not tend to be clustered, neither at the beginning of the generation nor at the end, thereby causing generated samples to be completely off the data subspace.

A comparison between the plots in Fig. 10 and those in Fig. 11 further emphasizes the benefits of adversarial training with equivariance. The contrast shown in the compared trajectories clearly illustrates how our approach consistently produces trajectories that are more clustered, sharper, and better aligned with the underlying data manifold, thereby reinforcing the inadequacy of conventional adversarial training methods.

## C.3 NOTES ON DEFINITION OF THE ADVERSARIAL PERTURBATION

One of the main points of our work is defining a suitable perturbation  $\delta$  for unconditional diffusion models that aims at disrupting generation trajectories without relying on acting on the model's inputs. In order to craft this kind of attack, we focused on exploiting generation dynamics in order to correctly

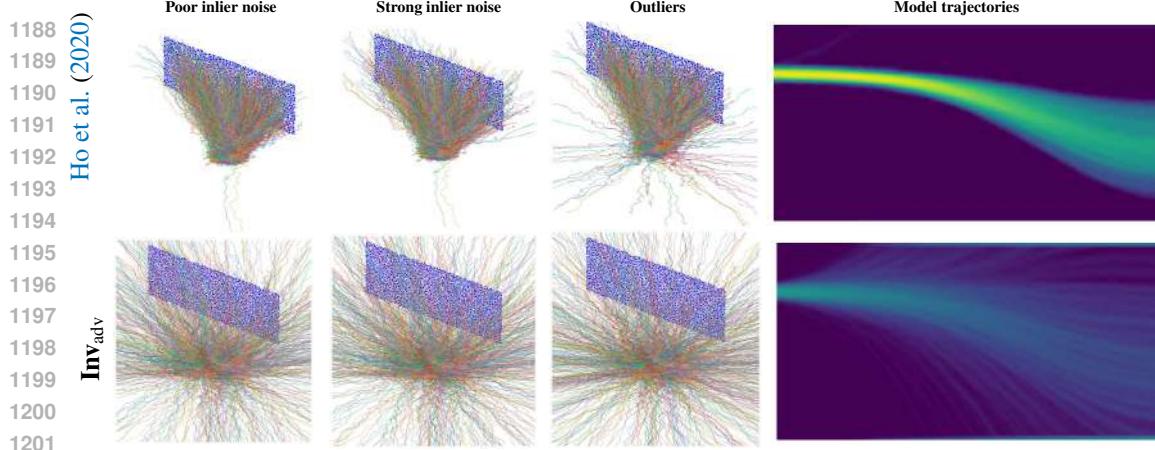


Figure 10: The application of invariance on 3D data highlights the incorrect behavior of the training procedure: the learnt data distribution is completely different from the reference one.

perturb it at each of its steps. Inspired by adversarial attacks with random start (such as R-FGSM [Wong et al. \(2020\)](#)),  $\delta$  is first initialized by randomly sampling from a uniform distribution, whose bounds are  $[-r_\beta(\cdot), r_\beta(\cdot)]$ . The initialization distribution is chosen to be a uniform distribution with varying bounds but always centered at zero. This choice ensures that the perturbation has zero mean, which is essential when applied within the diffusion process. A non-zero mean would not only bias the estimation of the noise but also violate the Gaussian transition assumption, which requires the noise to be zero-centered. The parameter  $\beta$  is sampled from uniform distribution as follows  $\beta \sim \mathcal{U}[0.5, 2]$ . Its aim is to enhance the model’s robustness to trajectory deviations by randomly varying the perturbation’s bounds. Once the perturbation bounds are defined, it is straightforward to calculate the standard deviation of the initialization distribution. The mean value of  $\delta$  is given by:

$$\mathbb{E}[\delta] = \frac{[-r_\beta(\cdot), r_\beta(\cdot)]}{2} = 0.$$

The variance of the distribution is defined as:

$$\text{VAR}[\delta] = \frac{[-r_\beta(\cdot), r_\beta(\cdot)]^2}{12} = \frac{(2r_\beta(\cdot))^2}{12} = \frac{r_\beta(\cdot)^2}{3}$$

The variance is consequently defined as a  $\beta$ -dependent quantity as it is rescaled batch-wise by this parameter, assuring a random dynamic change of the perturbation bounds.

1242 **D COMPREHENSIVE ANALYSIS OF THE DIFFUSION FLOW DYNAMICS**  
1243

1244 In order to better understand data behavior during the generation procedure, we report in this  
 1245 section further trajectory plots. The plots can only be visualized if the data taken into account  
 1246 is low-dimensional in order to properly track points' behavior in the generation. We exploit the  
 1247 low-dimensional datasets proposed in the paper to further investigate trajectory behavior. Additional  
 1248 qualitative samples of the Diffusion Flow are shown in Fig. 11, supplementing Fig. 4 and Fig. 6,  
 1249 which can be found in the main paper. Unlike this one, here we have the chance to show also the  
 1250 difference between models' behavior when data distribution is affected by strong inlier noise and  
 1251 outliers on both unimodal distribution oblique-plane and 3-gaussians.

1252 The plot shows that even though the DDPM model reaches the distribution of the final part of the  
 1253 trajectories, those are sparse and, even in the case of inlier noise, they appear not to be densely clus-  
 1254 tered, with some completely diverging from the data distribution. When applying the regularization,  
 1255 particularly in this case, the model is trained with adversarial noise, the density increases in the  
 1256 trajectories, defining sharper and clustered paths, strongly discouraging significant deviations from  
 1257 their central modes. This feature is especially useful when the initial data distribution is noisy, as it  
 1258 helps the model avoid learning erroneous points that stray from the true data distribution, preventing  
 1259 it from capturing the noise present in the starting data. In particular, when outlier noise is present,  
 1260 regularization minimizes its influence, resulting in denser and sharper trajectories that better align  
 1261 with the true data distribution clusters.

1262 **E ADDITIONAL QUALITATIVE SAMPLES UNDER MULTIPLE SETTINGS**  
12631264 **E.1 TRAINED ON CLEAN CIFAR-10 WITH  $p = 0\%$**   
1265

1266 **DDPM vs Robust<sub>adv</sub>.** In Fig. 12 of this supplementary material, we extend Fig. 4 in the paper and  
 1267 show 300 samples from DDPM vs 300 samples from **Robust<sub>adv</sub>**, both trained on the original dataset.  
 1268 Although our method has not been designed to work directly with uncorrupted data, the images  
 1269 that ours generates result in smooth images, the clutter in the background has been canceled, yet  
 1270 the objects and animals are still clearly recognizable, and part of the noise in the background of  
 1271 CIFAR-10 has been removed. We think that it is reasonable to justify the drop we have in the FID  
 1272 with our method denoising action, which is, for example, the removal of part of the characteristic  
 1273 background noise proper of CIFAR-10. This effect can be the reason for the evaluation penalizing us.

1274 **500 vs 1000 steps.** We expand the current section by including some samples that focus on enriching  
 1275 the paper's discussion about faster sampling. In Fig. 13 we offer on the left the results by **Robust<sub>adv</sub>**  
 1276 with 1000 inference steps trained on uncorrupted data. On the right instead, we show the qualitative  
 1277 samples still with **Robust<sub>adv</sub>** yet using a scheduler with 500 inference steps, thereby cutting 50% of  
 1278 the inference time. *Surprisingly, the faster sampling yields better FID. We get 28.68 FID with 1000*  
 1279 *steps and 24.34 with 500 steps.* In terms of differences, taking more steps generates images with  
 1280 warmer and natural colors, whereas taking fewer steps seems to improve the details of the objects,  
 1281 and the colors look brighter and saturated, probably being closer to the actual CIFAR-10 images.

1282 **E.2 TRAINED ON NOISY CIFAR-10 WITH  $p = 90\%, \sigma = 0.1$**   
1283

1284 In Fig. 14 of this supplementary material, we provide additional figures not present in the main  
 1285 paper. The figures show 300 samples from DDPM vs **Robust<sub>adv</sub>** both trained on noisy CIFAR-10 with  
 1286  $p = 90\%, \sigma = 0.1$ . The images that ours generates (right) are smooth, similar to the one in Fig. 12,  
 1287 inheriting the smoothing effect of the previous setting. In this case, the smoothing action helps absorb  
 1288 the Gaussian noise present in the dataset. This results in improved performance: unlike DDPM (left),  
 1289 ours is able to unlearn the noise and keep images still with natural colors.

1290 **E.3 TRAINED ON NOISY CIFAR-10 WITH  $p = 90\%, \sigma = 0.2$**   
1291

1293 In Fig. 15 of this supplementary material we extend Fig. 8 of the paper, enriching it with 300 more  
 1294 samples per method yet trained on noisy CIFAR-10 with  $p = 90\%, \sigma = 0.2$ . Looking at the standard  
 1295 deviation of the added noise, in this case  $\sigma = 0.2$  represents a very strong one: it means we are  
 1296 adding 40% of the variability that is naturally present in CIFAR-10, being  $\sigma_{\text{data}} = 0.5$ . Despite the

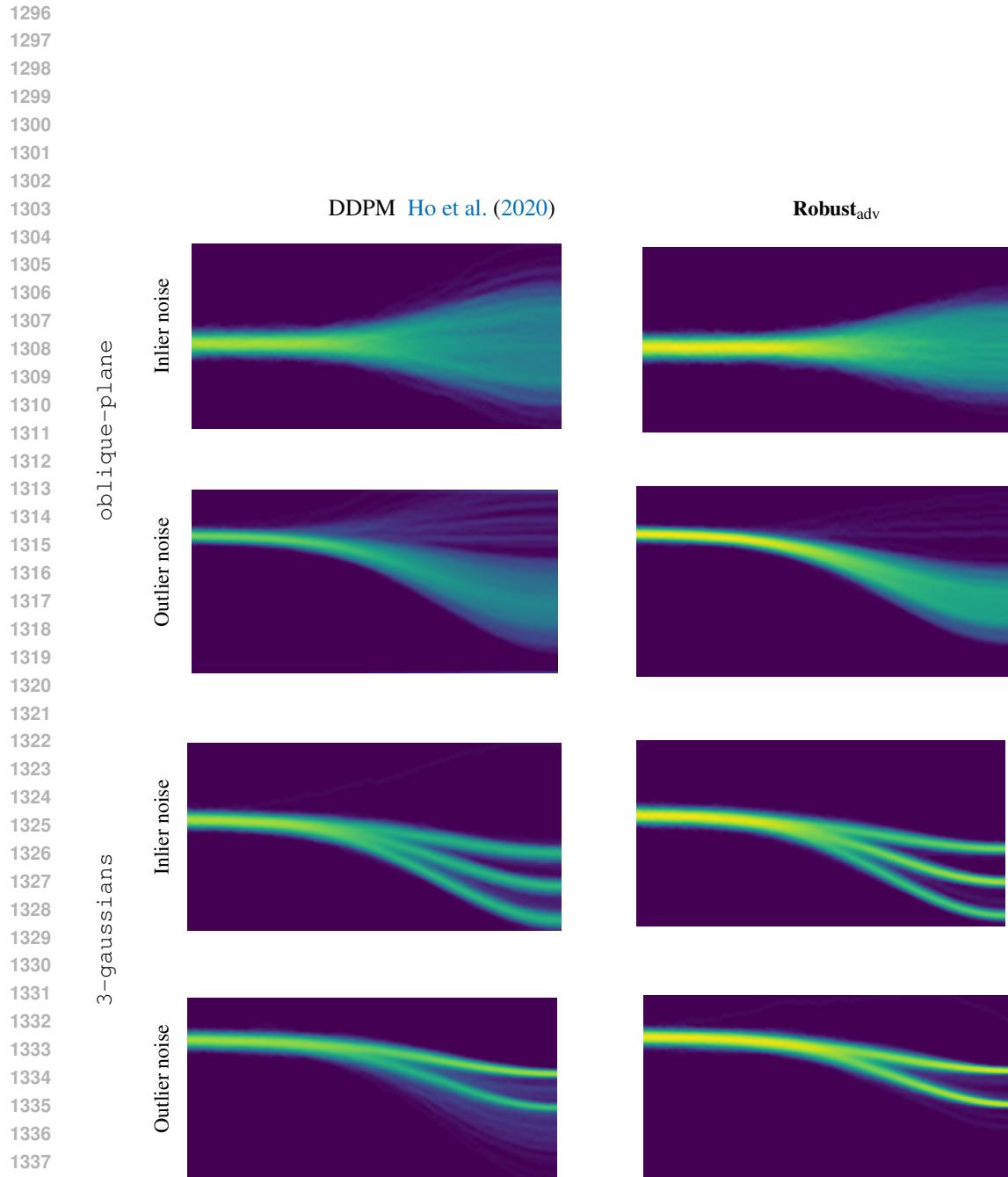


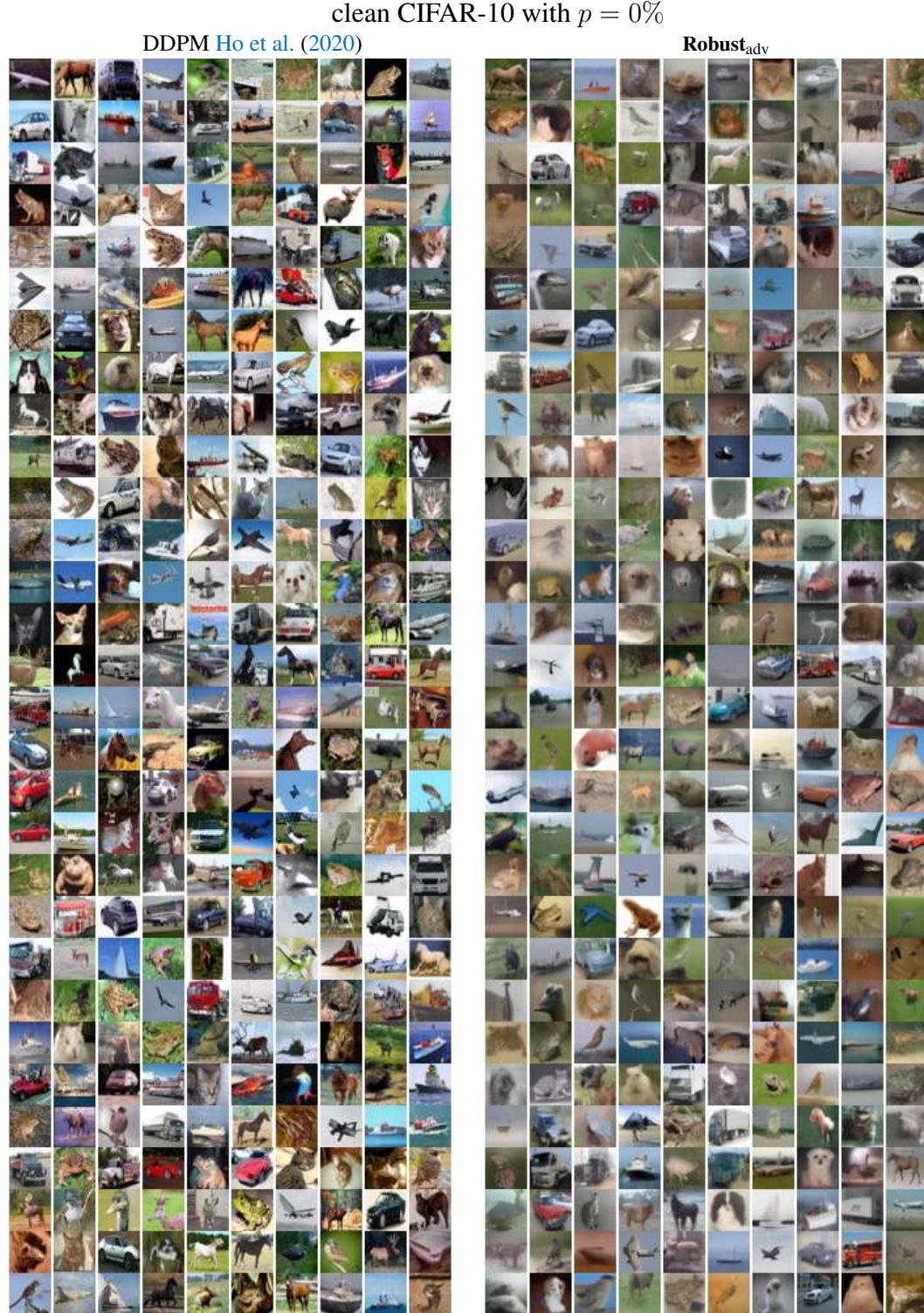
Figure 11: Diffusion flow: DMs vs **Robust<sub>adv</sub>**. Left column shows the results by Ho et al. (2020) under two different types of noise. Regular training tends to incorporate the noise inside the diffusion flow, making it more prone to generate undesirable and unexpected results; Right column is **Robust<sub>adv</sub>** that trades off variability for resilience. Indeed, heatmaps on the right are more concentrated, clear, and less faded.

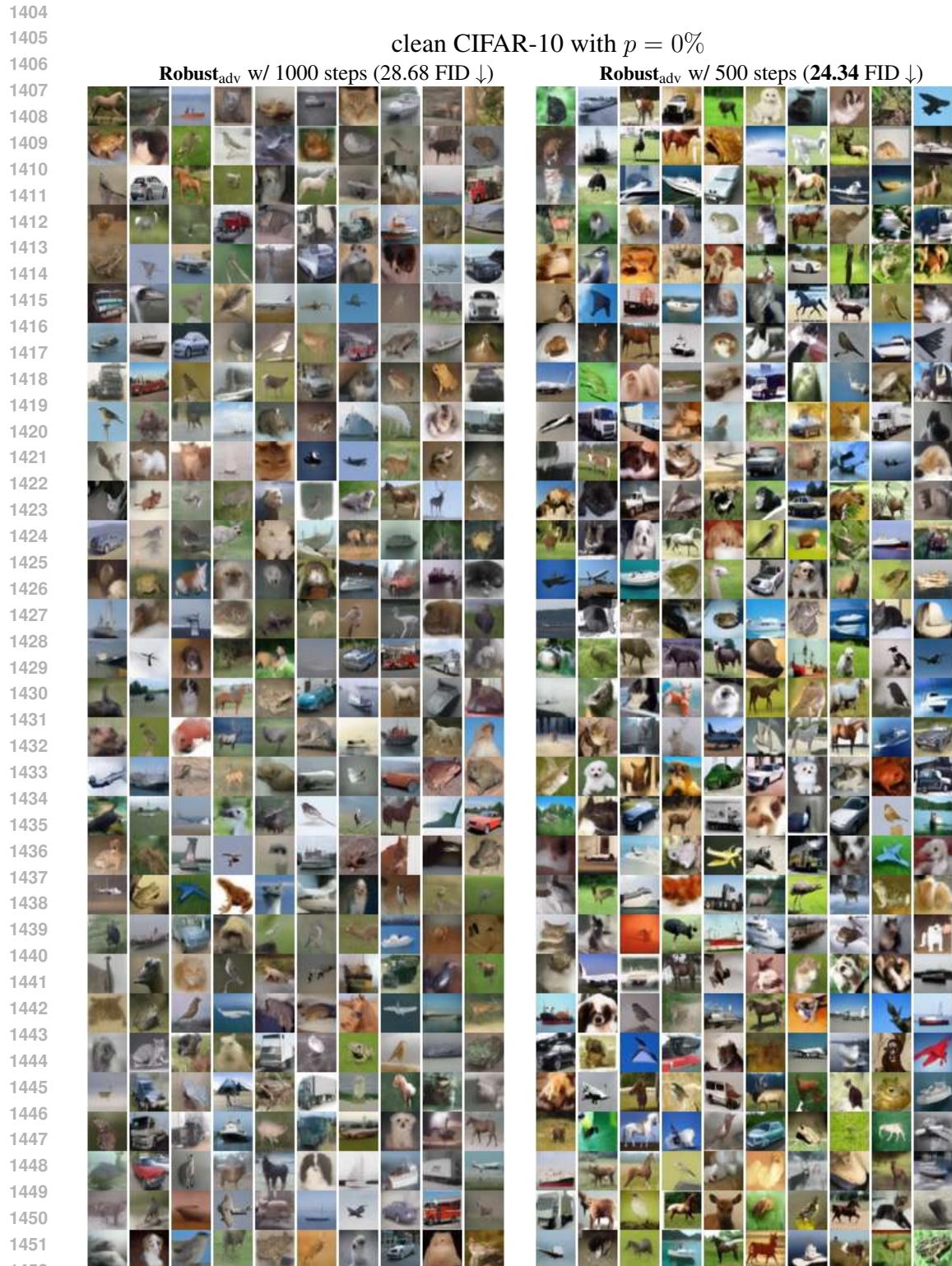
1350

1351

1352

1353





1453  
1454  
1455  
1456  
1457

Figure 13: Trained on clean CIFAR-10 with  $p = 0\%$  but comparing less steps (500) vs the default DDPM scheduler used for training (1000). Although we run **Robust<sub>adv</sub>** with a scheduler with fewer steps (500) and do not use it in training, the images on the right with 500 steps have better FID than with the original scheduler on the left.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511



Figure 14: Trained on noisy CIFAR-10 with  $p = 90\%$ ,  $\sigma = 0.1$ . Despite added noise, **Robust<sub>adv</sub>** images look smooth, and the clutter in the background has been canceled along with the Gaussian noise added. Instead DDPM on the left propagates the noise back in the output.

1512 strong ambient noise, the images that ours generates (*right*) are smooth similar to the one in Fig. 12  
 1513 and presence of the strong Gaussian is very rare. Unlike DDPM (*left*), ours is able to unlearn the  
 1514 noise and keep images still with natural colors.  
 1515

1516 E.4 TRAINED ON NOISY CELEB-A WITH  $p = 90\%$ ,  $\sigma = 0.1$   
 1517

1518 We provide a more extensive qualitative analysis on the dataset CelebA [Li et al. \(2019\)](#) in Fig. 16  
 1519 of this supplementary material. To further motivate the denoising effect, we here show same 300  
 1520 samples per method yet trained on noisy Celeb-A with  $p = 90\%$ ,  $\sigma = 0.1$ . The faces that ours  
 1521 generates (*right*) are smooth, but now instead of absorbing the Gaussian noise present in the dataset,  
 1522 unlike DDPM (*left*), ours is able to unlearn the noise and keep images still with natural colors.  
 1523

1524 E.5 TRAINED ON NOISY CELEB-A WITH  $p = 90\%$ ,  $\sigma = 0.2$   
 1525

1526 We provide a more extensive qualitative analysis on the dataset CelebA [Li et al. \(2019\)](#) in Fig. 17  
 1527 of this supplementary material. To further motivate the denoising effect, we here show same 300  
 1528 samples per method yet trained on noisy Celeb-A with  $p = 90\%$ ,  $\sigma = 0.2$ . The faces that ours  
 1529 generates (*right*) are smooth but now instead of absorbing the Gaussian noise present in the dataset,  
 1530 unlike DDPM (*left*), ours is able to unlearn the noise and keep images still with natural colors.  
 1531

1532 E.6 TRAINED ON NOISY LSUN BEDROOM WITH  $p = 90\%$ ,  $\sigma = 0.1$   
 1533

1534 We provide a more extensive qualitative analysis on the dataset LSUN Bedroom [Yu et al. \(2015\)](#) in  
 1535 Fig. 19 of this supplementary material. To further motivate the denoising effect, we here show same  
 1536 150 samples per method yet trained on noisy LSUN dataset with  $p = 90\%$ ,  $\sigma = 0.1$ . The generated  
 1537 images by **Robust<sub>adv</sub>** (*right*) result to be smoother wrt. to the datasets ones and the DDPM generated  
 1538 ones (*left*) ones, but the smoothing effect allows absorbing the Gaussian noise present in the dataset:  
 1539 unlike DDPM, ours is able to unlearn the noise and keep images still with natural colors.  
 1540

1541 E.7 TRAINED ON NOISY LSUN BEDROOM WITH  $p = 90\%$ ,  $\sigma = 0.2$   
 1542

1543 We further enrich the qualitative ablation on the dataset LSUN Bedroom [Yu et al. \(2015\)](#) in Fig. 20 of  
 1544 this supplementary material. To further motivate the denoising effect, we here show the same 150  
 1545 samples per method yet trained on the noisy LSUN dataset with  $p = 90\%$ ,  $\sigma = 0.2$ . The generated  
 1546 images by **Robust<sub>adv</sub>** (*right*) result to be smoother wrt. to the datasets ones and the DDPM generated  
 1547 ones (*left*) ones, but the smoothing effect allows absorbing the Gaussian noise present in the dataset:  
 1548 unlike DDPM, ours is able to unlearn the noise and keep images still with natural colors.  
 1549

1550  
 1551  
 1552  
 1553  
 1554  
 1555  
 1556  
 1557  
 1558  
 1559  
 1560  
 1561  
 1562  
 1563  
 1564  
 1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619



Figure 15: Trained on noisy CIFAR-10 with  $p = 90\%$ ,  $\sigma = 0.2$ . Despite added noise, **Robust<sub>adv</sub>** images look smooth and the clutter in the background has been canceled along with the Gaussian noise added. Instead DDPM on the left propagates the noise back in the output.



Figure 16: Trained on noisy Celeb-A with  $p = 90\%$ ,  $\sigma = 0.1$ . Despite added noise, **Robust<sub>adv</sub>** faces look smooth and the clutter in the background has been canceled along with the Gaussian noise added. Instead, DDPM on the left propagates the noise back in the output.

1674

1675

1676

1677

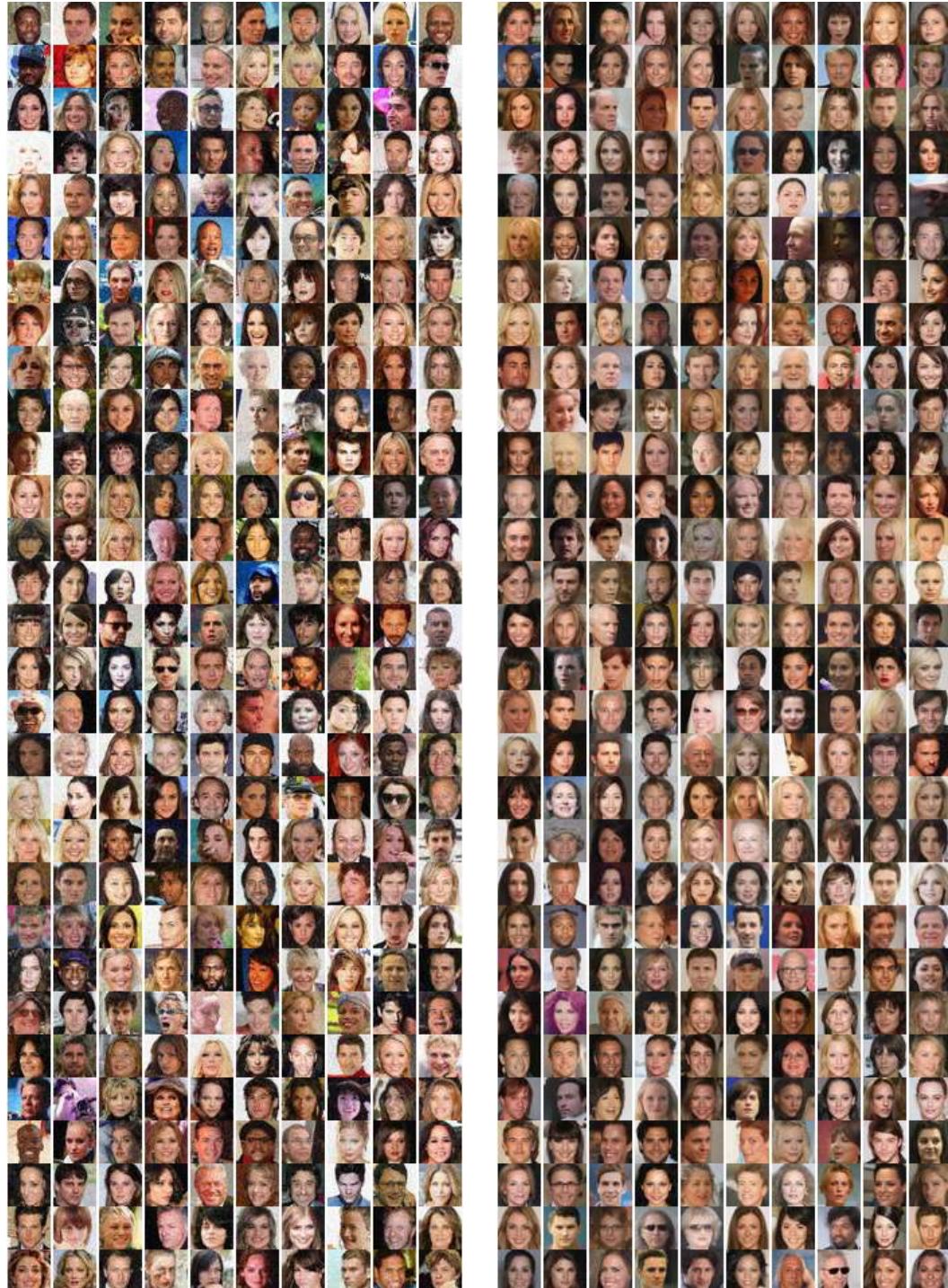


Figure 17: Trained on noisy Celeb-A with  $p = 90\%$ ,  $\sigma = 0.2$ . Despite added noise, **Robust<sub>adv</sub>** faces look smooth, and the clutter in the background has been canceled along with the Gaussian noise added. Instead, DDPM on the left propagates the noise back in the output.

1724

1725

1726

1727

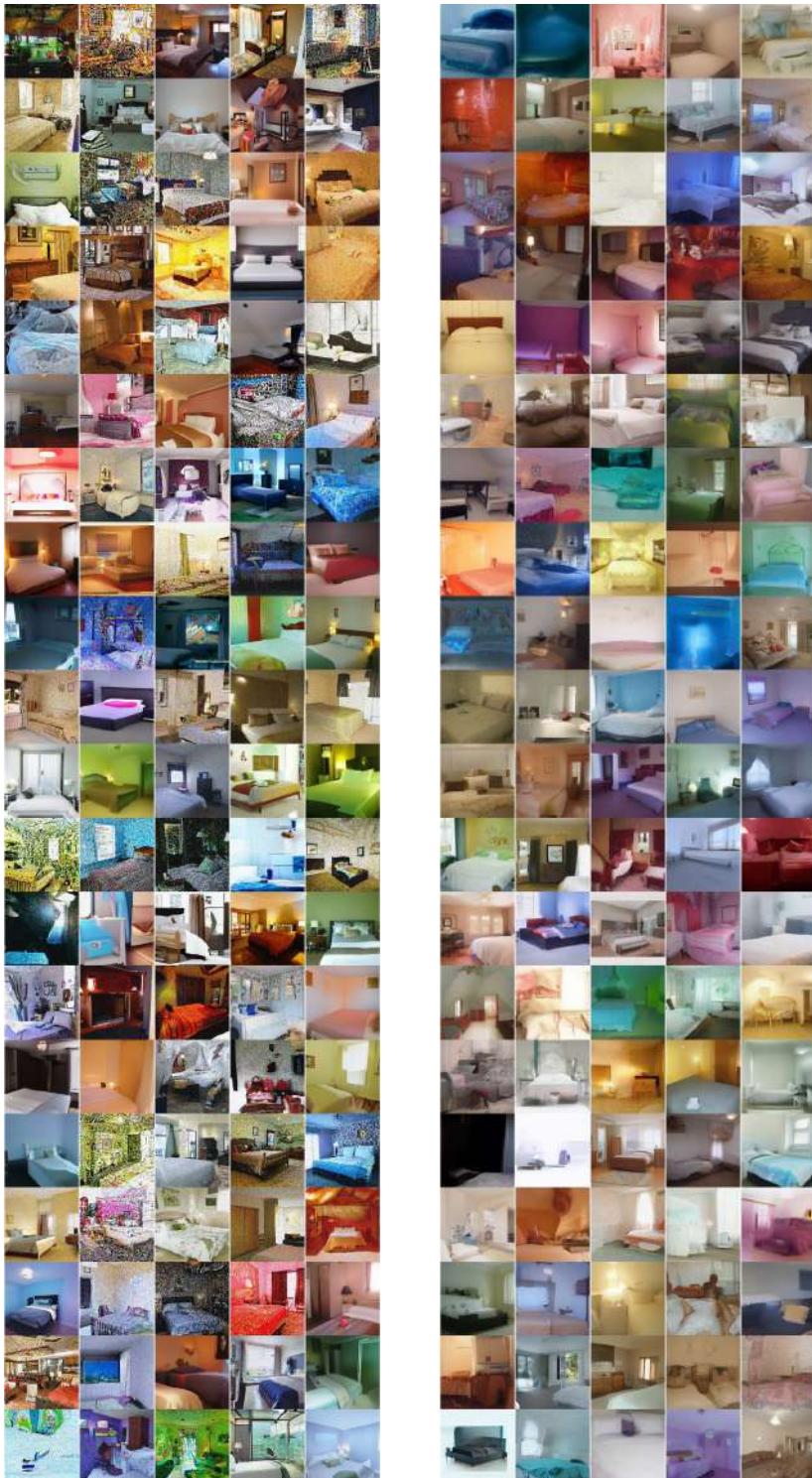


Figure 18: Trained on clean LSUN Bedroom. Despite the added noise, **Robust<sub>adv</sub>** produces images that appear smooth and exhibit fewer intricate details. When noise is absent from the training data, this smoothing effect results in the removal of fine-grained information from the learned distribution, ultimately reducing data variability.

1782 LSUN Bedroom with  $p = 90\%$ ,  $\sigma = 0.1$ , early stage training  
 1783

1784 DDPM Ho et al. (2020)

1785 Robust<sub>adv</sub>



1832 Figure 19: Trained on noisy LSUN Bedroom with  $p = 90\%$ ,  $\sigma = 0.1$ . Despite added noise, Robust<sub>adv</sub>  
 1833 images look smooth and with fewer intricate details that have been canceled along with the Gaussian  
 1834 noise added. Instead, DDPM on the left propagates the noise back into the output.  
 1835





Figure 21: Trained on clean LSUN Bedroom. Despite added noise, Robust<sub>adv</sub> images look smooth and with less intricate details, even though more detailed than in earlier stages.

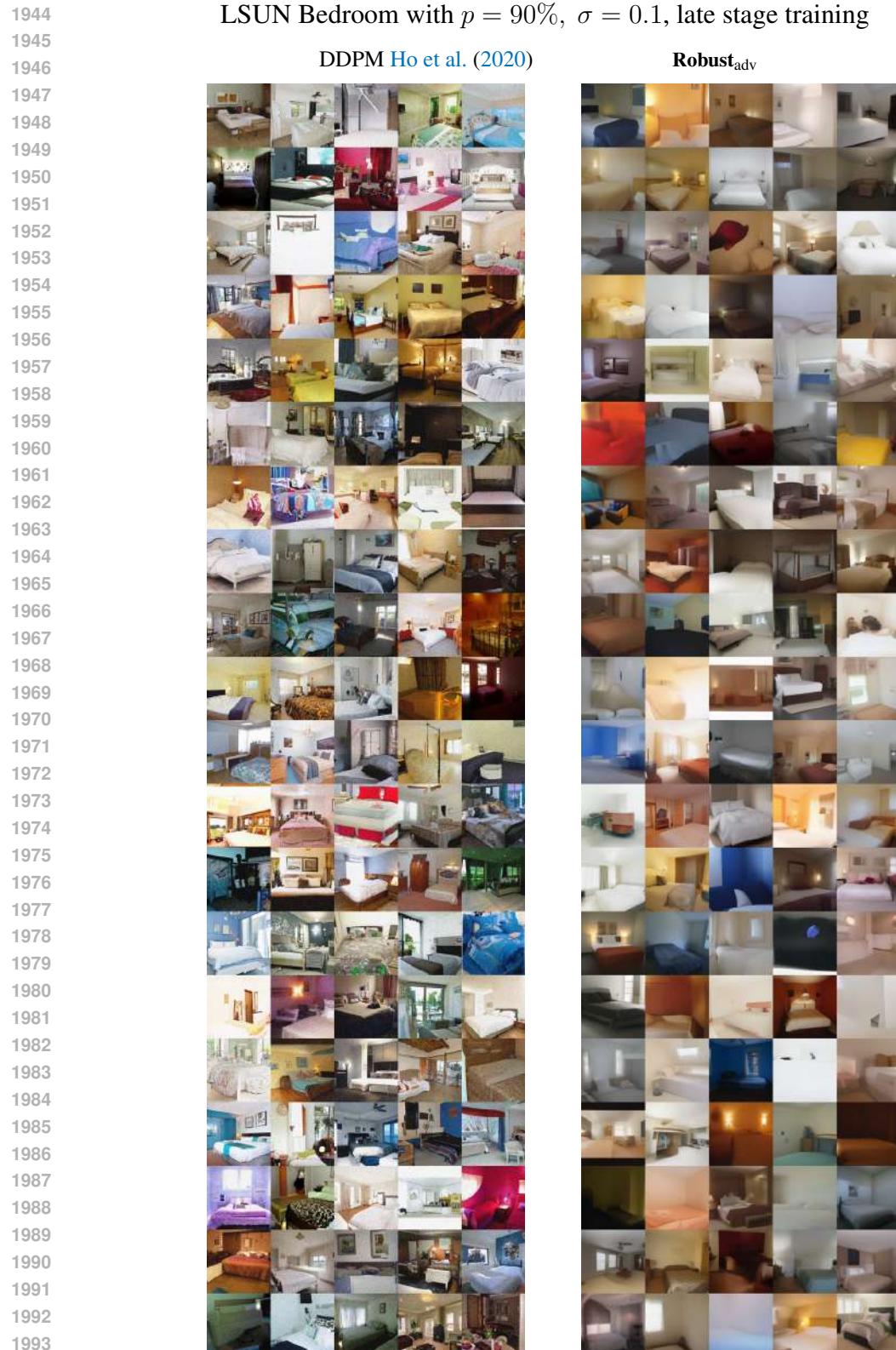


Figure 22: Trained on noisy LSUN Bedroom with  $p = 90\%$ ,  $\sigma = 0.1$ . With extended training, **Robust<sub>adv</sub>** not only effectively removes the noise introduced into the dataset—in contrast to DDPM—but also restores fine details, resulting in multi-view images with natural colors and enhanced realism.

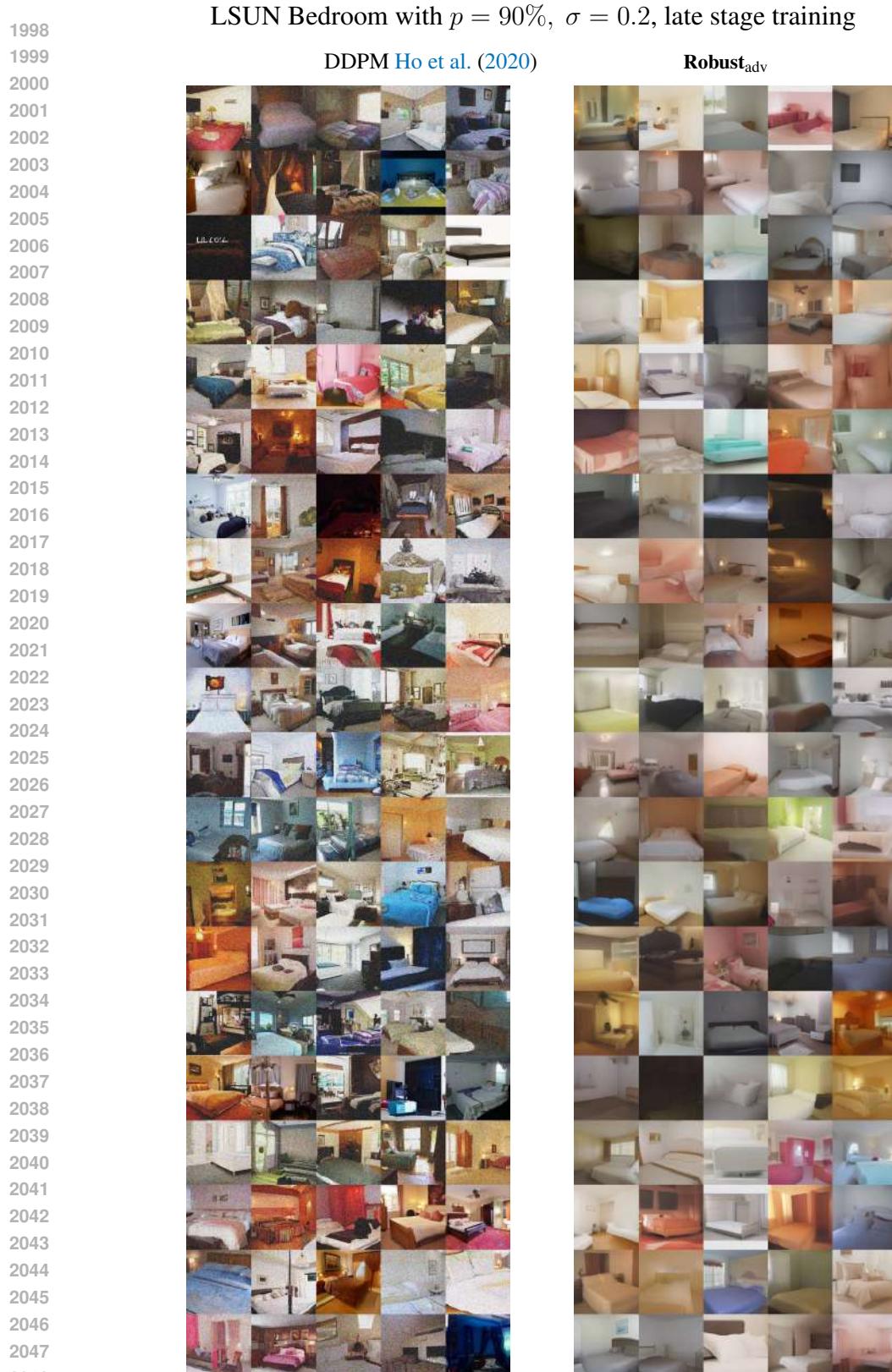


Figure 23: Trained on noisy LSUN Bedroom with  $p = 90\%$ ,  $\sigma = 0.2$ . With extended training, **Robust<sub>adv</sub>** effectively removes the noise introduced into the dataset, in contrast to DDPM. As a result, it produces cleaner images, albeit with less intricate details.

2052 **F ADVERSARIAL TRAINING ANALYSIS**

2053

2054 This method aims at proposing an AT approach to the diffusion model’s training whose design choices  
 2055 have been motivated extensively in previous sections as well as in the main paper. In this section, we  
 2056 want to highlight some interesting points we observed during the framework formulation.

2057

2058 **F.1 TRAINING DYNAMICS**

2059

2060 Adversarial training diffusion models inevitably influences DM training dynamics. Indeed, the  
 2061 proposed regularization acts as a smoothing factor for the diffusion process in the trajectory space. In  
 2062 order to evaluate the training dynamics, we propose an ablation on DM generated samples at different  
 2063 training iterations. Fig. 24 is intended to show the evolution of generated samples by AT models at  
 2064 different training iterations. The first row shows samples generated by models trained in an early  
 2065 stage, while the second shows generations from models trained for longer. On the right column, the  
 2066 dataset has not been corrupted; the generations, after more training iterations, start losing the bright  
 2067 colors, tending towards more natural-looking colors. Moreover, the generated data starts acquiring its  
 2068 details. The same effects can be seen for models trained on corrupted data,  $\sigma = 0.1$  in the middle  
 2069 and  $\sigma = 0.2$  on the right (both with  $p = 0.9\%$ ). In those cases, it is also possible to see that some  
 2070 generated samples, which at earlier epochs still resulted in being noisy, are completely denoised. This  
 2071 dynamic suggests that the model first focuses on fitting the overall data model, focusing more on the  
 2072 smoothing effect. Once done, the model goes back to learning the details of the data distribution,  
 2073 including some variability, but still not taking into account the noise present in the data. Furthermore,  
 2074 a clearer picture of the training dynamics can be obtained by examining images Figs. 18 to 23, that  
 2075 effectively compare the robust approach with the DDPM model at both early and late training stages.

2076

2077 **F.2 FINETUNING ANALYSIS**

2078

2079 Adversarial training notably introduces a training time overhead. In our case, the increased training  
 2080 time is an investment for improved robustness and faster inference, which is particularly relevant in  
 2081 real-world pipelines where inference is repeated continually, while training is performed once for all.  
 2082 This is a standard trade-off in modern generative modeling, as seen in classifier guidance, which also  
 2083 increases training and complexity but is widely adopted.

2084

2085 In this section, we present preliminary results concerning the application of adversarial training in the  
 2086 fine-tuning setting. We point out that fine-tuning does help to alleviate the problem of training cost,  
 2087 so it could be a strong future improvement to allow the application of AT to heavier training pipelines.  
 2088 The table below shows FID and IS results evaluated on the CelebA dataset. For the fine-tuning, the  
 2089 model has been trained for all its training epochs according to the DDPM framework, except for the  
 2090 last 100 ones, when the adversarial regularization loss was applied. The table Table 4 showcases  
 2091 finetuning evaluation results. If compared with results in Table 2 we observe that we have similar  
 2092 results to the paper but with a fraction of the computational time.

2093

| Configuration<br>$p\%/\sigma$ | Fine-tuned   |                             | From Scratch |                             |
|-------------------------------|--------------|-----------------------------|--------------|-----------------------------|
|                               | DDPM         | <b>Robust<sub>adv</sub></b> | DDPM         | <b>Robust<sub>adv</sub></b> |
| 0.9 / 0.1                     | 65.4 / 2.6   | <b>23.3 / 2.1</b>           | 54.90 / 2.40 | <b>14.54 / 2.09</b>         |
| 0.9 / 0.2                     | 100.68 / 2.7 | <b>25.8 / 2.1</b>           | 96.03 / 2.65 | <b>16.53 / 2.11</b>         |

2095 Table 4: Performance comparison (FID/IS) between DDPM and **Robust<sub>adv</sub>** when finetuning on  
 2096 CelebA

2097

Figure 24: Qualitative results analysis on samples generated by **Robust<sub>adv</sub>** at different training stages.

### F.3 HOW $\lambda$ IN EQ. (9) OF THE MAIN PAPER INFLUENCES THE MODEL’S DENOISING CAPABILITY

In the method section, we stress that the choice of the hyperparameter  $\lambda$  heavily influences the model’s smoothing ability. To further motivate the previous statement, we provide straightforward evidence of this by observing generated samples produced by different models, with the same architectures and minimum regularization ray among all the shown samples. The varying parameter is  $\lambda$ , which



Figure 25: **Robust<sub>adv</sub>** trained on LSUN Bedroom dataset, with different noisy data ( $p = 90\%$ , different  $\sigma$  are visible in the image). The first row sets the regularization hyperparameter  $\lambda$  to 0.1, the second to 0.2.

is set to the values  $\{0.1, 0.2, 0.3\}$ . Fig. 25 shows the results at an early training stage of the models. Despite being at an early stage, the  $\lambda$  influence in models' performance already appears clear. When the data is not noisy (first column), increasing its value results in oversmoothing data, losing subject details, due to the smoothing factor introduced by the regularization. When the data becomes noisy, the regularization becomes fundamental in learning the correct distribution. In the first row, we see that the smoothing action is limited due to the small  $\lambda = 0.1$ , indeed the noise is still present in

the generated samples both in  $\sigma = 0.1$  and  $\sigma = 0.2$ , whereas the noise decreases drastically when increasing  $\lambda$  to 0.2. In fact, the images shown in the bottom row show a minor presence of noise, which is expected to disappear in later training. On the other side, the increase of the parameter  $\lambda$  also causes a loss of details in the image subjects. This phenomenon is due to the smoothing effect, which not only affects noise but also data variability. This smoothing effect becomes even more apparent when compared to Figs. 18 to 23, all generated with  $\lambda = 0.3$ . These comparisons further support the previous observations by extending the analysis across different levels of noise and training stages.

## G COMPARISON WITH NOISE-AWARE DIFFUSION TRAINING

The primary objective of [Daras et al. \(2024a\)](#) is to develop noise-informed algorithms for training models in the presence of noisy training data. More in detail, the noise-informed training algorithm operates under two fundamental assumptions: (i) the assumption that the noise in the dataset is Gaussian and prior knowledge of the Gaussian variance, and (ii) identification of the specific training samples affected by noise corruption. To rigorously assess the robustness of this approach under the *unknown corruption* setting, we developed two distinct training configurations that relax these stringent assumptions and modify the original training framework of [Daras et al. \(2024a\)](#).

- ◊ In *Conf. 1*, the method always knows the exact  $\sigma$  level of the noise in the dataset but the assumption on which sample is clean  $\mathbf{x} \in \mathcal{X}_{\text{clean}}$  and which sample is noisy  $\mathbf{x} \in \mathcal{X}_{\text{noisy}}$  is forced to be correct only  $(1 - p)\%$  of the time.
- ◊ In *Conf. 2*, the assumption of knowing whether a sample is noisy or not is never considered, effectively forcing the same behavior for all the training data, when the data are noised with probability  $p$ .

For both configurations, we trained the models on CIFAR-10, considering clean data and noisy data with  $\sigma = \{0.1, 0.2\}$  and  $p = 90\%$ . Quantitative results are summarized in Table 5 while qualitative examples are shown in Fig. 26.

| $p$ % | $\sigma$ | <b>Robust<sub>adv</sub></b> | <a href="#">Daras et al. (2024a)</a> <i>Conf. 1</i> | <a href="#">Daras et al. (2024a)</a> <i>Conf. 2</i> |
|-------|----------|-----------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 0     | –        | 28.7                        | <b>14.0</b>                                         | <b>14.9</b>                                         |
| 0.9   | 0.1      | <b>24.7</b>                 | 94.5                                                | 102.7                                               |
| 0.9   | 0.2      | <b>24.8</b>                 | 109.7                                               | 105.3                                               |

Table 5: Experiments on CIFAR-10 under unknown corruption.

These experiments confirm that relaxing even one of the assumptions made in the noise-aware solution proposed by [Daras et al. \(2024a\)](#) reduces the method’s robustness to unknown noise in the data, producing very high FID values. This confirms the practical limitations already highlighted by [Daras et al. \(2024a\)](#). On the contrary, our method is able to work in this more challenging setting, where the corruption is unknown, and achieves a stable trend in the FID across different  $\sigma$  and  $p$ , without requiring access to clean/noisy labels or corruption parameters.

## H LLM USAGE

Large language models were used exclusively for text polishing and minor exposition refinements. All substantive research content, methodology, and scientific conclusions were developed entirely by the authors.

