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ABSTRACT

Subgraph counting is the problem of determining the number of a given query
graph in a large target graph. Despite being a #P problem, subgraph counting is
a crucial graph analysis method in domains ranging from biology and social sci-
ence to risk management and software analysis. However, existing exact counting
methods take combinatorially long runtime as target and query sizes increase. Ex-
isting approximate heuristic methods and neural approaches fall short in accuracy
due to high label dynamic range, limited model expressive power, and inability to
predict the distribution of subgraph counts in the target graph. Here we propose
DeSCo, a neural deep subgraph counting framework, which aims to accurately
predict the count and distribution of query graphs on any given target graph. De-
SCo uses canonical partition to divide the large target graph into small neigh-
borhood graphs and predict the canonical count objective on each neighborhood.
The proposed partition method avoids missing or double-counting any patterns of
the target graph. A novel subgraph-based heterogeneous graph neural network is
then used to improve the expressive power. Finally, gossip correction improves
counting accuracy via prediction propagation with learnable weights. Compared
with state-of-the-art approximate heuristic and neural methods. DeSCo achieves
437× improvement in the mean squared error of count prediction and benefits
from the polynomial runtime complexity.

1 INTRODUCTION

Given a query graph and a target graph, the problem of subgraph counting is to count the num-
ber of patterns, defined as subgraphs of the target graph, that are graph-isomorphic to the query
graph Ribeiro et al. (2021).

Subgraph counting is crucial for domains including biology Takigawa & Mamitsuka (2013); Solé
& Valverde (2008); Adamcsek et al. (2006); Bascompte & Melián (2005); Bader & Hogue (2003),
social science Uddin et al. (2013); Prell & Skvoretz (2008); Kalish & Robins (2006); Wasserman
et al. (1994), risk management Ribeiro et al. (2017); Akoglu & Faloutsos (2013), and software
analysis Valverde & Solé (2005); Wu et al. (2018).

While being an essential method in graph and network analysis, subgraph counting is a #P-complete
problem Valiant (1979). Due to the computational complexity, existing exact counting algorithms
are restricted to small query graphs with no more than 5 vertices Pinar et al. (2017); Ortmann &
Brandes (2017); Ahmed et al. (2015). The commonly used VF2 Cordella et al. (2004) algorithm
fails to even count a single query of 5-node chain within a week’s time budget on a large target
graph Astro Leskovec et al. (2007) with nineteen thousand nodes.

Luckily, approximate counting of query graphs is sufficient in many real-world use cases Iyer et al.
(2018); Kashtan et al. (2004); Ribeiro & Silva (2010). Approximation methods can scale to large
targets by substructure sampling, random walk, and color-based sampling, allowing estimation of the
frequency of query graph occurrences. Very recently, Graph Neural Networks (GNNs) are employed
as a deep learning-based approach to subgraph counting Zhao et al. (2021); Liu et al. (2020); Chen
et al. (2020). The target graph and the query graph are embedded via a GNN, which predicts the
motif count through a regression task.
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Figure 1: The ground truth and predicted count distributions of different query graphs over the target
graph CiteSeer, a citation network. The hotspots are where the patterns appear most often in the
target graph. The hotspots of k-chains represent overlapped linear citation chains, indicating original
publications that motivate multiple future directions of incremental contributions. The hotspots of
k-cliques indicate research focuses, containing publications of small subdivision that builds upon all
prior publications.

However, there exist several major challenges with existing heuristic and GNN approaches: 1) The
number of possible query graph structures and subgraph counts both grow combinatorially with
respect to the graph size Sloane (2014); Read & Wilson (1998), resulting in large approximation
error Ribeiro et al. (2021). The count can have high dynamic range from zero to millions, making
the task much harder than most graph regression tasks which only predict a single-digit number with
a small upperbound. 2) The expressive power of commonly used message passing GNNs is limited
by the Weisfeiler-Lehman (WL) test Leman & Weisfeiler (1968); Chen et al. (2020); Xu et al. (2018).
Certain structures are not distinguishable with these GNNs, let alone counting them, resulting in the
same count prediction for different queries. 3) Furthermore, most existing approximate heuristic and
GNN methods only focus on estimating the total count of a query in the target graph Bressan et al.
(2019); Liu et al. (2020); Chen et al. (2020), but not the distribution of occurrences of the patterns,
as shown in Figure 1. Yet such distribution information is crucial in various applications Yin et al.
(2019); Tsourakakis et al. (2017); Benson et al. (2016); Faust (2010); Holland & Leinhardt (1976).

Proposed work. To resolve the above challenges, we propose DeSCo, a GNN-based model that
learns to predict both pattern counts and distribution on any target graph. The main idea of DeSCo
is to leverage and organize local information of neighborhood patterns to predict query count and
distribution in the entire target graph. DeSCo first uses canonical partition to decompose the target
graph into small neighborhoods without missing and double-counting any patterns. The local infor-
mation is then encoded using a GNN with subgraph-based heterogeneous message passing. Finally,
we perform gossip correction to improve counting accuracy. Our contributions are three-fold.

Canonical partition. Firstly, we propose a novel divide-and-conquer scheme called canonical par-
tition to decompose the problem into subgraph counting for individual neighborhoods. The canon-
ical partition ensures that no pattern will be double counted or missed over all neighborhoods. The
algorithm allows the model to make accurate predictions even with the high dynamic range of labels
and enables subgraph count distribution prediction for the first time. Figure 1 demonstrates DeSCo’s
predictions on the query graph count distribution of a citation network. The count hotspots of differ-
ent queries can indicate citation patterns of different scientific communities Gao & Lafferty (2017);
Yang et al. (2015), which shed light on the research impact of works in this network.

Subgraph-based heterogeneous message passing. Secondly, we propose a general approach to
enhance the expressive power of any MPGNNs by encoding the subgraph structure through hetero-
geneous message passing. The message type is determined by whether the edge presents in a certain
subgraph, e.g., a triangle. We theoretically prove that its expressive power can exceed the upper
bound of that of MPGNNs. We show that this architecture outperforms expressive GNNs, including
GIN Xu et al. (2018) and ID-GNN You et al. (2021).

Gossip correction. We overcome the challenge of accurate count prediction by utilizing two induc-
tive biases of the counting problem: homophily and antisymmetry. Real-world graphs share similar
patterns among adjacent nodes, as shown in Figure 1. Furthermore, since canonical count depends
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Figure 2: DeSCo Framework in 3 steps. (a) Step 1. Canonical Partition: Given query and target,
decomposed target into multiple node-induced subgraphs, i.e., canonical neighborhoods, based on
node indices. Each neighborhood contains a canonical node that has the greatest index in the neigh-
borhood. (b) Step 2. Neighborhood Counting: Predict the canonical counts of each neighborhood
via an expressive GNN, and assign the count of the neighborhood to the corresponding canonical
node. Neighborhood counting is the local count of queries. (c) Step 3. Gossip Correction: Use
GNN prediction results to estimate canonical counts on the target graph through learnable gates.

on node indices, there exists antisymmetry due to canonical partition. Therefore, we propose a
gossip correction phase, featuring a learnable gate for propagation to leverage the inductive biases.

To demonstrate the effectiveness of DeSCo, we compare it against state-of-the-art exact and approx-
imate heuristic methods for subgraph counting as well as recent GNN-based approaches Cordella
et al. (2004); Bressan et al. (2019); Chen et al. (2020); Liu et al. (2020), in terms of both performance
and runtime efficiency. Experiments show that DeSCo enables large-scale subgraph counting that
was not possible for exact methods. Compared with heuristic and neural methods, DeSCo achieves
more than two orders of magnitude improvement in the mean squared error of count prediction. To
the best of our knowledge, it is also the first method to enable accurate count distribution prediction.
Furthermore, the model excels in both accuracy and runtime efficiency for larger queries, with the
highest percentage of valid predictions and up to two orders of magnitude speedup over heuristic
methods. Our code is available at https://anonymous.4open.science/r/DeSCo-6BD2

2 RELATED WORKS

There has been an extensive line of work to solve the subgraph counting problem.

Exact counting algorithms. Exact methods generally count subgraphs by searching through all
possible node combinations and finding the matching pattern. Early methods usually focus on im-
proving the matching phase Wernicke & Rasche (2006); Cordella et al. (2004); Milo et al. (2002)
Recent approaches emphasize pruning the search space and avoiding double counting Demeyer et al.
(2013); Mawhirter et al. (2019); Shi et al. (2020); Mawhirter & Wu (2019). However, exact methods
still scale poorly in terms of query size (often no more than five nodes) despite much efforts Pinar
et al. (2017); Chen & Qian (2020).

Approximate heuristic methods. To further scale up the counting problem, approximate count-
ing algorithms sample from the target graph to estimate pattern counts. Strategies like path sam-
pling Wang et al. (2017); Jha et al. (2015), random walk Yang et al. (2018); Saha & Hasan (2015),
substructure sampling Fu et al. (2020); Iyer et al. (2018), and color coding Bressan et al. (2021;
2018) are used to narrow the sample space and provides better error bound. However, large and rare
queries are hard to find in the vast sample space, leading to large approximation error Bressan et al.
(2019).

GNN-based approaches. Recently, GNNs have also been used to attempt subgraph counting. Liu
et al. (2020) uses GNNs to embed the query and target graph, and predict subgraph counts via
embeddings. Chen et al. (2020) theoretically analyzes the expressive power of GNNs for counting
and proposes an expressive GNN architecture. Zhao et al. (2021) proposes an active learning scheme
for the problem. Unfortunately, large target graphs have extremely complex structures and a high
dynamic range of pattern count, so accurate prediction remains challenging.
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Figure 3: An example of canonical partition and canonical count. (a) Choose node 5 from the tar-
get graph as the canonical node (red circle). (b) Canonical partition generates the corresponding
canonical neighborhood graph. It performs an ID-restricted breadth-first search to find the induced
neighborhood that complies with both Rule1 and Rule2. (c) The corresponding canonical count is
defined by the number of patterns containing the canonical node in the canonical neighborhood. De-
SCo’s neighborhood counting phase predicts the canonical count for each canonical neighborhood.

3 PRELIMINARY

Let Gt = (Vt, Et) be a large target graph with vertices Vt and edges Et. Let Gq = (Vq, Eq) be the
query graph of interest. The subgraph counting problem C(Gq, Gt) is to calculate the size of the set
of patterns P = {Gp|Gp ⊆ Gt} in the target graph Gt that are isomorphic to the query graph Gq ,
that is, ∃ bijection f : Vp 7→ Vq such that (f(v), f(u)) ∈ Eq iff (v, u) ∈ Ep, denoted as Gp

∼= Gq .

Subgraph counting includes induced and non-induced counting depending on whether the pattern
Gp is restricted to induced subgraph Ribeiro et al. (2021). A Gp = (Vp, Ep) is induced subgraph
of Gt if ∀e ∈ Et ↔ e ∈ Ep, denoted as Gp ⊆ Gt. Without loss of generality, we focus on the
connected, induced subgraph counting problem, following modern mainstream graph processing
frameworks Hagberg et al. (2008); Peixoto (2014) and real-world applications Wong et al. (2012);
Milo et al. (2002). It is also possible to obtain non-induced occurrences from induced ones with a
transformation Floderus et al. (2015). Our approach can easily support graphs with node features
and edge directions. But to compare with heuristic methods that only support simple graphs, we use
undirected graphs without node features to investigate the ability to capture graph topology.

4 DESCO FRAMEWORK

In this section, we introduce the pipeline of DeSCo. To perform subgraph counting, DeSCo first per-
forms canonical partition to decompose the target graph to many canonical neighborhood graphs.
Then, neighborhood counting uses the subgraph-based heterogeneous GNN to embed the query
and neighborhood graphs and performs a regression task to predict the canonical count on each
neighborhood. Finally, gossip correction propagates neighborhood count predictions over the tar-
get graph. We will first introduce the model objective before elaborating on each step.

4.1 CANONICAL COUNT OBJECTIVE

The canonical count is used as a local count prediction objective for the GNN and gossip correction,
after decomposing the target into small neighborhoods without missing or double-counting patterns.

Canonical node. We use randomly assigned node indices on the target graph to break the symmetry
of patterns. We assign the match of a k-node pattern to its canonical node based on the index.
Formally, the canonical node vc is the node with the largest node index in the pattern: vc = maxI Vp.

The number of patterns that share the same canonical node is called the canonical count Cc on this
node as shown in Figure 3 (c). Note how the match of a k-node pattern is only attributed to the
canonical node, since the other k-1 nodes do not satisfy v = maxI Vp. It also suggests that the node
with a relatively larger node index will result in a larger canonical count. This characteristic will be
utilized by gossip correction discussed in Section 4.4.
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Definition 4.1 (canonical count).

Cc(Gq, Gt, vc) = |{Gp ⊆ Gt|Gp
∼= Gq, vc = max

I
Vp}| (1)

We prove the following Lemma in Appendix A.1.

Lemma 4.1. The subgraph count of query in target equals the summation of the canonical count of
query in target over all target nodes.

C(Gq, Gt) =
∑
vc∈Vt

Cc(Gq, Gt, vc) (2)

Lemma 4.1 allows the decomposition of the counting problem into multiple neighborhood canonical
counting objectives. We use the following canonical partition for the decomposition.

4.2 CANONICAL PARTITION

Based on Lemma 4.1, we define canonical partition that decomposes the target graph. Figure 3 (a),
(b) shows an example of the canonical neighborhood, obtained by a partition function P defined as:

P(Gt, vc, d) = Gc, s. t. Gc ⊆ Gt, Vc = {vi ∈ Vt|D(Gt, vi, vc) ≤ d, vi ≤ vc} (3)

D(Gt, vi, vc) means the shortest distance between vi and vc on Gt. We further prove:

Theorem 1. The subgraph count of query in target equals the summation of the canonical count
of query in canonical neighborhoods over all target nodes. Canonical neighborhoods are acquired
with partition P , given any d greater than the diameter of query.

C(Gq, Gt) =
∑
vc∈Vt

Cc(Gq,P(Gt, vc, d), vc), d ≥ max
vi,vj∈Vq

D(Gq, vi, vj) (4)

Definition 4.2 (Canonical partition). Given target graph Gt, canonical partition iterates over all
nodes v of the target Gt and partition it into a set of canonical neighborhoods Gvc .

Gt 7→ {Gvc |Gvc = P(Gt, vc, d), vc ∈ Vt} (5)

Missing count or double counting are avoided with Theorem 1 and Definition 4.2, which is de-
tailedly proven in Appendix A.2. In practice, we set d as the maximum diameter of query graphs to
meet the requirements of Theorem.1. See Appendix A.3 for implementation of P(Gt, vc, d). Ap-
pendix A.3 shows that canonical partition reduces the complexity of the problem by a dozen orders
of magnitude. After canonical partition, DeSCo uses a GNN to predict the canonical count for each
decomposed neighborhood. This divide-and-conquer scheme not only greatly reduces the complex-
ity of each GNN prediction, but also makes it possible to predict the count distribution over the
entire graph.

4.3 NEIGHBORHOOD COUNT PREDICTION

After canonical partition, GNNs are used to predict the canonical count Cc(Gq, Gvc , vc) on any
canonical neighborhood Gvc . The canonical neighborhood and the query are separately embedded
using GNNs. The embeddings are passed to a multilayer perceptron to predict the canonical count.

To strengthen the expressive power of the GNN used in neighborhood count, we propose a general
Subgraph-based Heterogeneous Message Passing (SHMP), which incorporates topological informa-
tion through node and edge types. The canonical node of the neighborhood is treated as a special
node type. SHMP further uses small subgraph structures to categorize edges into different edge
types, and use different learnable weights for each edge type.
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(a) SHMP for neighborhood counting
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(b) Learnable gate for gossip correction

Figure 4: (a) Proposed SHMP. Embedded with regular MP, graphs G1 and G2 are indistinguishable.
While embedded with SHMP, G2 is successfully distinguished with six type II node embeddings,
demonstrating better expressive power of SHMP. (b) Proposed learnable gates in the gossip model
balance the influence of homophily and antisymmetry by controlling message directions.

Definition 4.3 (subgraph-based heterogeneous message passing). The SHMP uses the following
equation 6 to compute each node’s representation at layer k. Here ϕk

h denotes the message function
of the h-th edge type. Nh(i) denotes nodes that connect to node i with the h-th edge type. AGG and
AGG′ are the permutation invariant aggregation function such as sum, mean, or max.

x
(k)
i = γ(k)

(
x
(k−1)
i , AGG′

h∈H

(
AGGj∈Nh(i)

(
ϕ
(k)
h (x

(k−1)
i ,x

(k−1)
j , ej,i)

)))
(6)

Note that MP defined by major GNN frameworks Fey & Lenssen (2019); Wang et al. (2019) is just a
special case of SHMP if only one edge type is derived with the subgraph structure. We theoretically
prove that SHMP can exceed the upper bound of MP in terms of expressiveness in Appendix B.1.

For example, Figure 4(a) demonstrates that triangle-based heterogeneous message passing has bet-
ter expressive power. Regular MPGNNs fail to distinguish different d-regular graphs G1 and
G2 because of their identical type I messages and embeddings, which is a common problem of
MPGNNs You et al. (2021). SHMP, however, can discriminate the two graphs by giving different
embeddings. The edges are first categorized into two edge types based on whether they exist in any
triangles (edges are colored purple if they exist in any triangles). Since no triangles exist in G2, all of
its nodes still receive type I messages. While some nodes of G1 now receive type II messages with
two purple messages and one gray message in each layer. As a result, the model acquires not only
the adjacency information between the message sender and receiver, but also information among
their neighbors. Such subgraph structural information improves expressiveness by incorporating
high-order information in both the query and the target.

4.4 GOSSIP CORRECTION

Given the count predictions Ĉc output by the GNN, DeSCo uses gossip correction to improve the
prediction quality, enforcing different homophily and antisymmetry inductive biases for different
queries. Gossip correction uses another GNN to model the error of neighborhood count. It uses the
predicted Ĉc as input, and the canonical counts Cc as the supervision for corresponding nodes in the
target graph.

Motivation. Two different inductive biases are used to improve the accuracy. 1) Homophily. Since
the neighborhoods of adjacent nodes share much common graph structure, they tend to have similar
canonical counts as shown in Figure1. This is called the homophily of canonical counts. 2) Antisym-
metry. As mentioned in Section4.1, for nodes with similar neighborhood structures, the one with a
larger node index has a larger canonical count, resulting in antisymmetry of canonical counts. See
the example target graph in Figure 2, which satisfies the inductive biases. Appendix C further shows
that homophily and antisymmetry are mutually exclusive for different queries, which corresponds to
our gossip model design in Figure 4(b).

Gossip correction with learnable gates. As shown in Figure 4(b), The proposed gossip model
multiplies a learnable gate P for the message sent from the node with the smaller index, and 1− P
from the reversed one. P is learned from the query embedding. For different queries, P ranges from
0 to 1 to balance the influence of homophily and antisymmetry. When P → 0.5, messages from the
smaller indexed node and the reversed one are weighed equally. So it simulates undirected message
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passing that stress homophily by taking the average of adjacent node values. When the gate value
moves away from 0.5, the message from a certain end of the edge is strengthened. For example,
when P → 1, the node values only accumulate from nodes with smaller indices to nodes with larger
ones. So that it simulates directed message passing that stress antisymmetry of the transitive partial
order of node indices.

The messages of MPGNNs are multiplied with gji on both edge directions. With the learnable gates,
the model now better utilizes the mutually exclusive inductive biases for better error correction.

x
(k)
i = γ(k)

(
x
(k−1)
i , AGGj∈N(i)gji · ϕ(k)

(
x
(k−1)
i ,x

(k−1)
j , ej,i

))
, gji =

{
P vj ≤ vi
1− P vj > vi

(7)

Final count prediction. The gossip-corrected neighborhood count is a more accurate estimation of
the canonical count and distribution. The summation of the (corrected) neighborhood count is the
unbiased estimation of subgraph count on the whole target graph as Theorem 1 states.

5 EXPERIMENTS

We compare the performance of DeSCo with state-of-the-art approximate heuristic and neural sub-
graph counting methods. The runtime advantage is also demonstrated with popular exact methods.
Extensive ablation studies further show the benefit of each component of DeSCo.

5.1 EXPERIMENTAL SETUP

Dataset #graphs Avg. #nodes Avg. #edges

MUTAG 188 17.93 19.79
COX2 467 41.22 43.45
ENZYMES 600 32.63 62.14
SYNTHETIC 6400 41.58 158.81

CITESEER 1 3.3K 4.5K
CORA 1 2.7K 5.4K

Table 1: Graph statistics of datasets
used in experiments.

Dataset CiteSeer Cora
Query-Size 3 4 5 3 4 5

LRP GPU out of memory overflow
DIAMNet 1.110 1.282 1.101 1.074 1.108 1.037

DeSCo 0.006 0.133 0.125 0.302 0.249 0.676

Table 2: Normalized MSE performance of neural methods
on large targets with standard queries.

Datasets. We use real-world datasets from various domains as the target graphs, including chem-
istry(MUTAG Debnath et al. (1991), COX2 Rossi & Ahmed (2015)), biology(ENZYMES Borg-
wardt et al. (2005)), and citation networks(CiteSeer Giles et al. (1998), Cora McCallum et al.
(2000)). We also generate a large synthetic dataset with mixed graph generators Holme & Kim
(2002); Albert & Barabási (2000); Watts & Strogatz (1998); Erdős et al. (1960) to cover diverse
graph characteristics. All the datasets are treated as undirected graphs without node or edge features
in alignment with the setting of the approximate heuristic method Bressan et al. (2019). The stan-
dard query graphs include all non-isomorphic, connected, undirected graphs with node size 3 − 5.
The ground truth total counts and canonical counts of these queries are generated with the exact
counting method on all the target graphs from the above datasets.

Pretraining. To perform subgraph counting on any target graph, we first pre-train all the neural
methods with the target-query pairs from the synthetic dataset and the standard queries of size 3 −
5. The neural baselines are trained and tested with the total subgraph count objective. After pre-
training, DeSCo can be evaluated by predicting the total count in alignment with the baselines.
Unless specified, the trained models are directly tested with standard queries and the targets from
unseen, real-world datasets. Therefore, in our evaluation, DeSCo only needs to be trained once from
scratch across common datasets and tasks.

Baselines. For neural-based approaches, we adopt state-of-the-art subgraph counting GNNs,
LRP Chen et al. (2020) and DIAMNet Liu et al. (2020). For the approximate heuristic count-
ing method, we choose the state-of-the-art color-based sampling method MOTIVO Bressan et al.
(2019). It uses color coding to greatly narrow the sample space with efficient c++ implementation.
For exact counting methods, we consider VF2 Cordella et al. (2004) and IMSM Sun & Luo (2020).
VF2 is widely used in major graph processing frameworks Hagberg et al. (2008); Peixoto (2014).
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Figure 5: The accumulative distributions of normalized square error of large query-target pairs. The
x-axis is clipped at 5. Given any square error tolerance bound (x-axis), DeSCo has the highest
percentage of predictions that meet the bound (y-axis). DeSCo(zero-shot) generalizes to unseen
queries with competitive performance over specifically trained baselines.

IMSM is a common framework that combines optimizations from multiple exact counting meth-
ods He & Singh (2008); Bonnici et al. (2013); Bhattarai et al. (2019); Han et al. (2019). Refer to
Appendix D.3 and E for the configuration details of the baselines.

Evaluation metric. We follow the previous works Chen et al. (2020); Liu et al. (2020) and use mean
square error (MSE) of total subgraph count prediction as our evaluation metric. The MSE values of
each query size are normalized by dividing the variance of the ground truth counts.

5.2 NEURAL COUNTING

Table 3 summarizes the normalized MSE for predicting the subgraph count of twenty-nine standard
query graphs on datasets consisting of many target graphs. With canonical partition, neighborhood
counting, and gossip correction, DeSCo demonstrates 437× improvements against the best baseline
on average. This demonstrates that neural subgraph counting is truly reliable in real-world problems,
even for smaller queries of size 3 − 5. The relative count error under the q-error metric is also
discussed in Appendix G.1. DeSCo also highlights the accurate count distribution prediction for the
first time. The distribution prediction realizes 0.23 normalized MSE as discussed in Appendix F.

Dataset MUTAG COX2 ENZYMES
Query-Size 3 4 5 3 4 5 3 4 5

MOTIVO 1.1E+2 7.5E+2 4.8E+3 3.4E+2 2.9E+3 3.2E+4 1.3E+2 6.0E+2 3.6E+3
LRP 1.6E+0 1.1E+0 1.0E+0 1.9E+0 1.3E+0 1.1E+0 2.0E+0 1.3E+0 1.1E+0
DIAMNet 1.7E-1 1.1E-1 3.5E-1 3.0E-1 2.4E-1 5.0E-1 7.2E-1 5.6E-1 8.9E-1

DeSCo 7.3E-5 5.2E-4 1.1E-2 2.3E-5 9.5E-5 7.2E-3 1.1E-3 2.0E-3 1.0E-2

Table 3: Normalized MSE of approximate heuristic and neural methods on subgraph counting of
twenty-nine standard queries.

5.3 SCALIBILITY

Generalization. Obtaining ground truth for large queries and targets via exact counting is extremely
expensive and can take months, so we only test scalable queries and targets with the following setting
in Section 5.3. Here we demonstrate that with minimal pre-training, the model is able to generalize
and make reliable predictions for larger queries and targets.

Large queries. For each query size between 6 to 13, we select two queries that frequently appear
in ENZYMES. A smaller synthetic dataset with 2048 graphs is used to generate the ground truth for
these sixteen queries. All the models are pre-trained with standard queries. All the models, except
for DeSCo(zero-shot), are fine-tuned with larger queries on the small synthetic dataset. DeSCo(zero-
shot) is used to show the generalization power of DeSCo for unseen queries. The distributions of
the square error of each query-target pair are shown in Figure 5. The square errors are normalized
with the variance of all ground truth counts.

Large target. We also test the models on large target graphs shown in Table 2. The maximum
ground truth count of standard queries goes up to 3.8 × 106 and 3.3 × 107 on CiteSeer and Cora,
thus a hard task. When directly tested, LRP and DIAMNet overflow normal float precision. So we
tune all the models on one graph and test on the other to simulate transfer learning between graphs
from the same domain. LRP either exceeds 32GB GPU memory in tuning, or predicts infinite caused
by overflow.
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5.4 ABLATION STUDY

We explore the effectiveness of each component of DeSCo through the ablation study by removing
each component.

Ablation of canonical partition. We remove the canonical partition of DeSCo and train it with the
objective of subgraph count on the whole target, the same as other neural baselines. This demon-
strates the effectiveness of the divide-and-conquer scheme of canonical partition.

Dataset MUTAG COX2 ENZYMES
Query-Size 3 4 5 3 4 5 3 4 5

w/o P 1.8E-2 1.0E-2 6.4E-2 2.1E-2 1.5E-2 2.5E-2 7.3E-1 1.7E+0 3.9E+0
w P 4.2E-5 1.4E-4 7.8E-3 1.8E-5 2.3E-5 1.5E-3 9.6E-4 3.0E-3 1.2E-2

Table 4: Normalized MSE performance with or without canonical partition. Since gossip correction
relies on the output of neighborhoods, it’s also removed for both for a fair comparison.

Ablation of subgraph-based heterogeneous message passing. We use our proposed SHMP to
improve the performance of GraphSAGE by transforming its standard message passing to heteroge-
neous message passing. We use triangle as the subgraph to categorize heterogeneous edges as shown
in Figure 4(a). Note how SHMP outperforms expressive GNNs, including GIN and ID-GNN.

Dataset MUTAG COX2 ENZYMES
Query-Size 3 4 5 3 4 5 3 4 5

GCN 1.7E+1 7.5E+0 8.2E-1 1.6E+01 6.6E+0 5.1E-1 8.7E-1 3.6E-1 7.7E-1
SAGE 9.2E-4 4.8E-3 1.5E-2 2.6E-5 3.5E-4 6.0E-4 3.0E-2 9.6E-2 2.4E-1
GIN 1.4E-4 3.0E-3 3.0E-2 6.6E-5 4.8E-4 1.0E-2 4.0E-2 1.4E-1 3.0E-1
ID-GNN 4.2E-5 3.7E-4 7.4E-3 1.6E-5 1.4E-4 2.2E-3 8.8E-4 5.5E-3 2.0E-2

SAGE+SHMP 4.2E-5 1.4E-4 7.8E-3 1.8E-5 2.3E-5 1.5E-3 9.6E-4 3.0E-3 1.2E-2

Table 5: Normalized MSE performance with different GNN models for neighborhood counting.

Ablation of gossip correction. The normalized MSE of direct summation of neighborhood counts
and the summation after gossip correction are compared to show the effectiveness of gossip correc-
tion. We use ENZYMES and Cora to do the ablation study since the error of other graphs is already
very low with only canonical partition and neighborhood counting.

Dataset ENZYMES Cora
Query-Size 3 4 5 3 4 5

w/o gossip 9.6E-4 3.0E-3 1.2E-2 3.0E-1 2.5E-1 6.8E-1
w gossip 1.1E-3 2.0E-3 1.0E-2 2.9E-1 1.8E-1 6.3E-1

Table 6: The normalized MSE performance with and without gossip correction.

5.5 RUNTIME COMPARISON

DeSCo benefits from polynomial time complexity: O(E
3/2
t + Vt × (V̄n + Ēn)) + O(E

3/2
q + Vq).

In contrast, both the exact methods VF2, IMSM, and the approximate heuristic method MOTIVO
suffer from exponentially growing runtime with regard to the query size in practice. Experiments
show that DeSCo scales to much larger queries than the exact methods and achieves up to 120×
speedup over the approximate heuristic method for large queries. The detailed runtime comparison
is discussed in Appendix E.

6 CONCLUSION

We propose DeSCo, a neural network based framework for scalable subgraph counting. With canon-
ical partition, subgraph-based heterogeneous message passing, and gossip correction, DeSCo accu-
rately predicts counts for both large queries and targets. It demonstrates two magnitudes of improve-
ments in mean square error and runtime efficiency. It additionally provides the important locational
distribution of patterns that previous works cannot.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Balázs Adamcsek, Gergely Palla, Illés J. Farkas, Imre Derényi, and Tamás Vicsek. Cfinder: locating
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A CANONICAL PARTITION

A.1 PROOF OF LEMMA 4.1

Proof. Following the notions from Section 3, given a query graph Gq and a target graph Gt, the
node-induced count is defined as the number of Gt’s node-induced subgraph, pattern, Gp that is
isomorphic to Gq . We denote the set of all Gp as M.

M = {Gp ⊆ Gt|Gp
∼= Gq} (8)

C(Gq, Gt) = |M| (9)

Assuming that Gq has k nodes. Then, under the node-induced definition, given Gt, we can use the
k-node set Vp = {v|v ∈ Gp} of Gp to represent the pattern.

We can decompose the set of all patterns M into many subsets Mc based on the maximum node
index of each Gp ∈M.

Mc = {Gp ⊆ Gt|Gp
∼= Gq,max

I
Vp = c} (10)

This maximum-index decomposition is exclusive and complete: every Gp has a single corresponding
maximum node index. So we have the following properties:

∀c ̸= j,Mc ∩Mj = ∅ (11)

M =

|V |−1⋃
c=0

Mc (12)

Thus, the node-induced count in Equation 9 can be rewritten using the inclusion-exclusion principle.

C(Gq, Gt) =

∣∣∣∣∣∣
|V |−1⋃
c=0

Mc

∣∣∣∣∣∣
=

|V |−1∑
c=0

|Mc|+
|V |−1∑
k=1

(−1)k
 ∑

0≤i0≤···ik≤|V |−1

|Mi0 ∩ · · · ∩Mik |


=

|V |−1∑
c=0

|Mc|

(13)

According to the definition of canonical count in Equation 1, Cc(Gq, Gt, vc) = |Mc|. Thus,
Lemma 4.1 is proven with Equation 13.

A.2 PROOF OF THEOREM 1

Proof. By the definition of Mc in Equation 10, we have a corollary.

Corollary 1.1. Denote vc’s index as c, D as the shortest path length between two nodes. Any graph
in Mc has node vc and has the same graph-level property with Gq , e.g., diameter.

∀Gp ∈Mc, vc ∈ Vp, max
vi,vj∈Vp

D(Gp, vi, vj) = max
vi,vj∈Vq

D(Gq, vi, vj) (14)
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The distance between vc and any nodes of Gp in Mc is bounded by maxvi,vj∈Vq
D(Gq, vi, vj) as

shown in corollary 1.1. So we can further know that graphs in Mc are node-induced subgraphs of
vc’s d-hop ego-graph.

∀Gp ∈Mc,∃Gd−ego ⊆ Gt, Vd−ego = {vi ∈ Vt|D(Gt, vi, vc) ≤ d} s. t. Gp
∼= Gd−ego (15)

Given Equation 10, it is also clear that all graphs in Mc have smaller node indices than c.

∀Gp ∈Mc,∃Gsmall ⊆ Gt, Vsmall = {vi ∈ Vt|Ii ≤ Ic} s. t. Gp
∼= Gsmall (16)

With Equation 15 and 16, we know that all the graphs in Mc are subgraphs of P(Gt, vc, d) defined
in Equation 3. Thus, with respect to Equation 8, we can redefine Mc as follows.

Mc = {Gp ⊆ P(Gt, vc, d)|Gp
∼= Gq,max

Vp

I = c} (17)

Combining Equation 13 with Equation 17, Theorem 1 is proven.

A.3 IMPLEMENTATION OF CANONICAL PARTITION

Algorithm 1 Index-restricted breadth-first search

Vc ← {vc}, Vfront ← {vc}
while depth < d do

Vadd ← {v|v ∈
⋃

vi∈Vfront
{vj |(vi, vj) ∈ Et}, v ≤ vc}

Vfront ← Vadd \ Vc

Vc ← Vc ∪ Vfront

end while
Gc ← (Vc, Ec) s. t. Gc ⊆ Gt

The canonical partition is implemented using an index-restricted breadth-first search (BFS). Com-
pared with regular BFS, it restricts the frontier nodes to have smaller indices than that of the canon-
ical node. The time complexity of canonical partition equals to the BFS on each neighborhood
Gn = (Vn, En), which is

∑
O(Vn + En) = O(Vt × (V̄n + Ēn)).

A.4 COMPLEXITY BENEFIT OF CANONICAL PARTITION

We discuss the computational benefit of the canonical partition method in this section.

Search space reduction. Canonical partition uses the divide-and-conquer scheme to bring about
drastic search space reduction. We denote the complexity of searching and counting all subgraphs on
size Vt target graph as S(Vt). Canonical partition divides the original problem into subproblems with
the total search space of

∑
i∈Vt

S(Vni), where Vni stands for the size of canonical neighborhoods.
Thanks to the sparse nature of real-world graphs, Vnis are generally small, even for huge target
graphs. So with canonical partition, the search space is drastically reduced.

We conduct experiments on real-world graphs to show how canonical partition fundamentally re-
duces the search space. Figure 6 shows the computational complexity with different assumptions
on the form of S. VF2 Cordella et al. (2004) claims that the asymptotic complexity for the problem
ranges from O(V 2) to O(V !×V ) in best and worst cases. Under such assumptions of S, the average
worst-case complexity is reduced by a factor of 1/1070 with canonical partition, while the average
best-case complexity stays in the same magnitude. Empirically, we observe exponential runtime
growth of the subgraph counting problem. Thus, under the assumption that S(V ) = 2V , the average
complexity is also reduced drastically by a factor of 1/1011 with canonical partition.

Redundant match elimination. Canonical partition, along with the canonical count definition,
eliminates the redundant automorphic match of the query graph. Previous works Mawhirter &
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Figure 6: The complexity of subgraph counting with and without canonical partition on different
target datasets. The complexity for the VF2 exact subgraph counting method is O(V 2) to O(V !×V ).
The O(2V ) complexity estimates the empirically observed average complexity.

Wu (2019); Shi et al. (2020) have shown that the automorphism of the query graph can cause
a large amount of redundant count. For example, the triangle query graph Gq has three sym-
metric nodes. We denote the triangle pattern as Gp ⊆ Gt and the bijection R3 7→ R3 as
f : (vp0

, vp1
, vp2

) 7→ (vq0 , vq1 , vq2). For the same pattern, there exist six bijections {f :
(vp0

, vp1
, vp2

) 7→ (vqi , vqj , vqk)|(i, j, k) ∈ Perm(1, 2, 3)} where Perm(x, y, z) denotes all 3! per-
mutations of (x, y, z).

Canonical partition eliminates such redundant bijections by adding asymmetry, the canonical node.
As discussed in Equation 1, by attributing the count to only one canonical node, the bijection fc can
be rewritten as a R3 7→ R function, fc : (vp0 , vp1 , vp2) 7→ maxI(vq0 , vq1 , vq2). It means that each
query corresponds to only one bijection instead of six, thus preventing double counting and reducing
the computational complexity.

Reduction in the dynamic range of labels. Canonical partition also reduces the dynamic range of
the subgraph count labels, which makes the regression task easier for the neural network as discussed
in Section 1. The detailed statistics of the dynamic range are shown in Appendix D.2. The canonical
partition reduces the dynamic range of labels to 1/3 on average in Figure 9.

B EXPRESSIVE POWER OF SHMP

Figure 7: Examples of 1-SHMP distinguishable graphs. Any graph pair of each row cannot be
distinguished by the 1-WL test. While with one layer of triangle-based SHMP, the histogram of the
triangle-edge can distinguish all these graph pairs.
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B.1 THEORETICAL COMPARISON WITH REGULAR MESSAGE PASSING

Previous work Xu et al. (2018) has shown that the expressive power of existing message passing
GNNs is upper-bounded by the 1-WL test, and such bound can be achieved with the Graph Isomor-
phism Network (GIN). We prove the expressive power of SHMP with the following Lemma.

Lemma B.1. The SHMP version of GIN has stronger expressive power than the 1-WL test.

By setting ∀ϕk
h = ϕk and AGG′ = AGG, SHMP from Equation 6 becomes an instance of GIN,

which proves that SHMP-GIN is at least as expressive as GIN or the 1-WL test. The examples
in Figure 7 and Table 7 further prove that one layer of triangle-based SHMP-GIN can distinguish
certain graphs that the 1-WL test cannot. Thus, SHMP-GIN has stronger expressive power than the
1-WL test, exceeding the upper bound of regular message passing neural networks.

B.2 EXPERIMENTS ON REGULAR GRAPHS

To further illustrate the expressive power of SHMP, we show the number of graph pairs that are
WL indistinguishable but SHMP distinguishable in Table 7. We collect all the connected, d-regular
graphs of sizes six to twelve from the House of Graphs Brinkmann et al. (2013). Among these 157
graphs, 654 pairs of graphs are indistinguishable by the 1-WL test, even with infinite iterations. In
comparison, only 208 pairs are indistinguishable by the triangle-based SHMP with a single layer. So
68% of typical fail cases of the 1-WL test are easily solved with SHMP. Some examples are shown
in Figure 7.

Graph Size 6 7 8 9 10 11 12
Number of Graphs 5 4 15 10 30 5 88
Number of Graph Pairs 10 6 105 45 435 10 3828

WL Indistinguishable 1 1 19 13 64 1 555
SHMP Indistinguishable 0 1 4 4 26 0 173
Error Reduction 100.0% 0.0% 78.9% 69.2% 59.4% 100.0% 68.8%

Table 7: The number of indistinguishable d-regular graph pairs for the WL-test and SHMP.

B.3 DISCUSSION ON SUBSTRUCTURE ENHANCED GNNS

Previous substructure enhanced GNNs Morris et al. (2019); Nikolentzos et al. (2020) focus on the
idea of high-order abstractions of the graph. However, the direct instantiation of all high-order
substructures poses significant runtime overhead, which is unfriendly for the large-scale subgraph
counting problem. For example, Morris et al. (2019) has to add k-combinatorially many nodes to
represent the corresponding k-order substructure. This results in massive memory overhead and
heavy message passing computation. Though both of them use the three-node substructure informa-
tion, experiments show that the five-layer DeSCo is 3.51× faster than the five-layer 1-2-3-GNN Mor-
ris et al. (2019) when embedding the same COX2 dataset. In contrast, DeSCo’s subgraph-based
heterogeneous message passing (SHMP) focuses on the idea of distinguishing different local graph
structures. By categorizing the messages on the original graph, DeSCo efficiently uses the same
amount of message passing computation as traditional MPGNNs, while providing better expressive
power.

C HOMOPHILY AND ANTISYMMETRY ANALYSIS

Example and observation. The homophily and the antisymmetry are two important inductive biases
for the canonical count. The target graph in Figure 2 serves as a vivid example. The numbers in the
green square indicate the canonical count value of each node. On the one hand, note that the adjacent
nodes 3, 5, and 6 have the same count value of 2. Adjacent nodes 0, 1, and 2 also have the same
value, 0. This homophily inductive bias suggests that taking an average of the adjacent node values
can reduce the prediction error of individual nodes. On the other hand, though node 1 and node 5
have similar neighborhood graph structures, node 5 with a larger node index has a higher canonical
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Figure 8: The quantification of homophily and antisymmetry of standard queries on the ENZYMES
target graph. The extent of homophily and the antisymmetry are measured by the homophily ratio
and the index-count correlation, respectively. The color corresponds to the x-coordinate (homophily)
minus the y-coordinate (antisymmetry). Note how different queries emphasize one of the two induc-
tive biases.

count value. It corresponds to the definition of canonical count as discussed in Section 4.1. This
antisymmetry inductive bias suggests that the embedding phase for two structurally similar nodes
with different node indices should also be different.

Quantization. We quantify the homophily and the antisymmetry inductive biases. For homophily,
we treat the canonical count as the node label and use the homophily ratio from Zhu et al. (2021) to
quantify how similar the count is between adjacent nodes. The homophily ratio ranges from 0 to 1.
The higher the homophily ratio is, the more similar the labels will be between adjacent nodes. For
antisymmetry, we use the Pearson correlation coefficient r Benesty et al. (2009) between the node
index and its canonical count as the quantification metric. We quantify the different homophily and
antisymmetry for different queries on the ENZYMES target graph.

Key insight. As shown in Figure 8, the key insight is that homophily and the antisymmetry generally
have negative correlation r = −0.82. So the emphasis on one should suppress the other. Based on
such observation, we design the gossip correction model with learnable gates to imitate the mutually
exclusive relation between the two inductive biases for different queries. As shown in Figure 4(b),
the proposed learnable gate balances the influence of homophily and antisymmetry by controlling
the direction of message passing. The gate value is trained to adapt for different queries to imitate
different extents of homophily and antisymmetry.

D EXPERIMENTAL SETUP

D.1 SYNTHETIC DATASET

The DeSCo can be pre-trained once and be directly applied to any targets. So we generate a synthetic
dataset with 6400 graphs, along with the ground truth count of all twenty-nine standard queries
(queries of sizes 3, 4, 5).

The synthetic dataset generates each graph with a generator from the generator pool. The pool con-
sists of four different graph generators: the Erdős-Rényi (ER) model Erdős et al. (1960), the Watts-
Strogatz (WS) model Watts & Strogatz (1998), the Extended Barabási-Albert (Ext-BA) model Al-
bert & Barabási (2000), and the Power Law (PL) cluster model Holme & Kim (2002). The expected
graph size n of each generator is uniformly chosen from 5 to 50. An additional 2% PL model is
used to generate very large graphs with 50 to 250 nodes.

To generate an n-node graph, for the ER model, the edges are added with Beta probability dis-
tribution p ∼ 0.8Beta(1.3, 1.3n/ log2 n − 1.3). For the WS model, each node connects to
K ∼ nBeta(1.3, 1.3n/ log2 n − 1.3) neighborhoods, with a rewiring probability p ∼ Beta(2, 2).
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For the Ext-BA model, the edges are attached to each node with uniform probability distribution
m ∼ U(1, 2 log2 n). The probability of adding edges and rewiring both conform to the clapped
exponential distribution p ∼ max(0.2,E(20)). For the PL model, the edges are attached to each
node with uniform distribution m ∼ U(1, 2 log2 n). The triangle is added with p ∼ U(0, 0.5).

D.2 QUERY GRAPHS

Figure 9 shows all twenty-nine standard queries discussed in Section 5.1. They form the complete
set of all non-isomorphic, connected, undirected graphs with three to five nodes. Figure 10 shows
all sixteen large query graphs discussed in Section 5.3. They are frequent subgraphs with six to
thirteen nodes in the ENZYMES dataset.

The figures also show the dynamic range (DR) of the ground truth count of these queries on the
target graphs from the ENZYMES dataset. The canonical counts’ dynamic range on the corre-
sponding neighborhoods is also shown. Note how canonical partition reduces the dynamic range of
the regression task for GNNs.

G! DR G" DR G# G! DR G" DR G# G! DR G" DR G#

339 33 1773 288 37 15

61 12 195 48 37 19

282 48 391 71 19 12

778 107 499 121 62 25

244 42 386 86 23 13

67 15 44 13 24 14

67 17 115 28 9 5

16 5 156 51 7 3

203 80 52 16 2 1

1766 301 86 21

Figure 9: The standard query graphs, along with the dynamic range (DR) of the counts of target
graphs Gt and the dynamic range of the canonical counts of neighborhoods Gc. The statistics are
from the ENZYMES dataset.
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G! DR G" DR G# G! DR G" DR G# G! DR G" DR G#

3573 688 1631 453 6 5

615 150 804 318 16 16

5223 1035 2071 732 3 3

1543 448 526 330 9 8

4049 930 41 17

1725 595 928 296

Figure 10: The large query graphs, and the dynamic range (DR) of counts of the whole target graphs
Gt and canonical neighborhoods Gc in ENZYMES.

D.3 HYPER-PARAMETER CONFIGURATIONS

DeSCo configurations. For DeSCo’s canonical partition stage, we set d = 4 for all the tasks
according to Theorem 1. For DeSCo’s neighborhood counting stage, it contains two GNNs to encode
target and query graphs into embedding vectors, and a regression model to predict canonical count
based on the vectors. For the GNN encoders, we use the triangle-based message passing variant
of GraphSAGE as shown in Table 8. The SHMP GNN has 8 layers with a feature size of 64. The
canonical node of the neighborhood is marked with a special node type. The adjacent matrix A is
used to find the triangle and define the heterogeneous edge type with Equation 18.

Etrianle = {(i, j)|(A⊙A2)ij > 0} (18)

For the Multilayer perceptron (MLP) of neighborhood counting, we use two fully-connected linear
layers with 256 hidden feature size and LeakyReLu activation.

For the gossip correction stage, we use a two-layer GNN with 64 hidden feature size and a learnable
gate as described in Equation 7. The learnable gate is a two-layer, 64-hidden-size MLP that takes
the query embedding vector from the neighborhood counting stage and outputs the gate values for
each GNN layer. The neighborhood counting prediction is expanded to 64 dimensions with a Linear
layer and concatenated with the query embedding as the input for the two-layer GNN.

Neural baseline configurations. We follow the configurations of the official implementations of
neural baselines and adapt them to our settings. They both contain two GNN encoders and a regres-
sion model like DeSCo’s neighborhood counting model.

For LRP, we follow the official configurations for the ZINC dataset to use a deep LRP-7-1 graph
embedding layer with 8 layers and hidden dimension 8. The regression model is the same as DeSCo.

For DIAMNet, we follow the official configurations for the MUTAG dataset to use GIN with feature
size 128 as GNN encoders. The number of GNN layers is expanded from 3 to 5. The regression
model is DIAMNet with 3 recurrent steps, 4 external memories, and 4 attention heads.

Training details. We use Cc ← log2(Cc+1) normalization for the ground truth canonical count Cc

to ease the high dynamic range problem. When evaluating the MSE of predictions, Ĉc ← 2Ĉc − 1
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is used to undo the normalization. We use the SmoothL1Loss with β = 1.0 from PyTorch Paszke
et al. (2019) as the loss function to perform the regression task of neighborhood counting and gossip
correction.

L(Ĉc, Cc) =

{
0.5(Ĉc − Cc)

2 |Ĉc − Cc| < 1

|Ĉc − Cc| − 0.5 otherwise
(19)

We use the Adam optimizer for neighborhood counting and gossip correction and set the learning
rate to 0.001. We align the computational resources when training different neural methods. DeSCo
and DIAMNet have similar training efficiency, so DeSCo’s neighborhood counting model and DI-
AMNet are both trained for 300 epochs. After training the neighborhood counting model, DeSCo’s
gossip correction model is trained for 50 epochs with little resource consumption. In contrast, LRP
is much slower. Even given twice training time, it can only be trained for 50 epochs.

Approximate heuristic configurations. For the MOTIVO baseline, we follow the official setting
and use 107 samples for each dataset. If the dataset has many graphs, the samples are evenly dis-
tributed on each target graph.

E RUNTIME COMPARISION

We use Intel Xeon Gold 6226R CPU with 2.90GHz frequency and NVIDIA GeForce RTX 3090
GPU for runtime tests.

Method configurations. For the exact method VF2 Cordella et al. (2004), we use the Python imple-
mentation from the graph processing framework Hagberg et al. (2008) and use Python’s concurrent
standard library to enable multiprocessing on four CPU cores. For the exact method IMSM Sun
& Luo (2020), we use the official c++ implementation with four CPU cores. We use the IMSM-
recommended method configurations: GQL He & Singh (2008) as the filtering method, RI Bonnici
et al. (2013) as the ordering method, and LFTJ Bhattarai et al. (2019); Han et al. (2019) as the
enumeration method. The failing set pruning optimization is also enabled. For the heuristic ap-
proximate method MOTIVO Bressan et al. (2019), we use the official c++ implementation with four
CPU cores. For the neural method DeSCo, we use the Python implementation with one CPU core
and one GPU core.

Experiment setup. All the methods are set to count the induced subgraphs in the ENZYMES
dataset. Note that IMSM can only perform non-induced subgraph counting. So VF2, MOTIVO,
and DeSCo are set to perform induced subgraph counting tasks, while IMSM performs non-induced
tasks for runtime comparison. For query sizes no larger than five nodes, the standard queries from
Section 5.1 are used. For query sizes larger than five, the same thirty queries of each size are selected
for VF2 and DeSCo. We cannot assign specific queries for MOTIVO, so it is set to output the count
of any thirty queries of each size.

Runtime results. Figure 11(a) shows the runtime of each method with four minutes’ time-bound.
The data loading and graph format conversion time is ignored for all methods. For the exact methods,
VF2 and IMSM, the runtime grows exponentially because of the exponentially growing possible
matches of each query size. For the approximate heuristic method MOTIVO, the exponential growth
is mostly because of the build-up phase before sampling. While greatly reducing the sampling space,
MOTIVO’s build-up phase needs to color the nodes of the target graph and count colorful trees for
each node, which has exponential time complexity with regard to the query size. For DeSCo, the
queries and targets are independently embedded, and queries are relatively small compared with
targets. Thus, DeSCo can easily scale for large queries. For example, scaling the query size from 3
to 13 only poses 57% additional overhead on the total runtime. We further extend the time budget for
MOTIVO to 60 minutes and find that DeSCo achieves 15×, 53×, and 120× speedup over MOTIVO
for size 13 to 15 queries, respectively. As Figure 11(b) shows, currently DeSCo’s triangle finding in
neighborhood counting takes the majority of the runtime, which can be easily substituted with other
efficient implementations, e.g., Donato et al. (2018), to further speed up DeSCo.

Asymptotic complexity. For the proposed DeSCo’s three-step pipeline, assuming the average
canonical neighborhood Gn of the target graph Gt has Vn nodes and En edges. The time com-
plexity for canonical partition is the index-restricted breadth-first search starting from all the target
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Figure 11: The runtime comparison of different size queries and the runtime breakdown of DeSCo

vertices as shown in Appendix A.3, which is O(Vt×(V̄n+Ēn)). The time complexity for neighbor-
hood counting consists of triangle counting and heterogeneous message passing on Gq and Gt. The
complexity of triangle counting is O(E3/2) on the target and query graph Itai & Rodeh (1977). The
heterogeneous message passing has the complexity of regular GNNs Maron et al. (2019) on the Vt

neighborhoods and the queries, which is O(Vt × (V̄n + Ēn)) +O(Vq +Eq). For gossip correction,
the time complexity also equals to a regular GNN, which is O(Et + Vt).

So the overall time complexity of DeSCo is O(E
3/2
t + Vt × (V̄n + Ēn)) +O(E

3/2
q + Vq). In real-

world graphs, the common contraction of neighborhoods Weber (2019) makes V̄n and Ēn relatively
small. So the major asymptotic complexity comes from the triangle counting on the target graph,
which only has polynomial time complexity.

In contrast, for the heuristic approximate method MOTIVO, the build-up phase alone has time com-
plexity O(aVq × Et) for some a > 0. So it suffers from exponential runtime growth. For exact
method VF2, the time complexity is O(V 2) to O(V ! × V ) where V = max{Vt, Vq}. In practice,
we generally observe exponential runtime growth. Experiments of Figure 11 confirms the above
analysis.

F COUNT DISTRIBUTION PREDICTION

To the best of our knowledge, DeSCo is the first approximate method that predicts the subgraph
count distribution over the whole target graph. We use the canonical count of each node as the
ground truth for the distribution prediction accuracy analysis. The canonical count represents the
number of patterns in each node’s neighborhood while avoiding missing or double counting as
discussed in Section 4.1. Following the setup in Section 5.1, we use all the size 3−5 standard query
graphs to test the distribution performance of DeSCo on different target graphs. The normalized
MSE is the mean square error of the canonical count prediction of each (query, target graph node)
pair divided by the variance of the (query, target graph node) pair’s true canonical count. The MAE
is the mean absolute error of the canonical count prediction of each (query, target graph node) pair.

Dataset MUTAG COX2 ENZYMES
Query-Size 3 4 5 3 4 5 3 4 5

Norm. MSE 7.51E-2 2.36E-1 1.71E+0 4.94E-4 5.63E-4 1.44E-2 4.74E-5 5.69E-5 5.66E-4
MAE 2.97E-4 1.19E-3 1.90E-2 3.90E-4 5.19E-4 1.71E-2 7.60E-2 1.51E-1 3.15E-1

Table 8: DeSCo’s count distribution prediction error under normalized MSE and MAE. Use the
canonical count of each target graph node as the ground truth.

Experiments show DeSCo achieves a low 0.23 normalized MSE for the count distribution prediction
task. A visualization of DeSCo’s distribution prediction on the CiteSeer dataset is also shown in
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Figure 1. Note how DeSCo accurately predicts the distribution while providing meaningful insight
on the graph.

G ADDITIONAL RESULTS ANALYSIS FOR LARGE QUERIES

To give an even more in-depth understanding of the performance for large queries, we additionally
provide the results with more evaluation metrics.

G.1 Q-ERROR ANALYSIS

Definition. Given the ground truth subgraph count C of query Gq in target Gt, as well as the
estimated count Ĉ. We use the definition of q-error from previous work Zhao et al. (2021).

eq(Gq, Gt) = max

{
C
Ĉ
,
Ĉ
C

}
, eq ∈ [1,+ inf) (20)

The q-error quantifies the factor that the estimation differs from the true count. The more it is close
to 1, the better estimation. In Zhao et al. (2021), there is also an alternative form of q-error used in
figures to show the systematic bias of predictions.

eq(Gq, Gt) =
Ĉ
C
, eq ∈ (0,+ inf) (21)

We follow the previous settings and use Equation 21 in our visualization.

Experimental results. We reassess the performance of DeSCo on large queries from Figure 5, and
show the box plot in Figure 12. The data that C = 0 is ignored for mathematic correctness. The
box of MOTIVO on MUTAG is too close to zero to be shown in the figure. DeSCo’s q-error is the
closest to 1 with minimal spread. It shows how DeSCo excels in systematic error and consistency
compared with the baselines.

MUTAG COX2 ENZYMES
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Figure 12: The q-error box plot of large query-target pairs. The q-error (y-axis) is clipped at 10−2

and 102. For q-error, the closer to 1, the better.

Limitations of q-error. Despite the advantage of demonstrating relative error, the q-error metric
also has obvious limitations, thus not being chosen as the major evaluation metric. In Zhao et al.
(2021), the authors assume C ≥ 1 and Ĉ ≥ 1. However, this assumption may not hold, given that the
query graph may not (or is predicted to) exist in the target graph, especially for larger queries. The
zero or near-zero denominators greatly influence the average q-error. It causes the overestimation of
the subgraph existence problem instead of the subgraph counting problem.

G.2 MSE ANALYSIS

Definition. We follow the same setting in Figure 5 and show the normalized MSE for predicting
the subgraph count of large queries. Note that in a few cases, the tested large queries of a certain
size may not exist in the target graph. For example, the two size-thirteen queries in Figure 10 do not
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exist in the CiteSeer dataset. To prevent divide-by-zero in normalization, the MSE is normalized by
the variance of ground truth counts of all large queries, instead of being normalized for each query
size.

Experimental results. The experimental results are shown in Table 9. DeSCo demonstrates the
lowest MSE on all tested target graphs.

Dataset MUTAG COX2 ENZYMES

MOTIVO 1.2E+01 3.2E+00 1.4E+00
LRP 7.6E-01 1.1E+00 6.7E-01
DIAMNet 2.3E+00 2.4E-01 8.9E+01

DeSCo 1.5E-01 1.2E-01 4.0E-01

Table 9: Normalized MSE of approximate heuristic and neural methods on subgraph counting of
sixteen large queries.
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