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Abstract
Sample diversity depends on the task; within001
mathematics, precision and determinism are002
paramount, while storytelling thrives on cre-003
ativity and surprise. This paper presents a sim-004
ple self-regulating approach where we adjust005
sample diversity inference parameters dynami-006
cally based on the input prompt—in contrast to007
existing methods that require expensive and in-008
flexible setups, or maintain static values during009
inference. Capturing a broad spectrum of sam-010
ple diversities can be formulated as a straight-011
forward self-supervised inference task, which012
we find significantly improves the quality of re-013
sponses generically without model retraining or014
fine-tuning. In particular, our method demon-015
strates significant improvement in all supercat-016
egories of the MMLU multitask benchmark017
(GPT-3.5: +4.4%, GPT-4: +1.5%), which cap-018
tures a large variety of difficult tasks covering019
STEM, the humanities and social sciences.020

1 Introduction021

Large language models (LLMs) and the broader022

class of foundation models, such as GPT-3 (Brown023

et al., 2020) and GPT-4 (OpenAI, 2023), learn a024

distribution over large datasets that can be sam-025

pled with guidance prompts. These models have026

shown remarkable capabilities across tasks with-027

out specialised training (Bubeck et al., 2023),028

where innovative prompting strategies can even029

outperform special-purpose tuning, improve rea-030

soning (Li et al., 2023), and potentially remove the031

need for expert-curated content (Nori et al., 2023).032

However, these models employ stochastic sam-033

pling from the probabilities predicted by the034

model to generate responses (Holtzman et al.,035

2020), which is arguably both their weakness and036

strength—to quote Karpathy “An LLM is 100%037

dreaming and has the hallucination problem. A038

search engine is 0% dreaming and has the creativ-039

ity problem.” This presents an inevitable trade-040

off (Zhang et al., 2021). In this paper, we continue041

the trend of innovative prompting strategies (Nori 042

et al., 2023), and ask whether models can self- 043

regulate their sample diversity given this trade-off, 044

and if so, how effective is this approach? 045

Notably, the “unreliable tail” is to blame for de- 046

generate responses, leading to sampling approaches 047

that control the shape of the distribution, suppress- 048

ing this unreliable distribution tail (Holtzman et al., 049

2020). Most popularly, “top-p” (nucleus sampling), 050

“top-k” (Fan et al., 2018) and “temperature τ” pa- 051

rameters select likely points from the distribution, 052

where τ skews the softmax weights. Increasing 053

τ > 1 gives more uniform (random) probabilities 054

and τ < 1 sharpens the distribution, increasing 055

the likelihood of predictable (non-diverse) samples. 056

The “frequency” and “presence” parameters also 057

penalise repeated tokens or promote tokens that 058

have not yet occurred in the text accordingly, im- 059

plicitly altering the diversity of completions. 060

Approaches to managing sample diversity in lan- 061

guage models, such as large-scale transformers, 062

often rely on fixing these parameter values (Brown 063

et al., 2020) or employ learned context (Keskar 064

et al., 2019) and fine-tuning (Ziegler et al., 2019). 065

However, the current adaptive methods are often 066

expensive and inflexible, requiring bespoke solu- 067

tions for specific contexts or auxiliary training that 068

is not suited for foundation models. 069

In contrast, we introduce a simple prompting 070

strategy that dynamically adjusts diversity parame- 071

ters based on the input task context, without requir- 072

ing retraining, auxiliary networks or fine-tuning. 073

The primary contributions of this approach there- 074

fore lie in its simplicity, adaptivity, and ease-of- 075

use—where it is directly applicable to foundation 076

models and complements other strategies. 077

In particular, we find that our method demon- 078

strates marked improvement generally across the 079

tasks of the MMLU benchmark (Hendrycks et al., 080

2021) evaluated for GPT-3.5 (+4.4%) and GPT-4 081

(+1.5%) models. 082
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The   cat   sat   on   the 

Estimate       params  for  the  prompt 

''The   cat   sat   on   the....

mat,   and   purred   loudly. 

extract params

assess diversity for task

Figure 1: For a given task x = “The cat sat on the”, we guide the LLM fθ to generate a string of diversity parameters
s = “τ = 0.7, ...”, which are then injected back into the subsequent sampling of fθ before completing the task x.

2 Related work083

Sample diversity and prompting strategies are ac-084

tive research fields (Liu et al., 2023). Here, we085

categorise related literature according to the way086

the model distribution is sampled, including static,087

learned, and task-dependent approaches, and also088

we review the wider societal impact of sample di-089

versity and amplification effect of model biases.090

Static sampling A significant portion of prior091

work focuses on static sampling methods (Holtz-092

man et al., 2020), predominantly with fixed diver-093

sity parameter settings such as for temperature and094

top-k sampling (Fan et al., 2018) and top-p nucleus095

sampling (Holtzman et al., 2020). While clearly096

effective, these methods lack the flexibility to adapt097

to varying task requirements; it is difficult to find098

the balance between excessively repetitive answers099

(such as repeated tokens in mathematics) or exces-100

sive randomness in the model outputs.101

Learned heuristic and conditioned models102

More recent studies have explored learned heuristic103

approaches for sampling diversity, such as by ad-104

justing sampling according to the model (Dathathri105

et al., 2020). Similarly, generation can be learned106

in a conditioned way (Ficler and Goldberg, 2017)107

that controls style, content and task-specific be-108

haviour (Keskar et al., 2019); however, these meth-109

ods can be expensive with more limited adaptivity110

and applicability with large foundation models.111

Context-dependent sampling Researchers have112

recognized the need for context-specific adjust-113

ments to the model sampling parameters; prompt114

engineers have developed cheat sheets (OpenAI115

Developer Forum contributors, 2023) and API sam-116

pling guidance (ChatGPT OpenAI API Plugin con-117

tributors, 2023) over a variety of tasks. As ex-118

pected, the creative writing tasks have been empiri-119

cally observed to benefit from higher sampling tem-120

peratures than coding tasks. Discovering the best 121

prompts for tasks is a challenging problem; (Yang 122

et al., 2023) optimized to discover the compelling 123

instruction of “take a deep breath and work on this 124

problem step-by-step” that scores highly. Diversity 125

can be controlled in more specific contexts with 126

bespoke solutions (Zhao et al., 2023; Gupta et al., 127

2022). Within the task of source code generation, 128

(Zhu et al., 2023) employs an adaptive temperature 129

sampling heuristic based on the location of tokens 130

within a code block. While effective, these strate- 131

gies lack the adaptability that our work introduces. 132

Diversity within other modelling approaches 133

and data modalities Other modelling ap- 134

proaches besides autoregressive next token predic- 135

tion involve trade-offs in terms of mode coverage, 136

modelling quality and sampling costs (Xiao et al., 137

2022; Bond-Taylor et al., 2021). For example, sam- 138

pling low temperatures from models trained on the 139

FFHQ image dataset yields batches of 20-30 year 140

old males with plain white backgrounds and short 141

brown hair, as shown in Figure 6 in (Bond-Taylor 142

et al., 2022). Prompt guidance enables greater mod- 143

elling fidelity, where model hyperparameters sig- 144

nificantly impact creative outputs (Rombach et al., 145

2022). 146

Societal impact and bias amplification The 147

widespread use of generative AI, such as in deci- 148

sion making, have a significant impact on society, 149

reinforcing stereotypes and perpetuating inequal- 150

ities (Noble, 2018), particularly in critical areas 151

such as employment, law enforcement, credit scor- 152

ing, and healthcare (Hollis, 2017; Angwin et al., 153

2022; Buolamwini and Gebru, 2018; Eubanks, 154

2018). Often serving as echo chambers to con- 155

firmation bias (Rastogi et al., 2022), discrimination 156

can be amplified and further compounded with hu- 157

man oversight (Lyell and Coiera, 2017). 158

Getting diversity right matters not just for better 159
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task performance, but because of the impact these160

outputs can have on society by the amplification161

of biases present in the original data (Lloyd, 2018).162

When discrimination is baked into training sets,163

we must take steps not only to not amplify this164

discrimination, but to actively mitigate against it165

(Hall et al., 2022; Panch et al., 2019) motivating166

adaptable strategies that can respond quickly to167

newly identified issues.168

Reflection In summary, there is a trend towards169

innovative prompting strategies (Liu et al., 2023)170

that offer advantages in terms of flexibility, soci-171

etal adaptivity and low training costs, potentially172

outperforming special-purpose tuning and expert-173

curated equivalents (Nori et al., 2023), indicating174

the opportunity for an adaptive diversity strategy175

based on prompted guidance.176

3 Methodology177

Given a LLM fθ with alphabet tokens Σ =178

{possible characters} trained on strings Σk =179

{s1, s2, . . . , sk : si ∈ Σ}, we wish to self-regulate180

the sample diversity of fθ based on the context181

of the prompt. We hereon use “sample diversity”182

as an umbrella term covering the likelihood and183

randomness of the model outputs, as well as other184

factors such as their repetition in the text.185

The sample diversity is adjustable at inference186

via a set parameters w = [w1, w2, . . . , wn] (in187

our experiments temperature τ , top-p, ‘frequency’188

penalty, and ‘presence’ penalty are used). However,189

these are best tuned according to the task, which190

is an ill-defined problem subjective to the current191

world state, i.e., societal biases, which may have192

changed since the LLM fθ was trained. Therefore193

we wish to specify w at inference.194

To achieve this, we introduce a guidance prompt195

g = g1, g2, . . . , gk (such as “based on the follow-196

ing prompt, choose the temperature. . . ”, which is197

concatenated with the task x = x1, x2, . . . , xm198

(such as “solve this equation. . . ”, or “write a199

poem. . . ”), thus guiding the specification of w200

based on x.201

More formally, we first generate a string s of202

parameter values in consideration of the task:203

s =

end⊕
i=1

(si ∼ fθ(si|g,x, s1:i−1;w = winit)) ,

(1)204

where ⊕ denotes concatenating the guidance205

prompt outputs to form the current string of pa-206

rameter estimates s = s1, s2, . . . , sn, such as207

“τ=0.2, top-p=1, freq=0, pres=0” until an end-of- 208

text token is reached or the maximum length is 209

reached. We then extract the updated parameter 210

values w′ ∈ Rn from this output string s by the 211

function Ψ : Σk → Rn where 212

w′ = Ψ(s). (2) 213

In other words, the model output is converted to a 214

real vector w via Ψ. Then, we continue the prompt 215

(and solve the task) using the updated diversity 216

parameters w′, giving 217

p(x) =
n∏

i=1

fθ(xi|x1, . . . , xi−1;w = w′). (3) 218

Notably, the subsequent generated text is not 219

influenced by the guidance prompt, although the 220

diversity parameters remain constant until comple- 221

tion of the model sampling. 222

The proposed approach is formulated in the 223

pseudo code Algorithm 1: 224

Algorithm 1: Self-Supervised Sample
Diversity Inference
Input: Model fθ, task x, initial diversity

parameters winit, guidance prompt g
Output: Updated diversity parameters w′

▷ Initialize string s for the new parameters
s← “”
while not end-of-text do

▷ Sample next parameter token
si ∼ fθ(si|g,x, s1:i−1;w = winit)
▷ Concatenate sampled parameter to s
s← s⊕ si
i← i+ 1

▷ Extract updated diversity parameters from
the parameter string s

w′ ← Ψ(s)
return w′

3.1 Continual diversity updates 225

While the proposed method is straightforward to 226

implement, and samples x are not influenced by g, 227

it is unable to change diversity “on the fly”. For 228

example, the task prompt x may have mixed diver- 229

sity requirements, such as “solve y = 100 × 100, 230

then write a poem about it”. In such a case, we may 231

desire low diversity for the first part of the answer 232

and high diversity with obscure words for the latter. 233

To handle this scenario, we can instead prompt 234

g the LLM to provide syntax during generation, 235
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Superategory Humanity STEM Social Sciences Other Total
(# Datasets) (13) (19) (12) (13) (57)

G
PT

-3
.5 Vanilla (bl) 0.628±0.146 0.455±0.155 0.685±0.132 0.620±0.143 0.581±0.172

+ Our Method 0.651±0.157 0.512±0.147 0.706±0.139 0.660±0.135 0.618±0.164
CoT + 5shot (bl) 0.658±0.152 0.579±0.143 0.739±0.089 0.653±0.129 0.648±0.145
+ Our Method 0.692±0.166 0.638±0.140 0.749±0.084 0.715±0.128 0.692±0.141

G
PT

-4 CoT + 5shot (bl) 0.823±0.094 0.809±0.070 0.878±0.099 0.826±0.140 0.830±0.104
+ Our Method 0.839±0.090 0.822±0.072 0.904±0.092 0.831±0.140 0.845±0.104

Table 1: Average accuracy and standard deviations for GPT-3.5 and GPT-4 models across MMLU task categories.
Bold results highlight the improvements and ‘(bl)’ denotes the baseline model.

which Ψ continually monitors, that triggers a di-236

versity parameter update. For example, g =237

“specify (#tau=0.5,#top-p=1,...) during238

generation to update the parameters”.239

When such syntax is detected during model sam-240

pling, subsequent generation is halted and the pa-241

rameters are updated dynamically and immediately242

before resuming generation.243

However, this variation means that the subse-244

quent generated text is influenced by g, which may245

be undesirable:246

p(x) =

n∏
i=1

fθ(xi|g, x1, . . . , xi−1;w
t). (4)247

In practice, we find the approach in equations 1–3248

sufficient for general use with current models.249

4 Experiments250

Our experiments were conducted on the Mas-251

sive Multitask Language Understanding (MMLU)252

dataset, a benchmark comprising 57 tasks across di-253

verse domains and grouped into 4 supercategories:254

Humanity, STEM, Social Sciences, and Other. The255

multitask tests encompass a total of 14,079 multi-256

ple choice questions, with each subject containing257

at least 100 test examples (Hendrycks et al., 2021).258

This diversity in content and structure provides a259

comprehensive platform for assessing the effective-260

ness of our proposed method over many areas.261

4.1 Experimental setup262

The baseline for our comparison included the stan-263

dard GPT-3.5 and GPT-4 models, in their vanilla264

forms and supplemented with CoT reasoning and265

few-shot learning (5-shot) techniques. The initial266

parameters for diversity estimation task are the de-267

faults in the OpenAI API, which are winit = [τ =268

1.0, top-p = 1.0, freq = 0.0, pres = 0.0] for all 269

experiments. We used default values of max_token 270

in the OpenAI API, which are 16,385 for GPT-3.5- 271

Turbo and 128,000 for GPT-4-Turbo. 272

4.2 Evaluation 273

The method demonstrates consistent improvement 274

in average accuracy across all MMLU task super- 275

categories, shown in Table 1. For GPT-3.5, the 276

average accuracy increases from 0.581 to 0.618, 277

an improvement of 3.7%. With the integration of 278

Chain-of-Thought (CoT) and 5-shot learning, the 279

accuracy improved from 0.648 to 0.692, yielding 280

an increase of 4.4%. In the case of the GPT-4 281

model, our method increases accuracy from 0.830 282

to 0.845, an improvement of 1.5%. These findings 283

highlight the effectiveness of our approach in en- 284

hancing performance across a varied set of tasks, 285

while complementing existing strategies. 286

5 Conclusion and future work 287

In conclusion, we found that adjusting sampling 288

parameters contextually based on the prompt sig- 289

nificantly improves various tasks in different fields. 290

This follows the trend of advances obtained solely 291

from the remarkable power of prompting in foun- 292

dation models, and indicates another piece of early 293

evidence that sufficiently large models can demon- 294

strate emerging capabilities of self-evaluation and 295

self-regulation, possibly indicating to a future tra- 296

jectory of prompt-driven alignment and improve- 297

ment. It would be worthwhile exploring this space 298

further in the future, examining how prompting 299

strategies can be used to drive performance, align- 300

ment and bias mitigation—not only during model 301

inference, but also within model design and train- 302

ing phases within a continual learning cycle. 303
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6 Limitations304

The study scope was limited by the compute costs305

required to investigate a broader range of guidance306

prompts. Consequently, our exploration into the307

variety and optimization of prompts was not com-308

prehensive, and we would expect to see further309

multitask improvements with more investigation in310

this area. In the future, it would be valuable to as-311

sess the optimized discovery of guidance prompts312

to self-assess diversity, using approaches such as313

in (Yang et al., 2023).314
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A Appendix 483

In our experiments, we used the following human- 484

generated guidance prompt, which we designed 485

empirically: 486

g = “I’m going to ask a question. Based on the 487

question, please choose suitable OpenAI API sam- 488

pling parameters "temperature=X" ([0,2] default 1), 489

"top_p=X" ([0,1] default 0), "presence_penalty=X" 490

([-2.0, 2.0] default 0) and "frequency_penalty=X" 491

([-2.0, 2.0] default 0). For example maths should 492

have more correct non-diverse answers, whereas 493

prompts about fiction should be more creative and 494

diverse. Just output the 4 parameters (in float val- 495

ues). Here is the question:\n\n "{question}" \n”. 496

This research was implemented using PyTorch, 497

which uses a permissive BSD-style licence, and the 498

MMLU dataset is available under the MIT licence. 499
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Figure 2: Comparison of our method across MMLU tasks for base models (left) and with CoT and Fewshot5
additions (right), showing that the method compliments existing strategies. The figure is best viewed zoomed in.
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Figure 3: Comparison of our method across MMLU
tasks using GPT-4 with CoT and Fewshot5 additions,
showing that the method compliments existing strate-
gies. The figure is best viewed zoomed in.

8


	Introduction
	Related work
	Methodology
	Continual diversity updates

	Experiments
	Experimental setup
	Evaluation

	Conclusion and future work
	Limitations
	Appendix

