
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

ROBUST MULTI-BIT TEXT WATERMARK WITH LLM-
BASED PARAPHRASERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an imperceptible multi-bit text watermark embedded by paraphrasing
with LLMs. We fine-tune a pair of LLM paraphrasers that are designed to behave
differently so that their paraphrasing difference reflected in the text semantics can
be identified by a trained decoder. To embed our multi-bit watermark, we use
two paraphrasers alternatively to encode the pre-defined binary code at the sen-
tence level. Then we use a text classifier as the decoder to decode each bit of
the watermark. Through extensive experiments, we show that our watermarks can
achieve over 99.99% detection AUC with small (1.1B) text paraphrasers while
keeping the semantic information of the original sentence. More importantly, our
pipeline is robust under word substitution and sentence paraphrasing perturbations
and generalizes well to out-of-distributional data. We also show the stealthiness
of our watermark with LLM-based evaluation. We will open-source our code and
watermark demo once the paper is accepted.

1 INTRODUCTION

Text watermark aims to encode some imperceptible signal into a piece of text so that people are able
to decode the signal from the text (Liu et al., 2024). It can be useful in various applications such as
copyright protection and hidden message communication. With the development of Large Language
Models (LLMs), there is also a growing need to track misinformation spread by LLMs using text
watermark injected to model outputs (Kirchenbauer et al., 2023).

We study the methodology of injecting a multi-bit watermark message into a piece of text by para-
phrasing. The watermarked text will keep the semantic meaning of the original text after paraphras-
ing. Another paired decoder will be used to decode the message from the watermarked text. Un-
like lexical-based watermarks which inject watermarks by synonym substitutions, the paraphrasing-
based method has a larger action space for watermark injection and also is more robust under per-
turbations. However, there are also challenges in designing paraphrasing-based watermarks, as it is
unclear on how to properly inject imperceptible but detectable watermark signal while keeping the
text quality and original semantic meaning.

In this work, we propose a paraphrasing-based watermark by simultaneously fine-tuning an LLM-
based paraphraser as the encoder and train a LM-based text classifier as the decoder. The pipeline
is shown in Figure 1. In the encoding stage, we will paraphrase the input text conditioned on a
user-chosen key to generate the watermarked text. In the decoding stage, we will extract the code
from the input text with the decoder and compare with the previously chosen key to see if it is
watermarked by the user.

The key to produce a high-quality text watermark in our method is to train a good encoder-decoder
pair. For the decoder, we can train it with standard classification loss so that it can better classify
between “bit-0 texts” and “bit-1 texts”. For the encoder, we would like to fine-tune it so that its
generated text can be better classified by the decoder. Inspired by (Xu et al., 2024), we show that
we can use the decoder as a reward model to evaluate how well the paraphrased text generated by
the encoder can be correctly classified. Thus, we can use PPO-based RL techniques to finetune the
encoder so that the injected watermark can be better decoded. We adopt a co-training framework so
that the encoder and decoder are alternatively updated during the training process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

We propose a pipeline to inject multi-bit text
watermark. We encode the watermark by
paraphrasing a piece of text using special
paraphrasers. Then the watermark can be
detected by our trained decoder.

We propose a method for multi-bit text
watermark injection. The watermark is
encoded into a piece of text with special
paraphrasers. We then detect the
watermark using our trained decoder.

We propose a method for multi-bit text
watermark injection. The watermark is
encoded into a piece of text with special
paraphrasers. We then detect the
watermark using our trained decoder.

010

Watermark Encoding

Watermark Decoding

Encoder
(Paraphraser)

Original Text Watermarked Text

User-chosen Key

Test Text
Decoder

(Classifier)

Is Watermarked

User-chosen KeyDecoded key

0 1 0

0 1 0

Figure 1: The overview of our watermark pipeline. During encoding, we use an encoder to para-
pharse the input text given a user-chosen key. During decoding, we extract the bits from the text
using the decoder.

Through experiments, we show that our experiments can achieve a very high watermark detection
performance while maintaining the paraphrasing fidelity. We achieve over 95% bit accuracy and
over 0.99 detection AUC, both outperforming existing methods significantly. In addition, we can
apply a simple repetition-based strategy and improve the detection AUC to over 0.9999. In addi-
tion, our method also shows a good robustness under word substitution and sentence paraphrasing
perturbations. We also evaluate our methods over out-of-distributional (OOD) data and observe
that our model can achieve over 0.99 AUC for most of the OOD tasks. All these results show the
effectiveness and robustness of our watermark.

The rest of the paper is organized as follows. We will first introduce the preliminary knowledge
of the work in Section 2. Then we introduce our paraphrasing-based watermark methodology in
Section 3. We will show the experiment results in Section 4. Finally, we discuss the related work in
Section 5 and conclude the work in Section 6.

2 PRELIMINARY

2.1 GOAL OF MULTI-BIT TEXT WATERMARK

The goal of the work is to inject a multi-bit watermark message into a piece of text by paraphras-
ing. Formally speaking, in the watermark injection stage, we are given an original text xo and a
watermark message M ∈ {0, 1}∞. We will inject watermark by generating a new watermarked
text with a encoder xw = E(xo,M). To extract the watermark, we will use a watermark decoder
M ′ = D(xw) to decode the injected watermark. We hope that the decoded bits should match the
prefix of the designed watermark message, i.e., M ′ = M [: len(M ′)]. Note that this is a vary-length
watermark, where the length of watermark message is dependent on the length of text - the longer
the text is, the more information we can encode in the watermarked text. This is contrary to the
fix-length text watermark (e.g. (Zhang et al., 2024b)), where the watermark code is a fixed length
for any given input text. The length of M ′ depend on different watermark designs, and we will
introduce them in Section 3.1.

We have the following requirements on the paraphrased text:

• Fidelity: The watermarked text should not change the meaning of the original text. The
similarity sim(xo, xw) should be high.

• Accuracy: The watermark decoder should accurately decode the watermark message. The
error rate |M ′ −M [: len(M ′)]|0 should be low.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

• Robustness: The watermark message should still exist after the watermarked text undergoes
some perturbation. Let M ′

pert = D(pert(xw)) denote decoded message from perturbed
watermarked text. We hope that the error rate after perturbation |M ′

pert−M [: len(M ′
pert)]|0

should be low.
• Stealthiness: The watermark should not be easily detected by human eyes. We evaluate

it with the criteria that human cannot easily detect the watermarks in the text. Formally
speaking, let M ′

h = Dhuman(x
w) be the human guess on the watermark code. We hope

that |M ′
h −M [: len(M ′

h)]|0 should be high, i.e. human guess on the watermark code has a
high error rate.

2.2 BACKGROUND: PPO

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a standard way to optimize a lan-
guage model towards a high reward calculated by some pre-defined reward functions r(x) ∈ R,
where x is the input text (i.e. a sequence of tokens). Let π(xt|x<t) denote the probability of gen-
erating token xt given the context, and π(·|x<t) denote the overall probability vector. We use πθ

to denote the model to train and πref to denote a reference model. People will first estimate an
“advantage” at each step At(x) given the final reward r(x), which approximates how each token
contributes to the final reward. There are different choices of how to estimate the advantage. We use
the Generalized Advantage Estimation (GAE) (Jaques et al., 2019; Zheng et al., 2023) with critic
models, which we omit the details here. Having the advantage At(x) at each step, the PPO algorithm
will optimize the input x by minimizing the following loss:

ℓPPO(θ;x) =
∑
t

(
− Et

[πθ(xt|x<t)

πref (xt|x<t)
At(x)

]
+ λkKL(πθ(·|x<t), πref (·|x<t))

)
where the first term is to maximize the expected advantage on each token, and the second term is to
regularize the model to not drastically change from the reference model.

3 METHODOLOGY

3.1 OVERVIEW

We illustrate the high-level pipeline of our watermark in Figure 1. Our core idea is to inject the
watermark into a piece of text by paraphrasing the text to include the imperceptible watermark
signal, which can be later decoded by a text classifier. To encode a watermark message into a
piece of text, we will apply a LLM-based paraphraser conditioned on one watermark bit (0 or 1).
The watermark bit is initialized as the first bit of the watermark message, and updated to later
bits during the token-by-token generation process. Different segments in the generated text will
correspond to different bits in the message code. To decode the watermark message from a piece
of watermarked text, we will divide the text into multiple segments, and then apply the LM-based
classifier to determine the watermark bit for each segment. The concatenated message is the decoded
watermark message.

Text Segmentor Note that both processes require a mechanism to divide a text into segments,
so that we can assign one bit to each segment of the text to inject multi-bit watermark code. We
use a “text segmentor” S to do the segmentation, which will operate in two different modes dur-
ing encoding and decoding. During encoding, it will take the current generated text and output a
boolean value S(x|mode=E) ∈ {0, 1} to determine whether the next token will belong to a new seg-
ment. During decoding, it will take a piece of text x as input and segment it into a list of segments
S(x|mode=D) = [x̃1, x̃2, . . .]. In this work, we choose to do the segmentation on the sentence-level,
i.e. every sentence in the text is a segment.We view it as a simple yet robust choice, as word-level
injection/deletion will not change the segmentation, and paraphrasing will also keep the sentence
order in most cases.

3.2 ENCODER: LLM-BASED PARAPHRASER

The encoder E aims to paraphrase the input text based on a given watermark code and get
xw = E(xo,M) based on LLMs. Our design of the encoder is to have two LLM-based para-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Algorithm 1 Watermark Encoding Algorithm xw = E(xo,M ;S, θ0, θ1).
Require: Input text xo; Watermark code M ; Text segmentor S; Parameters for two paraphrasers θ0

and θ1.
Ensure: Watermarked text xw

1: xw ← []
2: i← 0 /* index of current watermark bit */
3: while xw[−1] ̸= ⟨EOS⟩ do
4: bit←M [i]
5: xw.append(f(xo, xw; θbit))
6: /* Switch to the next bit if the current segmentation ends.

*/
7: if S(xw;mode=E) = 1 then
8: i← i+ 1
9: end if

10: end while
11: return xw

Algorithm 2 Watermark Decoding Algorithm M ′ = D(xw;S, θd).
Require: Input text xw; Text segmentor S; Parameters for the text classifier θd.
Ensure: Decoded watermark M ′

1: M ′ ← []
2: for x̃i ∈ S(xw;mode=D) do
3: M ′.append(g(x̃i; θd))
4: end for
5: return M ′

phrasers (θ0, θ1) and use them alternatively in the token-by-token generation process, which is
based on the current watermark code determined by the sentence segmentor. Formally speaking,
let xw

t = f(xo, xw
<t; θi) denote the process of generating the next token when paraphrasing the input

xo parametrized by θi. The encoding algorithm is shown in Alg. 1. We track the current watermark
bit, and the next token is generated with the corresponding paraphraser θbit. After each generation
step, we check whether the next token will be in a new segment by calculating S(xw;mode=E). If
the new segment starts, we will update bit to be the next bit in the watermark message.

3.3 DECODER: LLM-BASED TEXT CLASSIFIER

The decoder D will decode the watermark code from a piece of text and get M ′ = D(xw) ∈
{0, 1}∗. We use g(x; θd) ∈ {0, 1} to denote a binary classifier on a text with parameters θd, and use
gp(x; θd) ∈ (0, 1) to denote the predicted probability of class-1. The decoding algorithm is shown
in Alg. 2. We will segment the input text into multiple segments S(x;mode=D), then apply the
classifier to each segment to calculate the decoded watermark.

3.4 CO-TRAINING FRAMEWORK

The training framework is inspired by (Xu et al., 2024), which shows that the text classifier can be
viewed as a “reward model” to finetune LLMs with PPO, and that the text classifier and the LLM can
be trained alternatively. In our work, we will alternate between two goals: optimizing the decoder
(θd) and optimizing the paraphrasers (θ0 and θ1). The goal of the decoder is to accurately classify
each bit of the original watermark code M . We use the cross entropy loss to optimize the decoder:

ℓD(θd;x
w,M) =

|D(xw)|∑
i=1

(
M [i] · gs(x̃w

i ; θd) + (1−M [i]) · (1− gs(x̃
w
i ; θd))

)

The goal of the encoder is to generate inputs that can be better recognized by the decoder, while
keeping its normal utility (i.e. a good paraphrasing performance). To optimize the encoder, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Algorithm 3 Training Algorithm of the Encoder and the Decoder.
Require: Dataset D; Initialized parameters θ0, θ1, θd; Text Segmentor S

1:
Ensure: Trained parameters θ0, θ1, θd

2:
3: for all xo ∈ D do
4: M ∼ {0, 1}∞
5: xw ← E(xo,M ;S, θ0, θ1)
6: Calculate the advantage function At(xw, xo,M) with the reward function in Equation 2.
7: Update θd with decoder loss ℓD(θd;x

w,M) in Equation 1.
8: Update θ0, θ1 with the encoder loss ℓE(θ0, θ1;At) in Equation 3.
9: end for

10: return M ′

utilize the idea of PPO that a LLM can be fine-tuned with RL-based techniques with respect to a re-
ward model. Here, the decoder is used to calculate the “reward” of how the output of encoder can be
successfully decoded as the original watermark code. Specifically, given original text xo, watermark
code M and the watermarked text xw = E(xo,M), the watermark reward rw is calculated by:

rw(x
w,M) =

len(D(xw))∑
i=1

1{D(xw)[i] = M [i]} (1)

In addition, we will also calculate a similarity reward rs(x
w, xo) with a text similarity model. The

overall reward is a weighted sum of the two rewards:
r(xw, xo,M) = λw · rw(xw,M) + λs · rs(xw, xo) (2)

Having the reward, we will use the PPO algorithm to update the parameters (θ0, θ1). One change in
our PPO loss is that our xw is generated by two models θ0 and θ1, so each model only needs to update
on the inputs that are generated by each model. The formal PPO loss for encoder, assuming we have
calculated the advantage At(xw, xo,M) (which we will abbreviate as At without ambiguity), is as
follows:

ℓE(θ0, θ1) =
∑
t

1{xt ∼ πθ0(·|x<t)} ·
(
− Et

[πθ0(xt|x<t)

πref (xt|x<t)
At

]
+ λkKL(πθ0(·|x<t), πref (·|x<t))

)
+
∑
t

1{xt ∼ πθ1(·|x<t)} ·
(
− Et

[πθ1(xt|x<t)

πref (xt|x<t)
At

]
+ λkKL(πθ1(·|x<t), πref (·|x<t))

)
(3)

where the information of whether xt is generated by θ0 or θ1 is recorded during the generation stage.

The algorithm is shown in Algorithm 3. We will have a dataset consisting of original texts xo. In
each training step, we randomly sample a watermark key M . Then we calculate the watermarked
text xw with the current encoder (θ0, θ1) and the advantage function with the current decoder θd.
Finally, we update the encoder and decoder with the respective losses.

Initialization In practice, we observe that the training performance heavily depends on the model
initialization. This is expected, as the encoder and decoder rely on each other to do the update
and therefore requires a good initialization - the update of (θ0, θ1) needs the reward provided by
θd, and the update of θd needs the samples generated by (θ0, θ1). In our implementation, we will
first initialize (θ0, θ1) with supervised finetuning (SFT) loss on a paraphrasing dataset DSFT =
{(xSFT

o , xSFT
para)}. We will simultaneously finetune the two models θ0 and θ1 on the paraphrasing

dataset and hope that they both have a small loss, but they also have a difference in their behaviour
(measured by JS divergence), with the loss ℓinit(θ0, θ1;x

SFT
o , xSFT

para) (denoted as ℓinit(θ0, θ1) for
simplicity) as follows:
ℓinit(θ0, θ1;) = ℓSFT (θ0;x

SFT
o , xSFT

para) + ℓSFT (θ1;x
SFT
o , xSFT

para)− λJS · JS(πθ0(x
SFT
para |xSFT

o), πθ1(x
SFT
para |xSFT

o))

(4)

After the paraphrasers are finetuned, we will generate watermarked texts xw with randomly sampled
watermark code M , and initialize the decoder by optimizing ℓD(θd;x

w,M) in Equation 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 1: The performance of our watermark compared with baseline methods. The RemarkLLM
method uses the T5 Raffel et al. (2020) model following their original settings. Other methods use
TinyLlama-1.1B Zhang et al. (2024a) as the paraphraser. The bit-wise accuracy is marked as “-” if
the method does not support multi-bit watermark code.

Method Bit-wise Accuracy Text-wise Accuracy Fidelity

Bit Acc Bit Num AUC TPR@FPR=1% TPR@FPR=0.01% Similarity

RemarkLLM (4bit) 0.7663 4.0 0.7861 0.0% 0.0% 0.8096
RemarkLLM (8bit) 0.6953 8.0 0.8023 3.7% 0.0% 0.7793

KGW (zero-bit) - - 0.8652 25.9% 18.1% 0.7745
KGW (multi-bit) 0.6381 4.46 0.8327 22.9% 6.3% 0.8123
KTH (zero-bit) - - 0.8919 61.4% 46.6% 0.8200
KTH (multi-bit) 0.6129 4.26 0.6775 10.9% 2.3% 0.8176

Waterfall(κ = 0.5) - - 0.7787 14.0% 3.8% 0.8499
Waterfall(κ = 1) - - 0.9392 62.4% 35.5% 0.8423

Ours 0.9563 5.57 0.9981 98.0% 78.0% 0.8739

4 EXPERIMENTS

4.1 SETTING

Model and Training Settings We use a relatively small TinyLlama-1.1b model architec-
ture (Zhang et al., 2024a) for θ0, θ1 and θd, as we observe that small models can already achieve a
good performance in paraphrasing and watermarking. We show the experiments with larger Llama-
2-7b models in Appendix D. The detailed prompt used by the pararphrasers are shown in Fig-
ure 3 in Appendix A. The encoder and decoder are trained and evaluated on the C4 RealNewsLike
dataset (Raffel et al., 2020), processed using standard settings in (Kirchenbauer et al., 2023; Xu et al.,
2024; Lau et al., 2024). Without specification, we will use texts with 128 tokens for training and
evaluation. We fine-tune the model for 10,000 steps with batch size of 4. We use λw = 0.1, λs = 1.0
and λk = 0.02 as the coefficients. In the initialization stage, we will generate the paraphrased data
xSFT
para with Pegasus paraphraser (Zhang et al., 2020), and use λJS = 1.0 for the intialization loss.

Metric We evaluate three types of metrics of a text watermark. The first type is the bit-wise
accuracy, which evaluates how good the multi-bit watermark code is extracted. This includes the
bit-wise accuracy (Bit Acc) of the decoded watermark and the number of total bits injected in the
text (Bit Num). The second type is the text-wise accuracy, which evaluates how well we can tell
the watermarked text apart from other non-watermarked text. We will evaluate the decoder on both
watermarked and non-watermarked texts, and calculate the area under ROC curve (AUC) and true
positive rate under 1%, 0.01% false positve (TPR@FPR=1%, TPR@FPR=0.01%). For the fidelity,
we calculate the similarity with the all-mpnet-base-v21 model following the setting in (Lau
et al., 2024).

Baselines We evaluate various baseline methods with different design ideas:

• RemarkLLM (Zhang et al., 2024b). The idea is to use a fixed-length multi-bit watermark
key and train a Transformer-based paraphraser with a watermark detector. The paraphraser
is trained with Gumbel reparametrization techniques to minimize the decoding error. We
use the T5-based paraphraser in their original setting and evaluate both the 4-bit version
and 8-bit version of the watermarking model.

• KGW (Kirchenbauer et al., 2023) and KTH (Kuditipudi et al., 2023). They are LLM-
based watermarks aiming to inject watermark to LLM-generated texts by altering the token
sampling strategy during the generation stage of a LLM. Note that their methods are not
directly comparable with ours, as they are not designed to watermark non-LLM-generated
text. For comparison, we adapt them to watermark any text with two variant, zero-bit and
multi-bit. In the zero-bit variant, we directly apply KGW or KTH to a LLM-based (1.1B)
paraphraser, which is then used to paraphrase the given text to inject watermarks. This is

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2

6

https://huggingface.co/sentence-transformers/all-mpnet-base-v2

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

1 2 3 4 5
Number of Repeats

0.99

0.9

0.0

Bi
t A

cc

1 2 3 4 5
Number of Repeats

0.9999

0.999

0.99

0.9

0.0

AU
C

1 2 3 4 5
Number of Repeats

0.999

0.99

0.9

0.0

TP
R@

FP
R=

1%

Ours
KGW (zero-bit)
KGW (multi-bit)

KTH (zero-bit)
KTH (multi-bit)
RemarkLLM(bit=4)

RemarkLLM(bit=8)
Waterfall(kappa=0.5)
Waterfall(kappa=1)

Figure 2: The detection performance of our watermark compared with baseline methods with mul-
tiple repeats of the paraphraser. Note that some methods do not support multi-bit watermark code,
so they do not have a curve of bit accuracy in the left figure.

a zero-bit watermark as the detector can only tell whether a text is watermarked or not,
but no other information will be carried in the watermark. In the multi-bit variant, we will
apply KGW or KTH to two LLM-based paraphrasers. Then we use them as θ0 and θ1 in
our approach and paraphrase one text based on a watermark code. This allows the multi-bit
information to be carried in the watermark.

• Waterfall (Lau et al., 2024). They prompt a pretrained Llama model as the paraphraser
and will change the sampling stage in order to inject the watermark signal. Their extracted
watermark code is a permutation, which does not support bit-wise comparison. We evaluate
the watermark strength at κ = 0.5 and κ = 1. Note that in their original paper, they use
a strong watermark up to κ = 8. However, in our evaluation, we observe that even κ = 2
will affect the paraphrasing performance significantly for the 1.1B small model. Therefore,
we use a relatively small κ in the evaluation.

Note that we did not compare with some well-known text watermark as they are already covered in
previous works. We did not compare with AWT (Abdelnabi & Fritz, 2021) as RemarkLLM shows
a better performance in their paper. We did not compare with Robust Multi-bit (Yoo et al., 2023)
and NLW (Qiang et al., 2023) as Waterfall shows a better performance in their paper. There are also
many works (e.g. (Christ et al., 2024; Zhao et al., 2023)) that focus on LLM watermarks, but we
only choose the representative ones (KGW and KTH).

4.2 PERFORMANCE

We show the watermark performance in Table 1. We can observe that our method achieves a better
performance than existing methods on both bit-wise accuracy and text-wise accuracy. Our method
also has high information density, with approximately one bit per 23 tokens (128/5.57). In addition,
we also observe a higher similarity score compared to baseline methods. This might be surprising
at first glance. We owe it to the reason that we add a similarity reward during the PPO process, so
that the model is fine-tuned to achieve a good paraphrasing performance.

Multiple run In paraphrasing-based watermark, we can run the paraphraser multiple times and
return the result with best watermark detection rate. This method is adopted in previous meth-
ods (Zhang et al., 2024b; Lau et al., 2024). In this section, we evaluate how different methods
improve with multiple runs of the paraphraser. The results are shown in Figure 2. We can observe
that our methods can scale to over 0.99 bit accuracy and 0.9999 detection AUC with five repeats of
the paraphraser. Since we use a 1.1B small model which can be run in parallel efficiently, we view it
as a good tradeoff to repeat five times and achieve a better watermark performance. Other methods
also get a performance boost with more repeats, but there is still a clear performance gap.

Example and Analysis on Stealthiness We show several examples of the watermarked text and
their original version in Table 5 in Appendix C. The sentences of class 0 and class 1 are marked

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 2: The performance of our watermark compared with baseline methods under word substitu-
tion attack.

Method Substitute ratio 5% Substitute ratio 10% Substitute ratio 20%

bitacc AUC TPR@1% bitacc AUC TPR@1% bitacc AUC TPR@1%

RemarkLLM (4bit) 0.6118 0.6215 0.0% 0.6315 0.6441 0.0% 0.6488 0.6624 0.0
RemarkLLM (8bit) 0.5685 0.6281 0.6% 0.5783 0.6445 1.0% 0.5921 0.6665 0.8%

KGW (zero-bit) - 0.8458 21.4% - 0.8353 16.5% - 0.7779 7.0%
KGW (multi-bit) 0.6208 0.8052 20.9% 0.6134 0.7914 18.9% 0.5840 0.7471 12.8%
KTH (zero-bit) - 0.8718 56.5% - 0.8541 51.8% - 0.8128 41.5%
KTH (multi-bit) 0.6018 0.6574 9.0% 0.5955 0.6504 8.0% 0.5610 0.6120 5.1%

Waterfall(κ = 0.5) - 0.7578 12.5% - 0.7344 9.1% - 0.6893 5.3%
Waterfall(κ = 1) - 0.9250 54.1% - 0.9096 28.9% - 0.8558 25.6%

Ours 0.9382 0.9945 93.5% 0.9193 0.9871 86.4% 0.8605 0.9469 51.6%
Ours(advt) 0.9459 0.9958 94.1% 0.9352 0.9936 91.6% 0.9138 0.9853 78.7%

with blue and green respectively. All the sentences are correctly classified by the decoder. From
our observation, it is difficult to tell a significant difference between the two classes of sentences,
confirming the stealthiness of our watermark.

To further validate the stealthiness of our watermark, we prompt GPT with in-context learning to
see if it can tell the difference between the two classes of sentences. Specifically, we provide GPT
with ten class-0 and ten class-1 sentences, and ask it to classify which class a new sentence belongs
to. The detailed prompt is shown in Figure 4 in Appendix A. We evaluate 1,000 class-0 and 1,000
class-1 sentences, and the accuracy is 57.0%, which is close to the performance of random guess
(50.0%). Thus, we conclude that our watermark is stealthy and it is difficult to tell a difference
between the two classes of sentences.

4.3 ROBUSTNESS

In this section, we study the robustness of our watermark. The evaluation pipeline follows the
standard protocal - we first generate a watermarked text, then modify the text with text-level per-
turbations, and finally test whether we can still detect the watermark in the text. We will evaluate
word substitution and sentence paraphrasing, which are two most popular perturbations on texts. In
addition to our benign-trained model, we also evaluate the adversarially trained model (denoted as
Ours-AdvT), which has the knowledge of perturbation during training and will use the perturbed
text when training the decoder.

Word Substitution For paraphrasing attack, we will randomly substitute {5%, 10%, 20%} tokens
in the text with another randomly chosen token (uniformly sampled from the vocabulary). We show
the results in Table 2. The adversarial training model uses 10% of word substitution during the
training process. We can observe that our original model can already outperform all the baselines
when perturbed with word substitutions. With the knowledge of perturbation during the training
process, we can further improve the performance and achieve over 0.99 detection AUC even when
10% of the tokens are randomly substituted.

Sentence Paraphrasing For sentence paraphrasing, we consider three types. Following Lau et al.
(2024), we will translate the sentence to Spanish and then back to English with a Llama2-7B model,
denoted as “Translate”. We will also directly prompt a Llama2-7B model to paraphrase the sentence,
denoted as “LlamaPara”. The detailed prompts used to do the translation and paraphrasing are shown
in Figure 5 and 6 in Appendix A. In addition, following (Xu et al., 2024), we also paraphrase the
sentence with the Pegasus (Zhang et al., 2020) paraphraser, denoted as “PegasusPara”.

The results are shown in Table 3. We observe that all these text watermarking methods suffer from
a significant performance drop under paraphrasing attacks. We owe it to the reason that the text
watermarks aim to preserve the text meaning and inject watermarks with other signals (e.g. word-
ing choices or stylish changes), while these signals will be easily broken by another paraphrasing
process. Nevertheless, it is still possible to preserve part of the watermark signal under mild para-
phrasing, such as translation. We can observe that our method can outperform baselines on all the
paraphrasing tasks, and can be further improved with adversarial training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 3: The performance of our watermark compared with baseline methods under sentence para-
phrasing attack.

Method Translate LlamaPara PegasusPara

bitacc AUC TPR@1% bitacc AUC TPR@1% bitacc AUC TPR@1%

RemarkLLM (4bit) 0.6885 0.7142 0.0% 0.7063 0.7311 0.0% 0.7033 0.7248 0.0%
RemarkLLM (8bit) 0.6124 0.6904 1.4% 0.6023 0.6751 1.5% 0.6018 0.6687 1.2%

KGW (zero-bit) - 0.4872 0.2% - 0.4872 0.2% - 0.4900 0.0%
KGW (multi-bit) 0.4997 0.5829 1.6% 0.4765 0.5383 1.5% 0.4817 0.5654 1.5%
KTH (zero-bit) - 0.8600 30.6% - 0.8559 32.0% - 0.8618 43.7%
KTH (multi-bit) 0.4923 0.4990 0.8% 0.4952 0.4957 1.7% 0.4949 0.5025 1.3%

Waterfall(κ = 0.5) - 0.6041 4.0% - 0.5833 1.9% - 0.5981 5.0%
Waterfall(κ = 1) - 0.7432 11.8% - 0.6519 3.1% - 0.7283 13.2%

Ours 0.8206 0.9310 67.4% 0.7137 0.8649 43.9% 0.7388 0.8616 53.7%
Ours(advt) 0.9003 0.9709 78.1% 0.8487 0.9239 36.8% 0.8648 0.9546 45.7%

4.4 OUT-OF-DISTRIBUTIONAL TASKS

As our pipeline relies on a data-driven training process, we would like to evaluate how it performs
on potential out-of-distribution data. In Appendix B, we evaluate on various out-of-distributional
(OOD) datasets. We observe that our pipeline can still achieve a high watermark performance on
various unseen tasks, indicating its good generalization capability.

5 RELATED WORKS

Text Watermarks People have been studying text watermarks for a long time in order to protect
copyrights (Liu et al., 2024). Early works on text watermarks focus on synonym substitution or other
direct changes in the text. (Topkara et al., 2006) proposes to add watermarks to a text by replacing
the most ambiguous words with synonyms in a text. (Xiang et al., 2018) investigated the frequency
of synonym words so that more bits can be injected with the frequency information. (Munyer et al.,
2024) considers the Word2Vec embedding (Mikolov, 2013) in the synonym substitution so that more
information can be injected. (Yoo et al., 2023) extracts invariant features from the text to substitute
synonyms so that the watermark can be more robust under different perturbations. More recently,
people have studied how to directly inject watermark by paraphrasing the text. (Abdelnabi & Fritz,
2021) proposes a LSTM-based pipeline to paraphrase a text and inject a fixed number of watermark
bits. (Zhang et al., 2024b) improves the work by using Transformer-based pipeline and proposing
to use Gumbel softmax for token selection conditioned on the watermark code. (Lau et al., 2024)
proposes to use an LLM-based paraphraser and inject watermarks in the permutations of n-gram
information in the text.

LLM Output Watermarks Besides text watermarking, there is also a line of research which stud-
ies the injection of watermarks into LLMs, so that the output texts of a LLM can be later detected.
(Kirchenbauer et al., 2023) first proposes to watermark an LLM. They will increase the logits of
certain random tokens, which are generated based on n-gram information. They then perform a sta-
tistical test on the text to determine whether the token appearance frequency is from the watermarked
LLM. Follow-up works (Hou et al., 2023; Liu et al., 2023) will generate the random tokens based
on semantic meaning rather than n-gram information, which makes the watermark robust against
paraphrasing attacks. (Kuditipudi et al., 2023) adds perturbation during the sampling phase after the
logits are generated, so that there is no distributional change on the output text. (Gu et al., 2023)
proposes to distill a watermarked model into a new LLM model with changed parameters, so that no
special mechanism is required during inference. (Xu et al., 2024) proposes a co-training framework
on the watermarked LLM and a watermark detector so that the detector is trained to detect the wa-
termarked text and the LLM is finetuned to get easily detected. Unlike text watermarking, this line
of work focuses purely on LLM-generated text.

6 CONCLUSION

In this work, we propose a multi-bit text watermark by paraphrasing a piece of text to inject water-
mark signals. We show that our pipeline achieves very high detection accuracy with good fidelity
and stealthiness. In addition, our method is robust under different attacks. Our method sheds new
light on the study of text watermarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

REFERENCES

Sahar Abdelnabi and Mario Fritz. Adversarial watermarking transformer: Towards tracing text
provenance with data hiding. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 121–
140. IEEE, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139. PMLR, 2024.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
Xie, Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai
feedback. In Forty-first International Conference on Machine Learning, 2024.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. arXiv preprint arXiv:2312.04469, 2023.

Abe Bohan Hou, Jingyu Zhang, Tianxing He, Yichen Wang, Yung-Sung Chuang, Hongwei
Wang, Lingfeng Shen, Benjamin Van Durme, Daniel Khashabi, and Yulia Tsvetkov. Sem-
stamp: A semantic watermark with paraphrastic robustness for text generation. arXiv preprint
arXiv:2310.03991, 2023.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Jiaming Ji, Donghai Hong, Borong Zhang, Boyuan Chen, Josef Dai, Boren Zheng, Tianyi Qiu,
Boxun Li, and Yaodong Yang. Pku-saferlhf: Towards multi-level safety alignment for llms with
human preference. arXiv preprint arXiv:2406.15513, 2024.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Gregory Kang Ruey Lau, Xinyuan Niu, Hieu Dao, Jiangwei Chen, Chuan-Sheng Foo, and Bryan
Kian Hsiang Low. Waterfall: Framework for robust and scalable text watermarking. arXiv
preprint arXiv:2407.04411, 2024.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust water-
mark for large language models. arXiv preprint arXiv:2310.06356, 2023.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip Yu. A survey of text watermarking in the era of large language models. ACM
Computing Surveys, 2024.

Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

Travis Munyer, Abdullah Tanvir, Arjon Das, and Xin Zhong. Deeptextmark: A deep learning-driven
text watermarking approach for identifying large language model generated text. IEEE Access,
2024.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

10

https://arxiv.org/abs/2406.17557

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Jipeng Qiang, Shiyu Zhu, Yun Li, Yi Zhu, Yunhao Yuan, and Xindong Wu. Natural language water-
marking via paraphraser-based lexical substitution. Artificial Intelligence, 317:103859, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Umut Topkara, Mercan Topkara, and Mikhail J Atallah. The hiding virtues of ambiguity: quantifi-
ably resilient watermarking of natural language text through synonym substitutions. In Proceed-
ings of the 8th workshop on Multimedia and security, pp. 164–174, 2006.

Lingyun Xiang, Yan Li, Wei Hao, Peng Yang, and Xiaobo Shen. Reversible natural language water-
marking using synonym substitution and arithmetic coding. Computers, Materials & Continua,
55(3), 2018.

Xiaojun Xu, Yuanshun Yao, and Yang Liu. Learning to watermark llm-generated text via reinforce-
ment learning. arXiv preprint arXiv:2403.10553, 2024.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun Kwak. Robust multi-bit natural language water-
marking through invariant features. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 2092–2115, 2023.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In International conference on machine learning,
pp. 11328–11339. PMLR, 2020.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024a.

Ruisi Zhang, Shehzeen Samarah Hussain, Paarth Neekhara, and Farinaz Koushanfar. {REMARK-
LLM}: A robust and efficient watermarking framework for generative large language models. In
33rd USENIX Security Symposium (USENIX Security 24), pp. 1813–1830, 2024b.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

A PROMPTS USED IN THE EXPERIMENTS

We show the detailed prompts used in the experiments as below:

• Figure 3: prompt used in the encoder.

• Figure 4: prompt used to do in-context classification with GPT.

• Figure 5: prompt used to translate a text with Llama-2-7B.

• Figure 6: prompt used to paraphrase a text with Llama-2-7B.

We did not make special efforts to optimize these prompts.

Human: Paraphrase the text below.
{Original Text}
Assistant: Paraphrased Text:

Figure 3: The prompt used to paraphrase the text in the encoder.

I have two classes of text, C1 and C2, which have some intrinsic difference. I will
provide you with lists of texts from bothclasses. Can you help me classify which class
a new text is in? You answer should only contain one word, [C1] or [C2].

C1 texts:
{Class-0 sentences}

C2 texts:
{Class-1 sentences}

New text:
{The new sentence to classify}

Please answer C1 or C2.

Figure 4: The prompt used to performance in-context classification of our watermarked text with
GPT.

[[INST]] <<SYS>> Translate the provided piece of text to {language}. Do not include
any other sentences after the response, such as explanations of the translation.

<</SYS>>

{text} [/INST]

Here is a translated version of the text:

Figure 5: The prompt used to evaluate the watermark robustness under translation.

B OUT-OF-DISTRIBUTIONAL TASKS

As our pipeline relies on a data-driven training process, we would like to evaluate how it performs
on potential out-of-distribution data. In this section, we will evaluate our model, previously trained
on the C4 dataset, on various other datasets, including Anthropic HH-RLHF (HH) (Bai et al.,
2022), Synthetic instruction2(Instruct), PKU SafeRLHF (PKU) (Ji et al., 2024), Reward3, Ultra-
Feedback(UltraF) (Cui et al., 2024), FineWeb (Penedo et al., 2024) and Pile uncopyrighted(Pile)4

datasets. Among the datasets, HH, Instruct, PKU, Reward and UltraF are QA datasets for alignment
and we use their answers as the original texts. FineWeb is a dataset consisting of articles from the
Internet. Pile is a dataset consisting of cleaned texts from different sources.

2https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise
3https://huggingface.co/datasets/yitingxie/rlhf-reward-datasets
4https://huggingface.co/datasets/monology/pile-uncopyrighted

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

[[INST]] <<SYS>> Paraphrase the user provided text while preserving semantic
similarity. Do not include any other sentences in the response, such as explanations
of the paraphrasing. Do not summarize.

<</SYS>>

{text} [/INST]

Here is a paraphrased version of the text:

Figure 6: The prompt used to evaluate the watermark robustness under Llama paraphrasing.

Table 4: The performance of our watermark, which is trained on the C4 dataset, evaluated on texts
collected in other tasks.

Dataset Bit-wise Accuracy Text-wise Accuracy Fidelity

Bit Acc Bit Num AUC TPR@FPR=1% TPR@FPR=0.01% Similarity

HH 0.9582 5.856 0.9991 97.9% 92.1% 0.8823
PKU 0.9613 5.325 0.9959 96.7% 1.8% 0.8923

Reward 0.9572 5.684 0.9962 96.7% 51.4% 0.8711
UltraF 0.9519 6.234 0.9931 94.5% 55.7% 0.8830

FineWeb 0.9461 6.066 0.9880 93.3% 19.3% 0.8463
Pile 0.9140 6.026 0.9713 83.8% 36.1% 0.8430

The performance of our model is shown in Table 4. We can observe that our model can generally
achieve a good performance on different datasets, indicating its good generalization capability. We
do observe a relatively weak performance on the Pile task, which we view as a result of the frequent
structural texts (e.g. XML languages) in the dataset. Nevertheless, we emphasize that we can always
include a new data domain in the training process, so that they become “in-domain” and can achieve
a higher performance.

C EXAMPLES OF WATERMARKED TEXTS

We show the watermarked texts generated by our pipeline in Table 5. Blue and green texts corre-
spond to class-0 and class-1 texts respectively. We view it difficult to tell a difference between the
two classes of texts from human eyes.

D EXPERIMENTS ON LLAMA-2-7B MODELS

We show the results of using Llama-2-7B model as the paraphraser in Table 6. Note that the Re-
markLLM method does not support Llama models, so we do not evaluate the method; the Waterfall
method on 7B models can support a larger κ, so we included results of κ = 1, 2, 4 in the table. We
can observe that our model keeps a high performance with the 7B models. We do not see an im-
provement compared with the 1.1B models, which we guess is because that fine-tuned 1.1B models
already have the capability to paraphrase texts, so that a larger model may not help. On the other
hand, baseline methods can have a better fidelity with the larger model. The Waterfall methods
are able to use larger κ to inject strong watermarks, and the strongest κ = 4 case can achieve a
comparable performance with our model, though there would be a drop on the fidelity.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 5: Examples of watermarked texts. Blue and green texts correspond to class-0 and class-1
texts respectively.

Original Text Watermarked Text Similarity

“When it comes to fantasy sports and bet-
ting on NASCAR races, there’s nothing
wrong with it,” Gaughan said. “I wanted to
go all in on gambling last year,” NASCAR
executive Steve O’Donnell said. “We have
so many people that are linked to the
cars. I think the integrity is a big piece
to it,” O’Donnell said. Nevada’s effec-
tive monopoly on sports betting ended last
spring, when the Supreme Court ruled the
ban should be

“There’s nothing wrong with fantasy sports
and betting on NASCAR races,” Gaughan
said. Steve said I wanted to go all in on
gambling last year. “We have so many peo-
ple that are linked to the cars,” O’Donnell
said. The integrity of the car is a big piece
to it because they are linked to it. Nevada’s
effective monopoly on sports betting ended
last spring, as the Supreme Court ruled that
the ban should be

0.9177

President Trump’s decision Monday to re-
vive plans to freeze federal employee pay
in 2020 and to institute a series of cuts to
federal employee retirement programs was
met with great consternation from stake-
holder groups, although the ideas stand lit-
tle chance of becoming law. Increasing em-
ployee contributions toward federal defined
benefit annuity programs by 1 percent per
year until those payments reach 50 percent
of the total cost. Eliminating cost of living
adjustments for FERS retirees, and reducing
CSRS cost of living adjustments by 0.5 per-
cent.

President Trump’s decision Monday to re-
sume plans to freeze federal employee pay
and to cut retirement benefits for federal
employees generated consternation from
stakeholder groups, despite having little
hope of becoming law. The employee con-
tributions to the annuity programs are up by
1 percent a year until they reach five percent
of the total cost. There are cost of living
adjustments for FERS retirees and cost ad-
justments for COLA, which are reduced by
0.5 percent.

0.8947

Bob ”Bus Bob” Krause, 59, of Waikiki,
an Oahu Transit System bus driver, died at
home. He was born in Bremen, Germany.
He is survived by parents Hans Krause and
Sonja Aiwohi, brother Ralph and sisters
Lorraine Kinnamon and Charmaine Moniz.
Celebration of life: 2 p.m. Friday at Out-
rigger Canoe Club Waikiki. Additional cel-
ebration of life: 4:30 p.m. on weekend of
May 4 and 5 at K

Bob ”Bus Bob” Krause, the head driver
of the Oahu Transit System, died at home.
His parents lived in Germany when he was
born. He has surviving relatives, including
his mother, sister, and brother. The celebra-
tion of life is on Friday at the outrigger ca-
noe club. There is a celebration of life on
Friday, May 4 and 5 at K

0.8743

Occasional diarrhea is a common occur-
rence. Most people will experience an
episode of diarrhea at least once or twice a
year that will disappear in a couple of days.
Luckily, there are many foods to eat that
may help a person reduce the symptoms of
diarrhea. There are also some foods to avoid
when dealing with a bout of diarrhea, and
some additional home care tips to consider.
Anyone who is experiencing persistent di-
arrhea should see a doctor, as a person may
become dehydrated over time.

Occasional diarrhea is a common occur-
rence. People will get sick more often than
they used to do. There are many foods to eat
that may help a person reduce the symptoms
of diarrhea. A lot of people avoid foods
when they are dealing with a bout of diar-
rhea and a few home care ideas to consider
are worth checking out. Anyone who is suf-
fering from persistent diarrhea should see a
doctor, as a person may become dehydrated
over time.

0.8392

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 6: The performance of our watermark compared with baseline methods with the Llama-2-7B
model.

Method Bit-wise Accuracy Text-wise Accuracy Fidelity

Bit Acc Bit Num AUC TPR@FPR=1% TPR@FPR=0.01% Similarity

KGW (zero-bit) - - 0.8625 24.4% 13.7% 0.8842
KGW (multi-bit) 0.6302 5.17 0.8498 15.2% 8.3% 0.8986
KTH (zero-bit) - - 0.8735 26.5% 12.5% 0.9075
KTH (multi-bit) 0.5756 5.075 0.7296 13.3% 2.0% 0.9073
Waterfall(κ = 1) - - 0.7568 13.3% 3.7% 0.8809
Waterfall(κ = 2) - - 0.9213 49.3% 26.9% 0.8743
Waterfall(κ = 4) - - 0.9951 96.3% 89.8% 0.8350

Ours 0.9605 5.874 0.9973 97.6% 77.6% 0.8631

15

	Introduction
	Preliminary
	Goal of Multi-bit Text Watermark
	Background: PPO

	Methodology
	Overview
	Encoder: LLM-based Paraphraser
	Decoder: LLM-based Text Classifier
	Co-training Framework

	Experiments
	Setting
	Performance
	Robustness
	Out-of-Distributional Tasks

	Related Works
	Conclusion
	Prompts Used in the Experiments
	Out-of-Distributional Tasks
	Examples of Watermarked Texts
	Experiments on Llama-2-7B Models

