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Abstract

Retrieval augmentation is a promising approach001
to handle long-context language modeling.002
However, the existing retrieval methods usu-003
ally work with the chunked context, which is004
prone to inferior quality of semantic represen-005
tation and incomplete retrieval of useful in-006
formation. In this work, we propose a new007
method for the retrieval augmentation of long-008
context language modeling, called Landmark009
Embedding. Our method is characterized by010
threefold technical contributions. Firstly, we011
introduce a chunking-free architecture, which012
keeps the long context coherent such that high-013
quality embeddings can be generated for the014
fine-grained units within the context. Secondly,015
we present a position-aware objective function,016
which prioritizes the ultimate boundary for a017
consecutive span of information. By learning to018
discriminate such a special position, the useful019
information can be comprehensively retrieved020
for the query. Thirdly, we design a novel multi-021
stage learning algorithm, which makes the best022
use of readily available data and synthetic data023
for cost-effective training of the landmark em-024
bedding. In our experimental study, landmark025
embedding is able to substantially improve the026
performance for both LLaMA-2 and ChatGPT027
in a variety of long-context tasks; meanwhile,028
it also outperforms the existing retrieval meth-029
ods with a notable advantage. Our model and030
source code will be made publicly available.031

1 Introduction032

Large language models (LLMs) need to handle033

long-sequence inputs when dealing with many im-034

portant applications, such as question answering035

and reading comprehension (Bai et al., 2023). Un-036

fortunately, the existing LLMs are usually con-037

strained by a limited size of context window, e.g.,038

2K for LLaMA-1 (Touvron et al., 2023a) and 4K039

for LLaMA-2 (Touvron et al., 2023b). Although040

the size of context window can be extended through041
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Where did Bill go on Sunday afternoon? Where did Bill go on Sunday afternoon?

Figure 1: Sentence Embedding works with the chun-
ked context, which tends to select the salient sentence.
Landmark Embedding maintains a coherent context,
which enables it to select the right sentence.

fine-tuning over long-sequence data (Chen et al., 042

2023b; Dacheng et al., 2023; Peng et al., 2023), 043

the fine-tuned model could incur a considerable 044

cost in both training and inference, and exerts an 045

unfavorable impact to LLMs’ original capabili- 046

ties. Recently, the retrieval-augmentation emerges 047

as a promising option to facilitate long-context 048

language modeling (Xu et al., 2023; Bai et al., 049

2023; Zhang et al., 2023a). It employs a stan- 050

dalone retriever where useful information can be 051

filtered and presented as a concise input. The above 052

working mechanism is simple, efficient, and well- 053

compatible with the downstream LLMs. 054

With a long-sequence input, the typical retrieval 055

augmentation workflow is performed with three 056

steps: 1) chunking, 2) embedding, and 3) retrieval. 057

In the first place, it partitions the long-sequence in- 058

put into a list of chunks. Then, it encodes each 059

chunk into its embedding. Finally, it retrieves 060

the useful chunks for the query based on the em- 061

bedding similarity. The chunking strategy is a 062

very tricky problem in practice. As widely dis- 063

cussed by many popular RAG frameworks, like 064

Langchain (LangChain, 2023), LlamaIndex (Liu, 065
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2023), Pincone (Schwaber-Cohen, 2023), this prob-066

lem is usually tackled by empirical or heuristic067

methods. However, no matter what chunking strat-068

egy is used, two inherent limitations are inevitable.069

On one hand, the input sequence is partitioned into070

disconnected chunks. Consequently, it will break071

the coherence of context which is unfavorable to072

the quality of embedding. On the other hand, it073

is also likely to split the consecutive information074

into different chunks. The salient chunks can be075

easily retrieved; nevertheless, other useful but less076

salient chunks can be overlooked, which results in077

the incomplete retrieval of necessary information.078

In this paper, we come up with the Landmark079

Embedding, a new embedding method optimized080

for the retrieval-augmentation of long-context lan-081

guage modeling. The new method is highlighted082

by its technical contributions in three perspectives.083

Firstly, we introduce a chunking-free model ar-084

chitecture, where embeddings for the fine-grained085

input units, e.g., sentences, can be generated based086

on a coherent long context. The new architecture087

employs a group of special tokens, namely the land-088

marks (LMK), and dispatches them to the end of089

each sentence. At the same time, it takes advantage090

of a LLM-based encoder to jointly process the land-091

marked long context. Thanks to the perception of092

rich contextual information, the landmark embed-093

ding can be a highly discriminative representation094

of each sentence, which presents a critical improve-095

ment over the conventional sentence embeddings096

generated from a chunked context. Besides, the097

new architecture will resort to a sliding window,098

where landmark embeddings can be generated for099

an arbitrary long context via stream processing.100

Secondly, we propose a position-aware objec-101

tive function to facilitate the complete retrieval of102

useful information. As discussed, one piece of in-103

formation tends to be jointly conveyed by multiple104

consecutive sentences within the long context. In-105

stead of treating them equally as positive positive106

samples, we assign each sentence with a differen-107

tiated weight which grows exponentially with its108

position in the context. As a result, the last sen-109

tence, i.e. the ultimate boundary of the information,110

will be emphasized and better discriminated. With111

the jointly selection of the front-k sentences before112

the ultimate boundary, the useful information to the113

query can be comprehensively included.114

Thirdly, we design a multi-stage learning algo-115

rithm, where different training strategies and data116

sources can be jointly used to facilitate the training 117

of landmark embedding. The typical embedding 118

model is trained by paired texts, e.g., question an- 119

swering; however, such data is not directly suitable 120

for our scenario. To address this problem, the new 121

algorithm factorizes landmark embedding with two 122

basic capabilities: the fundamental semantic dis- 123

criminability, and the high-level contextualized rep- 124

resentation capability, which can be progressively 125

established in three steps: 1) distant supervision 126

over pairwise data, 2) weak supervision over noisy 127

long-context data generated by rules, 3) fine-tuning 128

over high-quality long-context data synthesized by 129

LLMs. The above workflow can make the best use 130

of readily available data (adequate but less relevant) 131

and synthetic data (relevant but inadequate), which 132

leads to a superior cost-effectiveness of training. 133

We empirically analyze landmark embedding 134

based on 2 popular LLMs: LLaMA-2-7B (chat) 135

with a short context window (4K), ChatGPT-3.5 136

(turbo) with a much longer context window (16K). 137

The experiment is performed on top of 6 long- 138

context evaluation datasets. Most of the evalua- 139

tion samples are far beyond the coverage of the 4K 140

context window, while a large portion of them are 141

within the 16K context window. In our experiment, 142

landmark embedding achieves a substantial advan- 143

tage over both the LLaMA-2-7B baseline and the 144

retrieval-augmentation results powered by the ex- 145

isting retrieval methods. Meanwhile, it also notably 146

improves the performance of ChatGPT-3.5 using a 147

much shorter input context. Such a result overturns 148

the previous conclusion that retrieval-augmentation 149

can only benefit the LLMs of weak long-context ca- 150

pabilities (Bai et al., 2023), which indicates a more 151

extensive usage of the corresponding techniques. 152

To summarize, the following contributions are 153

made in this work. 1) We propose landmark embed- 154

ding. To the best of our knowledge, it is the first em- 155

bedding model which performs systemic optimiza- 156

tion for the retrieval augmented long-context lan- 157

guage modeling. 2) Our method presents three tech- 158

nical advantages: the chunking-free model architec- 159

ture, the position-aware objective function, and the 160

multi-stage learning algorithm, which jointly con- 161

tribute to the superior capability of our embedding 162

model. 3) We perform comprehensive experiments 163

with LLaMA-2 and ChatGPT, whose result veri- 164

fies the effectiveness of landmark embedding, and 165

indicates a broader application scope of retrieval 166

techniques in dealing with the long-context tasks. 167
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2 Related Work168

The related works are reviewed from three as-169

pects: long-context language modeling, retrieval-170

augmentation, embedding-based retrieval methods.171

First of all, a large body of research works have172

been dedicated to the extension of LLMs’ lengths173

from different directions. One common practice is174

to modify the position encoding mechanism, where175

the LLMs trained on short texts can directly han-176

dle longer input during the inference time (Chen177

et al., 2023a; ntk, 2023). Despite simplicity, such178

methods are prone to inferior performances with-179

out further fine-tuning. Another popular method is180

to take advantage of continual training, where the181

existing LLMs are fine-tuned over long-sequence182

data to establish a longer context window (Dacheng183

et al., 2023; Chen et al., 2023b; Peng et al., 2023;184

Tworkowski et al., 2023; Mohtashami and Jaggi,185

2023). However, the fine-tuning based methods are186

prone to two subsequent problems. On one hand,187

the fine-tuned LLM will incur an expensive cost188

for both training and inference. On the other hand,189

the fine-tuning operation could be unfavorable to190

the LLM’s performance with short-sequence in-191

puts. Apart from the above common approaches,192

the LLM’s context can also be extended by context193

compression (Chevalier et al., 2023; Zhang et al.,194

2024) and stream processing (Xiao et al., 2023a;195

Han et al., 2023). Nevertheless, the compression196

methods are likely to result in information loss,197

while the stream processing will discard the useful198

information beyond the sliding window. It remains199

to explore more effective methods for long-context200

language modeling in the future.201

In the meantime, the retrieval-augmented genera-202

tion (RAG) is another important issue for LLMs’ re-203

search. Typically, it employs a standalone retriever,204

where useful information can be introduced from205

a vast open-world corpus to enhance the LLM’s206

generation quality (Lewis et al., 2020; Guu et al.,207

2020; Borgeaud et al., 2022). Previously, RAG208

used to be applied for knowledge-intensive tasks,209

such as open-domain question answering and fact210

verification (Petroni et al., 2020), where an external211

knowledge base is presented. Recently, retrieval212

augmentation is also found helpful to long-context213

language modeling, as useful information can be214

retrieved and presented as a concise input for the215

LLM (Xu et al., 2023; Bai et al., 2023; Zhang216

et al., 2023b). Compared with other alternative217

methods on context extension, the retrieval-based218

methods are distinguished for the simplicity and 219

compatibility, as they don’t need modification of 220

the downstream LLM, and can be easily combined 221

with other methods to establish a longer context. 222

Finally, the RAG system usually works with an 223

embedding model to retrieve the useful informa- 224

tion. In the past few years, many critical techniques 225

have been well established for the effective learn- 226

ing of embedding models, e.g., pre-training (Gao 227

and Callan, 2021; Xiao et al., 2022; Wang et al., 228

2022a), hard-negative sampling (Xiong et al., 2020; 229

Ren et al., 2021), knowledge distillation (Hofstätter 230

et al., 2020), etc. On top of these techniques, there 231

have been a number of powerful embedding mod- 232

els developed for the general-purpose retrieval ap- 233

plications (Izacard et al., 2021; Ni et al., 2021; 234

Neelakantan et al., 2022; Wang et al., 2022b; Xiao 235

et al., 2023b). However, the existing methods rely 236

on chunking when dealing with the retrieval aug- 237

mentation of long-context language modeling. As 238

a result, it will inevitably break the coherence of 239

context, which is prone to inferior quality of embed- 240

ding and incomplete retrieval of useful information. 241

3 Landmark Embedding 242

3.1 Preliminary 243

The LLM presents a unified foundation to solve 244

arbitrary NLP tasks through language modeling. 245

Given the input prompt, the LLM optimizes the 246

generation likelihood of the target answer (X) in 247

the form of auto-regression. For a wide variety of 248

applications, e.g., question answering and reading 249

comprehension, the input prompt can be explicitly 250

split into context (ctx) and query (q). Without loss 251

of generality, the LLM’s generation objective can 252

be presented as the following function: 253

max. log LLM(xt|q, ctx,X<t). (1) 254

In many situations, the input context is too long to 255

fit into existing LLM’s context window. To address 256

this problem, the retrieval-based method seeks to 257

compress the context by selecting the most useful 258

parts from it. Typically, it will chunk the context 259

into: S : {s1, ..., sN} ← chunk(ctx), and select 260

the top-k chunks based on a retrieval model γ(·): 261

S∗ : {s1, ..., sk} ← top-k.{s : γ(q, s)|S}. (2) 262

One critical step for the above workflow is chunk- 263

ing. As introduced, the chunking operation is very 264

tricky, which needs to be conducted empirically or 265
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heuristically. It will always break the coherence266

of context, leading to an inferior embedding qual-267

ity and a higher probability of incomplete retrieval.268

In this work, we target on a new retrieval method269

γ′(·) without the dependency on chunking opera-270

tion. Notably, it will let the useful information to271

be directly retrieved from a coherent context:272

C∗ : {c1, ..., ck} ← γ′(q, ctx). (3)273

In this place, ci indicates a fine-grained unit of the274

input context, e.g., a sentence. With the perception275

of contextual information, the underlying seman-276

tics about each fine-grained unit can be effectively277

represented, which facilitates the accurate retrieval278

of relevant information for the query.279

3.2 Chunking-Free Architecture280

We propose a novel embedding model, whose archi-281

tecture is shown in Figure 2. Suppose the input con-282

text is composed of n sentences: ctx : {c1, ..., cn}.283

Instead of chunking the input context into dis-284

connected segments, it dispatches a special token,285

called the landmark (LMK), to the end of each286

sentence. The landmark is used to capture the un-287

derlying semantics for its corresponding sentence.288

Particularly, the landmark is jointly encoded with289

the sentence and neighboring context, where the290

output embedding, a.k.a. the landmark embedding291

(LE), is utilized for representation of the sentence.292

In our work, we take advantage of a large language293

model (e.g., LLaMA-2-7B) as the encoding back-294

bone, which brings forth two benefits: 1) it substan-295

tially contributes to the quality of representation296

thanks to the LLM’s superior expressiveness, 2)297

it can incorporate adequate neighboring context298

based on the LLM’s long context window. The299

same encoder is also utilized for the generation300

of query’s embedding. Formally, the generation301

of landmark embedding and query embedding are302

presented by the following functions:303

LEi ← LLM(c1, ..., ci; LMK).embed[−1],304

Eq ← LLM(query; LMK).embed[−1].305

Based on the above result, the relevance between306

the query and each sentence is computed as the307

inner product of the two embeddings: ⟨Eq,LEi⟩.308

Note that the input context can be even longer309

than the LLM’s context window. To handle this310

problem, we leverage a sliding window where the311

long context can be streamingly processed. In this312

Bill paid a visit to Eiffel Tower 
on Sunday. 

After a delightful lunch, he 
joined with his friends. 

Mesmerized by the architectural 
marvel, he spent the morning 

exploring its details and taking in 
breathtaking views of the city. 

They went to Louvre Museum 
together.

Bill paid a visit to Eiffel Tower on 
Sunday. <LMK>  Mesmerized by 

the architectural marvel, he spent 

the morning exploring its details 
and taking in breathtaking views 

of the city. <LMK>  After a 

delightful lunch, he joined with his 
friends. <LMK> They, went to

Louvre Museum together. <LMK> 

Sentence embedding Landmark embedding
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Where did Bill go on Sunday afternoon? Where did Bill go on Sunday afternoon?

It’s a long context ... The i-th span. <LMK> ... The n-th span. <LMK> 

… …

LE1 LEi LEn

Query embedding

… …

Figure 2: Architecture for Landmark Embedding.
The landmark LMK token is appended to the end of each
sentence. A sliding window is employed to handle the
input sequence longer than the LLM’s context window.

situation, the generation of landmark embedding 313

will be conducted as: 314

LEi ← LLM(ci−l, ..., ci; LMK).embed[−1], 315

where l indicates the number of sentences within 316

the current sliding window. 317

3.3 Position-Aware Objective 318

The landmark embedding is learned by contrastive 319

learning, where the query and its relevant sentences 320

can be distinguished by the higher embedding sim- 321

ilarities. The useful information to the query tends 322

to gather as multiple consecutive sentences within 323

the context: {cz−m, ..., cz}. As a result, we can 324

derive the following general form of loss function 325

for the contrastive learning: 326

min.−
∑
q

∑
i≤m

lg
exp(⟨Eq,LEz−i⟩)∑
j=1...n exp(⟨Eq,LEj⟩)

. (4) 327

With the above formulation of loss function, the 328

landmark of each relevant sentence is assigned with 329

a positive label of equal importance. Neverthe- 330

less, the basic formulation is problematic know- 331

ing that it may let the most salient sentence (e.g., 332

the one with the most overlapping keywords with 333

the query) get the highest similarity. In our work, 334

we target on the complete retrieval of useful in- 335

formation. Therefore, we make an emphasis on 336

the ultimate boundary where the whole consecu- 337

tive sentences can be comprehensively included. 338

Although it may simply assign the last landmark 339

with a positive label, we propose to leverage all 340

landmarks because of their valid relevance with 341

the query. Particularly, we differentiate their im- 342

portance by introducing the positional weight wi 343

for sentence cz−i: wi ← exp(−α ∗ i), where α is 344
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the temperature parameter. Based on the positional345

weight, we modify the basic contrastive learning346

with the position-aware objective function:347

min.−
∑
q

∑
i≤m

lg
wi ∗ exp(⟨Eq,LEz−i⟩)∑
j=1...n exp(⟨Eq,LEj⟩)

. (5)348

The position-aware objective presents two benefits:349

1) the relevant sentences can be fully utilized for350

the training of landmark embedding, 2) the ulti-351

mate boundary of the useful information can be352

emphasized and better discriminated.353

3.4 Multi-Stage Learning354

The typical training data of embedding model con-355

sists of paired texts, e.g., question and answer,356

which is seemingly inappropriate for the training357

objective in Eq 5. However, we argue that the358

functionality of landmark embedding can be fac-359

torized with two fundamental capabilities: 1) the360

basic semantic discriminability, 2) the contextu-361

alized representation capability, i.e., representing362

each sentence w.r.t. its context. Based on this argu-363

ment, we design the multi-stage learning algorithm,364

which enables the two capabilities to be progres-365

sively established on top of proper training data. In366

the first place, the landmark embedding is initial-367

ized as a general sentence-level embedding model.368

Afterwards, it is enhanced as a contextual repre-369

sentation model where discriminative embeddings370

can be generated for its included sentences. The371

progressive training takes place with three steps.372

• Distant supervision. Firstly, we make use373

of the pairwise training data from MS MARCO374

(Nguyen et al., 2016), based on which the model375

can be initialized as a basic sentence embedder.376

In this place, the landmark embedding takes a377

special form as only one single landmark is ap-378

pended to the end of answer’s context: LEa ←379

LLM(answer; LMK).embed[−1]. The first-stage380

training follows the basic training form of dense381

retrieval, where 15 hard negatives together with the382

in-batch negatives are presented for each query.383

• Weak Supervision. In the second step,384

we make a simple modification of the pairwise385

training data where the model can be trained386

to generate discriminative sentence embeddings387

within a long context. Particularly, we randomly388

shuffle the answers from different queries, and389

merge them as one pseudo long document (left390

half of Figure 3). Therefore, the embedding for391

the i-th answer can be generated as: LEai ←392

It’s a long context ... The i-th sent. <LMK> ... The n-th sent. <LMK> 

… …

LE1 LEi LEn

Query embedding

… …

Answer3

Answer1

Answer4

Answer2

Q1

Q2

Q3

Q4

Shuffle & Merge

Span1

Span2

Span3

Span4

Q1

Q2

Q3

Q4

Q.G. from a long-doc

Figure 3: Weak Supervision (L) and Fine-Tuning (R).

≤4K ≤8K ≤12K ≤16K Total

Stage II. – – – 240K 240K

Stage III. 40K 30K 10K 10K 90K

Table 1: Distribution of training data’s lengths.

LLM(aj ̸=i, ..., ai; LMK).embed[−1]. The second 393

stage still relies on in-batch negatives, where the 394

landmark embeddings from other answers LEaj ̸=i
395

are utilized as the negative samples. 396

• Fine-Tuning. We leverage synthetic data for 397

the final stage of fine-tuning. In this step, we 398

make use of the real-world long documents from 399

Wikipedia(Foundation). For each long-document, 400

a series of text spans are randomly sampled, where 401

pseudo queries are generated by prompting the 402

LLM1. The synthesized data will incur an extra 403

cost due to the calling of LLM API. Besides, it 404

may also be distinct from the real-world data distri- 405

bution. Therefore, only a small amount of synthetic 406

data is generated for the final training stage. How- 407

ever, thanks to the fundamental capabilities estab- 408

lished in the first two stages, landmark embedding 409

can achieve a superior performance after moderate 410

fine-tuning. Detailed information of training data 411

and curating method is shown in Appendix A 412

4 Experiment 413

The experimental study focuses on the following 414

three research questions. RQ 1. The exploration 415

of landmark embedding’s impact on the retrieval 416

augmentation of long-context language modeling. 417

RQ 2. The comparison between landmark embed- 418

ding and the existing retrieval methods based on 419

chunked contexts. RQ 3. The analysis of technical 420

factors in landmark embedding. 421

4.1 Settings 422

We utilize two popular LLMs for RAG in our exper- 423

iment. One is the LLaMA-2-7B (chat) model. It 424

1. We make use of ChatGPT-35-turbo’s API in this work:
https://openai.com/blog/chatgpt
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LLM Retriever Unit Len. NQA QASP MFQA HQA 2WIKI MSQ Avg.

Llama2-7B-chat

w/o retrieval - 3,500 18.7 19.2 36.8 25.4 32.8 9.4 23.7
Contriever chunk 2,275 18.3 23.8 41.8 33.6 34.5 17.2 28.2
OpenAI-2 chunk 2,275 20.0 25.7 40.3 34.7 34.4 17.3 28.7
BGE-large chunk 2,275 17.6 21.7 45.4 34.3 36.9 19.9 29.3
E5mistral-7b chunk 2,275 21.6 24.1 42.2 37.6 31.4 20.7 29.6
Contriever sentence 2,190 16.2 26.5 44.4 33.5 33.3 17.5 28.6
BGE-large sentence 2,190 17.9 24.4 46.3 37.4 35.0 21.3 30.3
E5mistral-7b sentence 2,190 16.5 24.0 47.3 37.6 35.4 21.7 30.4

Ours sentence 2,190 21.3 27.7 47.6 40.2 36.3 21.7 32.5

ChatGPT-3.5-turbo

w/o retrieval - 15,500 23.6 43.3 52.3 51.6 37.7 26.9 39.2
Contriever chunk 2,275 18.3 35.6 54.3 47.0 39.5 25.2 36.6
OpenAI-2 chunk 2,275 21.8 38.1 52.8 46.6 44.9 30.4 39.1
BGE-large chunk 2,275 21.9 37.2 49.1 49.5 42.2 30.4 38.4
E5mistral-7b chunk 2,275 21.0 41.2 49.2 54.0 43.7 27.2 39.4
Contriever sentence 2,190 17.5 41.0 50.2 46.2 41.9 24.1 36.8
BGE-large sentence 2,190 19.8 41.2 51.3 50.5 46.5 29.6 39.8
E5mistral-7b sentence 2,190 20.0 39.0 49.4 55.4 45.9 31.1 40.1

Ours sentence 2,190 22.3 42.7 55.7 56.1 46.2 29.5 42.1

Table 2: Experiment results on retrieval augmented long-context language modeling. “unit” denotes chunking and
evidence selecting method. “Len.” denotes the average token number for the answering model(LLM).

Figure 4: Length distribution of evaluation data.

is a lightweight open-source LLM, whose context425

length is 4K. The other one is the ChatGPT-3.5426

(turbo). It is a more powerful but closed-source427

LLM, whose context length is 16K. The evalua-428

tions are performed with the following long-context429

language understanding datasets from LongBench430

(Bai et al., 2023), where explicit queries are avail-431

able for the evaluation samples: NarrativeQA432

(Kočiskỳ et al., 2018), Qasper (Dasigi et al.,433

2021), MultifieldQA (Bai et al., 2023), HotpotQA434

(Yang et al., 2018), 2WikiMQA (Ho et al., 2020),435

MuSiQue (Trivedi et al., 2022). The first three436

datasets are about single-doc QA where the use-437

ful information is concentrated in the long con- 438

text. The last three datasets are about multi-doc 439

QA where useful information may exist in differ- 440

ent parts of the long context. We follow Long- 441

Bench(Bai et al., 2023) using F1 score as the eval- 442

uation metric. It is worth noting that the above 443

datasets are differentiated in their sequence lengths. 444

As demonstrated by Figure 4, the majority of eval- 445

uation samples are longer than 4K, which is far 446

beyond the context length of LLaMA-2. However, 447

many of them are shorter than 16K, especially for 448

Qasper, MultifieldQA, 2WikiMQA, and HotpotQA, 449

which is within the coverage of ChatGPT-3.5-turbo. 450

We consider the following baseline methods. 1) 451

Contriever (Izacard et al., 2021), 2) OpenAI Text 452

Embedding (Ada-002) (Neelakantan et al., 2022), 453

3) BGE-v1.5-large (Xiao et al., 2023b), 4) E5- 454

Mistral (Wang et al., 2023). Notably, E5-Mistral 455

is the state-of-the-art text embedding model upon 456

the time of this paper. It is trained from a Mistral- 457

7B model (Jiang et al., 2023), which achieves the 458

leading performance on MTEB benchmark (Muen- 459

nighoff et al., 2023) with an overwhelming advan- 460

tage. The baseline retrievers utilize two alternative 461

chunking strategies. One is chunking by sentences; 462

the other one is chunking by equal-sized text spans. 463

In our work, each text span is made up of 200 words 464

as empirically determined by Longbench (Bai et al., 465

2023). The baselines will select the top-N chunks 466

for each query, and will take their front and back 467

sentences together as evidence for retrieval aug- 468
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Dataset Doc Len. Method MRR@10 Recall@10

Wiki 6,748

Contriever 79.74 96.11
BGE-large 88.32 98.70
E5mistral-7b 91.42 99.01

Ours 95.21 99.60

Arxiv 9,982

Contriever 66.27 94.12
BGE-large 78.82 97.06
E5mistral-7b 81.37 97.65

Ours 84.72 98.43

Table 3: Pilot experiment on retrieval accuracy.

mentation. We select top-7 chunks for span-based469

chunking and top-15 chunks for sentence-based470

chunking, which leads to similar context lengths.471

As landmark embedding is to identify the ultimate472

boundary of information, it will retrieve the font473

two sentences together with its top-N results.474

Landmark embedding is based on a LLaMA-2-475

7B backbone (Touvron et al., 2023b), whose con-476

text is extended to 32K by LongLora (Chen et al.,477

2023b). All training operations take place on a478

single 8×A100 (40GB) GPUs. The learning rate479

is 1×10−4, the weight decay is 1×10−6. The batch480

size for the 1st-stage training is 32; the batch size481

for the 2nd and 3rd stage training is 1, where we482

accumulate the gradient over 64 steps. We leverage483

Flash-attention-v2 (Dao, 2023), Gradient Check-484

pointing (Chen et al., 2016), and Deepspeed-Zero485

(Rajbhandari et al., 2020) to speed up the training.486

4.2 Main Result487

The experiment result on retrieval augmented long-488

context language modeling is presented in Table 2,489

where the following observations can be made.490

4.2.1 Analysis on retrieval augmentation491

Our method achieves a remarkable retrieval aug-492

mentation effect, as it consistently outperforms493

the basic LLaMa-2-7B, i.e., w/o retrieval, in ev-494

ery evaluation task, which ultimately results in a495

remarkable improvement of +8.8 points in terms496

of the average performance. At the same time, our497

method also brings forth the biggest improvement498

in comparison with other baseline retrievers.499

The retrieval-augmentation’s impact is relatively500

smaller with ChatGPT-3.5, as most of the baseline501

retrievers are unable to improve the performance502

of w/o retrieval. Such an observation is consistent503

with the reported result in recent study (Xu et al.,504

2023), and it is intuitive to understand this result505

considering that the context length of ChatGPT-506

3.5 is expanded to 16K. With such a large context507

window, ChatGPT can intake more than 15K in-508

Figure 5: Needle in a haystack test.

put tokens for each evaluation sample, whereas the 509

retrieval augmentation methods only utilize about 510

2K input tokens. In many situations, the evalua- 511

tion samples can almost be fully covered by such 512

a long context window (Figure 4), which means 513

the retrieval methods can hardly introduce extra 514

information outside ChatGPT’s context. 515

Despite these challenges, our method can still 516

outperform ChatGPT-3.5, which leads to a +2.9 517

points improvement in the average performance. 518

It consistently outperforms ChatGPT in the multi- 519

doc QA tasks, i.e. HQA, 2WIKI, MSQ; mean- 520

while, it achieves improved or comparable perfor- 521

mances in the single-doc QA tasks. The distinc- 522

tion between the two tasks is probably because 523

the useful information tends to be more scattered 524

and exists within multiple documents in the multi- 525

doc scenario, while it is more concentrated in the 526

single-doc scenario. It is also worth noting that 527

our method only works with 2,190 input tokens, 528

which is much less than the 15,500 tokens used by 529

ChatGPT. In other words, its empirical advantage 530

is achieved along with a higher running efficiency. 531

4.2.2 Pilot analysis on retrieval 532

In addition to the end-to-end performance on the 533

above long-context tasks, we conduct pilot experi- 534

ments for more detailed analysis about the retrieval 535

accuracy. In Table 3, we leverage the hold-back test 536

set of the synthetic data from Wikipedia for eval- 537

uation (1000 samples in total). We also curate the 538

synthetic testing samples based on ArXiv(Clement 539

et al., 2019) documents (500 samples in total), 540

which will reflect the retriever’s generalization with 541

the o.o.d. corpus. For both datasets, our method 542

can achieve a much higher retrieval accuracy than 543

the baseline retrievers which rely on the chunked 544

context. Besides, we also perform the needle in a 545

haystack test as Figure 5, where the ground-truth 546

document span is randomly placed in 30K con- 547

text (Liu et al., 2023; Ivgi et al., 2023). Detailed 548

setting is described in Appendix B. We compare 549
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Train Objective Retrieval Unit NQA QASP MFQA HQA 2WIKI MSQ Avg.
w/o Position-aware Surround-k sentence 19.1 29.8 46.8 40.2 34.2 17.0 31.2
w/o Position-aware Front-k sentence 19.4 28.5 46.5 38.5 33.8 19.0 31.0
w. Position-aware Surround-k sentence 19.4 29.7 47.9 39.0 36.0 17.8 31.6
w. Position-aware* Front-k sentence 21.3 27.7 47.6 40.2 36.3 21.7 32.5

Stage I. only Front-k sentence 18.9 27.0 45.0 35.5 33.2 17.2 29.4
Stage II. only Front-k sentence 19.0 27.4 43.9 34.4 32.7 16.5 29.0
Stage III. only Front-k sentence 20.5 27.2 45.3 39.2 34.3 15.3 30.3
Stage I. + II. Front-k sentence 19.2 26.5 47.0 36.2 32.8 16.8 29.8

Stage II. + III. Front-k sentence 19.4 26.7 46.8 39.8 35.4 18.3 31.0
All three stages* Front-k sentence 21.3 27.7 47.6 40.2 36.3 21.7 32.5

Table 4: Ablation study. Upper: impact from position-aware objective. Lower: impact from multi-stage learning.

two alternative formulations of landmark embed-550

ding: one works with the sliding window, and the551

other one directly generates the landmark embed-552

dings from the LLM’s context (denoted as Full-553

Attention). Although the pre-trained backbone en-554

coder is extended to 32K by LongLora, the training555

of the embedding model is mostly conducted within556

8K (Table 1). Two alternatives result in compara-557

ble performances when the ground-truth position558

is small. However, the Full-Attention method de-559

creases dramatically after the ground-truth position560

goes beyond the valid fine-tuning scope. In con-561

trast, the default method with the sliding window562

can always maintain a high retrieval accuracy.563

In brief, landmark embedding exhibits a major564

advantage over the baseline retrievers. It substan-565

tially improves the performance of LLaMA-2-7B566

whose context length is small. Besides, it further567

benefits the performance of ChatGPT-3.5 and helps568

to reduce its computation cost by a big margin.569

4.3 Ablation Study570

The ablation study is performed to explore the crit-571

ical factors of landmark embedding, where the de-572

fault settings are marked by * (Table 4). In the573

first place, we analyze the impact from position-574

aware objective (§3.3). For comparison, we disable575

the positional weight in Eq. 5 and switch to the576

basic objective in Eq. 4, denoted by w/o Position-577

aware. The position-ware objective function is to578

train landmark embedding as an indicator of the579

information’s ultimate boundary. Therefore, it is580

applied with the Front-k retrieval scheme, where581

the targeted sentence and its front k − 1 neighbors582

are retrieved together. In contrast, the Surround-k583

method makes selection for the (k − 1)/2 neigh-584

bors from both sides of the targeted sentence. Ac-585

cording to the evaluation result, the position-aware586

objective with Front-k outperforms the ablation587

baselines in the downstream language modeling588

tasks, which indicates its more accurate retrieval of 589

useful information from the long context. Besides, 590

it can also be observed that applying Front-k alone 591

does not bring any empirical benefit, as the basic 592

objective focuses more on the salient part of the 593

information rather than its ultimate boundary. 594

We make further analysis for the impact of multi- 595

stage learning. In our experiment, we apply each 596

individual training stage alone (I: distant supervi- 597

sion, II: weak supervision, III: fine-tuning), and 598

make arbitrary combinations of different stages. 599

As we can observe from the evaluation result, the 600

third stage, i.e. the fine-tuning over synthetic data, 601

presents the highest individual training effect. This 602

result can probably be attributed to its closest rela- 603

tionship with the downstream task. However, the 604

other two training stages are also beneficial. With 605

the joint conduct of all three training stages, opti- 606

mal empirical performance can be acquired. 607

5 Conclusion 608

In this paper, we present a new method, landmark 609

embedding, which facilitates the retrieval augmen- 610

tation of long-context language modeling. The 611

new method is featured by its chunking-free archi- 612

tecture, where discriminative embeddings can be 613

generated for each fine-grained input unit based on 614

the semantic information within a coherent context. 615

A position-aware objective function is proposed; 616

it enables landmark embedding to identify the ul- 617

timate boundary of information, which benefits 618

the completeness of retrieval. A novel multi-stage 619

learning algorithm is designed, which makes the 620

best of the readily available data and synthetic data 621

for the effective training of the embedding model. 622

Landmark embedding is empirically verified by 623

comprehensive evaluations, where it notably out- 624

performs the existing retrieval methods, bringing 625

in a superior retrieval augmentation effect for both 626

LLaMA-2-7B (4K) and ChatGPT-3.5 (16K). 627
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6 Limitation628

While Landmark Embedding achieves substantial629

progress in long-context retrieval augmentation,630

computational limitations have necessitated the use631

of a relatively small encoding backbone (7B) dur-632

ing the experimental phase. It is anticipated that the633

proposed technique could yield even better perfor-634

mance with future scalability enhancements. Ad-635

ditionally, there is potential for further exploration636

into the capacity and methods for Landmark Em-637

bedding to process longer texts, including those of638

unlimited length, multi-sourced scenarios. Deeper639

exploration into more efficient methods for curat-640

ing high-quality synthetic data can also be pursued641

in the future.642

7 Ethical consideration643

Landmark Embedding builds upon the foundation644

of the open-source LLM, specifically LLaMA-2-645

7B(Touvron et al., 2023b) (with an extended con-646

text window using LongLoRA(Chen et al., 2023b)).647

Consequently, it inherits similar ethical and social648

risks, such as bias, discrimination, and toxicity,649

as those associated with LLaMA-2. In particular,650

open-source LLMs may involve the incorporation651

of private or contentious data during the training652

phase. The usage of synthetic data may also lead653

to potential bias during retrieval process.654
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A Detailed Training Data for Multi-Stage896

Learning897

In this section, we present detailed information of898

training data for different learning stages and the899

method we adopt to curate synthetic data using real-900

word long documents with the help of ChatGPT-901

35-Turbo API2.902

Stage I and Stage II Training data. We use903

pairwise training data from MS MARCO (Nguyen904

et al., 2016). The total number of training set is905

480k. To ensure a fair comparison between the ef-906

fects of Stage I and Stage II, we partition the train-907

ing data evenly into two distinct training stages.908

During Stage I, we leverage hard negative passages909

from dense retrieval to enhance the model’s per-910

formance. Specifically, each positive passage is911

paired with 15 hard negative passages during the912

training process. Moving to Stage II, we concate-913

nate 40 hard negative passages and 120 passages914

randomly sampled from the corpus with ground915

truth passage inserted into it, forming composited916

long documents up to 16k context length.917

Synthetic Data Curating Method. In this section,918

we present the method for curating synthetic data,919

which facilitates Stage III fine-tuning. Firstly, we920

sample long documents from Wikipedia. Then we921

select a portion of it (e.g., 200 words) as the Back-922

ground Text and then select consecutive 1-5 sen-923

tences randomly from this excerpt as the Ground924

Truth Text. We utilize the ChatGPT-35-Turbo API925

to ask questions about the Background Text, with926

the requirement that the answers must be contained927

within the Ground Truth Text. This approach en-928

sures that the synthetic questions contain contex-929

tual information while maintaining their answers930

within smaller semantic segments. The details931

prompt for constructing synthetic data is shown in932

Figure 7. To make sure the synthetic data’s quality,933

we ask ChatGPT to generate concrete and valu-934

able questions. If the provided text does not con-935

tain meaningful information, we will distinguish936

and filter it. Finally, we curate 90k real-word long937

document data with the generated question and re-938

lated ground truth span for Stage III fine-tuning,939

the length distribution is shown in Figure 1940

B Needle in a Haystack Test941

In this section, we present the detailed experimen-942

tal setup for the Needle in a Haystack Test. As943

2. https://openai.com/blog/chatgpt

Figure 6: Needle in a haystack test on NQ and MS-
MARCO.

illustrated in Figure 5, we conducted the experi- 944

ment using the MS MARCO (Nguyen et al., 2016) 945

development set. Specifically, we concatenated 40 946

hard negative passages and 280 randomly sampled 947

passages from the corpus for each test data instance, 948

creating composite long documents of up to 32k 949

context length. Subsequently, we inserted the corre- 950

sponding ground truth passage at a random position 951

within the target insertion interval. An independent 952

experiment was conducted for each 6k length in- 953

sertion interval. Additionally, we utilized test data 954

from NaturalQuestions (Kwiatkowski et al., 2019) 955

under the same conditions, aiming to assess the 956

model’s generalization with out-of-domain corpus. 957

Similar findings were observed in the NaturalQues- 958

tions dataset. The results are shown in Figure 6 959
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Figure 7: The prompt we used to construct synthetic data with ChatGPT-35-Turbo API. To make sure the synthetic
data’s quality, we ask ChatGPT to generate concrete and valuable questions. If the provided text does not contain
meaningful information, we will distinguish and filter it.
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Figure 8: Synthetic data cases. The “Question” is generated by ChatGPT.
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