
Understanding Deflation Process in
Over-parametrized Tensor Decomposition

Rong Ge∗
Duke University

rongge@cs.duke.edu

Yunwei Ren*

Shanghai Jiao Tong University
2016renyunwei@sjtu.edu.cn

Xiang Wang*

Duke University
xwang@cs.duke.edu

Mo Zhou*

Duke University
mozhou@cs.duke.edu

Abstract

In this paper we study the training dynamics for gradient flow on over-parametrized
tensor decomposition problems. Empirically, such training process often first fits
larger components and then discovers smaller components, which is similar to a
tensor deflation process that is commonly used in tensor decomposition algorithms.
We prove that for orthogonally decomposable tensor, a slightly modified version
of gradient flow would follow a tensor deflation process and recover all the tensor
components. Our proof suggests that for orthogonal tensors, gradient flow dynamics
works similarly as greedy low-rank learning in the matrix setting, which is a first
step towards understanding the implicit regularization effect of over-parametrized
models for low-rank tensors.

1 Introduction

Recently, over-parametrization has been recognized as a key feature of neural network optimization.
A line of works known as the Neural Tangent Kernel (NTK) showed that it is possible to achieve
zero training loss when the network is sufficiently over-parametrized (Jacot et al., 2018; Du et al.,
2018; Allen-Zhu et al., 2018b). However, the theory of NTK implies a particular dynamics called
lazy training where the neurons do not move much (Chizat et al., 2019), which is not natural in
many settings and can lead to worse generalization performance (Arora et al., 2019b). Many works
explored other regimes of over-parametrization (Chizat and Bach, 2018; Mei et al., 2018) and
analyzed dynamics beyond lazy training (Allen-Zhu et al., 2018a; Li et al., 2020a; Wang et al., 2020).

Over-parametrization does not only help neural network models. In this work, we focus on a closely
related problem of tensor (CP) decomposition. In this problem, we are given a tensor of the form

T ∗ =

r∑
i=1

ai(U [:, i])⊗4,

where ai ≥ 0 and U [:, i] is the i-th column of U ∈ Rd×r. The goal is to fit T ∗ using a tensor T of a
similar form:

T =

m∑
i=1

(W [:, i])⊗4

‖W [:, i]‖2
.

∗Alphabetical order.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

0 200 400 600 800 1000
steps

0.0

0.1

0.2

0.3

0.4

0.5 loss

0 200 400 600 800 1000
steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Residual on e_1 direction
Residual on e_2 direction
Residual on e_3 direction
Residual on e_4 direction
Residual on e_5 direction

Figure 1: The training trajectory of gradient flow on orthogonal tensor decompositions. We chose
T ∗ =

∑
i∈[5] aie

⊗4
i with ei ∈ R10 and ai/ai+1 = 1.2. Our model T has 50 components and each

component is randomly initialized with small norm 10−15. We ran the experiments from 5 different
initialization and plotted the results separately. The left figure shows the loss 1

2 ‖T − T
∗‖2F and the

right figure shows the residual on each ei direction that is defined as (T ∗ − T)(e⊗4
i).

Here W is a d × m matrix whose columns are components for tensor T . The model is over-
parametrized when the number of components m is larger than r. The choice of normalization factor
of 1/‖W [:, i]‖2 is made to accelerate gradient flow (similar to Li et al. (2020a); Wang et al. (2020)).

Suppose we run gradient flow on the standard objective 1
2‖T −T

∗‖2F , that is, we evolve W according
to the differential equation:

dW

dt
= −∇

(
1

2
‖T − T ∗‖2F

)
,

can we expect T to fit T ∗ with good accuracy? Empirical results (see Figure 1) show that this is true
for orthogonal tensor T ∗2 as long as m is large enough. Further, the training dynamics exhibits a
behavior that is similar to a tensor deflation process: it finds the ground truth components one-by-one
from larger component to smaller component (if multiple ground truth components have similar norm
they might be found simultaneously).

In this paper we show that with a slight modification, gradient flow on over-parametrized tensor
decomposition is guaranteed to follow this tensor deflation process, and can fit any orthogonal tensor
to desired accuracy3(see Section 4 for the algorithm and Theorem 1 for the main theorem). This shows
that for orthogonal tensors, the trajectory of modified gradient-flow is similar to a greedy low-rank
process that was used to analyze the implicit bias of low-rank matrix factorization (Li et al., 2020b).
We emphasize that our goal is not to propose another tensor decomposition algorithm. Instead, we
hope our results can serve as a first step in understanding the implicit bias of over-parameterized
gradient descent for low-rank tensor problems.

1.1 Our approach and technique

To understand the tensor deflation process shown in Figure 1, intuitively we can think about the
discovery and fitting of a ground truth component in two phases. Consider the beginning of the
gradient flow as an example. Initially all the components in T are small, which makes T negligible
compared to T ∗. In this case each component w in W will evolve according to a simpler dynamics
that is similar to tensor power method, where one updates w to T ∗(w⊗3, I)/

∥∥T ∗(w⊗3, I)
∥∥ (see

Section 3 for details).

For orthogonal tensors, it’s known that tensor power method with random initializations would be
able to discover the largest ground truth components (see Anandkumar et al. (2014)). Once the largest
ground truth component has been discovered, the corresponding component (or multiple components)
w will quickly grow in norm, which eventually fits the ground truth component. The flat regions in
the trajectory in Figure 1 correspond to the period of time where the components w’s are small and

2We say T ∗ is an orthogonal tensor if the ground truth components U [:, i]’s are orthonormal.
3Due to some technical challenges, we actually require the target accuracy to be at least exp(−o(d/ log d)).

This is only a very mild restriction since the dependence is exponential in d, and in practice, d is usually large
and this lower bound can easily drop below the numerical precision.

2

T − T ∗ remains stable, while the decreasing regions correspond to the period of time where a ground
truth component is being fitted.

However, there are many challenges in analyzing this process. The main problem is that the gradient
flow would introduce a lot of dependencies throughout the trajectory, making it harder to analyze
the fitting of later ground truth components, especially ones that are much smaller. We modify the
algorithm to include a reinitialization step per epoch, which alleviates the dependency issue. Even
after the modification we still need a few more techniques:

Local stability One major problem in analyzing the dynamics in a later stage is that the components
used to fit the previous ground truth components are still moving according to their gradients, therefore
it might be possible for these components to move away. To address this problem, we add a small
regularizer to the objective, and give a new local stability analysis that bounds the distance to the
fitted ground truth component both individually and on average. The idea of bounding the distance
on average is important as just assuming each component w is close enough to the fitted ground truth
component is not sufficient to prove that w cannot move far. While similar ideas were considered in
Chizat (2021), the setting of tensor decomposition is different.

Norm/Correlation relation A key step in our analysis establishes a relationship between norm
and correlation: we show if a component w crosses a certain norm threshold, then it must have a very
large correlation with one of the ground truth components. This offers an initial condition for local
stability and makes sure the residual T ∗− T is almost close to an orthogonal tensor. Establishing this
relation is difficult as unlike the high level intuition, we cannot guarantee T ∗ − T remains unchanged
even within a single epoch: it is possible that one ground truth component is already fitted while no
large component is near another ground truth component of same size. In previous work, Li et al.
(2020a) deals with a similar problem for neural networks using gradient truncation that prevents
components from growing in the first phase (and as a result has super-exponential dependency on the
ratio between largest and smallest ai). We give a new technique to control the influence of ground
truth components that are fitted within this epoch, so we do not need the gradient truncation and can
characterize the deflation process.

1.2 Related works

Neural Tangent Kernel There is a recent line of work showing the connection between Neural
Tangent Kernel (NTK) and sufficiently wide neural networks trained by gradient descent (Jacot et al.,
2018; Allen-Zhu et al., 2018b; Du et al., 2018, 2019; Li and Liang, 2018; Arora et al., 2019b,c; Zou
et al., 2020; Oymak and Soltanolkotabi, 2020; Ghorbani et al., 2021). These papers show when
the width of a neural network is large enough, it will stay around the initialization and its training
dynamic is close to the dynamic of the kernel regression with NTK. In this paper we go beyond the
NTK setting and analyze the trajectory from a very small initialization.

Mean-field analysis There is another line of works that use mean-field approach to study the
optimization for infinite-wide neural networks (Mei et al., 2018; Chizat and Bach, 2018; Nguyen
and Pham, 2020; Nitanda and Suzuki, 2017; Wei et al., 2019; Rotskoff and Vanden-Eijnden, 2018;
Sirignano and Spiliopoulos, 2020). Chizat et al. (2019) showed that, unlike NTK regime, the
parameters can move away from its initialization in mean-field regime. However, most of the existing
works need width to be exponential in dimension and do not provide a polynomial convergence rate.

Beyond NTK There are many works showing the gap between neural networks and NTK (Allen-
Zhu and Li, 2019; Allen-Zhu et al., 2018a; Yehudai and Shamir, 2019; Ghorbani et al., 2019, 2020;
Dyer and Gur-Ari, 2019; Woodworth et al., 2020; Bai and Lee, 2019; Bai et al., 2020; Huang and Yau,
2020; Chen et al., 2020). In particular, Li et al. (2020a) and Wang et al. (2020) are closely related
with our setting. While Li et al. (2020a) focused on learning two-layer ReLU neural networks with
orthogonal weights, they relied on the connection between tensor decomposition and neural networks
(Ge et al., 2017) and essentially worked with tensor decomposition problems. In their result, all the
ai’s are within a constant factor and all components are learned simultaneously. We allow ground
truth components with very different scale and show a deflation phenomenon. Wang et al. (2020)
studied learning a low-rank non-orthogonal tensor, but they only showed the learned tensor T will
eventually be close to the ground truth tensor T ∗ and does not guarantee the components of T will

3

align with the components of T ∗. On the other hand, we fully characterize the training trajectory and
the components of the learned tensor.

Implicit regularization Many works recently showed that different optimization methods tend to
converge to different optima and have different optimization trajectories in several settings (Saxe et al.,
2014; Soudry et al., 2018; Nacson et al., 2019; Ji and Telgarsky, 2018a,b, 2019, 2020; Gunasekar
et al., 2018a,b; Moroshko et al., 2020; Arora et al., 2019a; Lyu and Li, 2019; Chizat and Bach,
2020). In particular, Saxe et al. (2014) related the dynamics of gradient descent to the magnitude
of the singular values of the target weight matrices for linear networks with orthogonal inputs. The
phenomenon there is qualitatively similar to our results, but the settings and the proof techniques are
very different. The more related and recent works are Li et al. (2020b) and Razin et al. (2021). Li
et al. (2020b) studied matrix factorization problem and showed gradient descent with infinitesimal
initialization is similar to greedy low-rank learning, which is a multi-epoch algorithm that finds the
best approximation within the rank constraint and relax the constraint after every epoch. Razin et al.
(2021) studied the tensor factorization problem and showed that it biases towards low rank tensor.
Both of these works considered partially observable matrix or tensor and are only able to fully analyze
the first epoch (i.e., recover the largest direction). We focus on a simpler setting with fully-observable
ground truth tensor and give a complete analysis of learning all the ground truth components.

1.3 Outline

In Section 2 we introduce the basic notations and problem setup. In Section 3 we review tensor
deflation process and tensor power method. We then give our algorithm in Section 4. Section 5 gives
the formal main theorem and discusses high-level proof ideas. We conclude in Section 6 and discuss
some limitations of the work. The detailed proofs and additional experiments are left in the appendix.

2 Preliminaries

Notations We use upper-case letters to denote matrices and tensors, and lower-case letters to denote
vectors. For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use Id to denote
d× d identity matrix, and omit the subscript d when the dimension is clear. We use δ0Unif(Sd−1) to
denote the uniform distribution over (d− 1)-dimensional sphere with radius δ0.

For vector v, we use ‖v‖ to denote its `2 norm. We use vk to denote the k-th entry of vector v, and
use v−k to denote vector v with its k-th entry removed. We use v̄ to denote the normalized vector
v̄ = v/ ‖v‖, and use v̄k to denote the k-th entry of v̄.

For a matrix A, we use A[:, i] to denote its i-th column and col(A) to denote the set of all column
vectors of A. For matrix M or tensor T , we use ‖M‖F and ‖T‖F to denote their Frobenius norm,
which is equal to the `2 norm of their vectorization.

For simplicity we restrict our attention to symmetric 4-th order tensors. For a vector v ∈ Rd, we
use v⊗4 to denote a d × d × d × d tensor whose (i, j, k, l)-th entry is equal to vivjvkvl. Suppose
T =

∑
w w
⊗4, we define T (v⊗4) as

∑
w 〈w, v〉

4, T (v⊗3, I) as
∑
w 〈w, v〉

3
w, and T (v⊗2, u, I) =∑

w 〈w, v〉
2 〈w, u〉w.

For clarity, we always call a component in T ∗ as ground truth component and call a component in
our model T simply as component.

Problem setup We consider the problem of fitting a 4-th order tensor. The components of the
ground truth tensor is arranged as columns of a matrix U ∈ Rd×r, and the tensor T ∗ is defined as

T ∗ =

r∑
i=1

ai(U [:, i]⊗4),

where a1 ≥ a2 ≥ · · · ≥ ar ≥ 0 and
∑r
i=1 ai = 1. For convenience in the analysis, we assume

ai ≥ ε/
√
d for all i ∈ [r]. This is without loss of generality because the target accuracy is ε and we

can safely ignore very small ground truth components with ai < ε/
√
d. In this paper, we focus on

the case where the components are orthogonal—that is, the columns U [:, i]’s are orthonormal. For

4

simplicity we assume without loss of generality that U [:, i] = ei where ei is the i-th standard basis
vector4. To reduce the number of parameters we also assume r = d, again this is without loss of
generality because we can simply set ai = 0 for i > r.

There can be many different ways to parametrize the tensor that we use to fit T ∗. Following previous
works (Wang et al., 2020; Li et al., 2020a), we use an over-parameterized and two-homogeneous
tensor

T =

m∑
i=1

W [:, i]⊗4

‖W [:, i]‖2
.

Here W ∈ Rd×m is a matrix with m columns that corresponds to the components in T . It is
overparametrized when m > r.

Since the tensor T only depends on the set of columns W [:, i] instead of the orderings of the columns,
for the most part of the paper we will instead write the tensor T as

T =
∑

w∈col(W)

w⊗4

‖w‖2
,

where col(W) is the set of all the column vectors in W . This allows us to discuss the dynamics of
coordinates for a component w without using the index for the component. In particular, wi always
represents the i-th coordinate of the vector w. This representation is similar to the mean-field setup
(Chizat and Bach, 2018; Mei et al., 2018) where one considers a distribution on w, however since we
do not rely on analysis related to infinite-width limit we use the sum formulation instead. For the
ease of presentation, we choose to restrict our setting to fourth-order tensor decomposition, but our
results can be easily generalized to tensor with order at least three.

3 Tensor deflation process and tensor power method

In this section we will first discuss the basic tensor deflation process for orthogonal tensor decompo-
sition. Then we show the connection between the tensor power method and gradient flow.

Tensor deflation For orthogonal tensor decomposition, a popular approach is to first fit the largest
ground truth component in the tensor, then subtract it out and recurse on the residual. The general
process is given in Algorithm 1. In this process, there are multiple ways to find the best rank-1
approximation. For example, Anandkumar et al. (2014) uses tensor power method, which picks many
random vectors w, and update them as w = T ∗(w⊗3, I)/

∥∥T ∗(w⊗3, I)
∥∥.

Algorithm 1 Tensor Deflation Process
Input: Tensor T ∗
Output: Components W such that T ∗ ≈

∑
w∈col(W) w

⊗4/‖w‖2
Initially let the residual R be T ∗.
while ‖R‖F is large do

Find the best rank 1 approximation w⊗4/‖w‖2 for R.
Add w as a new column in W , and let R = R− w⊗4/‖w‖2.

end while

Tensor power method and gradient flow If we run tensor power method using a tensor T ∗ that is
equal to

∑d
i=1 aie

⊗4
i , then a component w will converge to the direction of ei where i is equal to

arg maxi aiw̄
2
i . If there is a tie (which happens with probability 0 for random w), then the point will

be stuck at a saddle point.

Let’s consider running gradient flow on W with objective function 1
2 ‖T − T

∗‖2F as T :=∑
w∈col(W) w

⊗4/‖w‖2. If T does not change much, the residual R := T ∗ − T is close to a

4This is without loss of generality because gradient flow (and our modifications) is invariant under rotation
of the ground truth parameters.

5

constant. In this case the trajectory of one component w is determined by the following differential
equation:

dw

dt
= 4R(w̄⊗2, w, I)− 2R(w̄⊗4)w. (1)

To understand how this process works, we can take a look at dw2
i /dt

w2
i

(intuitively this corresponds to

the growth rate for w2
i). If R ≈ T ∗ then we have:

dw2
i /dt

w2
i

≈ 8aiw̄
2
i − 4

∑
j∈[d]

ajw̄
4
j .

From this formula it is clear that the coordinate with larger aiw̄2
i has a faster growth rate, so eventually

the process will converge to ei where i is equal to arg maxi aiw̄
2
i , same as the tensor power method.

Because of their similarity later we refer to dynamics in Eqn. (1) as tensor power dynamics.

4 Our algorithm

Our algorithm is a modified version of gradient flow as described in Algorithm 2. First, we change
the loss function to

L(W) =
1

2
‖T − T ∗‖2F +

λ

2
‖W‖2F .

The additional small regularization λ
2 ‖W‖

2
F allows us to prove a local stability result that shows if

there are components w that are close to the ground truth components in direction, then they will not
move too much (see Section 5.1).

Our algorithm runs in multiple epochs with increasing length. We use W (s,t) to denote the weight
matrix in epoch s at time t. We use similar notation for tensor T (s,t). In each epoch we try to fit
ground truth components with ai ≥ β(s). In general, the time it takes to fit one ground truth direction
is inversely proportional to its magnitude ai. The earlier epochs have shorter length so only large
directions can be fitted, and later epochs are longer to fit small directions.

At the middle of each epoch, we reinitialize all components that do not have a large norm. This serves
several purposes: first we will show that all components that exceed the norm threshold will have
good correlation with one of the ground truth components, therefore giving an initial condition to
the local stability result; second, the reinitialization will reduce the dependencies between different
epochs and allow us to analyze each epoch almost independently. These modifications do not change
the dynamics significantly, however they allow us to do a rigorous analysis.

Algorithm 2 Modified Gradient Flow
Input: Number of components m, initialization scale δ0, re-initialization threshold δ1, increasing
rate of epoch length γ, target accuracy ε, regularization coefficient λ
Output: Tensor T satisfying ‖T − T ∗‖F ≤ ε.
Initialize W (0,0) as a d×m matrix with each column w(0,0) i.i.d. sampled from δ0Unif(Sd−1).
β(0) ←

∥∥T (0,0) − T ∗
∥∥
F

; s← 0

while
∥∥T (s,0) − T ∗

∥∥
F
> ε do

Phase 1: Starting from W (s,0), run gradient flow for time t(s)1 = O(d
β(s) log(d)

).

Reinitialize all components that have `2 norm less than δ1 by sampling i.i.d. from δ0Unif(Sd−1).

Phase 2: Starting from W (s,t
(s)
1), run gradient flow for t(s)2 − t

(s)
1 = O(log(1/δ1)+log(1/λ)

β(s)) time

W (s+1,0) ←W (s,t
(s)
2); β(s+1) ← β(s)(1− γ); s← s+ 1

end while

6

5 Main theorem and proof sketch

In this section we discuss the ideas to prove the following main theorem5

Theorem 1. For any ε ≥ exp(−o(d/ log d)), there exists γ = Θ(1), m = poly(d), λ =
min{O(log d/d), O(ε/d1/2)}), α = min{O(λ/d3/2), O(λ2), O(ε2/d4)}, δ1 = O(α3/2/m1/2),
δ0 = Θ(δ1α/ log1/2(d)) such that with probability 1 − 1/poly(d) in the (re)-initializations, Al-
gorithm 2 terminates in O(log(d/ε)) epochs and returns a tensor T such that

‖T − T ∗‖F ≤ ε.

Intuitively, epoch s of Algorithm 2 will try to discover all ground truth components with ai that is at
least as large as β(s). The algorithm does this in two phases. In Phase 1, the small components w
will evolve according to tensor power dynamics. For each ground truth component with large enough
ai that has not been fitted yet, we hope there will be at least one component in W that becomes large
and correlated with ei. We call such ground truth components “discovered”. Phase 1 ends with a
check that reinitilizes all components with small norm. Phase 2 is relatively short, and in Phase 2 we
guarantee that every ground truth component that has been discovered become “fitted”, which means
the residual T − T ∗ becomes small in this direction.

However, there are still many difficulties in analyzing each of the steps. In particular, why would
ground truth components that are fitted in previous epochs remain fitted? How to guarantee only
components that are correlated with a ground truth component grow to a large norm? Why wouldn’t
the gradient flow in Phase 2 mess up with the initialization we require in Phase 1? We discuss the
high level ideas to solve these issues. In particular, in Section 5.1 we first give an induction hypothesis
that is preserved throughout the algorithm, which guarantees that every ground truth component that
is fitted remains fitted. In Section 5.2 we discuss the properties in Phase 1, and in Section 5.3 we
discuss the properties in Phase 2.

5.1 Induction hypothesis and local stability

In order to formally define what it means for a ground truth component to be “discovered” or “fitted”,
we need some more definitions and notations.

Definition 1. Define S(s,t)
i ⊆ [m] as the subset of components that satisfy the following conditions:

the k-th component is in S(s,t)
i if and only if there exists some time (s′, t′) that is no later than (s, t)

and no earlier than the latest re-initialization of W [:, k] such that∥∥∥W (s′,t′)[:, k]
∥∥∥ = δ1 and [W (s′,t′)[:, k]i]

2 ≥ 1− α2.

We say that ground truth component i is discovered in epoch s at time t, if S(s,t)
i is not empty.

Intuitively, S(s,t)
i is a subset of components in W such that they have large enough norm and good

correlation with the i-th ground truth component. Although such components may not have a large
enough norm to fit ai yet, their norm will eventually grow. Therefore we say ground truth component
i is discovered when such components exist.

For convenience, we shorthand w(s,t) ∈ {W (s,t)[:, j]|j ∈ S(s,t)
i } by w(s,t) ∈ S(s,t)

i . Now we will
discuss when a ground truth component is fitted, for that, let

â
(s,t)
i =

∑
w(s,t)∈S(s,t)

i

∥∥∥w(s,t)
∥∥∥2

.

Here â(s,t)
i is the total squared norm for all the components in S(s,t)

i . We say a ground truth component
is fitted if ai − â(s,t)

i ≤ 2λ.

5In the theorem statement, we have a parameter α that is not used in our algorithm but is very useful in
the analysis (see for example Definition 1). Basically, α measures the closeness between a component and its
corresponding ground truth direction (see more in Section 5.1).

7

Note that one can partition the columns in W using sets S(s,t)
i , giving d groups and one extra group

that contains everything else. We define the extra group as S(s,t)
∅ := [m] \

⋃
k∈[d] S

(s,t)
k .

For each of the non-empty S(s,t)
i , we can take the average of its component (weighted by

∥∥w(s,t)
∥∥2

):

E(s,t)
i,w f(w(s,t)) :=

1

â
(s,t)
i

∑
w(s,t)∈S(s,t)

i

∥∥∥w(s,t)
∥∥∥2

f(w(s,t)).

If S(s,t)
i = ∅, we define E(s,t)

i,w f(w(s,t)) as zero. Now we are ready to state the induction hypothesis:

Proposition 1 (Induction hypothesis). In the setting of Theorem 1, for any epoch s and time t and
every k ∈ [d], the following hold.

(a) For any w(s,t) ∈ S(s,t)
k , we have

[
w̄

(s,t)
k

]2
≥ 1− α.

(b) If S(s,t)
k is nonempty, E(s,t)

k,w

[
w̄

(s,t)
k

]2
≥ 1− α2 − 4smδ2

1 .

(c) We always have ak−â(s,t)
k ≥ λ/6−smδ2

1; if ak ≥ β(s)

1−γ , we further know ak−â(s,t)
k ≤ λ+smδ2

1 .

(d) If w(s,t) ∈ S(s,t)
∅ , then ‖w(s,t)‖ ≤ δ1.

We choose δ2
1 small enough so that smδ2

1 is negligible compared with α2 and λ. Note that if
Proposition 1 is maintained throughout the algorithm, all the large components will be fitted, which
directly implies Theorem 1. Detailed proof is deferred to Appendix D.

Condition (c) shows that for a ground truth component k with large enough ak, it will always be fitted
after the corresponding epoch (recall from Theorem 1 that λ = O(ε/

√
d)). Condition (d) shows

that components that did not discover any ground truth components will always have small norm
(hence negligible in most parts of the analysis). Conditions (a)(b) show that as long as a ground
truth component k has been discovered, all components that are in S(s,t)

k will have good correlation,
while the average of all such components will have even better correlation. The separation between
individual correlation and average correlation is important in the proof. With only individual bound,
we cannot maintain the correlation no matter how small α is. Here is an example below:

Claim 2. Suppose T ∗ = e⊗4
k and T = v⊗4/ ‖v‖2 + w⊗4/ ‖w‖2 with ‖w‖2 + ‖v‖2 ∈ [2/3, 1].

Suppose v̄2
k = 1−α and v̄k = w̄k, v̄−k = −w̄−k. Assuming ‖v‖2 ≤ c1 and α ≤ c2 for small enough

constants c1, c2, we have d
dt v̄

2
k < 0.

In the above example, both v̄ and w̄ are close to ek but they are opposite in other directions (v̄−k =
w̄−k). The norm of v is very small compared with that of w. Intuitively, we can increase v−k so that
the average of v and w is more aligned with ek. See the rigorous analysis in Appendix A.6.

The induction hypothesis will be carefully maintained throughout the analysis. The following lemma
guarantees that in the gradient flow steps the individual and average correlation will be maintained.

Lemma 3. In the setting of Theorem 1, suppose Proposition 1 holds in epoch s at time t, we have

d

dt
[w̄(s,t)]2 ≥ 8

(
ak − â(s,t)

k

)(
1− [w̄

(s,t)
k]2

)
−O

(
α1.5

)
,

d

dt
E(s,t)
k,w [w̄

(s,t)
k]2 ≥ 8

(
ak − â(s,t)

k

)(
1− E(s,t)

k,w [w̄
(s,t)
k]2

)
−O(α3).

In particular, when ak − â(s,t)
k ≥ Ω(λ) = Ω(

√
α), we have d

dt [w̄
(s,t)
k]2 > 0 when [w̄

(s,t)
k]2 = 1− α

and d
dtE

(s,t)
k,w [w̄

(s,t)
k]2 > 0 when E(s,t)

k,w [w̄
(s,t)
k]2 = 1− α2.

The detailed proof for the local stability result can be found in Appendix A. Of course, to fully prove
the induction hypothesis one needs to talk about what happens when a component enters S(s,t)

i , and
what happens at the reinitialization steps. We discuss these details in later subsections.

8

5.2 Analysis of Phase 1

In Phase 1 our main goal is to discover all the components that are large enough. We also need to
maintain Proposition 1. Formally we prove the following:
Lemma 4 (Main Lemma for Phase 1). In the setting of Theorem 1, suppose Proposition 1 holds at
(s, 0). For t(s)1 := t

(s)′
1 + t

(s)′′
1 + t

(s)′′′
1 with t(s)′1 = Θ(d/(β(s) log d)), t(s)′′1 = Θ(d/(β(s) log3 d)),

t
(s)′′′
1 = Θ(log(d/α)/β(s)), with probability 1− 1/poly(d) we have

1. Proposition 1 holds at (s, t) for any 0 ≤ t < t
(s)
1 , and also for t = t

(s)
1 after reinitialization.

2. If ak ≥ β(s) and S(s,0)
k = ∅, we have S(s,t

(s)
1)

k 6= ∅ and â(s,t
(s)
1)

k ≥ δ2
1 .

3. If S(s,0)
k = ∅ and S(s,t

(s)
1)

k 6= ∅, we have ak ≥ Cβ(s) for universal constant 0 < C < 1.

Property 2 shows that large enough ground truth components are always discovered, while Property
3 guarantees that no small ground truth components can be discovered. Our proof relies on initial
components being “lucky” and having higher than usual correlation with one of the large ground
truth components. To make this clear we separate components into different sets (here we use v to
denote a component in W):
Definition 2 (Partition of (re-)initialized components). For each direction i ∈ [d], define the set
of good components S(s)

i,good and the set of potential components S(s)
i,pot as follow, where Γ

(s)
i :=

1/(8ait
(s)′
1) if S(s,0)

i = ∅, and Γ
(s)
i := 1/(8λt

(s)′
1) otherwise. Here ρ(s)

i := cρΓ
(s)
i and cρ is a small

enough absolute constant.

S
(s)
i,good := {k | [v̄(s,0)

i]2 ≥ Γ
(s)
i + ρ

(s)
i , [v̄

(s,0)
j]2 ≤ Γ

(s)
j − ρ

(s)
j ,∀j 6= i and v(s,0) = W (s,0)[:, k]},

S
(s)
i,pot := {k | [v̄(s,0)

i]2 ≥ Γ
(s)
i − ρ

(s)
i and v(s,0) = W (s,0)[:, k]}.

Let S(s)
good := ∪iS(s)

i,good and S(s)
pot := ∪iS(s)

i,pot. We also define the set of bad components S(s)
bad.

S
(s)
bad := {k | ∃i 6= j s.t. [v̄

(s,0)
i]2 ≥ Γ

(s)
i − ρ

(s)
i , [v̄

(s,0)
j]2 ≥ Γ

(s)
j − ρ

(s)
j and v(s,0) = W (s,0)[:, k]}.

For convenience, we shorthand v(s,t) ∈ {W (s,t)[:, j]|j ∈ Si,good} by v(s,t) ∈ Si,good (same for
Si,pot and Sbad). Intuitively, the good components will grow very quickly and eventually pass the
norm threshold. Since both good and potential components only have one large coordinate, they will
become correlated with that ground truth component when their norm is large. The bad components
are correlated with two ground truth components so they can potentially have a large norm while
not having a very good correlation with either one of them. In the proof we will guarantee with
probability at least 1 − 1/poly(d) that good components exists for all large enough ground truth
components and there are no bad components. The following lemma characterizes the trajectories of
different type of components:
Lemma 5. In the setting of Lemma 4, for every i ∈ [d]

1. (Only good/potential components can become large) If v(s,t) 6∈ S(s)
pot,

∥∥v(s,t)
∥∥ = O(δ0) and

[v̄
(s,t)
i]2 = O(log(d)/d) for all i ∈ [d] and t ≤ t(s)1 .

2. (Good components discover ground truth components) If S(s)
i,good 6= ∅, there exists v(s,t

(s)
1)

such that
∥∥∥v(s,t

(s)
1)
∥∥∥ ≥ δ1 and S(s,t

(s)
1)

i 6= ∅.

3. (Large components are correlated with ground truth components) If
∥∥v(s,t)

∥∥ ≥ δ1 for some

t ≤ t(s)1 , there exists i ∈ [d] such that v(s,t) ∈ S(s,t)
i .

The proof of Lemma 5 is difficult as one cannot guarantee that all the ground truth components that
we are hoping to fit in the epoch will be fitted simultaneously. However we are able to show that
T − T ∗ remains near-orthogonal and control the effect of changing T − T ∗ within this epoch. The
details are in Appendix B.

9

5.3 Analysis of Phase 2

In Phase 2 we will show that every ground truth component that’s discovered in Phase 1 will become
fitted, and the reinitialized components will preserve the desired initialization conditions.

Lemma 6 (Main Lemma for Phase 2). In the setting of Theorem 1, suppose Proposition 1 holds at
(s, t

(s)
1), we have for t(s)2 − t

(s)
1 := O(log(1/δ1)+log(1/λ)

β(s))

1. Proposition 1 holds at (s, t) for any t(s)1 ≤ t ≤ t(s)2 .

2. If S(s,t
(s)
1)

k 6= ∅, we have ak − â
(s,t

(s)
2)

k ≤ 2λ.

3. For any component v that was reinitialized at t(s)1 , we have
∥∥∥v(s,t

(s)
2

∥∥∥2

= Θ(δ2
0) and[

v̄
(s,t

(s)
2)

i

]2

=

[
v̄

(s,t
(s)
1)

i

]2

± o
(

log d
d

)
for every i ∈ [d].

The main idea is that as long as a direction has been discovered, the norm of the corresponding
components will increase very fast. The rate of that is characterized by the following lemma.

Lemma 7 (informal). In the setting of Theorem 6, for any t(s)1 ≤ t ≤ t(s)2 ,

d

dt
â

(s,t)
k ≥

(
2(ak − â(s,t)

k)− λ−O
(
α2
))
â

(s,t)
k .

In particular, after O(log(1/δ1)+log(1/λ)
ak

) time, we have ak − â(s,t)
k ≤ λ.

By the choice of δ1 and λ, the length of Phase 2 is much smaller than the amount of time needed
for the reinitialized components to move far, allowing us to prove the third property in Lemma 6.
Detailed analysis is deferred to Appendix C.

6 Conclusion

In this paper we analyzed the dynamics of gradient flow for over-parametrized orthogonal tensor
decomposition. With very mild modification to the algorithm (a small regularizer and some re-
initializations), we showed that the trajectory is similar to a tensor deflation process and the greedy
low-rank procedure in Li et al. (2020b). These modifications allowed us to prove strong guarantees
for orthogonal tensors of any rank, while not changing the empirical behavior of the algorithm. We
believe such techniques would be useful in later analysis for the implicit bias of tensor problems.

A major limitation of our work is that it only applies to orthogonal tensors. Going beyond this would
require significantly new ideas—we observed that for general tensors, overparametrized gradient flow
may have a very different behavior compared to the greedy low-rank procedure, as it is possible for
two large component in the same direction to split into two different directions (see more details in
Appendix E). We leave that as an interesting open problem.

Acknowledgements

Rong Ge, Xiang Wang and Mo Zhou are supported in part by NSF Award CCF-1704656, CCF-
1845171 (CAREER), CCF-1934964 (Tripods), a Sloan Research Fellowship, and a Google Faculty
Research Award.

References
Allen-Zhu, Z. and Li, Y. (2019). What can resnet learn efficiently, going beyond kernels? arXiv

preprint arXiv:1905.10337.

Allen-Zhu, Z., Li, Y., and Liang, Y. (2018a). Learning and generalization in overparameterized neural
networks, going beyond two layers. arXiv preprint arXiv:1811.04918.

10

Allen-Zhu, Z., Li, Y., and Song, Z. (2018b). A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. (2014). Tensor decompositions
for learning latent variable models. Journal of machine learning research, 15:2773–2832.

Arora, S., Cohen, N., Hu, W., and Luo, Y. (2019a). Implicit regularization in deep matrix factorization.
arXiv preprint arXiv:1905.13655.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and Wang, R. (2019b). On exact computation
with an infinitely wide neural net. arXiv preprint arXiv:1904.11955.

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. (2019c). Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural networks. arXiv preprint arXiv:1901.08584.

Bai, Y., Krause, B., Wang, H., Xiong, C., and Socher, R. (2020). Taylorized training: Towards better
approximation of neural network training at finite width. arXiv preprint arXiv:2002.04010.

Bai, Y. and Lee, J. D. (2019). Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. arXiv preprint arXiv:1910.01619.

Chen, M., Bai, Y., Lee, J. D., Zhao, T., Wang, H., Xiong, C., and Socher, R. (2020). Towards under-
standing hierarchical learning: Benefits of neural representations. arXiv preprint arXiv:2006.13436.

Chizat, L. (2021). Sparse optimization on measures with over-parameterized gradient descent.
Mathematical Programming, pages 1–46.

Chizat, L. and Bach, F. (2018). On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Advances in neural information processing systems, pages
3036–3046.

Chizat, L. and Bach, F. (2020). Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on Learning Theory, pages 1305–1338. PMLR.

Chizat, L., Oyallon, E., and Bach, F. (2019). On lazy training in differentiable programming. In
Advances in Neural Information Processing Systems, pages 2933–2943.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. (2019). Gradient descent finds global minima of deep
neural networks. In International Conference on Machine Learning, pages 1675–1685. PMLR.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018). Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054.

Dyer, E. and Gur-Ari, G. (2019). Asymptotics of wide networks from feynman diagrams. arXiv
preprint arXiv:1909.11304.

Ge, R., Lee, J. D., and Ma, T. (2017). Learning one-hidden-layer neural networks with landscape
design. arXiv preprint arXiv:1711.00501.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A. (2019). Limitations of lazy training of
two-layers neural network. In NeurIPS.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A. (2020). When do neural networks
outperform kernel methods? arXiv preprint arXiv:2006.13409.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A. (2021). Linearized two-layers neural
networks in high dimension. The Annals of Statistics, 49(2):1029–1054.

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. (2018a). Characterizing implicit bias in terms
of optimization geometry. In International Conference on Machine Learning, pages 1832–1841.
PMLR.

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. (2018b). Implicit bias of gradient descent on linear
convolutional networks. arXiv preprint arXiv:1806.00468.

11

Huang, J. and Yau, H.-T. (2020). Dynamics of deep neural networks and neural tangent hierarchy. In
International Conference on Machine Learning, pages 4542–4551. PMLR.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pages 8571–8580.

Ji, Z. and Telgarsky, M. (2018a). Gradient descent aligns the layers of deep linear networks. arXiv
preprint arXiv:1810.02032.

Ji, Z. and Telgarsky, M. (2018b). Risk and parameter convergence of logistic regression. arXiv
preprint arXiv:1803.07300.

Ji, Z. and Telgarsky, M. (2019). A refined primal-dual analysis of the implicit bias. arXiv preprint
arXiv:1906.04540.

Ji, Z. and Telgarsky, M. (2020). Directional convergence and alignment in deep learning. arXiv
preprint arXiv:2006.06657.

Lakshmikantham, V., Bainov, D., and Simeonov, P. S. (1989). Theory of impulsive differential
equations. World Scientific.

Li, Y. and Liang, Y. (2018). Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pages 8157–
8166.

Li, Y., Ma, T., and Zhang, H. R. (2020a). Learning over-parametrized two-layer neural networks
beyond ntk. In Conference on Learning Theory, pages 2613–2682. PMLR.

Li, Z., Luo, Y., and Lyu, K. (2020b). Towards resolving the implicit bias of gradient descent for
matrix factorization: Greedy low-rank learning. arXiv preprint arXiv:2012.09839.

Lyu, K. and Li, J. (2019). Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890.

Mei, S., Montanari, A., and Nguyen, P.-M. (2018). A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671.

Moroshko, E., Gunasekar, S., Woodworth, B., Lee, J. D., Srebro, N., and Soudry, D. (2020).
Implicit bias in deep linear classification: Initialization scale vs training accuracy. arXiv preprint
arXiv:2007.06738.

Nacson, M. S., Lee, J., Gunasekar, S., Savarese, P. H. P., Srebro, N., and Soudry, D. (2019).
Convergence of gradient descent on separable data. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 3420–3428. PMLR.

Nguyen, P.-M. and Pham, H. T. (2020). A rigorous framework for the mean field limit of multilayer
neural networks. arXiv preprint arXiv:2001.11443.

Nitanda, A. and Suzuki, T. (2017). Stochastic particle gradient descent for infinite ensembles. arXiv
preprint arXiv:1712.05438.

Oymak, S. and Soltanolkotabi, M. (2020). Towards moderate overparameterization: global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory.

Razin, N., Maman, A., and Cohen, N. (2021). Implicit regularization in tensor factorization. arXiv
preprint arXiv:2102.09972.

Rotskoff, G. M. and Vanden-Eijnden, E. (2018). Trainability and accuracy of neural networks: An
interacting particle system approach. arXiv preprint arXiv:1805.00915.

Saxe, A. M., Mcclelland, J. L., and Ganguli, S. (2014). Exact solutions to the nonlinear dynamics of
learning in deep linear neural network. In In International Conference on Learning Representations.

12

Sirignano, J. and Spiliopoulos, K. (2020). Mean field analysis of neural networks: A central limit
theorem. Stochastic Processes and their Applications, 130(3):1820–1852.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The implicit bias of
gradient descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878.

Tao, T. (2006). Nonlinear dispersive equations: local and global analysis. American Mathematical
Society.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press.

Wang, X., Wu, C., Lee, J. D., Ma, T., and Ge, R. (2020). Beyond lazy training for over-parameterized
tensor decomposition. arXiv preprint arXiv:2010.11356.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. (2019). Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. In Advances in Neural Information Processing
Systems, pages 9712–9724.

Woodworth, B., Gunasekar, S., Lee, J. D., Moroshko, E., Savarese, P., Golan, I., Soudry, D., and
Srebro, N. (2020). Kernel and rich regimes in overparametrized models. In Conference on Learning
Theory, pages 3635–3673. PMLR.

Yehudai, G. and Shamir, O. (2019). On the power and limitations of random features for understanding
neural networks. arXiv preprint arXiv:1904.00687.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. (2020). Gradient descent optimizes over-parameterized deep
relu networks. Machine Learning, 109(3):467–492.

13

	Introduction
	Our approach and technique
	Related works
	Outline

	Preliminaries
	Tensor deflation process and tensor power method
	Our algorithm
	Main theorem and proof sketch
	Induction hypothesis and local stability
	Analysis of Phase 1
	Analysis of Phase 2

	Conclusion

