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ABSTRACT

Recent advances in small-scale large language models have shown that compact
models can successfully handle an expanding range of natural language and rea-
soning tasks. This progress opens the door to more affordable AI inference ser-
vices by enabling broader use of cost-efficient models. However, existing ap-
proaches often fail to fully exploit small models due to fuzzy boundaries of their
capabilities. In this paper, we propose a risk-controlled routing framework that
dynamically selects among models of different scales, with a strong emphasis on
maximizing the utility of smaller models. Our framework integrates supervised
contrastive learning to enhance the separability of smaller-model capabilities and
grounds its routing mechanism in conformal risk control, providing theoretical
guarantees on system-level routing risk. Across benchmarks, our method delivers
cost–accuracy performance that is comparable to or better than strong baselines,
with an absolute accuracy improvement of ∼ 3.49% at equal cost and up to ∼ 36%
cost reduction at comparable accuracy.

1 INTRODUCTION

Large language models (LLMs)(OpenAI, 2025a; DeepSeek-AI et al., 2025; Grattafiori et al., 2024)
have progressed rapidly, demonstrating strong performance across a wide range of natural lan-
guage and reasoning tasks. To increase accessibility, model families such as GPT(OpenAI, 2025b),
Gemma(Team et al., 2025), and Qwen(Yang et al., 2025) are released in multiple scales, each with
distinct accuracy-efficiency trade-offs. This diversity creates an opportunity to improve system-level
efficiency: rather than relying exclusively on a single large model, queries can be adaptively routed
to models of different scales. Realizing this potential requires solving a central systems problem:
LLM routing(Ding et al., 2022; 2024; Hu et al., 2024). The goal is to design a mechanism that
dynamically selects the most suitable model for each query, where suitability entails two criteria:
achieving sufficient accuracy to solve the task and maintaining an inference cost affordable to most
users.

Recent research on LLM routing mainly falls into two categories. The first is learning-based
approaches, such as RouteLLM (Ong et al., 2025), HybridLLM (Ding et al., 2024), TO-router
(Stripelis et al., 2024), BEST-route (Ding et al., 2025), and RouterDC (Chen et al., 2024b). The
second is similarity-based approaches, where queries are embedded and routed based on their prox-
imity or consistency in representation space, including clustering or nearest-neighbor retrieval (e.g.,
k-means–based partitioning in RouterBench (Hu et al., 2024)) and output-consistency methods such
as Smoothie (Guha et al., 2024). These approaches do not require supervised training of a router but
instead leverage the structural similarity among queries or the agreement among model outputs.

The primary limitation of current routing paradigms is their failure to fully exploit small, cost-
efficient models, which are frequently bypassed even when capable. This under-utilization arises
not from explicit design choices but from the inherent difficulty of predicting their performance. At
its core lies a representation challenge: a small model’s ability to correctly answer a query does not
consistently align with its semantic representation. For example, two semantically similar queries
may be mapped to nearby points in a standard embedding space, yet a small model may succeed on
one and fail on the other (see Figure 1). The generic embeddings of prior work are insensitive to
fine-grained differences in model capabilities, causing routers to be overly cautious and default to
larger, more expensive models. Complementing this representational flaw is the risk-aware decision-
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Figure 1: Embedding space separability (t-SNE). (a) Off-the-shelf embeddings: small-model cor-
rectness labels are heavily mixed. (b) Larger model: better but imperfect separation. (c) After SCL
on the small model: clear delineation of answerable vs. unanswerable queries. Colors denote cor-
rectness (1/0).

making challenge. Assigning a complex query to an underpowered model wastes computation and
may yield unexpected or incorrect responses, whereas sending a simple query to an expensive model
incurs unnecessary cost. Existing methods typically rely on heuristic thresholds or fixed rules, but
they lack a principled framework to formally quantify and control routing risk, leaving system-level
behavior fragile and hard to guarantee.

To address these challenges, we propose Conformal Risk-Controlled Routing (CR2), a framework
that integrates capability-aware representation learning with principled risk control and cost-aware
selection. Inspired by greedy algorithms, the first stage focuses on exploiting the utility of the small-
est, most economical model. To tackle the core representation challenge, we employ supervised
contrastive learning (SCL)(Khosla et al., 2020) to construct embeddings augmented with model-
specific answerability, enabling the router to separate queries that are semantically similar but have
different outcomes on the small model. Queries that cannot be confidently assigned to the small
model are escalated to a second-stage router, which selects a candidate set of stronger models. To
address the risk-aware decision-making challenge, we ground the routing process in the Conformal
Risk Control (CRC). Specifically, we define a system-level risk function using candidate-set model-
level false-positive rate (FPR) and calibrate a global candidate threshold under a held-out calibration
set, providing formal guarantees for routing risk. Within the resulting candidate sets, a simple cost-
aware rule selects the lowest-cost model, yielding a predictable and tunable accuracy–cost trade-off.

The main contributions of this work are summarized as follows:

• We propose CR2, a two-stage routing framework that prioritizes the cost-efficient models.
By leveraging supervised contrastive learning to refine embeddings, the router distinguishes
semantically similar queries with divergent answerability, overcoming a key limitation of
prior embedding-based methods.

• To the best of our knowledge, this is the first work to introduce CRC into LLM routing.
By defining a bounded, composite routing loss and calibrating a global candidate threshold,
CR2 provides formal guarantees that the expected risk is provably bounded below specified
level α, while also yielding improved performance.

• Extensive experiments demonstrate that CR2 establishes a new state of the art in LLM rout-
ing. It achieves an absolute accuracy improvement of approximately 3.49% (6% relative)
over strong baselines such as EmbedLLM and single largest model, while simultaneously
reducing overall operational cost.

2 RELATED WORK

2.1 MODEL ROUTING IN LLMS

Dynamic routing for efficiency spans multiple granularities: token-level mixtures-of-experts within
a single forward pass (Fedus et al., 2022; Zhou et al., 2022; Li et al., 2025) and window-level
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schemes such as speculative decoding (Leviathan et al., 2023; Lu et al., 2023; Chen et al., 2024c; Li
et al., 2024). This work focuses on query-level routing, where an entire request is dispatched to one
model from a pool. Existing methods include pre-generation routers that train lightweight selectors
to pick a single model before inference (Ong et al., 2025; Ding et al., 2024; Feng et al., 2025;
Stripelis et al., 2024; Ding et al., 2025) and post-generation cascades that escalate from cheaper
to more expensive models until a quality criterion is met (Chen et al., 2024a). While effective,
these approaches typically rely on fixed thresholds or heuristics and provide no distribution-free
guarantees. Our framework complements this line by combining hierarchical routing with conformal
risk control.

2.2 CAPABILITY-AWARE REPRESENTATIONS

Routing often hinges on representations that anticipate which model can solve a query. Early ap-
proaches embed models via accuracy profiles or simple classifiers to separate “easy” from “hard”
queries (Zhuang et al., 2025; Ding et al., 2024). More recent work leverages contrastive objectives,
either by jointly embedding queries and models (Chen et al., 2024b) or by modeling query–LLM
relationships through transformer-based backbones (Jin et al., 2025). Other methods enrich em-
beddings with auxiliary signals, such as capability instructions that combine past performance and
user prompts (Zhang et al., 2025b), or document-level context to capture knowledge shifts (Zhang
et al., 2025a). However, these embeddings can conflate semantic similarity with answerability, lead-
ing to under-utilization of smaller, cost-efficient models. Our approach instead applies supervised
contrastive learning to shape embeddings so that proximity reflects model-specific answerability,
improving small-model utilization without sacrificing accuracy.

2.3 RISK-AWARE DECISION MAKING AND CONFORMAL PREDICTION

Beyond representation, routing is also a risk management problem. Conformal prediction pro-
vides distribution-free reliability guarantees, but classical coverage does not directly address
cost–accuracy trade-offs. Conformal Risk Control (CRC) extends these tools to general bounded
risks with finite-sample guarantees (Angelopoulos et al., 2024), and has been applied to mitigate
hallucination in single-LLM settings (Overman et al., 2024; Chen et al., 2025). Other recent con-
formal methods include CP-Router, which uses uncertainty estimates for routing (Su et al., 2025),
and another that optimizes risk and prediction set size during training (Noorani et al., 2024). To our
knowledge, we are the first to introduce CRC into the routing pipeline itself: we calibrate a global
candidate threshold so that the expected system-level routing risk—whose Stage-2 component is
the candidate-set model-level false-positive rate—remains within a user-specified tolerance, while a
cost-aware selector realizes efficiency gains.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We study routing over a pool of large language models (LLMs) with heterogeneous sizes and in-
ference costs. Let Q denote the space of queries and M = {M1, . . . ,MK} the available models.
Each model Mi is associated with an inference cost ci > 0 and a correctness indicatorAi(q) =
1[Mi(q) = y ], where Mi(q) is the output of Mi on query q and y is the ground-truth answer;
hence Ai(q) ∈ {0, 1} indicates whether Mi answers q correctly. A routing strategy is a mapping
R : Q → M that assigns a model MR(q) to each query q. The system-level correctness on q is
AR(q)(q). We evaluate a routing strategy R by its expected accuracy

Acc(R) = Eq∼Q
[
AR(q)(q)

]
, (1)

and its expected cost
Cost(R) = Eq∼Q

[
cR(q)

]
. (2)

The routing problem is thus a multi-objective optimization that maximizes accuracy while minimiz-
ing cost:

max
R

(
Acc(R), −Cost(R)

)
, (3)

equivalently minR
(
1− Acc(R),Cost(R)

)
, which induces a Pareto frontier.
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Remark. In Section §4 we instantiate R via a two-stage architecture that prioritizes the smallest
model when safe and escalates otherwise; here we only establish notation and objectives.

3.2 CONFORMAL RISK CONTROL

CRC (Angelopoulos et al., 2024) is a statistical framework that generalizes classical conformal
prediction from coverage guarantees to controlling the expectation of a general loss function. Given
a base predictor, a calibration set {(Xi, Yi)}ni=1, and a user-specified risk level α ∈ (0, 1), CRC
provides a recipe for calibrating a parameter λ̂ to ensure that the expected loss on a new test point
does not exceed α.

The framework operates on a family of predictors Cλ(x) indexed by a parameter λ ∈ Λ. This
parameter λ controls the conservativeness of the predictor’s output. We define a loss for each
calibration example as

Li(λ) = ℓ(Cλ(Xi), Yi) . (4)

A critical requirement of the framework is that the loss function ℓ must be monotone non-increasing
with respect to λ. This ensures that a more conservative choice of λ will not result in a higher
loss. This property holds for many useful applications, such as controlling the false negative rate in
multilabel classification or token-level F1 loss in question answering (Angelopoulos et al., 2024).

The goal of CRC is to select a data-driven threshold λ̂ such that the following expected risk guarantee
holds for a new test point (Xn+1, Yn+1):

E
[
Ln+1(λ̂)

]
≤ α. (5)

CRC achieves this by calculating the empirical risk R̂(λ) = 1
n

∑
i Li(λ) on the calibration set and

finding the least conservative λ that satisfies a high-probability risk bound. For a loss bounded by
B, this is typically:

λ̂ = inf

{
λ ∈ Λ

∣∣∣∣ n

n+ 1
R̂(λ) +

B

n+ 1
≤ α

}
. (6)

This guarantee is distribution-free and holds for finite samples. When ℓ is chosen as the miscoverage
loss, ℓ(Cλ(X), Y ) = 1{Y /∈ Cλ(X)}, CRC reduces exactly to classical conformal prediction.

4 METHODOLOGY

In this section, we introduce Conformal Risk-Controlled Routing, a framework designed to address
the dual challenges of representation and risk-aware decision-making in LLM routing. The core
of our approach is to decompose the global routing task into two specialized sub-problems: (1) a
high-precision binary prediction for the single, most cost-effective model, and (2) a multi-label pre-
diction to identify capable models from the remaining expert pool. Crucially, instead of combining
these stages with fragile heuristics, we unify them under the CRC framework. This is achieved by
designing a global risk function and a corresponding decision algorithm, which together provide a
provable guarantee that the system-level trade-off between cost and accuracy is explicitly controlled.

4.1 PROBLEM DECOMPOSITION

We parameterize a hierarchical router by thresholds θ = (t1, t2):

Rθ(q) =

{
M1, if s1(q) ≥ t1,

Select
(
Ct2(q)

)
, otherwise,

(7)

where s1(q)∈ [0, 1] estimates the success probability of M1 on q, Ct2(q) = { i≥2 : p̂i(q) ≥ t2 } is
a candidate set among larger models, and Select(·) is a cost-aware rule. Section 4.2 describes how
to obtain s1(q); Section 4.3 details {p̂i(q)}i≥2 and the CRC calibration of θ.
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Figure 2: Overview of the CR2 framework. A binary classifier, operating on a capability-aware
embedding space shaped by SCL, first attempts to route a query to the small model. If the query
is rejected, a multilabel classifier scores the expert model pool. Finally, CRC uses these scores
to calibrate a decision threshold that guarantees the final cost-optimal selection adheres to a user-
specified risk tolerance.

4.2 CAPABILITY-AWARE FILTERING

The first stage of CR2 constructs a high-precision filter for the smallest model M1, which predicts
the binary correctness label A1(q) ∈ {0, 1} for a given query q. This is achieved through a two-
phase procedure: (i) fine-tuning a text encoder to learn capability-aware representations; and (ii)
training a classification head on these embeddings.

Architecture. The module consists of a pretrained encoder gθ, a projection head uφ, and a classi-
fication head hψ . To enrich the embedding for contrastive learning, uφ is designed as an attention
pooling projector, which uses learnable query vectors to attend to token-level encoder outputs and
yield more informative representations than mean pooling. The classification head is a two-layer
MLP.

Phase 1: Representation Learning via SCL. We use SCL (Khosla et al., 2020) to endow the
Stage-1 filter with a representation whose geometry reflects the answerability of the smallest model
M1, rather than mere semantic similarity.

Setup. Let gθ be a pretrained text encoder and uφ a projection head (we use an attention-pooling
projector). Given a query q, we form a normalized embedding

zq =
uφ

(
gθ(q)

)∥∥uφ(gθ(q))∥∥2 . (8)

For a minibatch {(qi, yi)}Bi=1, labels are yi=A1(qi) ∈ {0, 1}, where A1(q) indicates whether M1

answers q correctly (cf. Preliminaries).

Supervised contrastive loss. With temperature τ > 0, the per-anchor SCL loss is

LSCL
i = − 1

|P(i)|
∑
p∈P(i)

log
exp

(
z⊤
i zp/τ

)∑
a∈A(i) exp

(
z⊤
i za/τ

) , (9)

where P(i) = { p ̸= i : yp = yi } is the set of positives for anchor i and A(i) = { a ̸= i } the set
of all non-anchor samples in the batch (anchors with |P (i)| = 0 are skipped). Minimizing LSCL =

5
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Figure 3: (a) Routing accuracy of CR2 compared to baselines. CR2 router performs better almost
across the whole test set. (b) Accuracy–cost trade-off of different routing strategies, where CR2

achieves superior Pareto efficiency compared to baselines.
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Figure 4: Accuracy–cost trade-off of different routing strategies per benchmark.

∑
i LSCL

i pulls together queries that M1 handles similarly (both solvable or both unsolvable) and
pushes apart those with different outcomes, thereby reshaping the embedding space to be capability-
aware with respect to M1.

Classifier training on capability-aware embeddings. After SCL fine-tuning, we freeze the en-
coder gθ and projector uφ, and train a lightweight classification head hψ on the capability-aware
representations. The head is trained to predict the success of model M1, i.e., the binary label
y = A1(q) ∈ {0, 1}. It outputs two logits, and we convert their difference into a probability es-
timate via the sigmoid function:

s1(q) = σ
(
ℓ1(q)− ℓ0(q)

)
≈ Pr

[
A1(q) = 1

]
. (10)

Since the smallest model correctly handles only a limited proportion of queries, the training data for
its success predictor suffers from a natural class imbalance. To mitigate this, the head is optimized
by minimizing a class-weighted binary cross-entropy loss, where weights are determined by the
inverse frequency of each class. At inference, the Stage-1 router routes to M1 when s1(q)≥ t1 and
otherwise escalates. We treat t1 as a fixed gate (set on a held-out set) and use CRC (§4.3) to calibrate
the Stage-2 candidate threshold so that the overall system-level routing risk satisfies the specified
budget.

4.3 MULTILABEL CLASSIFICATION AND CRC CALIBRATION

For queries deferred by Stage 1 (i.e., s1(q) < t1), a multilabel head scores the remaining models

p̂(q) =
(
p̂2(q), . . . , p̂K(q)

)
∈ [0, 1]K−1, (11)

where p̂i(q) estimates the probability that Mi answers q correctly. Let yij = Ai(qj) ∈ {0, 1} denote
the ground-truth outcome for model Mi on query qj . Given a global threshold λ ∈ [0, 1], we define
the candidate set

Cλ(q) = { i ∈ {2, . . . ,K} : p̂i(q) ≥ λ }. (12)
Our goal is to select λ with a distribution-free, finite-sample risk guarantee for the entire routed
system under a fixed gate t1.
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Per-query loss and monotonicity. On a held-out calibration set Dcal = {(qj ,yj)}nj=1 (assumed
exchangeable with test data), we define a bounded per-query loss

Lj(λ) =


1− y1j , if s1(qj) ≥ t1,

|{ i ∈ Cλ(qj) : yij = 0 }|
max

(
1, |{ i ≥ 2 : yij = 0 }|

) , if s1(qj) < t1,
(13)

i.e., a misclassification indicator when routed to M1, and the model-level false-positive rate within
the candidate set otherwise. By construction Lj(λ) ∈ [0, 1] and, holding t1 fixed, Lj(λ) is non-
increasing in λ (larger λ shrinks Cλ and cannot add false positives). Hence the empirical risk

R̂(λ) =
1

n

n∑
j=1

Lj(λ) (14)

is also non-increasing in λ. We provide a formal proof that our composite loss function in
Eq. equation 13 satisfies the crucial monotonicity property required by CRC in Appendix B.

Calibrating λ via conformal risk control. We apply CRC for bounded losses (here B = 1). For
a user-specified tolerance α ∈ [0, 1], CRC selects

λ∗ = inf

{
λ ∈ [0, 1] :

n

n+ 1
R̂(λ) +

1

n+ 1︸ ︷︷ ︸
CRC upper bound on E[L(λ)]

≤ α

}
. (15)

Choosing the smallest feasible λ∗ maximizes candidate-set size under the same risk budget, preserv-
ing downstream cost opportunities while maintaining the distribution-free, finite-sample guarantee
Pr

(
E[L(λ∗)] ≤ α

)
≥ 1− δ.

Final selection rule and fallback. At test time we use the fixed gate t1 and set t2 = λ∗. For
s1(q) ≥ t1, route to M1; otherwise select

Select
(
Ct2(q)

)
= argmini∈Ct2

(q) ci (ties broken by larger p̂i(q)). (16)

If Ct2(q) = ∅, we fall back to argmaxi≥2 p̂i(q) or a pre-specified robust model (see ablations).
This policy, together with equation 15, yields distribution-free, finite-sample control of the expected
composite risk in equation 13.

5 EXPERIMENT RESULTS

5.1 EXPERIMENTAL SETUP

We conduct a comprehensive set of experiments to evaluate the performance of our proposed
method.

Model Pool and Costs. Our experiments utilize a pool of widely-used, open-source LLMs from
Qwen3 family (Yang et al., 2025), which provides a realistic spectrum of capabilities and inference
costs. Our model pool M = {Qwen3-1.7B,Qwen3-4B,Qwen3-8B,Qwen3-14B}. We define the
inference cost for each model based on the total number of input tokens according to official API
price, normalizing them relative to the largest model Qwen3-14B. The relative costs are 0.15, 0.3,
0.5, 1.0 for Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Qwen3-14B, respectively.

Datasets. Following the reproducible protocol of EmbedLLM (Zhuang et al., 2025), we evaluate
on a diverse query corpus spanning six challenging benchmarks covering expert knowledge, multi-
step reasoning, and coding: MMLU (Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024),
GSM8K (Cobbe et al., 2021), Big-Bench Hard (BBH) (Suzgun et al., 2022), GPQA (Rein et al.,
2023), and MBPP (Austin et al., 2021). To generate the ground-truth data, for each query q from
these benchmarks and each model Mi ∈ M, we run inference using the lm-evaluation-harness (Gao
et al., 2024).

7
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Figure 5: Cost dumbbell comparison at equal accuracy. CR2 consistently achieves lower inference
cost than baselines, with relative savings exceeding 60%.

Baselines. We compare our method against a comprehensive set of baselines to rigorously evaluate
its performance:

• EmbedLLM (Zhuang et al., 2025): The current state-of-the-art learning-based router,
which uses general-purpose embeddings to predict model performance.

• Always-Smallest: A simple heuristic that always routes to the cheapest capable model.

• Always-Largest: A heuristic that always routes to the most largest model.

• Oracle: A theoretical upper bound that assumes perfect knowledge of each model’s an-
swerability for every query. It always selects the cheapest model that is known to answer
the query correctly, defining the Pareto frontier.

• MLP: A non-hierarchical baseline where a MLP is trained on top of general-purpose sen-
tence embeddings. It acts as a multi-class classifier to select a single model from the pool
based on the highest output score.

• KNN (Zhuang et al., 2025): A non-parametric baseline that performs nearest-neighbor
voting over query–model correctness outcomes. Each model is implicitly represented by
its historical correctness tuples, and for a new query, the classifier predicts performance
based on the majority vote of its nearest neighbors. We refer to this approach as KNN
throughout the text.

Evaluation Metrics and Implementation Details. We evaluate all methods on two primary met-
rics: Routing Accuracy (%) and Average Per-Sample Token Cost (Avg. Cost). For cost, we nor-
malize API prices to that of the most expensive model, compute each sample’s token cost as the
normalized price-per-token times its total input tokens, and then average over all samples. The
ideal method should achieve high accuracy at a low cost. For our method, we use a pretrained
all-MiniLM-L6-v2(Wang et al., 2020) as the base sentence encoder, which is then fine-tuned
using the supervised contrastive loss.

CRC is configured to control the expected system-level risk, ensuring it remains below the user-
specified tolerance α. For the main SOTA comparison, we set this risk level to α = 0.08, though a
broader analysis with varying α is also presented.

For each benchmark, we generate labels on its official training set, and then partition this labeled
data into 80%/10%/10% splits for training, validating, and testing our router, respectively. Further
implementation details, including all hyperparameters, are provided in Appendix A.
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Figure 6: Analysis of CR2 routing. (a) Histogram of per-query risks under the calibrated CRC
threshold, showing that the majority of samples lie well below the specified tolerance α. (b) His-
togram of candidate set sizes produced by the second-stage router, illustrating the distribution of
model subsets considered at inference.

5.2 MAIN RESULTS

We now present the main experimental results, which show that CR2 consistently outperforms strong
baselines by achieving higher accuracy at equal cost and significantly reducing cost at equal accu-
racy.

First, in terms of routing accuracy, CR2 achieves the best aggregate performance across five bench-
marks (61.7%), with top or tied results on most individual tasks. As shown in Figure 3a, on BBH
it surpasses the EmbedLLM baseline by 13.7 points, underscoring its strength on complex reason-
ing, while on MMLU it improves over the KNN baseline by 3.1 points, demonstrating robustness
on knowledge-intensive evaluations. These results indicate that CR2 narrows the gap to the oracle
while preserving efficiency advantages over single-model deployments.

Second, when examining the accuracy–cost trade-off, CR2 consistently defines the Pareto frontier.
As shown in Figure 3b, its curve lies above all baselines and single-model settings, achieving higher
accuracy at any given cost budget and substantially lower cost at a fixed accuracy. This highlights
its ability to leverage smaller models effectively without sacrificing end-task performance.

Finally, we analyze the behavior of the risk calibration mechanism at inference time. Figure 6a
shows that the calibrated router tightly controls the system’s risk: per-query values are concentrated
near zero, well below the user-specified tolerance of α = 0.08. Figure 6b further illustrates how
efficiency arises: for more than 65% of inputs, the router confidently selects a single candidate
model (or none at all), while adaptively expanding to 2–3 candidates only on harder queries. This
adaptivity explains how CR2 remains both efficient and reliable in practice.

5.3 ABLATION STUDIES

We toggle each component while holding others fixed and report routing accuracy and average per-
sample token cost in Table 1. Enabling the two-stage design improves accuracy from 58.49% to
60.74% (+2.25 pts) and reduces cost from 223.10 to 202.18 (∼9.4%). Adding SCL lifts accuracy
from 56.11% to 58.34% (+2.23 pts) and lowers cost from 201.56 to 196.04 (∼2.7%), indicating
clearer separability of answerable vs. unanswerable queries for the small model. CRC calibra-
tion trims cost from 239.71 to 220.47 (∼8.0%) with essentially unchanged accuracy (61.05% vs.
60.97%).

Overall, the components are complementary: two-stage routing yields the largest gains, SCL sharp-
ens the Stage-1 decision boundary, and CRC delivers reliable cost reductions under a risk budget.
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6 CONCLUSION

In this work, we introduce CR2, a novel hierarchical routing framework that learns capability-aware
representations via supervised contrastive learning and, in a first for this domain, utilizes CRC to
provide provable guarantees on the cost-accuracy trade-off. Experiments demonstrate that CR2

establishes a new state-of-the-art, significantly improving both accuracy and cost-efficiency over
strong baselines. By making the deployment of diverse LLMs more reliable and economically
viable, our work represents a concrete step toward the affordable AI.

7 ETHIC STATEMENT

Our routing system could exacerbate fairness and bias issues if queries about sensitive topics are
sent to smaller models that have not received the same safety alignment as larger models. While
our framework does not inherently introduce bias, fairness depends on the quality and tuning of
the model pool. Future work should explore routing criteria that explicitly account for fairness and
safety.

8 REPRODUCIBLITY STATEMENT

We provide sufficient information to facilitate the reproduction of our results. The core code will
be included in the supplementary material. Detailed implementation specifics, including model
architectures, training procedures and hyperparameters, are described in the Appendix A. The full
code will be publicly released on GitHub upon acceptance of the paper.
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A APPENDIX 1: TRAINING IMPLEMENTATION DETAILS

A.1 STAGE-1: CAPABILITY-AWARE FILTERING

SCL We initialize the text encoder with sentence-transformers/all-MiniLM-L6-v2
and its tokenizer (max sequence length 512; EOS used as pad token when absent). On top of
the encoder we add an attention-pooling projector with two learned queries followed by a linear
layer to a 384-d embedding; outputs are L2-normalized. Mini-batches contain 256 examples and are
composed with a class-balanced sampler to stabilize SCL. We fine-tune the encoder and projector for
15 epochs using AdamW (LR 1× 10−4 on projector/encoder, weight decay 0.01), cosine annealing
with warm restarts (ηmin = 1 × 10−6), mixed precision on GPU (bfloat16), and gradient-norm
clipping on the projector (max-norm 5.0). All runs use seed 42 and Weights&Biases for logging.

Binary classifier training on frozen embeddings. After SCL, both encoder and projector are
frozen. We train a lightweight MLP head (LayerNorm → Linear(2d) → GELU → Dropout(0.1)
→ Linear(2)) for 10 epochs with AdamW (LR 1 × 10−3), the same cosine scheduler, and gradient
clipping (max-norm 1.0). Class imbalance is handled via inverse-frequency class weights. This gate
is fixed at deployment.

A.2 STAGE-2: MULTILABEL CLASSIFICATION AND CRC CALIBRATION

Multilabel Classifier Training. We train a multilabel classifier to score the remaining models
{Mi}Ki=2 using a frozen MiniLM encoder and a lightweight head. Concretely, we instantiate
sentence-transformers/all-MiniLM-L6-v2 and freeze all backbone parameters. In-
puts are tokenized with the corresponding tokenizer (padding enabled; max len=512; EOS used
as pad token if absent). The head is an MLP (LayerNorm → Dropout(0.1) → Linear(d, 4d)
→ GELU → Dropout(0.1) → Linear(4d, K−1)), trained with BCEWithLogitsLoss. Batches
contain 64 examples per GPU; we run distributed data-parallel training on 4 NVIDIA 4090 GPUs
via torchrun, yielding an effective global batch size of 256. Optimization uses AdamW (LR
= 1×10−3, weight decay = 0.01) for 20 epochs with a cosine schedule and 3% warmup. Gradients
are clipped at 1.0.

To mitigate label imbalance across the (K−1) binary targets, we use inverse-frequency weighted
sampling, where per-example weights are the clipped ([0.2, 5.0]) sum of inverse per-class positive
rates. Validation runs every epoch with distributed aggregation. Unless otherwise specified, we
set the random seed to 42 and use 4 dataloader workers per process. The resulting probabilities
serve as inputs to the CRC calibration step that determines the stage-2 candidate threshold used at
deployment.

B APPENDIX 2: PROOF OF MONOTONICITY FOR THE COMPOSITE LOSS
FUNCTION IN CRC

Here, we formally prove that the composite loss function Lj(λ) defined in Equation equation 13 of
the main text is monotone non-increasing with respect to the threshold λ ∈ [0, 1]. This property is a
prerequisite for the application of the Conformal Risk Control framework.

Proposition 1. The composite loss function Lj(λ) is monotone non-increasing with respect to λ.

Proof. To prove that Lj(λ) is monotone non-increasing, we must show that for any pair of thresholds
0 ≤ λ1 < λ2 ≤ 1, it holds that Lj(λ2) ≤ Lj(λ1). The loss function is defined piece-wise based on
the routing decision for a given query qj , so we analyze each case.

Case 1: The query is handled by Stage 1 (s1(qj) ≥ t1). In this case, the loss is defined as
Lj(λ) = 1− y1j . This value is a constant with respect to λ, as it does not depend on the threshold.
A constant function is, by definition, monotone non-increasing. Thus, Lj(λ2) = Lj(λ1), and the
condition is satisfied.
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Case 2: The query is handled by Stage 2 (s1(qj) < t1). In this case, the loss is the model-level
FPR:

Lj(λ) =
|{ i ∈ Cλ(qj) : yij = 0 }|

max
(
1, |{ i ≥ 2 : yij = 0 }|

) .
Let us analyze the components of this fraction. The denominator, D = max

(
1, |{ i ≥ 2 : yij =

0 }|
)
, is a positive constant for a given query qj , as it depends only on the ground-truth outcomes,

not on λ.

The numerator, N(λ) = |{ i ∈ Cλ(qj) : yij = 0 }|, is the number of incorrect models included in
the candidate set. To prove that Lj(λ) is non-increasing, it is sufficient to prove that the numerator
N(λ) is non-increasing.

The candidate set is defined as Cλ(qj) = { i ∈ {2, . . . ,K} : p̂i(qj) ≥ λ }. Consider our two
thresholds such that 0 ≤ λ1 < λ2 ≤ 1. For any model i to be in the set Cλ2

(qj), its score must
satisfy p̂i(qj) ≥ λ2. Because λ2 > λ1, this condition implies that p̂i(qj) > λ1, which in turn means
that model i must also be a member of the set Cλ1(qj).

Therefore, the candidate set at the higher threshold is a subset of the candidate set at the lower
threshold:

Cλ2(qj) ⊆ Cλ1(qj).

The numerator N(λ) counts the number of incorrect models within the candidate set. Let Iincorrect =
{i ≥ 2 : yij = 0} be the set of all incorrect models for query qj . The numerator can be written as
N(λ) = |Cλ(qj) ∩ Iincorrect|.
Since Cλ2

(qj) is a subset of Cλ1
(qj), the intersection of this smaller set with Iincorrect must also be a

subset of the intersection of the larger set with Iincorrect:

Cλ2(qj) ∩ Iincorrect ⊆ Cλ1(qj) ∩ Iincorrect.

The cardinality of a subset cannot be greater than the cardinality of the set that contains it. Thus, it
follows that N(λ2) ≤ N(λ1). As the denominator is a positive constant, we have shown that the
loss is non-increasing for this case as well.

Conclusion. Since the loss is monotone non-increasing in both cases, the composite loss function
Lj(λ) is proven to be monotone non-increasing with respect to λ over its entire domain.

C APPENDIX 3: ABLATION STUDIES

Table 1: Ablation study of Two Stage Routing, SCL and CRC.

Accuracy (%) Avg. Cost

w/o Two Stage Routing 58.49 223.10
w/ Two Stage Routing 60.74 202.18
w/o SCL 56.11 201.56
w/ SCL 58.34 196.04
w/o CRC 61.05 239.71
w/ CRC 60.97 220.47

D APPENDIX 4: THE USE OF LARGE LANGUAGE MODELS

We used OpenAI ChatGPT and Google Gemini (Deep Research) strictly as productivity aids. Con-
cretely, they were used to (i) polish wording and improve stylistic clarity of drafts, and (ii) help
scope the literature at the project outset by suggesting search terms and candidate papers. No parts
of the methods or results were generated by LLMs. Every citation surfaced during scoping was
manually verified against primary sources, and no model-generated references were accepted. No
confidential data were shared with the tools. The authors take full responsibility for the content of
this paper.
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Table 2: Sensitivity of CRC to the calibration sample size (α = 0.1). The risk remains close to α
while accuracy shows only small variations.

Calibration size Nc λ Acc Avg token cost Mean risk Mean set size

100 0.9053 0.6035 191.651 0.1090 1.4267
250 0.9286 0.6082 206.417 0.0907 1.2233
500 0.9199 0.6069 201.863 0.0979 1.3107

1000 0.9266 0.6074 202.217 0.0931 1.2523

Table 3: CRC performance under different α values (refit). The observed risk closely matches the
target α.

Variant α λ Acc Avg token cost Mean risk Mean set size

CRC@α 0.05 0.9827 0.6095 233.213 0.0520 0.5640
CRC@α 0.10 0.9253 0.6074 202.176 0.0949 1.2781
CRC@α 0.15 0.8712 0.5952 150.947 0.1497 1.7532

E APPENDIX 5: OUT-OF-DISTRIBUTION EVALUATION

Fig. 7 shows the accuracy–cost Pareto frontier evaluated on a combined out-of-distribution test set
constructed from PIQA and ARC-Easy, which the router was not exposed to during training. Each
point represents the average inference cost per sample under a specific routing configuration. The
results reflect the model pool’s performance and routing behavior in a distribution-shift setting rather
than in-distribution generalization.

Our method CR2 (green diamonds) forms a competitive Pareto frontier relative to KNN and MLP
routers across the evaluated cost range. The Largest Model baseline (grey square) provides an upper-
cost reference, while Oracle Upper Bound (red star) denotes the idealized maximum achievable
accuracy if the best model were chosen per sample. The frontier of EmbedLLM is also plotted for
comparison.

Overall, this OOD evaluation illustrates that routing continues to extract favorable accuracy–cost
trade-offs even when the input distribution differs from training, and that the achievable frontier
may exceed the standalone performance of the largest model.
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Figure 7: Accuracy–cost trade-off of different routing strategie under OOD settings.
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