

000 CONFORMAL RISK-CONTROLLED ROUTING FOR 001 002 LARGE LANGUAGE MODEL 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Recent advances in small-scale large language models have shown that compact
012 models can successfully handle an expanding range of natural language and rea-
013 soning tasks. This progress opens the door to more affordable AI inference ser-
014 vices by enabling broader use of cost-efficient models. However, existing ap-
015 proaches often fail to fully exploit small models due to fuzzy boundaries of their
016 capabilities. In this paper, we propose a risk-controlled routing framework that
017 dynamically selects among models of different scales, with a strong emphasis on
018 maximizing the utility of smaller models. Our framework integrates supervised
019 contrastive learning to enhance the separability of smaller-model capabilities and
020 grounds its routing mechanism in conformal risk control, providing theoretical
021 guarantees on system-level routing risk. Across benchmarks, our method delivers
022 cost-accuracy performance that is comparable to or better than strong baselines,
023 with an absolute accuracy improvement of $\sim 3.49\%$ at equal cost and up to $\sim 36\%$
024 cost reduction at comparable accuracy.

025 1 INTRODUCTION

026 Large language models (LLMs)(OpenAI, 2025a; DeepSeek-AI et al., 2025; Grattafiori et al., 2024)
027 have progressed rapidly, demonstrating strong performance across a wide range of natural lan-
028 guage and reasoning tasks. To increase accessibility, model families such as GPT(OpenAI, 2025b),
029 Gemma(Team et al., 2025), and Qwen(Yang et al., 2025) are released in multiple scales, each with
030 distinct accuracy-efficiency trade-offs. This diversity creates an opportunity to improve system-level
031 efficiency: rather than relying exclusively on a single large model, queries can be adaptively routed
032 to models of different scales. Realizing this potential requires solving a central systems problem:
033 *LLM routing*(Ding et al., 2022; 2024; Hu et al., 2024). The goal is to design a mechanism that
034 dynamically selects the most suitable model for each query, where suitability entails two criteria:
035 achieving sufficient accuracy to solve the task and maintaining an inference cost affordable to most
036 users.

037 Recent research on LLM routing mainly falls into two categories. The first is learning-based
038 approaches, such as RouteLLM (Ong et al., 2025), HybridLLM (Ding et al., 2024), TO-router
039 (Stripelis et al., 2024), BEST-route (Ding et al., 2025), and RouterDC (Chen et al., 2024b). The
040 second is similarity-based approaches, where queries are embedded and routed based on their prox-
041 imity or consistency in representation space, including clustering or nearest-neighbor retrieval (e.g.,
042 k-means-based partitioning in RouterBench (Hu et al., 2024)) and output-consistency methods such
043 as Smoothie (Guha et al., 2024). These approaches do not require supervised training of a router but
044 instead leverage the structural similarity among queries or the agreement among model outputs.

045 The primary limitation of current routing paradigms is their failure to fully exploit small, cost-
046 efficient models, which are frequently bypassed even when capable. This under-utilization arises
047 not from explicit design choices but from the inherent difficulty of predicting their performance. At
048 its core lies a representation challenge: a small model’s ability to correctly answer a query does not
049 consistently align with its semantic representation. For example, two semantically similar queries
050 may be mapped to nearby points in a standard embedding space, yet a small model may succeed on
051 one and fail on the other (see Figure 1). The generic embeddings of prior work are insensitive to
052 fine-grained differences in model capabilities, causing routers to be overly cautious and default to
053 larger, more expensive models. Complementing this representational flaw is the risk-aware decision-

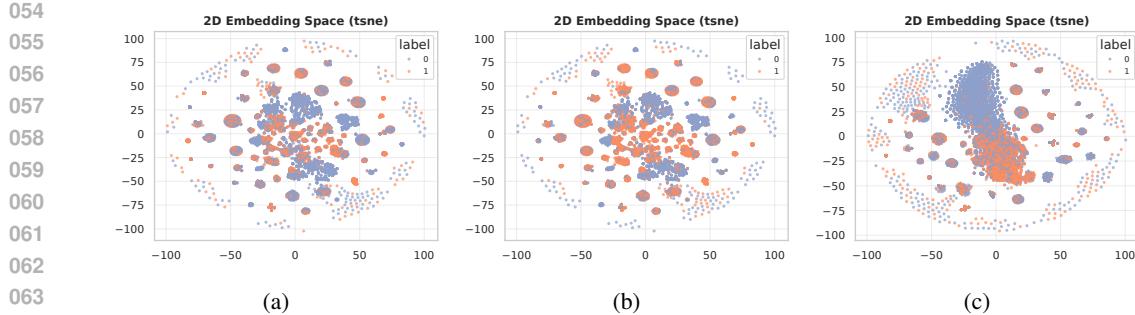


Figure 1: Embedding space separability (t-SNE). (a) Off-the-shelf embeddings: small-model correctness labels are heavily mixed. (b) Larger model: better but imperfect separation. (c) After SCL on the small model: clear delineation of answerable vs. unanswerable queries. Colors denote correctness (1/0).

making challenge. Assigning a complex query to an underpowered model wastes computation and may yield unexpected or incorrect responses, whereas sending a simple query to an expensive model incurs unnecessary cost. Existing methods typically rely on heuristic thresholds or fixed rules, but they lack a principled framework to formally quantify and control routing risk, leaving system-level behavior fragile and hard to guarantee.

To address these challenges, we propose *Conformal Risk-Controlled Routing* (CR²), a framework that integrates capability-aware representation learning with principled risk control and cost-aware selection. Inspired by greedy algorithms, the first stage focuses on exploiting the utility of the smallest, most economical model. To tackle the core representation challenge, we employ supervised contrastive learning (SCL)(Khosla et al., 2020) to construct embeddings augmented with model-specific answerability, enabling the router to separate queries that are semantically similar but have different outcomes on the small model. Queries that cannot be confidently assigned to the small model are escalated to a second-stage router, which selects a candidate set of stronger models. To address the risk-aware decision-making challenge, we ground the routing process in the *Conformal Risk Control* (CRC). Specifically, we define a system-level risk function using candidate-set model-level false-positive rate (FPR) and calibrate a global candidate threshold under a held-out calibration set, providing formal guarantees for routing risk. Within the resulting candidate sets, a simple cost-aware rule selects the lowest-cost model, yielding a predictable and tunable accuracy–cost trade-off.

The main contributions of this work are summarized as follows:

- We propose CR², a two-stage routing framework that prioritizes the cost-efficient models. By leveraging supervised contrastive learning to refine embeddings, the router distinguishes semantically similar queries with divergent answerability, overcoming a key limitation of prior embedding-based methods.
- To the best of our knowledge, this is the first work to introduce CRC into LLM routing. By defining a bounded, composite routing loss and calibrating a global candidate threshold, CR² provides formal guarantees that the expected risk is provably bounded below specified level α , while also yielding improved performance.
- Extensive experiments demonstrate that CR² establishes a new state of the art in LLM routing. It achieves an absolute accuracy improvement of approximately 3.49% (6% relative) over strong baselines such as EmbedLLM and single largest model, while simultaneously reducing overall operational cost.

2 RELATED WORK

2.1 MODEL ROUTING IN LLMs

Dynamic routing for efficiency spans multiple granularities: token-level mixtures-of-experts within a single forward pass (Fedus et al., 2022; Zhou et al., 2022; Li et al., 2025) and window-level

108 schemes such as speculative decoding (Leviathan et al., 2023; Lu et al., 2023; Chen et al., 2024c; Li
 109 et al., 2024). This work focuses on query-level routing, where an entire request is dispatched to one
 110 model from a pool. Existing methods include pre-generation routers that train lightweight selectors
 111 to pick a single model before inference (Ong et al., 2025; Ding et al., 2024; Feng et al., 2025;
 112 Stripelis et al., 2024; Ding et al., 2025) and post-generation cascades that escalate from cheaper
 113 to more expensive models until a quality criterion is met (Chen et al., 2024a). While effective,
 114 these approaches typically rely on fixed thresholds or heuristics and provide no distribution-free
 115 guarantees. Our framework complements this line by combining hierarchical routing with conformal
 116 risk control.

117 2.2 CAPABILITY-AWARE REPRESENTATIONS

119 Routing often hinges on representations that anticipate which model can solve a query. Early
 120 approaches embed models via accuracy profiles or simple classifiers to separate “easy” from “hard”
 121 queries (Zhuang et al., 2025; Ding et al., 2024). More recent work leverages contrastive objectives,
 122 either by jointly embedding queries and models (Chen et al., 2024b) or by modeling query-LLM
 123 relationships through transformer-based backbones (Jin et al., 2025). Other methods enrich em-
 124 beddings with auxiliary signals, such as capability instructions that combine past performance and
 125 user prompts (Zhang et al., 2025b), or document-level context to capture knowledge shifts (Zhang
 126 et al., 2025a). However, these embeddings can conflate semantic similarity with *answerability*, lead-
 127 ing to under-utilization of smaller, cost-efficient models. Our approach instead applies supervised
 128 contrastive learning to shape embeddings so that proximity reflects model-specific answerability,
 129 improving small-model utilization without sacrificing accuracy.

130 2.3 RISK-AWARE DECISION MAKING AND CONFORMAL PREDICTION

132 Beyond representation, routing is also a risk management problem. Conformal prediction pro-
 133 vides distribution-free reliability guarantees, but classical coverage does not directly address
 134 cost-accuracy trade-offs. Conformal Risk Control (CRC) extends these tools to general bounded
 135 risks with finite-sample guarantees (Angelopoulos et al., 2024), and has been applied to mitigate
 136 hallucination in single-LLM settings (Overman et al., 2024; Chen et al., 2025). Other recent con-
 137 formal methods include CP-Router, which uses uncertainty estimates for routing (Su et al., 2025),
 138 and another that optimizes risk and prediction set size during training (Noorani et al., 2024). To our
 139 knowledge, we are the first to introduce CRC into the routing pipeline itself: we calibrate a global
 140 candidate threshold so that the expected system-level routing risk—whose Stage-2 component is
 141 the candidate-set model-level false-positive rate—remains within a user-specified tolerance, while a
 142 cost-aware selector realizes efficiency gains.

143 3 PRELIMINARIES

146 3.1 PROBLEM FORMULATION

148 We study routing over a pool of large language models (LLMs) with heterogeneous sizes and in-
 149 ference costs. Let \mathbb{Q} denote the space of queries and $\mathbb{M} = \{M_1, \dots, M_K\}$ the available models.
 150 Each model M_i is associated with an inference cost $c_i > 0$ and a correctness indicator $A_i(q) =$
 151 $1[M_i(q) = y]$, where $M_i(q)$ is the output of M_i on query q and y is the ground-truth answer;
 152 hence $A_i(q) \in \{0, 1\}$ indicates whether M_i answers q correctly. A routing strategy is a mapping
 153 $R : \mathbb{Q} \rightarrow \mathbb{M}$ that assigns a model $M_{R(q)}$ to each query q . The system-level correctness on q is
 $A_{R(q)}(q)$. We evaluate a routing strategy R by its expected accuracy

$$155 \text{Acc}(R) = \mathbb{E}_{q \sim \mathbb{Q}} [A_{R(q)}(q)], \quad (1)$$

156 and its expected cost

$$157 \text{Cost}(R) = \mathbb{E}_{q \sim \mathbb{Q}} [c_{R(q)}]. \quad (2)$$

158 The routing problem is thus a multi-objective optimization that maximizes accuracy while minimiz-
 159 ing cost:

$$160 \max_R (\text{Acc}(R), -\text{Cost}(R)), \quad (3)$$

161 equivalently $\min_R (1 - \text{Acc}(R), \text{Cost}(R))$, which induces a Pareto frontier.

162 **Remark.** In Section §4 we instantiate R via a two-stage architecture that prioritizes the smallest
 163 model when safe and escalates otherwise; here we only establish notation and objectives.
 164

165 **3.2 CONFORMAL RISK CONTROL**
 166

167 CRC (Angelopoulos et al., 2024) is a statistical framework that generalizes classical conformal
 168 prediction from coverage guarantees to controlling the expectation of a general loss function. Given
 169 a base predictor, a calibration set $\{(X_i, Y_i)\}_{i=1}^n$, and a user-specified risk level $\alpha \in (0, 1)$, CRC
 170 provides a recipe for calibrating a parameter $\hat{\lambda}$ to ensure that the expected loss on a new test point
 171 does not exceed α .

172 The framework operates on a family of predictors $C_\lambda(x)$ indexed by a parameter $\lambda \in \Lambda$. This
 173 parameter λ controls the **conservativeness** of the predictor’s output. We define a loss for each
 174 calibration example as

$$175 \quad L_i(\lambda) = \ell(C_\lambda(X_i), Y_i). \quad (4)$$

177 A critical requirement of the framework is that the loss function ℓ must be **monotone non-increasing**
 178 with respect to λ . This ensures that a more conservative choice of λ will not result in a higher
 179 loss. This property holds for many useful applications, such as controlling the false negative rate in
 180 multilabel classification or token-level F1 loss in question answering (Angelopoulos et al., 2024).

181 The goal of CRC is to select a data-driven threshold $\hat{\lambda}$ such that the following expected risk guarantee
 182 holds for a new test point (X_{n+1}, Y_{n+1}) :

$$184 \quad \mathbb{E}[L_{n+1}(\hat{\lambda})] \leq \alpha. \quad (5)$$

186 CRC achieves this by calculating the empirical risk $\widehat{\mathcal{R}}(\lambda) = \frac{1}{n} \sum_i L_i(\lambda)$ on the calibration set and
 187 finding the least conservative λ that satisfies a high-probability risk bound. For a loss bounded by
 188 B , this is typically:

$$190 \quad \hat{\lambda} = \inf \left\{ \lambda \in \Lambda \mid \frac{n}{n+1} \widehat{\mathcal{R}}(\lambda) + \frac{B}{n+1} \leq \alpha \right\}. \quad (6)$$

193 This guarantee is distribution-free and holds for finite samples. When ℓ is chosen as the miscoverage
 194 loss, $\ell(C_\lambda(X), Y) = \mathbf{1}\{Y \notin C_\lambda(X)\}$, CRC reduces exactly to classical conformal prediction.

195 **4 METHODOLOGY**
 196

198 In this section, we introduce Conformal Risk-Controlled Routing, a framework designed to address
 199 the dual challenges of representation and risk-aware decision-making in LLM routing. The core
 200 of our approach is to decompose the global routing task into two specialized sub-problems: (1) a
 201 high-precision binary prediction for the single, most cost-effective model, and (2) a multi-label pre-
 202 diction to identify capable models from the remaining expert pool. Crucially, instead of combining
 203 these stages with fragile heuristics, we unify them under the CRC framework. This is achieved by
 204 designing a global risk function and a corresponding decision algorithm, which together provide a
 205 provable guarantee that the system-level trade-off between cost and accuracy is explicitly controlled.

206 **4.1 PROBLEM DECOMPOSITION**
 207

208 We parameterize a hierarchical router by thresholds $\theta = (t_1, t_2)$:

$$210 \quad R_\theta(q) = \begin{cases} M_1, & \text{if } s_1(q) \geq t_1, \\ \text{Select}(\mathcal{C}_{t_2}(q)), & \text{otherwise,} \end{cases} \quad (7)$$

214 where $s_1(q) \in [0, 1]$ estimates the success probability of M_1 on q , $\mathcal{C}_{t_2}(q) = \{i \geq 2 : \hat{p}_i(q) \geq t_2\}$ is
 215 a candidate set among larger models, and $\text{Select}(\cdot)$ is a cost-aware rule. Section 4.2 describes how
 to obtain $s_1(q)$; Section 4.3 details $\{\hat{p}_i(q)\}_{i \geq 2}$ and the CRC calibration of θ .

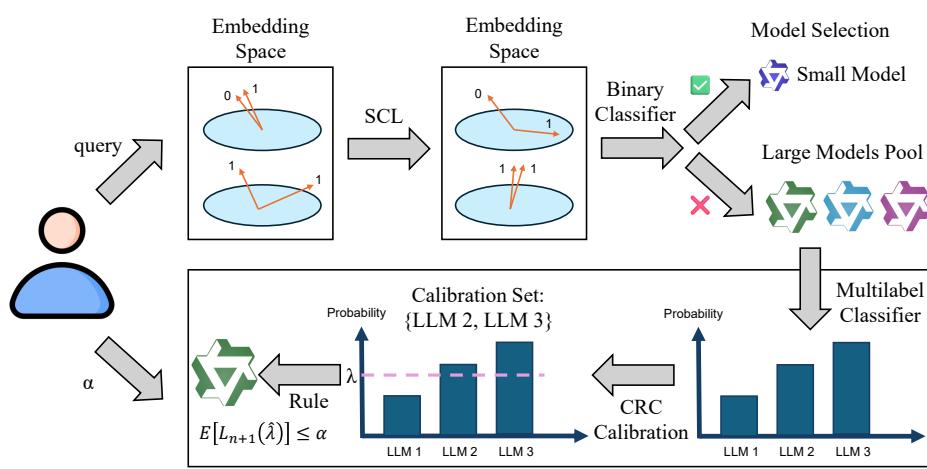


Figure 2: Overview of the CR² framework. A binary classifier, operating on a capability-aware embedding space shaped by SCL, first attempts to route a query to the small model. If the query is rejected, a multilabel classifier scores the expert model pool. Finally, CRC uses these scores to calibrate a decision threshold that guarantees the final cost-optimal selection adheres to a user-specified risk tolerance.

4.2 CAPABILITY-AWARE FILTERING

The first stage of CR² constructs a high-precision filter for the smallest model M_1 , which predicts the binary correctness label $A_1(q) \in \{0, 1\}$ for a given query q . This is achieved through a two-phase procedure: (i) fine-tuning a text encoder to learn capability-aware representations; and (ii) training a classification head on these embeddings.

Architecture. The module consists of a pretrained encoder g_θ , a projection head u_φ , and a classification head h_ψ . To enrich the embedding for contrastive learning, u_φ is designed as an *attention pooling projector*, which uses learnable query vectors to attend to token-level encoder outputs and yield more informative representations than mean pooling. The classification head is a two-layer MLP.

Phase 1: Representation Learning via SCL. We use SCL (Khosla et al., 2020) to endow the Stage-1 filter with a representation whose geometry reflects the *answerability* of the smallest model M_1 , rather than mere semantic similarity.

Setup. Let g_θ be a pretrained text encoder and u_φ a projection head (we use an attention-pooling projector). Given a query q , we form a normalized embedding

$$\mathbf{z}_q = \frac{u_\varphi(g_\theta(q))}{\|u_\varphi(g_\theta(q))\|_2}. \quad (8)$$

For a minibatch $\{(q_i, y_i)\}_{i=1}^B$, labels are $y_i = A_1(q_i) \in \{0, 1\}$, where $A_1(q)$ indicates whether M_1 answers q correctly (cf. Preliminaries).

Supervised contrastive loss. With temperature $\tau > 0$, the per-anchor SCL loss is

$$\mathcal{L}_i^{\text{SCL}} = -\frac{1}{|\mathbb{P}(i)|} \sum_{p \in \mathbb{P}(i)} \log \frac{\exp(\mathbf{z}_i^\top \mathbf{z}_p / \tau)}{\sum_{a \in \mathbb{A}(i)} \exp(\mathbf{z}_i^\top \mathbf{z}_a / \tau)}, \quad (9)$$

where $\mathbb{P}(i) = \{p \neq i : y_p = y_i\}$ is the set of positives for anchor i and $\mathbb{A}(i) = \{a \neq i\}$ the set of all non-anchor samples in the batch (anchors with $|\mathbb{P}(i)| = 0$ are skipped). Minimizing $\mathcal{L}^{\text{SCL}} =$

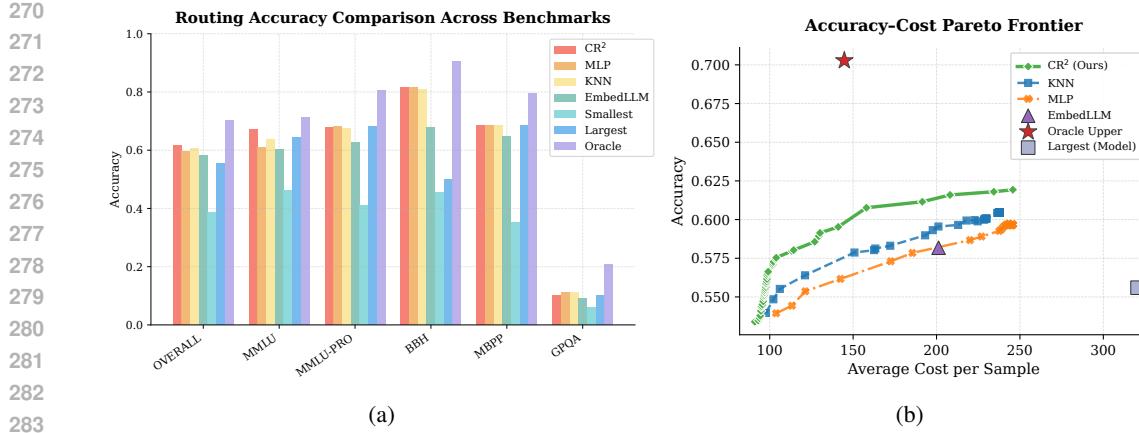


Figure 3: (a) Routing accuracy of CR² compared to baselines. CR² router performs better almost across the whole test set. (b) Accuracy–cost trade-off of different routing strategies, where CR² achieves superior Pareto efficiency compared to baselines.

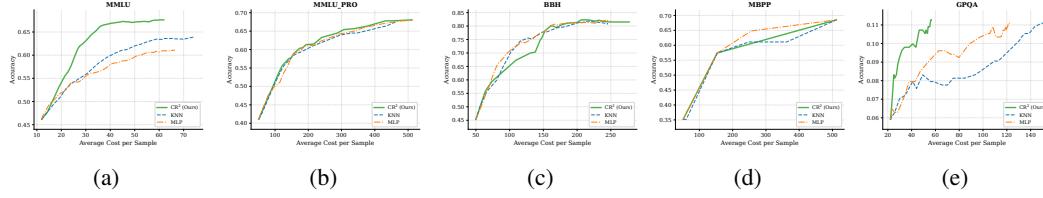


Figure 4: Accuracy–cost trade-off of different routing strategies per benchmark.

$\sum_i \mathcal{L}_i^{\text{SCL}}$ pulls together queries that M_1 handles similarly (both solvable or both unsolvable) and pushes apart those with different outcomes, thereby reshaping the embedding space to be capability-aware with respect to M_1 .

Classifier training on capability-aware embeddings. After SCL fine-tuning, we *freeze* the encoder g_θ and projector u_φ , and train a lightweight classification head h_ψ on the capability-aware representations. The head is trained to predict the success of model M_1 , i.e., the binary label $y = A_1(q) \in \{0, 1\}$. It outputs two logits, and we convert their difference into a probability estimate via the sigmoid function:

$$s_1(q) = \sigma(\ell_1(q) - \ell_0(q)) \approx \Pr[A_1(q) = 1]. \quad (10)$$

Since the smallest model correctly handles only a limited proportion of queries, the training data for its success predictor suffers from a natural class imbalance. To mitigate this, the head is optimized by minimizing a class-weighted binary cross-entropy loss, where weights are determined by the inverse frequency of each class. At inference, the Stage-1 router routes to M_1 when $s_1(q) \geq t_1$ and otherwise escalates. We treat t_1 as a fixed gate (set on a held-out set) and use CRC (§4.3) to calibrate the Stage-2 candidate threshold so that the overall system-level routing risk satisfies the specified budget.

4.3 MULTILABEL CLASSIFICATION AND CRC CALIBRATION

For queries deferred by Stage 1 (i.e., $s_1(q) < t_1$), a multilabel head scores the remaining models

$$\hat{p}(q) = (\hat{p}_2(q), \dots, \hat{p}_K(q)) \in [0, 1]^{K-1}, \quad (11)$$

where $\hat{p}_i(q)$ estimates the probability that M_i answers q correctly. Let $y_{ij} = A_i(q_j) \in \{0, 1\}$ denote the ground-truth outcome for model M_i on query q_j . Given a global threshold $\lambda \in [0, 1]$, we define the candidate set

$$\mathcal{C}_\lambda(q) = \{i \in \{2, \dots, K\} : \hat{p}_i(q) \geq \lambda\}. \quad (12)$$

Our goal is to select λ with a distribution-free, finite-sample risk guarantee *for the entire routed system* under a fixed gate t_1 .

324 **Per-query loss and monotonicity.** On a held-out calibration set $\mathcal{D}_{\text{cal}} = \{(q_j, \mathbf{y}_j)\}_{j=1}^n$ (assumed
 325 exchangeable with test data), we define a bounded per-query loss
 326

$$327 \quad L_j(\lambda) = \begin{cases} 1 - y_{1j}, & \text{if } s_1(q_j) \geq t_1, \\ 328 \quad \frac{|\{i \in \mathcal{C}_\lambda(q_j) : y_{ij} = 0\}|}{\max(1, |\{i \geq 2 : y_{ij} = 0\}|)}, & \text{if } s_1(q_j) < t_1, \end{cases} \quad (13)$$

331 i.e., a misclassification indicator when routed to M_1 , and the *model-level false-positive rate* within
 332 the candidate set otherwise. By construction $L_j(\lambda) \in [0, 1]$ and, holding t_1 fixed, $L_j(\lambda)$ is *non-*
 333 *increasing* in λ (larger λ shrinks \mathcal{C}_λ and cannot add false positives). Hence the empirical risk

$$334 \quad \widehat{\mathcal{R}}(\lambda) = \frac{1}{n} \sum_{j=1}^n L_j(\lambda) \quad (14)$$

337 is also non-increasing in λ . **We provide a formal proof that our composite loss function in**
 338 **Eq. equation 13 satisfies the crucial monotonicity property required by CRC in Appendix B.**

340 **Calibrating λ via conformal risk control.** We apply CRC for bounded losses (here $B = 1$). For
 341 a user-specified tolerance $\alpha \in [0, 1]$, CRC selects

$$343 \quad \lambda^* = \inf \left\{ \lambda \in [0, 1] : \underbrace{\frac{n}{n+1} \widehat{\mathcal{R}}(\lambda)}_{\text{CRC upper bound on } \mathbb{E}[L(\lambda)]} + \frac{1}{n+1} \leq \alpha \right\}. \quad (15)$$

346 Choosing the *smallest* feasible λ^* maximizes candidate-set size under the same risk budget, preserving
 347 downstream cost opportunities while maintaining the distribution-free, finite-sample guarantee
 348 $\Pr(\mathbb{E}[L(\lambda^*)] \leq \alpha) \geq 1 - \delta$.

350 **Final selection rule and fallback.** At test time we use the fixed gate t_1 and set $t_2 = \lambda^*$. For
 351 $s_1(q) \geq t_1$, route to M_1 ; otherwise select

$$353 \quad \text{Select}(\mathcal{C}_{t_2}(q)) = \arg \min_{i \in \mathcal{C}_{t_2}(q)} c_i \quad (\text{ties broken by larger } \hat{p}_i(q)). \quad (16)$$

354 If $\mathcal{C}_{t_2}(q) = \emptyset$, we fall back to $\arg \max_{i \geq 2} \hat{p}_i(q)$ or a pre-specified robust model (see ablations).
 355 This policy, together with equation 15, yields distribution-free, finite-sample control of the expected
 356 composite risk in equation 13.

358 5 EXPERIMENT RESULTS

361 5.1 EXPERIMENTAL SETUP

362 We conduct a comprehensive set of experiments to evaluate the performance of our proposed
 363 method.

365 **Model Pool and Costs.** Our experiments utilize a pool of widely-used, open-source LLMs from
 366 Qwen3 family (Yang et al., 2025), which provides a realistic spectrum of capabilities and inference
 367 costs. Our model pool $\mathbb{M} = \{\text{Qwen3-1.7B}, \text{Qwen3-4B}, \text{Qwen3-8B}, \text{Qwen3-14B}\}$. We define the
 368 inference cost for each model based on the total number of input tokens according to official API
 369 price, normalizing them relative to the largest model Qwen3-14B. The relative costs are 0.15, 0.3,
 370 0.5, 1.0 for Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Qwen3-14B, respectively.

372 **Datasets.** Following the reproducible protocol of EmbedLLM (Zhuang et al., 2025), we evaluate
 373 on a diverse query corpus spanning six challenging benchmarks covering expert knowledge, multi-
 374 step reasoning, and coding: MMLU (Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024),
 375 GSM8K (Cobbe et al., 2021), Big-Bench Hard (BBH) (Suzgun et al., 2022), GPQA (Rein et al.,
 376 2023), and MBPP (Austin et al., 2021). To generate the ground-truth data, for each query q from
 377 these benchmarks and each model $M_i \in \mathbb{M}$, we run inference using the lm-evaluation-harness (Gao
 378 et al., 2024).

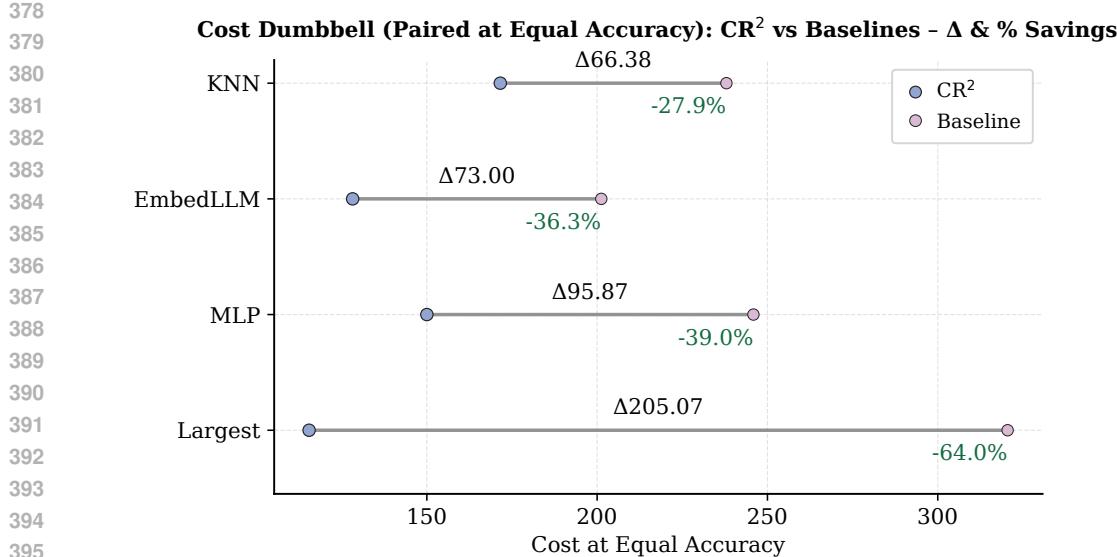


Figure 5: Cost dumbbell comparison at equal accuracy. CR² consistently achieves lower inference cost than baselines, with relative savings exceeding 60%.

Baselines. We compare our method against a comprehensive set of baselines to rigorously evaluate its performance:

- **EmbedLLM** (Zhuang et al., 2025): The current state-of-the-art learning-based router, which uses general-purpose embeddings to predict model performance.
- **Always-Smallest**: A simple heuristic that always routes to the cheapest capable model.
- **Always-Largest**: A heuristic that always routes to the most largest model.
- **Oracle**: A theoretical upper bound that assumes perfect knowledge of each model’s answerability for every query. It always selects the cheapest model that is known to answer the query correctly, defining the Pareto frontier.
- **MLP**: A non-hierarchical baseline where a MLP is trained on top of general-purpose sentence embeddings. It acts as a multi-class classifier to select a single model from the pool based on the highest output score.
- **KNN** (Zhuang et al., 2025): A non-parametric baseline that performs nearest-neighbor voting over query–model correctness outcomes. Each model is implicitly represented by its historical correctness tuples, and for a new query, the classifier predicts performance based on the majority vote of its nearest neighbors. We refer to this approach as KNN throughout the text.

Evaluation Metrics and Implementation Details. We evaluate all methods on two primary metrics: Routing Accuracy (%) and Average Per-Sample Token Cost (Avg. Cost). For cost, we normalize API prices to that of the most expensive model, compute each sample’s token cost as the normalized price-per-token times its total input tokens, and then average over all samples. The ideal method should achieve high accuracy at a low cost. For our method, we use a pretrained all-MiniLM-L6-v2(Wang et al., 2020) as the base sentence encoder, which is then fine-tuned using the supervised contrastive loss.

CRC is configured to control the expected system-level risk, ensuring it remains below the user-specified tolerance α . For the main SOTA comparison, we set this risk level to $\alpha = 0.08$, though a broader analysis with varying α is also presented.

For each benchmark, we generate labels on its official training set, and then partition this labeled data into 80%/10%/10% splits for training, validating, and testing our router, respectively. Further implementation details, including all hyperparameters, are provided in Appendix A.

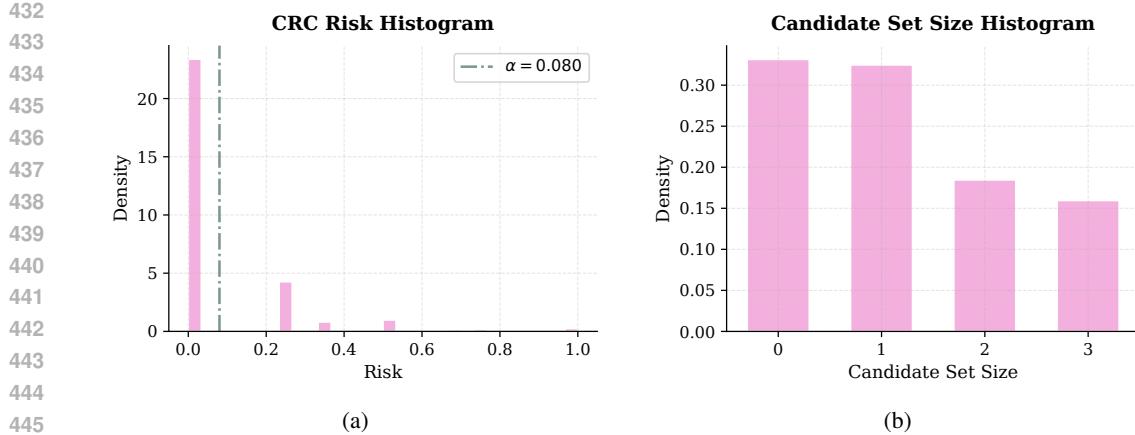


Figure 6: Analysis of CR^2 routing. (a) Histogram of per-query risks under the calibrated CRC threshold, showing that the majority of samples lie well below the specified tolerance α . (b) Histogram of candidate set sizes produced by the second-stage router, illustrating the distribution of model subsets considered at inference.

5.2 MAIN RESULTS

We now present the main experimental results, which show that CR^2 consistently outperforms strong baselines by achieving higher accuracy at equal cost and significantly reducing cost at equal accuracy.

First, in terms of routing accuracy, CR^2 achieves the best aggregate performance across five benchmarks (61.7%), with top or tied results on most individual tasks. As shown in Figure 3a, on BBH it surpasses the EmbedLLM baseline by 13.7 points, underscoring its strength on complex reasoning, while on MMLU it improves over the KNN baseline by 3.1 points, demonstrating robustness on knowledge-intensive evaluations. These results indicate that CR^2 narrows the gap to the oracle while preserving efficiency advantages over single-model deployments.

Second, when examining the accuracy–cost trade-off, CR^2 consistently defines the Pareto frontier. As shown in Figure 3b, its curve lies above all baselines and single-model settings, achieving higher accuracy at any given cost budget and substantially lower cost at a fixed accuracy. This highlights its ability to leverage smaller models effectively without sacrificing end-task performance.

Finally, we analyze the behavior of the risk calibration mechanism at inference time. Figure 6a shows that the calibrated router tightly controls the system’s risk: per-query values are concentrated near zero, well below the user-specified tolerance of $\alpha = 0.08$. Figure 6b further illustrates how efficiency arises: for more than 65% of inputs, the router confidently selects a single candidate model (or none at all), while adaptively expanding to 2–3 candidates only on harder queries. This adaptivity explains how CR^2 remains both efficient and reliable in practice.

5.3 ABLATION STUDIES

We toggle each component while holding others fixed and report routing accuracy and average per-sample token cost in Table 1. Enabling the two-stage design improves accuracy from **58.49%** to **60.74%** (+2.25 pts) and reduces cost from 223.10 to 202.18 (~9.4%). Adding SCL lifts accuracy from **56.11%** to **58.34%** (+2.23 pts) and lowers cost from 201.56 to 196.04 (~2.7%), indicating clearer separability of answerable vs. unanswerable queries for the small model. CRC calibration trims cost from 239.71 to 220.47 (~8.0%) with essentially unchanged accuracy (61.05% vs. 60.97%).

Overall, the components are complementary: two-stage routing yields the largest gains, SCL sharpens the Stage-1 decision boundary, and CRC delivers reliable cost reductions under a risk budget.

486 **6 CONCLUSION**
 487

488 In this work, we introduce CR², a novel hierarchical routing framework that learns capability-aware
 489 representations via supervised contrastive learning and, in a first for this domain, utilizes CRC to
 490 provide provable guarantees on the cost-accuracy trade-off. Experiments demonstrate that CR²
 491 establishes a new state-of-the-art, significantly improving both accuracy and cost-efficiency over
 492 strong baselines. By making the deployment of diverse LLMs more reliable and economically
 493 viable, our work represents a concrete step toward the affordable AI.

494
 495 **7 ETHIC STATEMENT**
 496

497 Our routing system could exacerbate fairness and bias issues if queries about sensitive topics are
 498 sent to smaller models that have not received the same safety alignment as larger models. While
 499 our framework does not inherently introduce bias, fairness depends on the quality and tuning of
 500 the model pool. Future work should explore routing criteria that explicitly account for fairness and
 501 safety.

502
 503 **8 REPRODUCIBILITY STATEMENT**
 504

505 We provide sufficient information to facilitate the reproduction of our results. The core code will
 506 be included in the supplementary material. Detailed implementation specifics, including model
 507 architectures, training procedures and hyperparameters, are described in the Appendix A. The full
 508 code will be publicly released on GitHub upon acceptance of the paper.

509
 510 **REFERENCES**
 511

512 Anastasios Nikolas Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Con-
 513 formal risk control. In *The Twelfth International Conference on Learning Representations*, 2024.
 514 URL <https://openreview.net/forum?id=33XGfHLtZg>.

515 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 516 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
 517 language models, 2021. URL <https://arxiv.org/abs/2108.07732>.

518 Catherine Chen, Jingyan Shen, Zhun Deng, and Lihua Lei. Conformal tail risk control for large lan-
 519 guage model alignment. In *Forty-second International Conference on Machine Learning*, 2025.
 520 URL <https://openreview.net/forum?id=H8DkMvWnSQ>.

521 Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models while
 522 reducing cost and improving performance. *Transactions on Machine Learning Research*, 2024a.
 523 ISSN 2835-8856. URL <https://openreview.net/forum?id=cSImKw5p6R>.

524 Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. Routerdc: Query-based
 525 router by dual contrastive learning for assembling large language models. *Advances in Neural*
 526 *Information Processing Systems*, 37:66305–66328, 2024b.

527 Zhuoming Chen, Avner May, Ruslan Svirchevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
 528 Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. *arXiv preprint*
 529 *arXiv:2402.12374*, 2024c.

530 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 531 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 532 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

533 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 534 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 535 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 536 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,

540 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 541 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 542 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 543 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 544 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 545 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 546 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 547 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 548 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
 549 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 550 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
 551 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 552 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 553 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
 554 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 555 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 556 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 557 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 558 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 559 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 560 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 561 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 562 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 563 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
 564 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

565 Dujian Ding, Sihem Amer-Yahia, and Laks V. S. Lakshmanan. On efficient approximate queries
 566 over machine learning models. *CoRR*, abs/2206.02845, 2022. URL <https://doi.org/10.48550/arXiv.2206.02845>.

567 Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Röhle, Laks
 568 V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware
 569 query routing. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 570 <https://openreview.net/forum?id=02f3mUtqnM>.

571 Dujian Ding, Ankur Mallick, Shaokun Zhang, Chi Wang, Daniel Madrigal, Mirian Del Car-
 572 men Hipolito Garcia, Menglin Xia, Laks VS Lakshmanan, Qingyun Wu, and Victor Röhle. Best-
 573 route: Adaptive llm routing with test-time optimal compute. *arXiv preprint arXiv:2506.22716*,
 574 2025.

575 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 576 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
 577 2022.

578 Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for LLM selections.
 579 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=eU39PDsZtT>.

580 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 581 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 582 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 583 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 584 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

585 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 586 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 587 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 588 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 589 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
 590 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 591 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 592

594 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 595 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 596 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 597 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 598 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 599 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 600 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 601 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 602 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 603 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
 604 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 605 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 606 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 607 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 608 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 609 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 610 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 611 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 612 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 613 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 614 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 615 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 616 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 617 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 618 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 619 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 620 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 621 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 622 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei
 623 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 624 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 625 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 626 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 627 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 628 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 629 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 630 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 631 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 632 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 633 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 634 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 635 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 636 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 637 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 638 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 639 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 640 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcuate, Evan Dunbar, Evan Smo-
 641 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 642 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 643 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 644 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 645 son Rudolph, Helen Suk, Henry Aspégren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 646 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 647 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 648 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 649 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 650 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 651 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 652 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,

648 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 649 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 650 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 651 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 652 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 653 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 654 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 655 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 656 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 657 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 658 driguez, Rafi Ayub, Raghetham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 659 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 660 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 661 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 662 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 663 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 664 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 665 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 666 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 667 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 668 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 669 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 670 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 671 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 672 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 673 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 674 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 675 <https://arxiv.org/abs/2407.21783>.
 676
 677 Neel Guha, Mayee Chen, Trevor Chow, Ishan Khare, and Christopher Re. Smoothie: Label free lan-
 678 guage model routing. *Advances in Neural Information Processing Systems*, 37:127645–127672,
 679 2024.
 680
 681 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 682 cob Steinhardt. Measuring massive multitask language understanding. In *International Confer-
 683 ence on Learning Representations*, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.
 684
 685 Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
 686 Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-LLM routing
 687 system. In *Agentic Markets Workshop at ICML 2024*, 2024. URL <https://openreview.net/forum?id=IVXmV8Uxwh>.
 688
 689 Ruihan Jin, Pengpeng Shao, Zhengqi Wen, Jinyang Wu, Mingkuan Feng, Shuai Zhang, and Jian-
 690 hua Tao. Radialrouter: Structured representation for efficient and robust large language models
 691 routing. *arXiv preprint arXiv:2506.03880*, 2025.
 692
 693 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
 694 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *Advances in neural
 695 information processing systems*, 33:18661–18673, 2020.
 696
 697 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 698 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.
 699
 700 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling re-
 701 quires rethinking feature uncertainty. In *Forty-first International Conference on Machine Learn-
 702 ing*, 2024. URL <https://openreview.net/forum?id=1NdN7eXyb4>.
 703
 704 Zhongyang Li, Ziyue Li, and Tianyi Zhou. R2-t2: Re-routing in test-time for multimodal mixture-
 705 of-experts. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=oqPcOMafOF>.

702 Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
 703 Routing to the expert: Efficient reward-guided ensemble of large language models, 2023. *URL*
 704 <https://arxiv.org/abs/2311.08692>, 2023.

705 Sima Noorani, Orlando Romero, Nicolo Dal Fabbro, Hamed Hassani, and George J Pappas. Con-
 706 formal risk minimization with variance reduction. *arXiv preprint arXiv:2411.01696*, 2024.

708 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
 709 M Waleed Kadous, and Ion Stoica. RouteLLM: Learning to route LLMs from preference
 710 data. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 711 <https://openreview.net/forum?id=8sSqNntaMr>.

712 OpenAI. Gpt-5 system card. <https://cdn.openai.com/pdf/8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf>,
 713 2025a. Accessed: 2025-09-24.

714 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025b. URL <https://arxiv.org/abs/2508.10925>.

715 William Overman, Jacqueline Jil Vallon, and Mohsen Bayati. Aligning model properties via con-
 716 formal risk control. In *The Thirty-eighth Annual Conference on Neural Information Processing
 717 Systems*, 2024. URL <https://openreview.net/forum?id=90HXQybMZB>.

718 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 719 Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
 720 benchmark, 2023. URL <https://arxiv.org/abs/2311.12022>.

721 Dimitris Stripelis, Zijian Hu, Jipeng Zhang, Zhaozhuo Xu, Alay Diliphai Shah, Han Jin, Yuhang
 722 Yao, Salman Avestimehr, and Chaoyang He. Tensoropera router: A multi-model router for effi-
 723 cient llm inference. *arXiv preprint arXiv:2408.12320*, 2024.

724 Jiayuan Su, Fulin Lin, Zhaopeng Feng, Han Zheng, Teng Wang, Zhenyu Xiao, Xinlong Zhao,
 725 Zuozhu Liu, Lu Cheng, and Hongwei Wang. Cp-router: An uncertainty-aware router between
 726 llm and lrm. *arXiv preprint arXiv:2505.19970*, 2025.

727 Mirac Suzgun, Nathan Scales, Nathanael Schärl, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 728 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
 729 bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*,
 730 2022.

731 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 732 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 733 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 734 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
 735 aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
 736 man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
 737 Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
 738 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 739 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
 740 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 741 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 742 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 743 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 744 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 745 mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 746 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 747 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 748 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 749 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
 750 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 751 Marina Coelho, Marvin Ritter, Matt Hoffman, Mayank Chaturvedi, Michael

756 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 757 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 758 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 759 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 760 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 761 Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 762 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
 763 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 764 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 765 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 766 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 767 ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 768 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 769 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
 770 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 771 Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

772 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 773 attention distillation for task-agnostic compression of pre-trained transformers. *Advances in neu-
 774 ral information processing systems*, 33:5776–5788, 2020.

775 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weim-
 776 ing Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang,
 777 Rongqi Fan, Xiang Yue, and Wenhui Chen. MMLU-pro: A more robust and challenging multi-
 778 task language understanding benchmark. In *The Thirty-eight Conference on Neural Information
 779 Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=y10DM6R2r3>.

780 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 781 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 782 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 783 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 784 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 785 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 786 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 787 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 788 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

789 Jiarui Zhang, Xiangyu Liu, Yong Hu, Chaoyue Niu, Fan Wu, and Guihai Chen. Query routing for
 790 retrieval-augmented language models. *arXiv preprint arXiv:2505.23052*, 2025a.

791 Yi-Kai Zhang, De-Chuan Zhan, and Han-Jia Ye. Capability instruction tuning: A new paradigm for
 792 dynamic llm routing. *arXiv preprint arXiv:2502.17282*, 2025b.

793 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
 794 Le, James Laudon, et al. Mixture-of-experts with expert choice routing. *Advances in Neural
 795 Information Processing Systems*, 35:7103–7114, 2022.

796 Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran.
 797 EmbedLLM: Learning compact representations of large language models. In *The Thirteenth
 798 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=F9EabmQrJ>.

799 800
 801 802
 803 804
 805 806
 807 808
 808 809

810 A APPENDIX 1: TRAINING IMPLEMENTATION DETAILS
811812 A.1 STAGE-1: CAPABILITY-AWARE FILTERING
813814 **SCL** We initialize the text encoder with `sentence-transformers/all-MiniLM-L6-v2`
815 and its tokenizer (max sequence length 512; EOS used as `pad_token` when absent). On top of
816 the encoder we add an attention-pooling projector with two learned queries followed by a linear
817 layer to a 384-d embedding; outputs are L2-normalized. Mini-batches contain 256 examples and are
818 composed with a class-balanced sampler to stabilize SCL. We fine-tune the encoder and projector for
819 15 epochs using AdamW (LR 1×10^{-4} on projector/encoder, weight decay 0.01), cosine annealing
820 with warm restarts ($\eta_{\min} = 1 \times 10^{-6}$), mixed precision on GPU (bfloat16), and gradient-norm
821 clipping on the projector (max-norm 5.0). All runs use seed 42 and Weights&Biases for logging.
822823 **Binary classifier training on frozen embeddings.** After SCL, both encoder and projector are
824 frozen. We train a lightweight MLP head (`LayerNorm` \rightarrow `Linear(2d)` \rightarrow `GELU` \rightarrow `Dropout(0.1)`
825 \rightarrow `Linear(2)`) for 10 epochs with AdamW (LR 1×10^{-3}), the same cosine scheduler, and gradient
826 clipping (max-norm 1.0). Class imbalance is handled via inverse-frequency class weights. This gate
827 is fixed at deployment.
828829 A.2 STAGE-2: MULTILABEL CLASSIFICATION AND CRC CALIBRATION
830831 **Multilabel Classifier Training.** We train a multilabel classifier to score the remaining models
832 $\{M_i\}_{i=2}^K$ using a frozen MiniLM encoder and a lightweight head. Concretely, we instantiate
833 `sentence-transformers/all-MiniLM-L6-v2` and freeze all backbone parameters. Inputs are tokenized with the corresponding tokenizer (padding enabled; `max_len=512`; EOS used
834 as `pad_token` if absent). The head is an MLP (`LayerNorm` \rightarrow `Dropout(0.1)` \rightarrow `Linear(d, 4d)`
835 \rightarrow `GELU` \rightarrow `Dropout(0.1)` \rightarrow `Linear(4d, K - 1)`), trained with `BCEWithLogitsLoss`. Batches
836 contain 64 examples per GPU; we run distributed data-parallel training on 4 NVIDIA 4090 GPUs
837 via `torchrun`, yielding an effective global batch size of 256. Optimization uses AdamW (LR
838 $= 1 \times 10^{-3}$, weight decay = 0.01) for 20 epochs with a cosine schedule and 3% warmup. Gradients
839 are clipped at 1.0.
840841 To mitigate label imbalance across the $(K - 1)$ binary targets, we use inverse-frequency weighted
842 sampling, where per-example weights are the clipped $([0.2, 5.0])$ sum of inverse per-class positive
843 rates. Validation runs every epoch with distributed aggregation. Unless otherwise specified, we
844 set the random seed to 42 and use 4 dataloader workers per process. The resulting probabilities
845 serve as inputs to the CRC calibration step that determines the stage-2 candidate threshold used at
846 deployment.
847848 B APPENDIX 2: PROOF OF MONOTONICITY FOR THE COMPOSITE LOSS
849 FUNCTION IN CRC
850851 Here, we formally prove that the composite loss function $L_j(\lambda)$ defined in Equation 13 of
852 the main text is monotone non-increasing with respect to the threshold $\lambda \in [0, 1]$. This property is a
853 prerequisite for the application of the Conformal Risk Control framework.
854855 **Proposition 1.** *The composite loss function $L_j(\lambda)$ is monotone non-increasing with respect to λ .*
856857 *Proof.* To prove that $L_j(\lambda)$ is monotone non-increasing, we must show that for any pair of thresholds
858 $0 \leq \lambda_1 < \lambda_2 \leq 1$, it holds that $L_j(\lambda_2) \leq L_j(\lambda_1)$. The loss function is defined piece-wise based on
859 the routing decision for a given query q_j , so we analyze each case.
860861 **Case 1: The query is handled by Stage 1** ($s_1(q_j) \geq t_1$). In this case, the loss is defined as
862 $L_j(\lambda) = 1 - y_{1j}$. This value is a constant with respect to λ , as it does not depend on the threshold.
863 A constant function is, by definition, monotone non-increasing. Thus, $L_j(\lambda_2) = L_j(\lambda_1)$, and the
864 condition is satisfied.

864 **Case 2: The query is handled by Stage 2** ($s_1(q_j) < t_1$). In this case, the loss is the model-level
 865 FPR:

$$866 \quad 867 \quad 868 \quad L_j(\lambda) = \frac{|\{i \in \mathcal{C}_\lambda(q_j) : y_{ij} = 0\}|}{\max(1, |\{i \geq 2 : y_{ij} = 0\}|)}.$$

869 Let us analyze the components of this fraction. The denominator, $D = \max(1, |\{i \geq 2 : y_{ij} = 0\}|)$, is a positive constant for a given query q_j , as it depends only on the ground-truth outcomes,
 870 not on λ .

872 The numerator, $N(\lambda) = |\{i \in \mathcal{C}_\lambda(q_j) : y_{ij} = 0\}|$, is the number of incorrect models included in
 873 the candidate set. To prove that $L_j(\lambda)$ is non-increasing, it is sufficient to prove that the numerator
 874 $N(\lambda)$ is non-increasing.

875 The candidate set is defined as $\mathcal{C}_\lambda(q_j) = \{i \in \{2, \dots, K\} : \hat{p}_i(q_j) \geq \lambda\}$. Consider our two
 876 thresholds such that $0 \leq \lambda_1 < \lambda_2 \leq 1$. For any model i to be in the set $\mathcal{C}_{\lambda_2}(q_j)$, its score must
 877 satisfy $\hat{p}_i(q_j) \geq \lambda_2$. Because $\lambda_2 > \lambda_1$, this condition implies that $\hat{p}_i(q_j) > \lambda_1$, which in turn means
 878 that model i must also be a member of the set $\mathcal{C}_{\lambda_1}(q_j)$.

879 Therefore, the candidate set at the higher threshold is a subset of the candidate set at the lower
 880 threshold:

$$881 \quad \mathcal{C}_{\lambda_2}(q_j) \subseteq \mathcal{C}_{\lambda_1}(q_j).$$

883 The numerator $N(\lambda)$ counts the number of incorrect models within the candidate set. Let $I_{\text{incorrect}} =$
 884 $\{i \geq 2 : y_{ij} = 0\}$ be the set of all incorrect models for query q_j . The numerator can be written as
 885 $N(\lambda) = |\mathcal{C}_\lambda(q_j) \cap I_{\text{incorrect}}|$.

886 Since $\mathcal{C}_{\lambda_2}(q_j)$ is a subset of $\mathcal{C}_{\lambda_1}(q_j)$, the intersection of this smaller set with $I_{\text{incorrect}}$ must also be a
 887 subset of the intersection of the larger set with $I_{\text{incorrect}}$:

$$888 \quad 889 \quad \mathcal{C}_{\lambda_2}(q_j) \cap I_{\text{incorrect}} \subseteq \mathcal{C}_{\lambda_1}(q_j) \cap I_{\text{incorrect}}.$$

890 The cardinality of a subset cannot be greater than the cardinality of the set that contains it. Thus, it
 891 follows that $N(\lambda_2) \leq N(\lambda_1)$. As the denominator is a positive constant, we have shown that the
 892 loss is non-increasing for this case as well.

893 **Conclusion.** Since the loss is monotone non-increasing in both cases, the composite loss function
 894 $L_j(\lambda)$ is proven to be monotone non-increasing with respect to λ over its entire domain. \square
 895

896 C APPENDIX 3: ABLATION STUDIES

897 Table 1: Ablation study of Two Stage Routing, SCL and CRC.

	Accuracy (%)	Avg. Cost
w/o Two Stage Routing	58.49	223.10
w/ Two Stage Routing	60.74	202.18
w/o SCL	56.11	201.56
w/ SCL	58.34	196.04
w/o CRC	61.05	239.71
w/ CRC	60.97	220.47

900 D APPENDIX 4: THE USE OF LARGE LANGUAGE MODELS

912 We used OpenAI ChatGPT and Google Gemini (Deep Research) strictly as productivity aids. Con-
 913 cretely, they were used to (i) polish wording and improve stylistic clarity of drafts, and (ii) help
 914 scope the literature at the project outset by suggesting search terms and candidate papers. No parts
 915 of the methods or results were generated by LLMs. Every citation surfaced during scoping was
 916 manually verified against primary sources, and no model-generated references were accepted. No
 917 confidential data were shared with the tools. The authors take full responsibility for the content of
 this paper.

918 Table 2: Sensitivity of CRC to the calibration sample size ($\alpha = 0.1$). The risk remains close to α
 919 while accuracy shows only small variations.
 920

Calibration size N_c	λ	Acc	Avg token cost	Mean risk	Mean set size
100	0.9053	0.6035	191.651	0.1090	1.4267
250	0.9286	0.6082	206.417	0.0907	1.2233
500	0.9199	0.6069	201.863	0.0979	1.3107
1000	0.9266	0.6074	202.217	0.0931	1.2523

926 Table 3: CRC performance under different α values (refit). The observed risk closely matches the
 927 target α .
 928

Variant	α	λ	Acc	Avg token cost	Mean risk	Mean set size
CRC@ α	0.05	0.9827	0.6095	233.213	0.0520	0.5640
CRC@ α	0.10	0.9253	0.6074	202.176	0.0949	1.2781
CRC@ α	0.15	0.8712	0.5952	150.947	0.1497	1.7532

935 E APPENDIX 5: OUT-OF-DISTRIBUTION EVALUATION

938 Fig. 7 shows the accuracy–cost Pareto frontier evaluated on a combined out-of-distribution test set
 939 constructed from PIQA and ARC-Easy, which the router was not exposed to during training. Each
 940 point represents the average inference cost per sample under a specific routing configuration. The
 941 results reflect the model pool’s performance and routing behavior in a distribution-shift setting rather
 942 than in-distribution generalization.

943 Our method CR² (green diamonds) forms a competitive Pareto frontier relative to KNN and MLP
 944 routers across the evaluated cost range. The Largest Model baseline (grey square) provides an upper-
 945 cost reference, while Oracle Upper Bound (red star) denotes the idealized maximum achievable
 946 accuracy if the best model were chosen per sample. The frontier of EmbedLLM is also plotted for
 947 comparison.

948 Overall, this OOD evaluation illustrates that routing continues to extract favorable accuracy–cost
 949 trade-offs even when the input distribution differs from training, and that the achievable frontier
 950 may exceed the standalone performance of the largest model.

951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

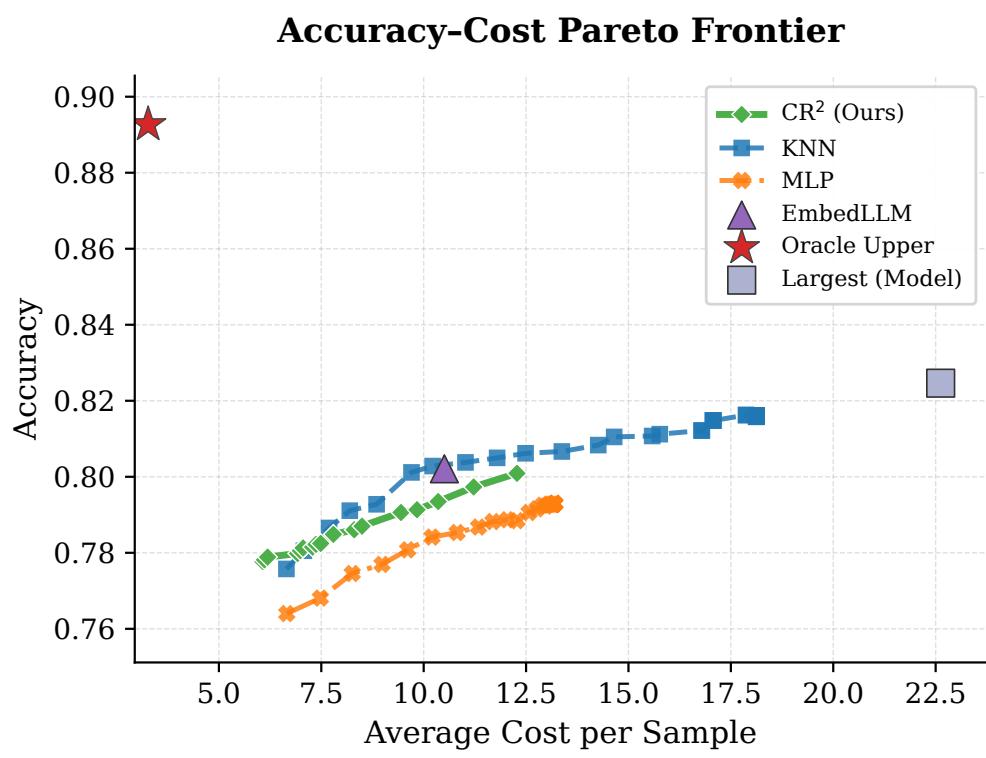


Figure 7: Accuracy–cost trade-off of different routing strategies under OOD settings.