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Abstract

Convolutional Neural Networks (CNNs) have significantly advanced medical image
segmentation, offering unparalleled local feature extraction capabilities. However,
CNNs face limitations in capturing long-range dependencies due to the local
nature of convolutional operations. Recently, State-Space Models (SSMs), such as
Mamba, have presented an efficient solution by incorporating gating, convolutions,
and data-dependent filtering mechanisms for long-range interaction modeling.
However, as an attention-free mechanism, SSMs are less efficient at handling
variable distance token-to-token interactions compared to attention. In this paper,
we introduce Hetero-UNet, a novel hybrid U-Net architecture that incorporates
SSMs and attention mechanisms to map long-range dependencies. Featuring a
hybrid Transformer-Mamba encoder within original U-Net architecture, it excels at
extracting both local and global features. Our extensive experiments across diverse
tasks—abdominal organ segmentation in CT and MR, instrument segmentation in
endoscopy, and cell segmentation in microscopy—demonstrates Hetero-UNet’s
superior performance over previous state-of-the-art segmentation models, paving
the way for hybrid long-range dependency modeling in medical imaging. The code
is available at https://github.com/ZhilingYan/Hetero-UNet.

1 Introduction

Medical image segmentation is vital for helping healthcare professionals detect biological structures
and assess their morphology, which aids in diagnosing various diseases. In recent years, convolutional
neural networks (CNNs)-based models, such as U-Net [28] has become particularly popular due
to its simple yet flexible architecture. Numerous variations and improvements have been proposed
based on U-Net’s distinctive U-shaped design [17, 3, 33, 34, 16, 15], most of which use a symmetric
encoder-decoder structure to extract image features at different scales. These advancements have
significantly impacted various medical imaging tasks, including abdominal multi-organ segmentation
in MR images [19] and cell segmentation in microscopy images [23].

However, despite the success of CNN-based models, they face a key limitation: their inability to
capture long-range dependencies in images. This issue arises from the fact that convolutional kernels
are inherently local [5]. Although U-Net uses skip connections to combine low-level and high-level
features, these connections primarily merge local features and do not significantly improve the
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model’s capacity to handle long-range dependencies. This shortcoming becomes more noticeable
when dealing with significant inter-patient variations in size, shape, and other factors [5]. These
variations make it challenging for CNNs to consistently and accurately capture information across
broader spatial areas, underscoring the need for new methods to overcome this limitation.

Recognizing these limitations of CNNs, the research community has shifted interest towards State
Space Models (SSMs) [25, 11, 30] due to their ability to establish long-distance dependencies and
their increasingly competitive performance. These SSMs (e.g., Mamba [12]) integrate features like
gating, convolutions, and input-dependent token selection to enhance performance. Their application
extends across various domains, including language understanding [8] and general vision [35],
demonstrating their versatility. Particularly in medical imaging, where datasets often exhibit large
inter-patient variations, Mamba’s capability to filter out irrelevant information [27] and then decrease
the effect of inter-patient variations proves beneficial, allowing for a focused representation learning
of medical images. Efforts to use pure Mamba [29, 31] or merge CNNs with SSMs [22, 32, 10] in
medical image segmentation have shown promising results compared with state-of-the-art CNN-based
and Transformer-based models, indicating SSMs’ potential in this area.

While Mamba’s performance in visual tasks, particularly medical image segmentation, has been
impressive, applications have primarily focused on using Mamba alone or in conjunction with CNNs,
overlooking the potential of integrating Transformers for global information capture. Transformers
are known for their effectiveness in achieving input-dependent processing by computing all token-
to-token interactions, a feature crucial for mixing information across sequences [2]. However, as
an attention-free mechanism, SSMs are less efficient at handling variable distance token-to-token
interactions compared to attention. In addition, the performance of SSMs is significantly influenced
by the size of the hidden layer [27], and SSMs employ fixed filters defined by model weights
for processing sequences, contrasting with input-adaptive functions of attention mechanisms [2].
Although SSMs allow for filtering of irrelevant information, excessive filtering in deeper models can
lead to low-resolution features, results in challenges for the decoder in accurately reconstructing the
input. Despite these challenges, merging multi-head attention (MHA) with SSMs has shown promise
in processing long sequences [36, 25, 6], though the potential of interleaving Transformers and SSMs
in vision domain, especially for enhancing medical image segmentation, is yet to be fully explored.

In this paper, we propose Hetero-UNet, a cutting-edge hybrid model that combines the strengths of
SSMs with a U-shaped architecture, incorporating convolution encoder-decoder, attention mecha-
nisms, and SSM blocks. In our work, we have preserved the original U-Net architecture, including
the encoder, decoder, and skip connections, to ensure the model’s ability to learn local features.
We continue to employ CNN within both the encoder and decoder module. However, to enhance
the model’s long-range dependency learning capacity, we have incorporated a hybrid Transformer-
Mamba (TransMamba) encoder following the CNN encoder. Specifically, the hybrid encoder consists
of multiple layers of TransMamba blocks, each comprising a SSM block equipped with additional
attention modules. Comprehensive experiments have been carried out across a variety of medical
imaging tasks, including 3D abdominal multi-organ segmentation in CT and MR images, instrument
segmentation in endoscopy images, and cell segmentation in microscopy images, to showcase the
effectiveness of hybrid SSM-based model in medical image segmentation. Hetero-UNet achieves
superior performance, outperforming networks solely based on Transformers, CNNs, and SSM tech-
niques. This shed the light for future research in architectures that capture long-range dependencies
in biomedical imaging. The primary contributions of this paper are highlighted as follows:

1) We propose a novel SSM-based model, marking a pioneering exploration for harnessing the
capability of hybrid SSM-based models with attention mechanism for segmentation tasks in medical
imaging domain.

2) We introduce the Hetero-UNet architecture, a sophisticated framework that utilizes hybrid
Transformer-Mamba module to make strong U-Net encoder. This architecture is designed to adeptly
capture both local details and global patterns within long-range data, ensuring comprehensive feature
extraction.

3) Comprehensive experiments are conducted on four datasets, including both 3D and 2D images
across a variety of imaging modalities (e.g. CT, MR, microscopy, and endoscopy), with results
indicating that Hetero-UNet exhibits considerable competitiveness.
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2 Related Work
2.1 Medical Image Segmentation
CNN-based and Transformer-based models have made significant strides in advancing medical image
segmentation. U-Net [28], a key CNN-based model, uses a symmetric encoder-decoder architecture
with skip connections to preserve detailed information. Several improvements [26], such as the
self-adapting nnU-Net framework [18], have been developed based on this U-shaped structure,
showing strong performance across diverse medical image segmentation tasks. On the Transformer
side, TransUnet [4] integrates the Vision Transformer (ViT)[7] for feature extraction in the encoder
while utilizing CNN for decoding, effectively capturing global information. Swin-UNETR[15] and
UNETR [16] combine Transformer architectures with traditional U-Net designs to improve 3D image
analysis. Furthermore, Swin-UNet [3] incorporates Swin Vision Transformer blocks [21] within the
U-Net framework, further expanding the use of Transformer technology in medical imaging.
2.2 SSMs in Image Segmentation
State-space models (SSMs), such as Mamba, have recently emerged as a powerful tool for deep
network development, delivering state-of-the-art results in analyzing long-sequence data [9, 8]. Early
explorations of SSMs in the vision domain have shown encouraging results [35]. VMamba [20]
introduces a Mamba-based vision backbone for hierarchical representations, incorporating a cross-
scan module to tackle the dimensional mismatch between 1D sequences and 2D images. In medical
image segmentation, U-Mamba [22] marks a groundbreaking hybrid approach that combines SSMs
and CNNs, representing the first application of SSMs in this field. Further advancements include
VM-UNet [29] and Mamba-UNet [31], which use a fully SSM-based encoder-decoder structure, and
SegMamba [32] and nnMamba [10], which integrate SSMs in the encoder with CNNs in the decoder,
showcasing the versatility and effectiveness of SSMs in advancing medical imaging analysis.
3 Method
The process of Hetero-UNet is shown in Figure 1. We implement a multi-layer encoder with CNN-
based blocks to extract the local features of the input images. Then we introduce a novel hybrid
Transformer-Mamba (TransMamba) encoder with multi-layer hybrid TransMamba blocks to learn the
long-range dependencies of the input. For the decoder, we use the multi-layer CNN-based decoder to
upsample and reconstruct the output segmentation label.
3.1 U-shape Convolutional Encoder and Decoder
The encoder, composed of residual blocks and transposed convolutions, focused on detailed local
information and feature extraction. The decoder keeps the same as the encoder, while encoder is
to decrease the input size and the decoder tries to increase the features size, focusing on resolution
recovery. Moreover, we inherit the skip connection in U-Net to connect the hierarchical features from
the encoder to the decoder. The final decoder feature is passed to a 3D convolutional layer with a
softmax layer to produce the final segmentation probability map.
3.2 Hetero-UNet: Empowering SSM with Attention Mechanism
State Space Models and Mamba Block. Before introducing Hetero-UNet, we firstly introduce
the technique details of the Mamba block, as a preliminary of the hybrid Hetero-UNet. State Space
Models (SSMs) are traditionally identified as linear time-invariant frameworks that map an input
signal x(t) ∈ RN to an output signal y(t) ∈ RN through the mediation of a hidden state h(t) ∈ RN .
This process is captured by the equations:

h′(t) = Ah(t) + Bx(t), y(t) = Ch(t), (1)

with A ∈ RN×N representing the state transition matrix, and B,C ∈ RN as the input and output
matrices, respectively. Determining the output y(t) at a specific time t often presents a significant
challenge due to the difficulty in analytically solving for h(t). Moreover, since real-world data
frequently occurs in a discrete format, an alternative approach involves discretizing the continuous
system described in Equation 1:

ht = Aht−1 + Bxt, yt = Cht, (2)

where the discretized system parameters A := exp(∆ ·A) and B := (∆ ·A)−1(exp(∆ ·A)− I) ·∆B,
with ∆ denoting the discretization interval.

Despite their profound theoretical underpinning, SSMs often encounter significant computational
demands and potential for numerical instability. This has led to the emergence of Structured State
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Figure 1: Overview of our proposed Hetero-UNet architecture for medical image segmentation.
Hetero-UNet employs the U-shape encoder-decoder framework with a convolution encoder, a
Transformer-Mamba (TransMamba) encoder, a convolution decoder and skip connections for en-
hanced feature fusion. The core of this architecture, the scalable TransMamba encoder, is composed
of multiple TransMamba layers. Each hybrid layer within the encoder includes a MHA block and
a MLP layer, with a SSM-based Mamba block positioned between them for enhanced long-range
dependency modeling.

Space sequence models (S4) [14], which address these drawbacks by implementing a structured
arrangement in the state transition matrix A, notably through the use of HIPPO matrices [13]. Such
structural modifications have yielded considerable improvements in both efficiency and performance
metrics. Remarkably, S4 models have demonstrated superior performance compared to Transformers,
especially in tasks requiring the modeling of long-range dependencies [14]. The more recent innova-
tion, Mamba [12], enhances this model by incorporating an input-dependent selection mechanism
alongside a faster, hardware-optimized algorithm.

Specifically, the selective scan mechanism (S6) [12] in Mamba block design the matrices B ∈
RB×L×N , C ∈ RB×L×N , and ∆ ∈ RB×L×C are derived from the input data x ∈ RB×L×C . This
implies that S6 is aware of the contextual information embedded in the input, ensuring the dynamism
of weights within this mechanism.

Our Design: Hybrid TransMamba Block. Hybrid TransMamba block is designed to leverage the
best of Transformer and Mamba blocks. In medical imaging, where datasets often exhibit large inter-
patient variations, Mamba’s capability to filter out irrelevant information [27] proves beneficial, while
their performance being significantly influenced by the hidden layer size. Despite these obstacles,
the combination of Transformer with SSMs has been found beneficial [36, 25] in long sequence
processing. Considering the potential of interleaving Transformers and SSMs in the vision domain
yet to be fully explored, we introduce a novel module, denoted as TransMamba Block, to leverage
the best of Transformer and Mamba. It enables one to learn the global features within long-range
data. To achieve this, we insert the Mamba block into the original Multi-Head Attention block, as
shown in the blue box in Figure 1.

Given the input features x ∈ RB,L,C , they enter the hybrid TransMamba block. The first is the
Transformer block. We keep the initial feature and concatenate it with the output feature from Multi-
Head Attention block. The output of the Transformer block is: xoutput = LayerNorm(x+ MHA(x)).
After the transformer block, the features are still in the shape of B,L,C. Then, with one more layer
norm, the features are in the Mamba block that contains two parallel branches. In the first branch, the
features are expanded to (B, 2L,C) by a linear expansion layer Wup ∈ RC×EC with expansion ratio
E followed by the SiLU activation function. In the second branch, the features firstly experience the
same expansion to (B, 2L,C) using the Wup of the same size. Then, it goes into a 1D convolutional
layer, followed by a SiLU activation function and SSM layer. After that, the features from the two
branches are merged together with the Hadamard product. Then, the features are projected back into
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the original shape (B,L,C) using a linear down-projection layer Wdown ∈ REC×C . The output can
be calculated as:

xoutput = Wdown(SSM(σ(Conv(Wupx)))⊙ σ(Wupx)). (3)
Finally, the output features are put into the MLP block, with a layer norm and an MLP layer:
xoutput = LayerNorm(x+ MLP(x)).

Implementation Note. The hybrid TransMamba encoder is composed of a stack of N = 12 identical
layers. As shown in Figure 1, before entering the TransMamba block, the input x ∈ RB,C,H,W,D are
flattened and transposed to x ∈ RB,L,C where L = H ×W ×D. After passing the layer norm, the
features are fed into the hybrid TransMamba block. Go through N = 12 TransMamba layers, the
features are fed into the final layer norm. The shape of x remains the same as (B,L,C). Finally, the
features are reshaped and transposed into (B,C,H,W,D).

4 Experiments
In this section, we conduct comprehensive experiments on Hetero-UNet across various medical
imaging tasks, including abdominal multi-organ segmentation in CT and MR images, instrument
segmentation in endoscopy images, and cell segmentation in microscopy images. The results
demonstrate that Hetero-UNet consistently outperforms existing methods, showcasing its superior
capability in handling diverse segmentation challenges. This performance highlights Hetero-UNet’s
versatility and effectiveness in accurately segmenting medical images, affirming its potential as a
leading solution in the field of medical image analysis.
4.1 Datasets and Implementation Details
To assess the performance and scalability of Hetero-UNet, we utilize four medical image datasets
across a variety of segmentation tasks and imaging modalities, including Abdomen CT dataset [24],
Abdomen MR dataset [19], Endoscopy dataset [1] and Microscopy dataset [23].

The setting of our experiments are the same as that in U-Mamba [22] and nnUNet [18] to ensure a
fair comparison. Specifically, We adopt an unweighted combination of Dice loss and cross-entropy
loss for all datasets and utilize the SGD optimizer with an initial learning rate of 1e-2. The training
duration for each dataset is set to 1000 epochs, conducted on a single NVIDIA RTX A5000 GPU.
Leveraging the self-configuring capabilities from nnUNet, the number of network blocks adjusts
automatically according to the dataset. For evaluation metrics, we employ Dice Similarity Coefficient
(DSC) and Normalized Surface Distance (NSD) to assess performance in abdominal multi-organ
segmentation for CT and MR scans, and instrument segmentation in Endoscopy images. For the cell
segmentation task, we utilize Precision, Recall, DSC, and F1 score to evaluate method performance.
4.2 Comparison Results
In our evaluation of Hetero-UNet, we compare against two prominent CNN-based segmentation
methods: nnUNet [18] and SegResNet [26]. Additionally, we include a comparison with UNETR [16],
a Transformer-based network that has gained popularity in medical image segmentation tasks. U-
Mamba [22], a recent method based on the Mamba model, is also included in our comparison
to provide a comprehensive overview of its performance. For each model, we implement their
recommended optimizers to ensure consistency in training conditions. To maintain fairness across all
comparisons, we apply the default image preprocessing in nnUNet [18].

Abdomen 3D Dataset. Table 1 and Table 2 present comparative results for the abdominal multi-
organ segmentation task on CT and MRI images, showcasing Hetero-UNet’s superior performance
across CNN-based, Transformer-based, and SSM-based methods. Specifically, our method improves
the DSC from 0.5% to 18.4% and NSD from 0.7% to 20.1% on CT 3D images. It also improves
the DSC from 0.3% to 16.0% and NSD from 0.4% to 17.1% on MR 3D images. Despite nnUNet’s
strong performance, highlighting its robustness in segmentation tasks, SSM-based methods, including
ours, excel in capturing long-range dependencies, critical for medical imaging analysis. The superior
result demonstrates the great potential of the SSM-based network in medical 3D image segmentation.
Hetero-UNet’s advantage is particularly evident when compared to U-Mamba, an SSM-based method
employing the same backbone as ours while lacking the integration of attention mechanisms. Our
method consistently outperforms it, underscoring the advantage of the hybrid module that combines
SSM with attention mechanisms for enhanced medical image segmentation. The visual comparisons
in Figure 2 further affirm Hetero-UNet’s precision in segmentation. It demonstrates fewer outliers and
higher accuracy in recognizing organ shapes and types, notably producing more accurate segmentation
masks for challenging organs. For instance, Hetero-UNet generates more accurate duodenum and

5



Table 1: Comparison of abdominal multi-organ segmentation results generated from our Hetero-UNet
and other state-of-the-art methods on the Abdomen CT dataset.
Methods LV RK Sp. P. Aor. IVC RA LA GB Es. St. DD LK AVG

DSC [%] ↑
nnUNet 96.9 87.3 93.7 85.0 95.8 87.8 82.1 79.9 72.0 86.2 88.0 77.0 85.8 86.0
SegResNet 95.3 81.2 86.8 74.6 93.4 84.0 75.4 70.7 66.9 80.7 82.1 61.3 79.5 79.4
UNETR 91.1 67.7 76.6 61.9 88.6 75.0 67.2 49.3 54.2 68.7 70.5 50.4 66.5 68.3
U-Mamba 97.0 85.8 90.8 85.2 95.6 89.4 82.0 83.6 72.5 87.0 89.0 78.1 84.7 86.2
Ours 96.6 86.4 91.1 85.6 96.0 88.1 80.4 83.5 81.7 87.3 88.7 73.6 88.3 86.7

NSD [%] ↑
nnUNet 95.4 85.8 92.8 93.0 97.4 87.1 93.4 89.6 71.5 93.4 89.7 89.3 82.4 89.3
SegResNet 92.2 77.4 85.2 83.7 93.7 82.9 88.0 81.5 64.9 89.4 84.4 77.1 77.5 82.9
UNETR 82.1 64.0 72.7 69.0 86.7 72.4 80.7 60.4 49.3 78.6 67.4 69.9 62.3 70.4
U-Mamba 96.0 83.7 89.9 92.4 97.4 89.3 94.0 93.5 72.9 93.5 90.0 89.4 85.1 89.8
Ours 95.6 86.1 90.5 92.9 97.3 88.0 92.3 93.4 82.4 93.7 90.1 85.9 88.9 90.5

1 LV: Liver, RK/LK: Right/Left kidney, Sp.: Spleen, P.: Pancreas, Aor.: Aorta, IVC: Inferior vena cava, RA/LA: Right/Left adrenal gland, GB:
Gall bladder, Es.: Esophagus, St.: Stomach, DD: Duodenum

Table 2: Comparison of abdominal multi-organ segmentation results generated from our Hetero-UNet
and other state-of-the-art methods on the Abdomen MR dataset.
Methods LV RK Sp. P. Aor. IVC RA LA GB Es. St. DD LK AVG

DSC [%] ↑
nnUNet 97.4 96.3 92.5 85.6 94.4 83.0 61.0 69.8 80.0 77.7 82.2 70.1 96.7 83.6
SegResNet 96.5 93.9 89.8 83.8 92.1 81.6 61.0 62.6 80.0 71.8 74.3 67.2 96.0 80.8
UNETR 93.4 82.4 85.1 72.7 85.1 71.7 42.0 50.0 49.0 55.1 67.9 50.3 90.2 68.8
U-Mamba 97.4 96.1 94.9 87.1 95.3 83.4 63.2 71.5 80.9 77.4 83.3 71.3 96.6 84.5
Ours 97.3 96.1 92.8 87.2 94.7 83.1 64.4 72.3 84.5 78.9 84.5 70.2 96.5 84.8

NSD [%] ↑
nnUNet 97.6 97.6 93.2 95.3 96.7 88.4 79.3 84.4 79.2 92.7 85.7 89.7 98.7 90.7
SegResNet 96.0 95.6 90.0 93.6 94.2 86.4 77.0 76.3 77.1 86.9 77.8 88.0 97.9 87.4
UNETR 89.6 82.7 82.2 82.8 86.4 75.8 58.3 63.6 41.9 72.9 70.6 75.4 88.3 74.7
U-Mamba 97.5 97.5 95.4 96.1 97.9 88.6 80.7 85.0 79.7 93.3 87.0 90.2 98.7 91.4
Ours 97.4 97.7 93.7 96.2 97.4 88.6 82.2 86.2 83.9 93.4 88.1 89.8 98.5 91.8

1 Symbols are the same as those in Table 1.

stomach segmentation masks while the others have mis-segmentation and even mis-classification
errors for duodenum masks as well as missing regions for stomach masks in Abdomen CT scans.
Similarly, for pancreas segmentation in MR scans, Hetero-UNet successfully delineates its boundary
while other methods generate various segmentation errors. This evidence emphasizes Hetero-UNet’s
potential as a leading solution for 3D medical image segmentation, combining the strengths of SSMs
and attention mechanisms for superior performance.

Endoscopy Dataset. In our comparative analysis, Hetero-UNet is evaluated against a spectrum
of models, including those based on CNNs, Transformer architectures, and SSMs. To visually
differentiate each distinct method, we employ a color legend, where each model type is assigned
a specific color. Figure 3a presents the segmentation performance on the Endoscopy dataset, with
Hetero-UNet’s performance denoted within the purple bar. Hetero-UNet achieves the highest scores
with 70.0% in DSC and 71.6% in NSD among CNN-based, Transformer-based, and SSM-based
methods, surpassing all baselines from 2.5% to 20.9% in DSC and from 2.6% to 20.9% in NSD.
The superior performance of SSM-based methods including ours and U-Mamba emphasizes the
importance of learning long-range dependencies in feature extraction and image segmentation, even
in 2D images which are generally smaller than 3D images. The hybrid design of Hetero-UNet is
also important for robust image segmentation, as evidenced by its performance exceeding that of
U-Mamba and other baseline models. The qualitative visualization in the first two rows of Figure 4
further illustrates the effectiveness of the proposed Hetero-UNet. It most closely mirrors the ground
truth, accurately delineating the boundaries of all instruments, while other methods often result in
overlapping or over-segmentation errors, especially in the first case. The majority of these methods
struggle with correctly identifying instruments such as the bipolar forceps and monopolar curved
scissors, leading to erroneous segmentation masks. Moreover, a common issue among these methods
is the incorrect identification of background areas as the ultrasound probe. This mis-classification
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Figure 2: Qualitative visualization of abdominal segmentation results in CT (1st and 2nd rows)
and MR scans (3rd and 4th rows). Distinct abdominal organs are represented by various colors, as
indicated in the accompanying color bar.
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(a) Segmentation results on Endoscopy dataset.
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(b) Segmentation results on Microscopy dataset.

Figure 3: The comparison of our Hetero-UNet method and other state-of-the-art methods on the
Endoscopy dataset (3a) and the Microscopy dataset (3b). Hetero-UNet continuously outperforms
other methods on various metrics.

highlights challenges in distinguishing between the target instruments and background textures, a
crucial aspect of medical image segmentation accuracy.

Microscopy Dataset. Figure 3b presents the segmentation performance on the Microscopy dataset.
Hetero-UNet continues to outperform all baseline models by margins ranging from 2.9% to 15.4% on
F1 score. It also achieves the highest scores, at 58.8% in Precision, 61.9% in Recall and 71.6% in DSC
for cell segmentation, underscoring its comprehensive capability across various evaluation metrics.
In addition, we still find SSM-based models significantly perform better than their CNN-based and
Transformer-based baselines. It shows the great potential for SSM-based models in medical 2D
images. In addition, the success of Hetero-UNet in the microscopy dataset, characterized by large
image sizes, highlights the necessity for architectures adept at learning long-range dependencies
like hybrid SSM-based models in pathology. The qualitative visualization results on the Microscopy
dataset is illustrated in the last two rows in Figure 4. Models like nnUNet, SegResNet, UNETR and
U-Mamba face challenges in fully delineating cell boundaries. These models often partially recognize
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Figure 4: Our qualitative visualization on the Endoscopy and Microscopy datasets. In the Endoscopy
images (1st and 2nd rows), different colors, as noted in the corresponding color bar, denote various
instruments. For the Microscopy dataset (3rd and 4th rows), the cell boundary is uniformly delineated
in red across all methods. Notably, Hetero-UNet exhibits fewer segmentation outliers compared to
other methods, showcasing its enhanced accuracy and reliability in complex segmentation tasks.

Table 3: Ablation experiment on each key component in our method. The marker ✓ denotes that a
specific component is used.

Organs in Abdomen CT Organs in Abdomen MRMethods MLP MHA Mamba DSC [%] NSD [%] DSC [%] NSD [%]
nnUNet 86.0 89.3 83.6 90.7
Mamba ✓ 86.6 90.2 84.4 91.2
MambaMLP ✓ ✓ 86.5 89.9 84.6 91.5
MambaFormer ✓ ✓ 86.4 90.1 84.3 91.3
Hetero-UNet ✓ ✓ ✓ 86.7 90.5 84.8 91.8

cells or fail to detect them entirely, leading to incomplete or inaccurate segmentation. In contrast,
Hetero-UNet demonstrates clear advantages, accurately capturing the entire boundary of cells and
indicating its enhanced ability to comprehend global contexts.
4.3 Ablation Study
In our ablation studies on the Abdomen dataset, we explore the Hetero-UNet method’s design
by examining: 1) the individual contribution of key components, including MHA blocks, SSM-
based Mamba blocks, and MLP layers, to understand their impact on performance, 2) the effect of
varying the number of layers in the hybrid TransMamba encoder to find the optimal balance between
computational efficiency and segmentation accuracy, and 3) implementing the TransMamba block for
each block in the U-Net encoder to further explore the performance of our method.

Effectiveness of Each Component. we conduct ablation studies to assess the significance of the
core elements within our Hetero-UNet model—specifically, the Mamba block, MLP block, and
MHA block. In Table 3, the presence of a component in the hybrid Mamba encoder is indicated
by “MLP”, “MHA”, and “Mamba” with a ✓ marker. “Hetero-UNet” refers to our fully proposed
architecture, integrating all three components. A comparison of the last four rows against the first row,
which features nnUNet as the baseline, reveals that Hetero-UNet variants consistently surpass the
baseline across both datasets, Abdomen CT and Abdomen MR, using two evaluation metrics, DSC
and NSD. This highlights the Mamba’s capability to capture long-range dependencies effectively
through SSMs. An interesting observation from our experiments is that employing solely MLP
layers or a single MHA block with Mamba results in a performance decrease compared to using the
pure “Mamba” configuration. However, Hetero-UNet surpasses all other variations, showcasing the
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Figure 5: Figure 5a is the ablation experiment on varying number of layers in hybrid TransMamba
encoder. We explore the performance of hybrid encoder with the number of TransMamba layers
varying from 1 to 15 on the Abdomen CT dataset. Figure 5b shows results of implementing
TransMamba for all encoder blocks on the Abdomen MR dataset, denoted as “TransMamba_a”. The
default setting of Hetero-UNet is denoted as “TransMamba”.

superiority of its hybrid architecture. This architecture integrates attention mechanisms and SSMs,
augmented with additional CNN modules, affirming its efficacy in medical image segmentation. In
our experimental results, the performance of “MambaFormer” is not as strong as that of “MambaMLP.”
This suggests that directly and simply combining MHA with Mamba, as discussed in [12] and [27],
may not be the optimal approach for integrating attention mechanisms with SSMs. A straightforward
combination can sometimes even diminish the capacity of the attention technique. This might be due
to the discrepancy between MLP modules and attention mechanisms. MLPs are focused on local,
spatially specific features, enhancing detail-oriented processing, whereas attention layers capture
global dependencies, prioritizing broad contextual understanding over local specifics. This contrast
leads to overly abstract feature learning when SSM and attention modules are continuously combined
together without the grounding effect of MLPs. Such abstraction may challenge the decoder’s ability
to accurately reconstruct specific features, thereby impacting segmentation accuracy.

Encoder Variants with Different Number of Layers. In our study, we delve into how each
TransMamba block within the hybrid encoder influences performance by varying the layer count
in ablation experiments, focusing solely on altering the number of TransMamba blocks while
maintaining the convolutional encoder-decoder and skip connections unchanged. Our exploration
on the Abdomen CT dataset reveals that all configurations of our model outperform the baseline
nnUNet, which records a DSC of 86.0% and an NSD of 89.3%, as shown in Figure 5a. Notably,
even the variant equipped with just one TransMamba block exceeds the baseline, underscoring the
effectiveness of our module in facilitating comprehensive information integration across the image,
irrespective of the encoder’s depth. Furthermore, we observe a positive trend in performance on
CT scans as the number of TransMamba blocks increases. This trend aligns with our understanding
that our TransMamba block contributes to the model learning process. To strike an optimal balance
between computational efficiency and model performance, we settle on a configuration of 12 blocks
in the TransMamba encoder as our standard setup.

Implementing TransMamba for All Encoder Blocks. In the default setting of hybrid Hetero-
UNet architecture, we use convolution encoder-decoder, with the hybrid TransMamba encoder to
replace the bottleneck block in the U-Net encoder. To further explore the performance of the proposed
TransMamba block, we introduce a new variant of Hetero-UNet, as each block of U-Net encoder is the
TransMamba block, keeping the convolution decoder and skip connections in the default architecture.
Then we conduct the experiments on the Abdomen MR dataset and compare the performance of
this model with the original Hetero-UNet, the baseline nnUNet and U-Mamba, shown in Figure 5b.
“TransMamba_a” segmentes abdominal organs on MR scans with 84.6% in DSC and 91.2% in NSD,
outperforming both nnUNet and U-Mamba. This indicates the efficacy of the hybrid encoder over
purely convolutional encoder and SSM-based convolutional encoder. However, its performance trails
behind the default version of Hetero-UNet, possibly due to the implementation of only one layer of
the TransMamba block within each encoder block, suggesting that optimizing the number of hybrid
layers could further enhance segmentation accuracy.
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5 Conclusion
In this study, we introduce Hetero-UNet, a hybrid segmentation architecture that blends novel SSM-
based Transformer encoder to tackle medical image analysis. This architecture is designed to harness
both local and global information, and enhance its capacity for learning long-range dependencies. Our
results across a variety of tasks and imaging modalities—ranging from abdominal organ segmentation
in CT and MR scans to instrument in endoscopy images and cell segmentation in microscopy
images—demonstrate Hetero-UNet’s potential for superior segmentation performance.
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