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Abstract

In green security, defenders must forecast adver-
sarial behavior—such as poaching, illegal logging,
and illegal fishing—to plan effective patrols. These
behaviors are often highly uncertain and complex.
Prior work has leveraged game theory to design
robust patrol strategies to handle uncertainty, but
existing adversarial behavior models primarily rely
on Gaussian processes or linear models, which
lack the expressiveness needed to capture intri-
cate behavioral patterns. To address this limitation,
we propose a conditional diffusion model for ad-
versary behavior modeling, leveraging its strong
distribution-fitting capabilities. To the best of our
knowledge, this is the first application of diffusion
models in the green security domain. Integrating
diffusion models into game-theoretic optimization,
however, presents new challenges, including a con-
strained mixed strategy space and the need to sam-
ple from an unnormalized distribution to estimate
utilities. To tackle these challenges, we introduce
a mixed strategy of mixed strategies and employ
a twisted Sequential Monte Carlo (SMC) sampler
for accurate sampling. Theoretically, our algorithm
is guaranteed to converge to an ϵ-equilibrium with
high probability using a finite number of itera-
tions and samples. Empirically, we evaluate our
approach on both synthetic and real-world poach-
ing datasets, demonstrating its effectiveness.

1 INTRODUCTION

In green security, mitigating threats such as illegal logging,
illegal fishing, poaching, and environmental pollution re-
quires defenders to anticipate and counteract adversarial be-
haviors [Fang et al., 2015]. For example, in wildlife conser-
vation, rangers must predict poachers’ movements and then
strategically allocate patrols to protect endangered species.

Over the years, numerous predictive models have been de-
veloped [Kar et al., 2017, Gurumurthy et al., 2018, Xu et al.,
2020b], alongside robust patrol optimization methods that
leverage game theory to enhance decision-making based on
these predictions [Xu et al., 2021].

However, existing adversary predictive models [Kar et al.,
2017, Gurumurthy et al., 2018] either lack uncertainty quan-
tification [Kong et al., 2023b, Li et al., 2023] or provide
only parameterized predictive distributions with limited ex-
pressiveness [Xu et al., 2020b]. In reality, adversarial behav-
iors—such as those of poachers—are high-dimensional and
highly complex, driven by diverse motivations, constraints,
and strategies. Capturing the full extent of uncertainty is par-
ticularly challenging in the strategic environments, where
conventional models may struggle to account for the vari-
ability of real-world threats.

In this work, we propose using diffusion models to cap-
ture adversarial behavior in green security. Diffusion mod-
els are a powerful framework for modeling complex, high-
dimensional, non-parametric distributions, and they have
been successfully applied to image modeling [Ho et al.,
2020, Rombach et al., 2021], video generation [Ho et al.,
2022], and time-series forecasting [Yang et al., 2024]. By
iteratively refining samples through a denoising process, dif-
fusion models can generate diverse and plausible scenarios,
offering a more comprehensive representation of potential
attacker strategies. To the best of our knowledge, ours is the
first attempt to apply diffusion models in green security.

To enhance the robustness of our approach against potential
errors in the learned diffusion model (arising from noisy
data, limited sample sizes, or imperfect network training),
we assume the attacker’s true mixed strategy lies within
a KL-divergence ball centered around the learned model
distribution. We then optimize for the worst-case expected
utility within this constrained space. This formulation nat-
urally gives rise to a two-player zero-sum game: while a
defender aims to maximize the expected utility, a nature
adversary selects the mixed strategy from the KL ball to
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minimize it.

This game-theoretic formulation involving diffusion models
introduces new technical challenges that have not been ad-
dressed in the literature. First, the KL-divergence constraint
on the adversary’s mixed strategy prevents the direct appli-
cation of the standard double oracle method. To resolve this,
we shift the constraint from the mixed strategy space to the
pure strategy space, treating the original mixed strategy as a
pure strategy and introducing a “mixed strategy over mixed
strategies.” This reformulation yields a more tractable opti-
mization problem. Another challenge arises from the need
to sample from a reweighted version of the diffusion model
to estimate utilities. To address this, we employ twisted se-
quential Monte Carlo (SMC) sampling, ensuring asymptotic
correctness when evaluating the relevant expected utilities.

Our contributions are as follows: (1) Novel Adversary Mod-
eling: We are the first to leverage diffusion models for mod-
eling adversarial behavior in green security domains. (2) Ro-
bust Optimization with Diffusion Model Framework: We
propose DIFFORACLE to mitigate imperfections in learned
adversary models by introducing a double oracle algorithm
that efficiently computes robust mixed patrol strategies. (3)
Theoretical Guarantees: We prove that our method con-
verges to an ϵ-equilibrium with high probability under a
finite number of iterations and a finite number of samples.
(4) Empirical Performance: We empirically evaluate our
method on both synthetic and real-world poaching data.

2 RELATED WORKS
Diffusion Models Diffusion models have achieved remark-
able success across various generative modeling tasks, in-
cluding image generation [Song et al., 2021, Ho et al., 2020],
decision-making [Kong et al., 2024, 2025], and scientific
discovery [Gruver et al., 2024, Watson et al., 2023, Kong
et al., 2023a]. These models are particularly adept at captur-
ing complex, high-dimensional distributions, making them a
powerful tool for diverse applications. Conditional diffusion
models extend this capability by integrating contextual in-
formation to guide the generative process. By conditioning
on textual descriptions, semantic masks, or other relevant
features, these models enable tasks such as text-to-image
generation [Saharia et al., 2022], image-to-image transla-
tion [Saharia et al., 2021], and time series forecasting [Shen
and Kwok, 2023].

Double Oracle for Robust Optimization Prior work
has framed robust optimization as a two-player zero-sum
game [Mastin et al., 2015, Gilbert and Spanjaard, 2017],
where the optimizing player selects a potentially random-
ized feasible strategy, while an adversary chooses problem
parameters to maximize regret. The double oracle (DO) al-
gorithm is a standard method for computing equilibria in
such games [McMahan et al., 2003, Adam et al., 2021] and
has been applied to robust influence maximization in social
networks [Wilder et al., 2017], robust patrol planning [Xu

et al., 2021], robust submodular optimization [Wilder, 2018],
and robust policy design for restless bandits [Killian et al.,
2022]. However, these applications restrict the uncertainty
set to a compact interval. In contrast, our problem involves
a diffusion model that provides full distribution-level pre-
dictions, making the uncertainty set a space of distributions,
which introduces new theoretical challenges in applying
double oracle.

Distributionally Robust Optimization Our work is also
closely related to Distributionally Robust Optimization
(DRO) [Rahimian and Mehrotra, 2019], which seeks to
find robust solutions by optimizing for the worst-case sce-
nario over a set of plausible distributions, known as the
ambiguity set. This framework is particularly effective for
handling uncertainty and distributional shifts in optimiza-
tion objectives or constraints. DRO has seen widespread
application in areas such as supply chain management [Ash
et al., 2022], finance [Kobayashi et al., 2023], and machine
learning [Madry et al., 2018, Sagawa* et al., 2020], where
resilience to data perturbations is critical. However, most
existing DRO methods focus on identifying a single pure
strategy, which is dangerous in the green security setting that
adversaries can learn to anticipate and exploit. To address
this, we propose a game-theoretic approach that derives
a mixed strategy for the defender, leveraging randomness
to enhance unpredictability and bolster robustness against
adversarial exploitation.

Green Security Games Green Security Games (GSGs) use
game-theoretic frameworks to safeguard valuable environ-
mental resources from illegal activities such as poaching and
illegal fishing [Fang et al., 2015, Hasan et al., 2022]. In these
settings, a resource-limited defender protects expansive, spa-
tially distributed areas against attackers with bounded ratio-
nality. Prior work focused on forecasting poaching behav-
iors [Gurumurthy et al., 2018, Moore et al., 2018], learning
attacker behavior models from data [Nguyen et al., 2016,
Gholami et al., 2018, Xu et al., 2020b], designing patrol
strategies [Fang et al., 2015, Xu et al., 2017], and balancing
data collection with poaching detection [Xu et al., 2020a].

Among existing studies, Xu et al. [2021] is most closely
related to ours, as it also employs a double oracle method to
design robust patrolling strategies. However, our approach
differs in two key ways. First, we are the first to use diffusion
models to predict poaching behavior, addressing the limited
expressiveness of the linear approach in Xu et al. [2021].
Second, while Xu et al. [2021] focuses on minimax regret
with interval-shaped uncertainty sets, our work adopts a
distributionally robust optimization objective.

3 PRELIMINARIES ON DIFFUSION
MODEL

A diffusion model [Sohl-Dickstein et al., 2015] is a gener-
ative framework composed of two stochastic processes: a



forward process that progressively adds Gaussian noise to
real data, and a reverse (or denoising) process that learns
to remove this noise step by step. Formally, let z0 ∼ D be
a sample from the training dataset.1 The forward diffusion
process can be written as q(zt | zt−1) = N

(
zt; zt−1, β2I

)
,

where β2 is the noise variance at each step t = 1, . . . , T . As
T becomes large, repeated noising transforms the data distri-
bution into (approximately) pure Gaussian noise: q(zT ) ≈
N (0, Tβ2I).

Score-based Approximation. To invert this process (i.e.,
to denoise and recover samples from the original data
distribution), one can approximate the reverse transition
q(zt−1 | zt) via the score function, ∇zt log q(zt) when β is
small. Specifically,

q(zt−1 | zt) ≈ N
(
zt−1; zt + β2 ∇zt log q(zt), β2I

)
.

Here, q(zt) =
∫
q(z0) q(zt | z0) dz0, and the gradient

∇zt log q(zt) points toward regions of higher data density.
In practice, we do not know q(zt) in closed form, so a
neural score network sθ(zt, t) is trained to approximate this
gradient via denoising score matching [Vincent, 2011, Ho
et al., 2020]. Consequently, the learned reverse (denoising)
transition becomes

pθ(z
t−1 | zt) = N

(
zt−1; zt + β2 sθ(z

t, t), β2I
)
.

Starting from an initial Gaussian sample zT ∼ N (0, Tβ2I),
iterating this reverse process ultimately recovers samples
that approximate the original data distribution.

Conditional Extension. This diffusion framework can be
naturally extended to include additional context c. In a con-
ditional diffusion model [Ho and Salimans, 2021], the score
network becomes sθ(zt, t, c), so that at each step the de-
noising is informed by side information such as class labels,
textual descriptions, or other relevant features. This con-
ditional approach enables the generation of samples that
match not only the learned data distribution but also the
specific context c, making it particularly useful for tasks in
which external conditions strongly influence the underlying
data generation process.

4 PROBLEM FORMULATION

In green security settings, a defender (e.g., a ranger) patrols
a protected area to prevent resource extraction by an attacker
(e.g., a poacher or illegal logger). Let K denote the number
of targets—such as 1× 1 km regions within the protected
area—that require protection. The defender must allocate
patrol effort across these targets while adhering to a total
budgetB. Formally, the patrol strategy is represented as x =
(x1, . . . , xK), where xk denotes the amount of effort (e.g.,
patrol hours) assigned to target k. The defender’s strategy is

1We use z0 and z interchangeably when there is no ambiguity.

constrained by: X = {x ∈ RK | xk ≥ 0,∀k,
∑K
k=1 xk ≤

B}, which ensures that all patrol efforts are non-negative
and do not exceed the available budget B.

Attacker Behavior via a Conditional Diffusion Model.
Building on the diffusion-model framework in Section 3,
we now focus on a poaching scenario, in which an attacker’s
behavior can be highly uncertain and multimodal. Let z
denote the number of snares or traps placed in each 1 × 1
km region, where K is its dimensionality. Similarly, let c
represent contextual features, including last month’s patrol
effort per region [Xu et al., 2021, 2020b], distance to the
park boundary, elevation, and land cover. We model the
attacker’s behavior with a continuous conditional diffusion
model pθ(z | c). Concretely, we treat historical poaching
data as samples of z0, add noise in a forward process, and
learn a reverse (denoising) process conditioned on c. Once
trained, this diffusion model captures how poachers respond
to different patrol allocations and environmental factors. By
sampling from pθ(z | c) for new contexts, we can gener-
ate realistic, diverse poaching scenarios that inform patrol
strategy design. Table 1 shows the forecasting results on
the real-world poaching data and we can see the diffusion
model can outperform existing approaches used in green
security. Experimental details are in Appendix. H.

Model MSE

Linear regression 24.40
Gaussian process 24.21± 0.04
Diffusion model 23.46± 0.07

Table 1: Forecasting performance in terms of mean squared
error (MSE) on poaching data.

Robust Patrol Optimization. In practice, the learned dif-
fusion model may be imperfect due to data noise, limited
training samples, or suboptimal network training. Conse-
quently, the learned distribution might not accurately cap-
ture the true underlying behavior. To ensure robustness in
patrol strategy design, we assume the true distribution lies
within a bounded KL-divergence from the learned distribu-
tion. We then optimize for the worst-case expected utility
over all distributions in that KL-divergence ball, leading to
the following formulation:

max
π(x)∈∆(X )

min
τ(z)∈T

Eπ(x)Eτ(z)[u(x, z)]

T = {τ(z) | DKL(τ(z) ∥ pθ(z | c)) ≤ ρ} , (1)

where ρ is a tolerance parameter specifying how far the
true distribution may deviate from the learned distribution.
u(x, z) represents the defender’s utility (e.g., the number
of animals in the park) for strategy x given the adversary’s
choice z and is assumed to be bounded in [0,M ].

Eq. (1) can be interpreted as a two-player zero-sum game
in which the defender seeks a robust mixed strategy π(x),
while a nature adversary (representing model misspecifica-
tion) selects τ(z) within the KL-divergence ball to minimize



the defender’s expected utility. The defender’s pure strat-
egy space is X , and the adversary’s pure strategy space
is Z = Support(pθ(z|c)). The defender’s mixed strategy
π(x) is a probability distribution over X , with the corre-
sponding space denoted by ∆(X ). In contrast, the adver-
sary’s mixed strategy τ(z) is in the constained space T .

For notational simplicity, when both players use mixed
strategies, the defender’s expected utility is denoted by
U(π, τ). If one player employs a pure strategy and the other
a mixed strategy, we write U(x, τ) := U(δx, τ).

Note that, unlike standard DRO, where the goal is typically
to find a single strategy x, here we aim to identify a mixed
strategy for the defender. This approach is particularly im-
portant in green security settings, as adopting a randomized
policy helps prevent predictability. A deterministic patrol
strategy could be exploited by adversaries, such as poachers,
who can adapt their behavior to bypass predictable patterns.
By introducing randomness into the patrol strategy, we in-
crease the difficulty for adversaries to anticipate the ranger’s
actions, thereby enhancing the overall security and effec-
tiveness of the patrol.

5 ROBUST OPTIMIZATION WITH
DIFFUSION MODEL

In this section, we propose DIFFORACLE to solve the robust
optimization problem in Eq. 1. In Section 5.1, we introduce
a mixed strategy over mixed strategies to ensure the appli-
cability of the double oracle approach. Section 5.2 details
the overall workflow of the algorithm. In Section 5.3, we
present twisted SMC sampler to estimate the expected utility.
Finally, in Section 5.4, we provide a convergence analysis
of DIFFORACLE.

5.1 MIXED STRATEGY OVER MIXED
STRATEGIES

Eq. (1) requires solving for mixed strategies in a continuous
game with infinitely many strategies. A common approach
for such problems is the double oracle method [Adam et al.,
2021], which iteratively expands both players’ strategy sets
and computes the equilibrium of the resulting subgame. This
procedure is guaranteed to converge to an equilibrium in
any two-player zero-sum continuous game. However, during
the double oracle process, the mixed strategy it produces
is necessarily a discrete distribution, whereas pθ(z|c) is
a continuous distribution. As a result, the KL divergence
between these two distributions is ill-defined, making it diffi-
cult to include the KL-divergence constraint in the subgame-
equilibrium computation.

To address this limitation, we note that given a fixed π(z),
the inner constrained minimization problem admits a closed-
form solution that can be sampled using the diffusion model.
This procedure can be interpreted as computing a best-
response pure strategy in the double oracle framework. Con-

sequently, we propose viewing the original mixed strategy
τ(z) as a “pure” strategy and introducing a mixed strategy
over mixed strategies. This reformulation enables the ap-
plication of the double oracle method while preserving the
desired constraints.

Definition 5.1 (Mixed Strategy over Mixed Strategies). Let
T denote the space of mixed strategies, where each τ ∈ T
represents a probability distribution over pure strategies.
A mixed strategy over mixed strategies, σ, is a probability
distribution over T , formally expressed as σ ∈ ∆(T ). This
implies that σ satisfies the following conditions: (1) σ(τ) ≥
0 for all τ ∈ ∆, and (2)

∫
T σ(τ) dτ = 1.

We provide concrete examples in Appendix B to help read-
ers understand Definition 5.1. By introducing this concept
of a mixed strategy over mixed strategies, σ, we can refor-
mulate our objective as follows:

max
π(x)∈∆(X )

min
σ(τ)∈∆(T )

Eπ(x)Eσ(τ)
(
Eτ(z) [u(x, z)]

)
T = { τ(z) | DKL(τ(z) ∥ pθ(z | c)) ≤ ρ}, (2)

In this reformulation, the adversary’s pure strategy is no
longer a single value but instead a full distribution τ(z).
Consequently, the adversary’s pure strategy space becomes
T and the corresponding mixed strategy space is the set
of distributions over these distributions, ∆(T ). Under
this framework, the defender’s utility function takes the
form Eτ(z)

[
u(x, z)

]
, while the attacker’s utility becomes

−Eτ(z)
[
u(x, z)

]
.

Crucially, this reformulation shifts the KL-divergence con-
straint from the adversary’s mixed strategy space to its pure
strategy space. As we will show in Section 5.2, the best re-
sponse for such a constrained pure strategy can be written in
closed form. Hence, Eq. (2) can be solved efficiently using
the double oracle algorithm.

Proposition 5.1. The reformulated objective in Eq. (2)
yields the same defender mixed strategy π(x) as the original
formulation in Eq. (1).

Proof. See Appendix. C.

By Proposition 5.1, solving Eq. (2) is equivalent to solving
Eq. (1). Therefore, applying the double oracle algorithm to
Eq. (2) recovers the optimal defender mixed strategy for the
original problem (Eq. (1)).

Since we have reformulated the problem, we will henceforth
refer to the adversary’s pure strategy as τ(z) and the mixed
strategy as σ(τ).

5.2 DOUBLE ORACLE FLOW

The overall double oracle algorithm is outlined in Algo-
rithm 1 and illustrated in Figure 1. We begin by initializing
the adversary’s strategy as τ0 = pθ(z|c) and selecting a ran-
dom initial defender strategy x0 from X (lines 2-3), forming
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Figure 1: Overview of DIFFORACLE. We begin by initializing the strategy set for each player. At the i-th iteration, we use
SMC sampler to obtain a set of empirical distributions T̂i−1. Next, a mixed Nash solver computes the equilibrium π∗

i−1 and
σ̂∗
i−1. We then compute each player’s best response against the opponent’s mixed strategy and update the players’ strategy

sets. This procedure is repeated until convergence.

the initial strategy sets T0 and X0. These serve as the founda-
tion for the iterative process. In each iteration, we first sam-
ple from each distribution in Ti−1 = {τ0, . . . , τi−1} to ob-
tain a set of empirical distributions T̂i−1 = {τ̂0, . . . , τ̂i−1}
(line 6). These empirical distributions are used to estimate
expected utilities, which are then input into the Mixed Nash
Equilibrium solver to compute an equilibrium (π∗

i−1, σ̂
∗
i−1)

of the subgame {Xi−1, T̂i−1, U} (lines 7). Next, the de-
fender oracle and attacker oracle compute their respective
best responses to the mixed strategy, yielding new strategies
xi and τi(z) (lines 8-9). These best response strategies are
then added to the strategy sets, expanding them to Xi and
Ti (line 10).

This iterative procedure alternates between the oracles and
the solver until convergence (lines 11–13). The parameters
prob and tolerance ϵ are user-defined and guarantee that the
algorithm converges to an 4ϵ-equilibrium with probability
1− prob, as detailed in Theorem 5.2. In practice, to manage
runtime, we cap the number of double oracle iterations to a
fixed limit—a common strategy also employed in Lanctot
et al. [2017], Xu et al. [2021].

We introduce the details of the three key components de-
fender oracle, adversary oracle and Mixed Nash equilibrium
solver as below.

Adversary Oracle At the i-th iteration, given the defender’s
mixed strategy π∗

i−1, the adversary oracle computes the best
response by solving:

τi(z) = argmax
τ∈T

U(π∗
i−1, τ)

T = {τi(z) | DKL(τi(z) ∥ pθ(z | c)) ≤ ρ} , (3)

Proposition 5.2. The optimal solution τi(z) of 3 has a
closed-form:

τi(z) ∝ pθ(z|c) exp
(
−γU(π∗

i−1, z)
)
, (4)

where γ is the Lagrange multiplier associated with the KL-
divergence constraint.

Proof. See Appendix D

As shown in Eq. 4, τi(z) is an unnormalized distribution
obtained by reweighting the original diffusion model dis-
tribution according to the utility function. Computing ex-
pected utilities under τi(z) requires sampling from this high-
dimensional unnormalized distribution, which is challeng-
ing in practice. To address this, we employ twisted Sequen-
tial Monte Carlo (SMC) techniques [Chopin et al., 2020, Wu
et al., 2023], detailed in Section 4.2, which provide asymp-
totically exact utility estimates. We denote the resulting
empirical distribution as τ̂i(z).

Defender Oracle At the i-th epoch, given the attacker’s
mixed strategy σ̂∗

i−1, the defender oracle computes the best
response by solving:

xi = argmax
x∈X

U(x, σ̂∗
i−1). (5)

Since σ̂∗
i−1 represents a mixed strategy over a set of empiri-

cal distributions T̂i−1, we can directly compute the expected
utility, reducing the problem to a standard deterministic op-
timization. To handle the budget constraint in our setting,
we employ mirror ascent [Nemirovski, 2012].

Mixed Nash Equilibrium Solver At i-th iteration, the
Mixed Nash Equilibrium solver computes a mixed Nash
equilibrium (π∗

i−1, σ̂
∗
i−1) over the players’ current strategy

sets Xi−1 and T̂i−1. The equilibrium can be found using lin-
ear programming [Nisan et al., 2007], and in our work, we
utilize the PuLP implementation [COIN-OR PuLP, 2024]
for this purpose.



Algorithm 1 Double Oracle with Diffusion Models
Require: Pretrained diffusion model pθ(z | c), utility function

U(x, τ), probability threshold prob > 0
1: Initialize i← 0
2: x0 ← random strategy, τ0 ← pθ(z | c)
3: X0 ← {x0}, T0 ← {τ0}
4: repeat
5: i← i+ 1
6: T̂i−1 ← Empirical distributions from Ti−1 using Alg. 2
7: (π∗

i−1, σ̂
∗
i−1)← MIXEDNASHSOLVER(Xi−1, T̂i−1, U)

8: xi ← argmax
x∈X

U(x, σ̂∗
i−1) //Adversary Oracle

9: τi(z) ∝ pθ(z|c) exp
(
−γ U(π∗

i−1, z)
)

// Defender Oracle
10: Xi ← Xi−1 ∪ {xi}, Ti ← Ti−1 ∪ {τi}
11: τ̂i ← sample from τi using Alg 2
12: vi ← U(π∗

i−1, τ̂i), v̄i ← U(xi, σ̂
∗
i−1)

13: until (v̄i − vi ∈ (−2ϵ, 2ϵ)) ∧ (i > 1/(16 prob))
14: Output: Final defender strategy π∗

i−1

5.3 SAMPLING WITH TWISTED SEQUENTIAL
MONTE CARLO

To efficiently sample from the unnormalized distribution in
Eq. 4 while ensuring correctness, we leverage Twisted Se-
quential Monte Carlo (Twisted SMC) [Chopin et al., 2020],
an adaptive importance sampling technique that improves
sampling through sequential proposal and weighting. Wu
et al. [2023] applied it to sampling from a conditional dis-
tribution with diffusion model; here, we adapt it to sample
from the unnormalized reweighted distribution in Eq. 4.

Twisted SMC operates with a collection of N weighted
particles {(wtn, ztn)}Nn=1 that evolve iteratively over T steps.
At each step t, particles are propagated using an adjusted
score function, similar to Chung et al. [2023]:

p̂θ(z
t−1 | zt, c) = N

(
zt−1; zt + σ2ŝθ(z

t, c, t), β̂2
)
,

where the adjusted score function is:

ŝθ(z
t, c, t) = sθ(z

t, c, t) + γ log Φt(z
t).

The twisting function Φt is defined as:

Φt(z
t
n) = exp

(
−γU(π∗

i−1, ẑ
0
θ(z

t
n))

)
. (6)

Here, ẑ0θ(z
t) estimates the original state z0 using Tweedie’s

formula [Robbins, 1992, Efron, 2011]:

ẑ0θ(z
t) = zt + tβ2 sθ(z

t, c, t).

At t = 0, we set ẑ0θ(z
0) := z0. The correction term in ŝθ

reconstructs z0 and incorporates the reweighted term from
Eq. 4, ensuring proper adaptation of the sampling process.

To account for discrepancies between the proposal and tar-
get distributions, Twisted SMC assigns a weight to each
particle:

wtn =
pθ(x

t
n|x

t+1
n ,c)Φt(x

t
n)

p̂θ(xt
n|x

t+1
n ,c)Φt+1(x

t+1
n )

.

Algorithm 2 Twisted SMC for Diffusion Model
Require: Pretrained diffusion model, number of particles N , time

horizon T , Φ(z) (Eq. 6)
1: Initialize zTn ∼ pθ(z

T ), wn ← Φ(zTn )
2: for t = T, . . . , 1 do
3: Resample:
4: {ztn}Nn=1 ∼ Multinomial

(
{ztn}Nn=1; {wt

n}Nn=1

)
5: for k = 1 . . .K do
6: ŝk ← sθ(z

t
k, c, t) − γ∇zt

k

[
U(π∗

i−1, z)
]

7: zt−1
k ∼ N

(
ztk + σ2ŝk, β̂

2
)

8: wt−1
k ←

pθ
(
zt−1
k | ztk, c

)
Φ(zt−1

k )

p̂θ
(
zt−1
k | ztk, c

)
Φ(ztk)

9: end for
10: end for
11: Output: Weighted particles {z0k, w0

k}Kk=1

This reweighting step ensures unbiased estimation.

To mitigate variance and prevent particle degeneracy over
long horizons, we apply multinomial resampling at each
step based on normalized weights [Douc and Cappé, 2005].
The final approximation of the target distribution is: τ̂ =∑N

n=1
w0

n∑N
n′=1

w0
n′
δz0

n
.

A full description of Twisted SMC is provided in Algo-
rithm 2.

Proposition 5.3. (Informal) Under regularity conditions on
the score function, as the number of particles N → ∞, we
have

U(x, τ̂(z)) → U(x, τ(z)) almost surely,

where τ̂ is the empirical distribution returned by Algo-
rithm 2.

Proof. See Appendix. E.

5.4 CONVERGENCE ANALYSIS

In Section 5.4, we analyze the convergence properties of our
framework. For theoretical analysis, we introduce two mild
assumptions.

Assumption 1. We assume that the utility function is twice
differentiable and concave with respect to x.

Assumption 1 implies there is diminishing marginal return in
ranger effort, which is a common assumption in economics
models [Mankiw, 1998] and reflects the intuition that ini-
tial patrol efforts contribute more significantly to wildlife
protection than additional increments in effort. Under as-
sumption 1, Eq. 5 is a convex optimization problem and
existing optimization solvers [Diamond and Boyd, 2016]
can accurately find the defender’s best response.

Assumption 2. We assume that the distribution pθ(z | c)
places its mass on a compact space.



In practice, the attacker’s action at each target must lie in a
bounded interval, e.g. [0, zmax]. For instance, the number of
snares at any region cannot exceed a practical upper limit.
Consequently, it is reasonable to treat the action space as
compact, ensuring that pθ(z | c) has compact support.

For each σ̂∗
i , we denote the corresponding mixed strategy

on the underlying true adversary strategy distribution as σ∗
i .

Formally, σ∗
i (τl) = σ̂∗

i (τ̂l) ∀l ∈ [i]. Without the terminating
condition, Algorithm 1 produces two sequences of mixed
strategies: (π∗

i )
∞
i=0 and (σ∗

i )
∞
i=0. Proposition 5.3 says if we

use infinite samples to estimate expected utilities, then there
is no estimation error and Theorem 5.1 follows from the
original double oracle algorithm’s proof [Adam et al., 2021].

Theorem 5.1. Without terminating conditions, under as-
sumptions 1, 2, if we use N → ∞ samples for all iterations,
every weakly convergent subsequence of Alg. 1 converges to
an exact equilibrium in possibly infinite iterations. Such a
weakly convergent subsequence always exists. 2

However, in practical scenarios where only a finite number
of samples is available, the estimation of the expected utility
is imprecise. Consequently, estimation errors will appear in
the following steps within each iteration of our algorithm:
(1) solving the subgame, (2) computing the defender oracle,
and (3) evaluating the terminating condition.

Theorem 5.2. Under assumptions 1 and 2, with finite num-
ber of samples at the i-th iteration

Ni =
⌈
CM2(i+ 1)2i1+δ/ϵ2

⌉
,

for each adversary distribution, where C is a constant, M
is the upper bound of utility function, ϵ is the approximation
error, and δ is any positive number.

• Item 1: Without terminating condition, every weakly
convergent subsequence of Alg. 1 converges to an ϵ-
equilibrium in a possibly infinite number of iterations.
Such a weakly convergent subsequence always exist.

• Item 2: With the terminating condition, Alg. 1 termi-
nates in a finite number of iterations. Also, it converges
to a finitely supported 4ϵ-equilibrium with probability
at least 1− prob.

Proof. We provide a sketch of the proof here and defer the
full details to Appendix G. The key steps for proving Item 1
are as follows:

• Step 1: We bound the utility estimation error for any
mixed strategy pair at iteration i by the maximum esti-
mation error over all entries in the payoff matrix.

2We include the definition of weak convergence in Appendix
F.

• Step 2: We show that, under our finite sampling
scheme, the probability that the maximum cell-wise
error exceeds ϵ/4 is nonzero only during the first ir
iterations, for some finite ir.

• Step 3: We treat the strategies generated in the first ir
rounds as the initial strategy set in the standard Double
Oracle (DO) algorithm [Adam et al., 2021]. We then
adapt the original convergence proof to account for
the error introduced by finite sampling, which is now
bounded by ϵ/4.

By relaxing the error bound in Item 1, we obtain conver-
gence within a finite number of iterations. The additional
approximation error in Item 2 stems from two sources: (1)
enforcing finite termination, and (2) using estimated utili-
ties of mixed strategy pairs when evaluating the stopping
condition.

In practice, we use a fixed number of samples across itera-
tions, and experiments in Section 6 shows our framework
still achieves robust performance.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on both synthetic and
real-world datasets which we describe below. We use a
graph based dataset [Nguyen et al., 2016] to reflect geospa-
tial constraints in the poaching domain for patrollers.

Synthetic data. Poaching counts are sampled from a
Gamma distribution parameterized by shape and scale val-
ues. To determine the shape parameter, we randomly select
one of two Graph Convolutional Networks (GCNs) [Kipf
and Welling, 2022] with randomly initialized weights to
map the node’s feature vector to a continuous value, which
serves as the shape parameter. The scale parameter is set
to 1 if the first GCN is chosen and 0.9 if the second is se-
lected. Finally, adversarial noise inversely proportional to
the poaching count is added, ensuring that nodes with lower
poaching counts receive higher noise levels.

Real-world Data. We use poaching data from Murchison
Falls National Park (MFNP) in Uganda, collected between
2010 and 2021. The protected area is discretized into 1 × 1
km grid cells. For each cell, we measure ranger patrol ef-
fort (in kilometers patrolled) as the conditional variable for
the diffusion model, while the monthly number of detected
illegal activity instances serves as the adversarial behavior.
Following Basak et al. [2016], we represent the park as a
graph to capture geospatial connectivity among these cells.
To focus on high-risk regions, we subsample 20 subgraphs
from the entire graph. Specifically, at each month we iden-
tify the 20 cells with the highest poaching counts. Each of
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Figure 2: Experimental Results on both synthetic and real-world datasets. Following [Ho et al., 2020], we average the results
over 5 random seeds.

these cells is treated as a central node, and we iteratively
add the neighboring cell with the highest poaching count
until the subgraph reaches 20 nodes. This process generates
532 training, 62 validation, and 31 test samples.

Baselines We compare the following methods:

Non-robust Optimization (NRO). We use a baseline that
directly maximizes the expected utility under the pre-trained
diffusion model. The stochastic optimization is solved via
sample average approximation, using samples from the dif-
fusion model in conjunction with mirror ascent. Since this
approach yields only a pure strategy, we repeat the pro-
cess with different initializations to obtain five distinct pure
strategies. These pure strategies are then combined into a
mixed strategy by assigning them equal probability.

Alternate Optimization with Random Reinitialization
(AOR). This method solves the DRO problem using alter-
nating optimization without employing the double oracle
framework. It iterates between optimizing the defender’s
strategy and sampling from the worst-case distribution us-
ing twisted SMC. Similar to NRO, we construct a mixed
strategy by running the procedure five times with different
initializations, generating multiple pure strategies that are
then combined with equal probability.

We also compare against three variations of DIFFORACLE:

DIFFORACLE with Importance Sampling
(DIFFORACLE-IS). This variant replaces the twisted SMC
sampler in Section 5.3 with importance sampling to sample
from Eq. 4. As the proposal distribution, we directly use the
pre-trained diffusion model, pθ(z|c).

DIFFORACLE with Diffusion Posterior Sampling
(DIFFORACLE-DPS). This variant employs the diffusion
posterior sampler [Chung et al., 2023] instead of the twisted

SMC sampler in Section 5.3.

DIFFORACLE. This version retains the default twisted SMC
sampler in Section 5.3 to sample from Eq. 4.

Evaluation metrics We evaluate the methods using decision
regret, defined as the difference between the defender’s best
possible utility under the true adversarial behavior and the
expected utility under the optimized mixed strategy. We
report both the average regret on the test set and the worst-
case regret on the test set.

Implementation details We employ a three-layer GCN with
a hidden dimension of 128 as the backbone of the diffusion
model. The optimizer used is Adam [Kingma, 2014] with a
learning rate of 10−3. We use 500 samples to estimate the
expected utility for all the menthods. γ is selected on the
validation set based on the average regret. More details of
the implementation details are provided in Appendix H.

6.2 EXPERIMENTAL RESULTS

Main Results. We evaluate our method against baselines
on both synthetic and real-world poaching datasets under
different patrol budgets (B = 1 and B = 5). The results,
presented in Fig. 2, show that DIFFORACLE consistently
achieves the lowest average regret and worst-case regret
across all settings.

Compared to NRO, DIFFORACLE reduces average regret by
62.2%, 62.9%, 73.3%, and 74.0% across different datasets
and budgets. Similarly, worst-case regret is significantly
reduced by 59.1%, 64.9%, 71.3%, and 79.0%. These im-
provements highlight the robustness of our approach, which
is particularly crucial in green security domains, where min-
imizing worst-case outcomes is essential for high-stakes
decision-making.
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Figure 3: Parameter Study on DIFFORACLE-SMC on poach-
ing data under Budget 5.

The double-oracle framework provides substantial benefits,
as all three variants of DIFFORACLE significantly outper-
form the naive robust optimization approach, AOR. This
is because AOR relies on a simple heuristic to solve the
minimax problem and construct the mixed strategy, lack-
ing convergence guarantees. Consequently, AOR exhibits
greater variance and instability, further underscoring the
advantages of employing game-theoretic methods for robust
optimization.

Among the DIFFORACLE methods employing different sam-
pling strategies, DPS emerges as the strongest alternative
to twisted SMC. However, SMC consistently outperforms
DPS, demonstrating statistically significant improvements
in five out of eight cases. Furthermore, DPS cannot exactly
sample from the target distribution in Eq.4 [Lu et al., 2023],
a critical requirement for ensuring the convergence of the
double-oracle framework, as analyzed in Section 5.4.

Parameter Study. Fig. 3 presents the parameter study of
DIFFORACLE using the twisted SMC sampler. As shown,
varying the number of samples in the sampler reveals that
once the sample size exceeds 200, performance stabilizes.
Additionally, when adjusting the value of γ, we observe that
performance drops significantly as γ approaches 0, since it
effectively reduces to non-robust optimization. Conversely,
when γ is too large, performance also declines because the
nature adversary may select a worst-case distribution that
deviates too far from the learned distribution, making it
non-informative.

7 CONCLUSION

We introduced a conditional diffusion model for adversary
behavior modeling in green security, overcoming the lim-
itations of traditional Gaussian process and linear models.
To the best of our knowledge, this is the first application
of diffusion models in this domain. To integrate diffusion
models into game-theoretic optimization, we proposed a
mixed strategy of mixed strategies and leverage a twisted Se-
quential Monte Carlo (SMC) sampler for efficient sampling
from unnormalized distributions. We established theoreti-
cal convergence to an ϵ-equilibrium with high probability
using finite samples and finite iterations and demonstrated
empirical effectiveness on both synthetic and real-world
poaching datasets. Future work could explore extensions to

sequential-decision-making.
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A MORE DETAILS ON DIFFUSION MODELS

A diffusion model [Sohl-Dickstein et al., 2015] is a generative framework composed of two stochastic processes: a forward
process that progressively adds Gaussian noise to real data, and a reverse (or denoising) process that learns to remove this
noise step by step. Formally, let z0 ∼ D be a sample from the training dataset.3 The forward diffusion process can be
written as q(zt | zt−1) = N

(
zt; zt−1, β2I

)
, where β2 is the noise variance at each step t = 1, . . . , T . As T becomes large,

repeated noising transforms the data distribution into (approximately) pure Gaussian noise: q(zT ) ≈ N (0, Tβ2I).

Score-based Approximation. To invert this process (i.e., to denoise and recover samples from the original data distribution),
one can approximate the reverse transition q(zt−1 | zt) via the score function, ∇zt log q(zt) when β is small. Specifically,

q(zt−1 | zt) ≈ N
(
zt−1; zt + β2 ∇zt log q(zt), β2I

)
.

Here, q(zt) =
∫
q(z0) q(zt | z0) dz0, and the gradient ∇zt log q(zt) points toward regions of higher data density. In practice,

we do not know q(zt) in closed form, so a neural score network sθ(zt, t) is trained to approximate this gradient via denoising
score matching [Vincent, 2011, Ho et al., 2020]. Consequently, the learned reverse (denoising) transition becomes

pθ(z
t−1 | zt) = N

(
zt−1; zt + β2 sθ(z

t, t), β2I
)
.

Starting from an initial Gaussian sample zT ∼ N (0, Tβ2I), iterating this reverse process ultimately recovers samples that
approximate the original data distribution.

Conditional Extension. This diffusion framework can be naturally extended to include additional context c. In a conditional
diffusion model [Ho and Salimans, 2021], the score network becomes sθ(zt, t, c), so that at each step the denoising is
informed by side information such as class labels, textual descriptions, or other relevant features. This conditional approach
enables the generation of samples that match not only the learned data distribution but also the specific context c, making it
particularly useful for tasks in which external conditions strongly influence the underlying data generation process.

Rather than directly estimating the score function sθ(zt, t), Denoising Diffusion Probabilistic Models (DDPM) [Ho et al.,
2020] reformulate the learning objective as a noise prediction task. This reparameterization leverages the closed-form
expression of the forward process:

zt =
√
ᾱtz

0 +
√
1− ᾱtϵ, ϵ ∼ N (0, I),

3We use z0 and z interchangeably when there is no ambiguity.



where ᾱt denotes the cumulative product of noise schedules. The training objective becomes recovering the noise ϵ that
perturbed z0 to form zt. A neural network ϵθ(z

t, t) is trained to approximate this noise, which corresponds to learning the
score function up to a time-dependent scaling:

sθ(z
t, t) = − ϵθ(z

t, t)√
1− ᾱt

.

Training then reduces to minimizing a simple mean squared error (MSE) loss between the true and predicted noise:

Lsimple = Ez0, ϵ, t

[
∥ϵ− ϵθ(zt, t, c)∥2

]
.

By training this conditional diffusion model on historical poaching data—augmented with contextual features c—we learn
pθ(z | c), a powerful and expressive model of poacher behavior. This enables us to capture complex, multimodal patterns of
attacker responses, thereby supporting the development of robust patrol strategies discussed earlier.

B EXAMPLES OF MIXED STRATEGY OVER MIXED STRATEGIES

Let us consider a national park with 3 target regions to protect, and poachers’ pure strategies specify how many snares to put
in each target region. Two examples of poacher pure strategies could be z1 = (3, 4, 3) and z2 = (0, 0, 10). Each entry in
the pure strategy determines the number of snares a poacher will place in the corresponding target region. Let us denote
poachers’ pure strategy space as Z = {z1, z2}.

A mixed strategy τ is a distribution on the pure strategy space, i.e., τ ∈ ∆(Z). Denote the subset of mixed strategies which
satisfy the constraint DKL(τ(z)||pθ(z|c)) ≤ ρ as T . One such example τ1 could be P (z1) = 0.1 and P (z2) = 0.9. Another
degenerate example of mixed strategy τ2 could be P (z1) = 0 and P (z2) = 1.

A mixed strategy over mixed strategies σ is a distribution on the constrained mixed strategy space, i.e., σ ∈ ∆(T ). One
example of mixed strategy over mixed strategies σ1 could be P (τ1) = 0.1 and P (τ2) = 0.9. Another degenerate example
σ2 could be P (τ1) = 0 and P (τ2) = 1.

A mixed strategy over mixed strategies is still a distribution on the original pure strategy space, i.e., σ ∈ ∆(Z). For example,
an alternative way to view σ1 could be

P (z1) = P (σ1(τ1)) · P (τ1(z1)) + P (σ1(τ2)) · P (τ2(z1)) = 0.01

and
P (z2) = P (σ1(τ1)) · P (τ1(z2)) + P (σ1(τ2)) · P (τ2(z2)) = 0.99

However, it is proven in Proposition 5.1 that all mixed strategy over mixed strategies σ satisfy DKL(σ||pθ(z|c)) ≤ ρ, which
is not generally true for elements in ∆(Z).

From Section 5.2 onward, readers can interpret T as the pure strategy space and σ as a standard mixed strategy. Despite
each pure strategy τ ∈ T being a distribution, all standard terminologies of game theory remain applicable.

C PROOF OF PROPOSITION 5.1

We now show that for any π(x) ∈ ∆(X ),

min
τ(z)

{
Eπ(x)Eτ(z) [u(x, z)] : DKL(τ(z) ∥ pθ(z|c)) ≤ ρ

}
=

min
σ(τ)

{
Eπ(x)Eσ(τ)

(
Eτ(z) [u(x, z)]

)
: DKL(τ(z) ∥ pθ(z|c)) ≤ ρ

}
.

From this, the original theorem follows.

Consider any solution τ ′(z) that attains the minimum on the left-hand side. Define a degenerate distribution over strategies
σ′(τ) = δ[τ = τ ′], i.e., it places all its mass on τ ′. Note that τ ′ satisfies the divergence constraint on the left, so σ′(τ) will
also satisfy the corresponding constraint on the right-hand side. Since the expected value under σ′(τ) matches the value
attained by τ ′, we have the left side is not smaller than the right side.



Now take any solution σ′(τ) that attains the minimum on the right side. Define τ ′(z) = Eσ′(τ)[τ(z)]. Because a mixture
over mixed strategies is itself a valid mixed strategy in ∆(Z), τ ′(z) is admissible on the left side.

By the convexity of the divergence measure D, we have:

DKL(τ
′(z) ∥ pθ(z|c)) = DKL

(
Eσ′(τ)τ(z) ∥ pθ(z|c)

)
≤ Eσ′(τ)[DKL(τ(z) ∥ pθ(z|c)] ≤ ρ.

Here, the first inequality follows from the convexity of D, and the second inequality is by the construction of σ′(τ), which
satisfies the original constraint on the right side.

Thus, τ ′(z) satisfies the left side constraint and attains the same expected value as σ′(τ). We then obtain that the left side is
not larger than the right side.

Combining both parts, we conclude the proof.

D PROOF OF PROPOSITION 5.2

Proof. We introduce a Lagrange multiplier α for the KL-divergence constraint and another multiplier λ for the normalization
constraint. The Lagrangian is

L(τ, α, λ) =

∫
τ(z)

(
U(π∗

i−1, z)
)
dz − α

(
DKL(τ(z)||pθ(z|c))− ρ

)
+ λ

(∫
τ(z) dz− 1

)
.

By taking the functional derivative of L with respect to τ(z) and setting it to zero, one obtains

τ(z) ∝ pθ(z | c) exp
(

1
α U(π∗

i−1, z))
)
.

Defining γ = − 1
α (where γ > 0 absorbs constants and signs from the Lagrange approach) gives the closed-form solution

τi(z) ∝ pθ(z | c) exp
(
−γU(π∗

i−1, z)
)
,

which matches Eq. (4). This completes the proof.

E PROOF OF PROPOSITION 5.3

We first provide the full statement of Proposition 5.3 as below.

Proposition 5.3 (Twisted SMC). Suppose the following conditions hold:

1. Φt(z
T ) and Φt(z

t)/Φt−1(z
t−1) are positive and bounded.

2. For t > 0, log Φt(zt) is continuous and has bounded gradients with respect to zt.

3. β̂2 > β2.

Almost Sure Convergence: Under these assumptions, as the number of particles N → ∞, we have

U(x, τ̂(z)) → U(x, τ(z)) almost surely,

where τ̂ is the empirical distribution returned by Algorithm 2.

Error Bound under Finite Samples: Under these assumptions, the mean squared error of the twisted SMC sampler satisfies
the bound:

E
[
|U(x, τ(z))− U(x, τ̂(z))|2

]
≤ C ′M2

N
,

where C ′ is a constant and M is the maximum value of the utility function.

Justification of Assumptions:

• Assumption (1): This holds if exp(−γU(π, z)) is positive and bounded away from zero. In our green security domain,
U is always positive (as introduced in Section X), ensuring this condition is automatically satisfied.



• Assumption (2): This is justified by the Appendix A.5 of Wu et al. [2023].

• Assumption (3): This can be ensured by selecting a sufficiently large β̂.

Proof. Recall that pθ(z|c) serves as the prior, while the likelihood is given by exp (−γU(π, z)).

We first prove that the marginal distribution of the sampler is τ(z):

p̂(z0:T ) =
1

Z

[
pθ(z

T )

T−1∏
t=1

p̂(zt|zt−1)

][
ΦT (z

T )

T−1∏
t=1

pθ(z
t|zt+1)Φt(z

t)

p̂θ(zt|zt+1)Φt+1(zt+1)

]

=
1

Z

[
pθ(z

T )

T−1∏
t=1

p(zt|zt−1)

][
ΦT (z

T )

T−1∏
t=1

p̂θ(z
t|zt+1)Φt(z

t)

p̂θ(zt|zt+1)Φt+1(zt+1)

]

=
1

Z
pθ(z

0:T )

[
T−1∏
t=0

Φt(z
t)

Φt+1(zt+1)

]
ΦT (z

T )

=
1

Z
pθ(z

0:T )Φ0(z
0). (7)

Since Φ0(z
0) = exp(−γU(π, z0)), marginalizing out z1:T yields

p̂(z0) = τ(z0) ∝ pθ(z|c) exp (−γU(π, z)) ,

as desired.

Next, according to Appendix A.5 in Wu et al. [2023], under the given assumptions, the importance weights wt remain
bounded. Consequently, applying Propositions 11.5 and 11.3 from Chopin et al. [2020] establishes almost sure convergence
and the error bound under finite samples.

F DEFINITION OF WEAK CONVERGENCE

We directly cite the definition of weak convergence provided in Adam et al. [2021], and a more detailed discussion of the
convergence of probability measures can be seen in Billingsley [2013].

Definition F.1. A sequence of mixed strategy (π∗
i )

∞
i=1 in ∆(X ) weakly converges to π∗ ∈ ∆(X ) if

lim
i→∞

∫
X
f(x)dπi =

∫
X
f(x)dπ∗

for every continuous function f : X → R. We use πi ⇒ π∗ to denote weak convergence.

G PROOF OF THEOREM 5.2

Theorem 5.2. Under assumptions 1 and 2, with finite number of samples at the i-th iteration

Ni =
⌈
CM2(i+ 1)2i1+δ/ϵ2

⌉
,

for each adversary distribution, where C is a constant, M is the upper bound of utility function, ϵ is the approximation error,
and δ is any positive number.

• Item 1: Without terminating condition, every weakly convergent subsequence of Alg. 1 converges to an ϵ-equilibrium in
a possibly infinite number of iterations. Such a weakly convergent subsequence always exist.

• Item 2: With the terminating condition, Alg. 1 terminates in a finite number of iterations. Also, it converges to a finitely
supported 4ϵ-equilibrium with probability at least 1− prob.



The constant C in Ni can be expressed as 16C ′, where C ′ is the constant in Error Bound under Finite Sample discussed
in Appendix E. To prove Theorem 5.2, we first prove the utility estimation error bound for the twisted diffusion sampler.

Lemma 1. Under the same assumptions as Proposition 5.3, the utility estimation error of the twisted SMC sampler satisfies
the bound:

P (|U(x, τ(z))− U(x, τ̂(z))| ≥ ϵ) ≤ C ′M2

Nϵ2
,

where C ′ is the constant in Error Bound under Finite Sample of Appendix E and M is the maximum value of the utility
function.

Proof. Consider the random variable U(x, τ(z)) − U(x, τ̂(z)), whose variance is upper bounded by E|(U(x, τ(z)) −
U(x, τ̂(z))2|. By Error Bound under Finite Sample, we know that this variance is upper bounded by C′M2

N .

Applying Chebyshev’s inequality to the random variable U(x, τ(z))− U(x, τ̂(z)), we have

P (|U(x, τ(z))− U(x, τ̂(z)| ≥ ϵ) ≤ C ′M2

Nϵ2

Notation We introduce notations used in the proof of Theorem 5.2. Recall at the i-th iteration of algorithm 1, we use an
empirical distribution τ̂i with Ni samples to approximate each adversary strategy (distribution) τi ∈ Ti. Because of the
finite sample approximation, the utility estimation for each pure strategy pair in the payoff matrix is imprecise. Define the
estimation error in row j, column k of payoff matrix at iteration i as

∆j,k
i = U(xj , τk)− U(xj , τ̂k).

Let ∆i denote the absolute value of the largest utility estimation error for any cell in the payoff matrix at the i-th iteration of
the algorithm, i.e., ∆i = maxj,k |∆j,k

i |. At step 7 of algorithm 1, when we apply linear programming to solve the subgame
(Xi, T̂i, U), we obtain a mixed strategy for adversary σ̂∗

i defined on T̂i. Recall σ∗
i ∈ ∆(Ti) is the mixed strategy on the

underlying true adversary distribution that shares the same weight as σ̂∗
i . Formally, σ∗

i (τl) = σ̂∗
i (τ̂l) ∀l ∈ [i].

Proof of Item 1

Proof. We first show that for any πi ∈ ∆(Xi) and σi ∈ ∆(Ti), we have |U(πi, σ̂i)− U(πi, σi)| ≤ ∆i. We write

|U(πi, σi)− U(πi, σ̂i)| =
∑
x∈Xi

∑
τ∈Ti

πi(x) · σi(τ) · |U(x, τ)− U(x, τ̂)| (8)

|U(x, τ)−U(x, τ̂)| denotes the sample estimation error for the pure strategy pair (x, τ) in the payoff matrix. The maximum
on the right-hand side of Equation 8 is obtained when putting all the probability mass on the strategy pair with the largest
sample estimation error, which is ∆i.

Then we bound ∆i for each i. For any cell (j, k) in the matrix, we apply Lemma 1:

P (|∆j,k
i | ≥ ϵ

4
) ≤ 16C ′M2

Nϵ2
.

Since at i-th iteration, there are (i+ 1)2 cells in the payoff matrix, we apply the union bound and obtain:

P (∆i ≥
ϵ

4
) ≤ 16C ′M2(i+ 1)2

Niϵ2
.

By setting Ni =
⌈
16C ′M2(i+ 1)2i1+δ/ϵ2

⌉
, we have

P (∆i ≥
ϵ

4
) ≤ 1

i1+δ
.



Here we consider the events Ai = {∆i ≥ ϵ
4}. From the step above, we have

P (Ai) ≤
1

i1+δ
.

Because δ > 0,
∑∞
i=1

1
i1+δ is a convergent series. Therefore,

∑∞
i=1 P (Ai) < ∞. From Borel-Cantelli Lemma, we then

obtain P (lim sup
i→∞

Ai) = 0, which implies Ai only happens for finite times. There exists ir that for any i > ir,

P (∆i ≥
ϵ

4
) = 0.

Because of assumption 2, the pure strategy space X and T are both compact and U is continuous. Hence, (X , T , U) is
a two-player zero-sum continuous game, and here are several results that are already proven in Adam et al. [2021] for
two-player zero-sum continuous games.

• Sequences (π∗
i )

∞
i=1 and (σ∗

i )
∞
i=1 have a weakly convergent subsequence, which for simplicity, will be denoted by the

same indices. Therefore, π∗
i ⇒ π∗ for some π∗ and σ∗

i ⇒ σ∗ for some σ∗, where ⇒ denotes weak convergence.

• If πi ⇒ π in ∆(X ) and σi ⇒ σ in ∆(T ), then U(πi, σi) → U(π, σ). If πi ⇒ π in ∆(X ) and τi → τ in T , then
U(πi, τi) → U(π, τ).

• For any π ∈ ∆(X ) we have
min
τ∈T

U(π, τ) = min
σ∈∆(T )

U(π, σ)

• The size of initial subset X1 and Y1 can be any finite number.

From the proof above, Ai only happens for finite times. Assume ir is the largest number satisfying that Ai happens. We then
treat (Xir , Tir ) as the initial set of strategies for both players. Then our sampling scheme ensures that for any strategy pair
(π, σ) and iteration i, we have |U(πi, σi)− U(πi, σ̂i)| ≤ ∆i ≤ ϵ/4.

Consider any x such that x ∈ Xi0 for some i0. Take an arbitrary i ≥ i0, which implies x ∈ Xi. Since (π∗
i , σ̂

∗
i ) is an

equilibrium of the subgame (Xi, T̂i, U), we get

U(π∗
i , σ̂

∗
i ) ≥ U(x, σ̂∗

i )

Since U(π∗
i , σ

∗
i ) and U(π∗

i , σ̂
∗
i ) differ by at most ϵ4 , and U(x, σ∗

i ) and U(x, σ̂∗
i ) differ by at most ϵ4 , we have

U(π∗
i , σ

∗
i ) +

ϵ

2
≥ U(x, σ∗

i ) → U(x, σ∗).

Since U(π∗
i , σ

∗
i ) → U(π∗, σ∗), we have

U(π∗, σ∗) +
ϵ

2
≥ U(x, σ∗) (9)

for all x ∈ ∪Xi. Since U is continuous, the previous inequality holds for all x ∈ cl(∪Xi).

Fix now an arbitrary x ∈ X . Note xi+1 is the best response to U(·, σ̂∗
i ) (since ranger oracle uses finite sample estimation of

payoff matrix), and we have
U(xi+1, σ̂

∗
i ) ≥ U(x, σ̂∗

i )

Because U(xi+1, σ
∗
i ) and U(xi+1, σ̂

∗
i ) differ by at most ϵ/4, and U(x, σ∗

i ) and U(x, σ̂∗
i ) differ by at most ϵ/4, we have

U(xi+1, σ
∗
i ) +

ϵ

2
≥ U(x, σ∗

i ) → U(x, σ∗)

Since xi+1 ∈ Xi+1 and by compactness of X , we can select a convergence subsequence xi → x̃, where x̃ ∈ cl(∪Xi). This
allows us to use 9 to obtain

U(xi+1, σ
∗
i ) → U(x̃, σ∗) ≤ U(π∗, σ∗) +

ϵ

2
.

Therefore, for any x ∈ X ,
U(x, σ∗) ≤ U(π∗, σ∗) + ϵ.



Similarly, we have for any τ ∈ T ,
U(π∗, τ) ≥ U(π∗, σ∗)− ϵ

2
.

The two sides are not symmetrical because the best response for the poacher doesn’t use the finite sample approximation of
payoff matrix, thus having a smaller error. We then conclude the proof.

We then show that adding the terminating condition, for any ϵ > 0, algorithm 1 can terminate in a finite number of iterations.
Also, when it stops, it converges to a 4ϵ-equilibrium with high probability.

Proof of Item 2

Proof. Consider now an infinite game, from Item 1 in Theorem 5.2, we know that v̄i − vi → ϵ. Also, our sampling scheme
ensures that for any strategy pair (π, σ) and iteration i after some finite rounds ir, we have |U(πi, σi)−U(πi, σ̂i)| ≤ ∆i ≤ ϵ

4 .
This indicates that with ϵ > 0, the terminating condition will be satisfied after a finite number of iterations. Assume that the
algorithm ends at the j-th iteration. This implies

U(xj+1, σ̂
∗
j )− U(π∗

j , τ̂j+1) ∈ (−2ϵ, 2ϵ)

Then we have

U(πj , σj) ≤ U(πj , σ̂j) + ∆j

≤ U(xj+1, σ̂j) + ∆j

≤ U(πj , τ̂j+1) + ∆j + 2ϵ

≤ U(πj , τj+1) + 2∆j + 2ϵ

= argmin
τ
U(πj , τ) + 2∆j + 2ϵ.

Here the first and fourth relation follows from the estimation error of U . The second one is because xj+1 is the best response
for the ranger. The third one is from the terminating condition and the fifth one comes from the best response for the poacher.
Similarly,

U(πj , σj) ≥ U(πj , σj+1)

≥ U(πj , σ̂j+1)−∆j

≥ U(xj+1, σ̂j)−∆j − 2ϵ

≥ U(x∗, σ̂j)−∆j − 2ϵ, where x∗ = argmax
x

U(x, σj)

≥ argmax
x

U(x, σj)− 2∆j − 2ϵ.

Here the second and fifth relation comes from the estimation error of U . The first one is from the best response of the
poacher and the fourth one is from the best response of the ranger. The third one follows from the terminating condition.

For ∆j , we have

P (∆j ≥ ϵ) ≤ 1

16j1+δ
≤ prob,

where the second relation comes from j > 1
16prob . Therefore, we show that (πj , σj) is a 4ϵ-equilibrium with probability at

least 1− prob.

H EXPERIMENTAL DETAILS

H.1 DATASETS

Synthetic Dataset To better reflect real-world conditions, regions are connected based on a predefined topology. We
randomly generate 5,100 graphs, each with 30 nodes and 20 edges. The first 4,800 graphs are used for training, the next 200
for validation, and the remaining 100 for testing. Each node is assigned a randomly generated 10-dimensional feature vector.
Next, we establish a stochastic mapping from a node’s features to its poaching count, capturing the complex relationships



observed in real-world scenarios. Poaching counts are sampled from a Gamma distribution parameterized by shape and
scale values. We randomly initialize two Graph Convolutional Networks (GCNs). For each node, one of the two GCNs
is selected with equal probability to map the node’s features to a continuous value, which is then scaled by a factor of 20.
This value serves as the shape parameter of the Gamma distribution. The poaching count is then drawn from the Gamma
distribution, where the scale parameter is set to 1 if the first GCN is chosen and 0.9 if the second is chosen. To incorporate
adversarial noise, we apply perturbations inversely proportional to the poaching count—nodes with lower poaching counts
receive higher noise levels. Finally, the poaching count for each node is capped within the range [0, 40] and scaled by 0.2 to
align the overall distribution with real-world data.

Real-world Dataset We use poaching data from Murchison Falls National Park (MFNP) in Uganda, collected between
2010 and 2021. The protected area is discretized into 1 × 1 km grid cells. For each cell, we measure ranger patrol effort
(in kilometers patrolled) as the conditional variable for the diffusion model, while the monthly number of detected illegal
activity instances of each cell serves as the adversarial behavior. Following [Basak et al., 2016], we represent the park as a
graph to capture geospatial connectivity among these cells. To focus on high-risk regions, we subsample 20 subgraphs from
the entire graph. Specifically, at each time step we identify the 20 cells with the highest poaching counts. Each of these cells
is treated as a central node, and we iteratively add the neighboring cell with the highest poaching count until the subgraph
reaches 20 nodes. This procedure yields 532 training samples, 62 validation samples, and 31 test samples.

H.2 IMPLEMENTATION DETAILS

We use a three-layer Graph Convolutional Network (GCN) [Kipf and Welling, 2022] with a hidden dimension of 128 as the
backbone of the diffusion model. The diffusion process follows the DDPM framework [Ho et al., 2020] with T = 1000 time
steps and a variance schedule from 10−4 to 0.02. Optimization is performed using Adam [Kingma, 2014] with a learning
rate of 10−3, and the model is trained for 5000 epochs. To estimate the expected utility, we draw 500 samples from the
diffusion model. All comparison methods run for 30 iterations. The mirror ascent oracle uses a step size of 0.1 and runs for
100 iterations. The step size in the mirror ascent step for the baselines is also 0.1.

The actions of the poacher and ranger in grid j, represented by zj and xj respectively, influence the wildlife population in
the area. We model the wildlife population in grid j as follows:

max(N0(j)e
r − αeψzj−θxj , 0),

where N0(j) is the initial wildlife population in the area and r denotes the natural growth rate of the wildlife. The parameter
α captures the impact of both the ranger’s and poacher’s actions on the wildlife population, ψ reflects the strength of
poaching, and θ measures the effectiveness of patrol effort. The utility for the ranger is then represented as the sum of
wildlife population across all grids:

U(x, z) =

K∑
j=1

max(N0(j)e
r − αeψzj−θxj , 0)

.

Forecasting Experiments. We use the poaching dataset described in Appendix H.1. Following Xu et al. [2021], linear
regression and Gaussian processes predict the poaching count for each 1× 1 km cell individually, using two features: the
previous month’s patrol effort in the current cell and the aggregated patrol effort from neighboring cells. For linear regression,
we employ the scikit-learn implementation, while for Gaussian processes, we use the GPy library with both the RBF and
Matérn kernels. The training procedure for the diffusion model follows Appendix H.2, with its support constrained to [0, 3].
For each test instance, we generate 500 samples and use the mean prediction. We also attempted to impose constraints on
the baseline’s output but found that this only degraded its performance.
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