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ABSTRACT

We present a pure deep neural network-based approach for estimating long mem-
ory parameters of time series models that incorporate the phenomenon of long
range dependence. Long memory parameters such as the Hurst exponent are criti-
cal in characterizing the long-range dependence, roughness, and self-similarity of
stochastic processes. The accurate and fast estimation of these parameters is of
paramount importance in various scientific fields, including finance, physics, and
engineering. We harnessed efficient process generators to provide high-quality
synthetic training data to train 1D Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) models. Our neural models outperform con-
ventional statistical methods, even if the latter have neural network extensions.
Precision, speed as well as consistency and robustness of the estimators are sup-
ported by experiments with fractional Brownian motion (fBm), the Autoregressive
Fractionally Integrated Moving Average (ARFIMA) process, and the fractional
Ornstein-Uhlenbeck process (fOU). We believe that our work will inspire further
research in the application of deep learning techniques for stochastic process mod-
eling and parameter estimation.

1 INTRODUCTION

Long-range dependence or long memory has critical importance in the scientific modeling of natural
and industrial phenomena. On the one hand, from the field of natural sciences, one can find several
applications in climate change (Yuan et al., 2022; Franzke et al., 2015), hydrology (Hurst, 1956), de-
tection of epilepsy (Acharya et al., 2012), DNA sequencing (R.C. Lopes, 2006), networks (Willinger
et al., 2001)) or in cybersecurity detecting anomalies (Li, 2006). On the other hand, research on long
memory implies achievements in financial mathematics, see for example (Qian & Rasheed, 2004;
Eisler & Kertesz, 2006) or (Baillie, 1994) for the application of long memory in volatility modeling.
Clearly, the presence of long memory in time series data is a common tenet, turning a great deal
of attention to models that are capable of capturing this phenomenon. In most stochastic models
the impact of past events on future events has a fast decay, and this way, the effect of observations
from the distant past, in terms of forecasting ability, is negligible. When long-range dependence is
present in a system, predictions concerning the future require information from the complete history
of the process - in contrast to Markovian environments, when the most recent events already con-
tain all the information that is necessary for an optimal forecast. When one models data with long
memory, it is a crucial task to estimate model parameters, and classical inference methods are often
not applicable in the case of long memory processes. We focus our attention on three stochastic pro-
cesses that are frequently utilized in modern applied mathematics: the fractional Brownian motion
(fBm), the Autoregressive Fractionally Integrated Moving Average (ARFIMA), and the fractional
Ornstein-Uhlenbeck (fOU) process. In the case of fBm and fOU we focus on the estimation of the
Hurst parameter. The Hurst exponent controls the roughness, self-similarity, and the long-range de-
pendence of fractional Brownian motion paths, and this way also influences the characteristics of
derivative processes such as the fractional Ornstein-Uhlenbeck process. With regard to ARFIMA
models, the differencing parameter d is our target governing the decay of autocovariances, and thus,
the decay of memory in the system.
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We propose well-known neural network architectures as general tools for estimating the parameters
that characterize long memory. An important feature of our approach is that efficient process gen-
erators provide the opportunity to train the models on very large amounts of data. This approach
has several advantages. On the one hand, we can achieve a clearly better performance compared to
traditional statistical estimation methods, even when supplemented with neural networks. Inference
is efficient in terms of speed, even for samples of long sequences, and this makes our approach
valuable for practical applications. The learning process results in models with good performance
even with a moderate amount of training data, and this can be improved further by using a larger
amount of training data. Measurements displayed here support the general applicability of the neural
network approach.

In recent years, a number of works, utilizing neural networks, emerged on the estimation of the
Hurst parameter of fBM. A part of these uses MLPs, in which case, since input of MLPs are of a
fixed size, one of the followings happen: either inference can be performed only on a fixed-length
series (Ledesma-Orozco et al., 2011; Han et al., 2020), or inference is done on a set of process
specific statistical measures enabling a fixed size input to the neural networks (Kirichenko et al.,
2022; Mukherjee et al., 2023). A more general approach is the signature-based method described in
(Kidger et al., 2019), which can also be used to estimate fBM Hurst, where the extracted statistical
descriptors are processed by an LSTM. In the case of these methods, the hybrid application of
statistical descriptors and neural networks brings less improvement compared to our purely neural
network solutions. This is reflected in the comparison to classical estimation methods. Another
shortcoming in recently published methods is that they do not address the possible limitations caused
by scaled inputs. In the case of the fOU and ARFIMA processes, so far, we could not find neural
network based parameter estimators in the literature. Nevertheless, we would like to make the
remark, that in case of non-fractional Ornstein-Uhlenbeck process, the architecture of the estimator
presented by (Wang et al., 2022) is in close proximity to the one presented in this paper.

A further advantage of our method is that it maintains good performance evenly over the entire [0, 1]
range of the Hurst parameter. When inferring, our method competes with previous methods in terms
of speed. We found that the the proposed neural network estimator is consistent in the sense that
when trained on longer sequences, the method becomes more accurate - even when inference was
done on sequences of different length sequences (with respect to lengths used in training). In the
case of the fOU process, we compared the neural network-based Hurst estimates with a quadratic
variation estimators, and our method presented much higher accuracy.

The success of the utilized networks (Sec. 3.3) utmostly stems from a large volume of high-quality
training data, manifested with the software that was built around the framework of the so-called
isonormal processes (see Nualart & Nualart (2018) for the mathematical background, and Sec. 3.2
on the implementation). The underlying path-generating methodology includes the circulant em-
bedding of covariance matrices and the utilization of fast Fourier transform.

2 BACKGROUND

2.1 THE FRACTIONAL BROWNIAN MOTION AND THE FRACTIONAL ORNSTEIN-UHLENBECK
PROCESS

Let H ∈ (0, 1). The fractional Brownian motion fBm(H) :=
(
BH

t

)
t≥0

is a continuous centered

Gaussian process with covariance function cov
(
BH

t , BH
s

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
. Here,

H is called the Hurst exponent of the process. Let FBM(H,n, S, T ): (S < T ) denote the distribu-

tion of the
T − S

n
-equidistant realizations of fBm(H) on the time interval [S, T ]. It can be shown

that ∆FBM(H,n, S, T ) ∼ λ(H,T−S)∆FBM(H,n, 0, 1), where ∆FBM(H,n, S, T ) is the se-
quence of increments, and λ(H,T−S) is a scalar. If we want to estimate H from FBM(H,n, S, T )
we might want to consider a shift invariant neural network on the increments, since then it will be
sufficient to train it only on FBM(H,n, 0, 1). We might also consider the scaled and drifted fBm
process fBm(H,σ, µ) :=

(
σBH

t + µt
)
t≥0

, H ∈ (0, 1), σ > 0, µ ∈ R which is the fractional
counterpart of the so called Bachelier model (Musiela & Rutkowski, 2006). When the network is
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also drift invariant, it is still sufficient to train the network on realizations of FBM(H,n, 0, 1) to
yield an estimator for the parameter H of fBm(H,σ, µ).

2.2 AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE

A real valued stochastic process Xj , j ∈ Z is said to be covariance stationary if EX2
j < ∞

and EXj are constant for all j ∈ Z, and the autocovariance function Cov(Xj , Xj+k) =
Cov(X0, Xk) = γ(k) is constant in j for all j, k ∈ Z. For every event A from the sigma field
generated by Xj , j ∈ Z there exists a Borel set C = C(A) such that A = [(X1, X2, ...) ∈ C]. The
event A is invariant if we have A = [(Xk, Xk+1, ...) ∈ C] for all k ≥ 1. We say that the stochastic
process Xj , j ∈ Z is ergodic if every invariant event has probability zero or one.

A covariance stationary sequence of random variables ζj , j ∈ Z is said to form white-noise if
Eζ0 = 0, γ(0) = Eζ20 < ∞, and γ(k) = 0 for all k ∈ Z, k ̸= 0.

For d > −1 we define the fractional difference operator ∇d =
∑∞

k=0

(
d
k

)
(−B)−k where B is the

backward shift operator, that is BXj = Xj−1, and
(
d
k

)
= d!

k!(d−k)! .

For d ∈ (−1/2, 1/2) the ARFIMA(0, d, 0) process is defined as the solution of the difference
equation

∇dXj = ζj , (1)

where ζj , j ∈ Z is a white-noise sequence. It is known that when ζj , j ∈ Z is ergodic, and d ̸= 0,
there is a unique stationary solution to (1) – see Theorem 7.2.2 in Giraitis et al. (2012).

2.3 THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS

Let H ∈ (0, 1), α, σ > 0, η, µ ∈ R. The fractional Ornstein-Uhlenbeck process (Yt)t≥0 is the
solution of the following stochastic differential equation:

dYt = −α(Yt − µ) dt+ σ dBH
t

Y0 = η.

Let fOU(η,H, α, µ, σ) denote the distribution of this process on the Borel σ-algebra of continuous
functions. Note that µ and σ are simply scaling and shifting parameters. Namely, if Y ∼ fOU

(
(η−

µ)/σ,H, α, 0, 1), then σY +µ ∼ fOU(η,H, α, µ, σ). This means that if we can guarantee the scale
and shift invariance of the network, it will be sufficient to train a H-estimator on realizations from
fOU

(
η,H, α, 0, 1) to cover the distribution on fOU(η,H, α, µ, σ).

2.4 BASELINE ESTIMATORS

To provide baseline comparisons to our neural network based results we considered the following
estimators. For a more detailed account on the baseline estimators see Section B in the appendix.

Rescaled range analysis consists of calculating the statistics R/S. The method considers the rescaled
and mean adjusted range of the progressive sum of a sequence of random variables. This quantity, in
case of fractional Brownian motion obeys a specific power law asymptotics, and the Hurst parameter
of the process can be obtained through utilizing a logarithmic linear regression. The term and con-
cept of stems from multiple works of Harold E. Hurst for a historical account on the methodology
see (Graves et al., 2017).

Since the box counting dimension of fractional Brownian motion is 2 − H , estimating the fractal
dimension can provide a tool for estimating the Hurst exponent H . Based on the estimation of the
p-variation of a process, we considered a generalization of the variogram estimator (Gneiting et al.,
2012) for estimating the fractal dimension. We also considered Higuchi’s method (Higuchi, 1988)
which also provides a tool for estimating the box counting dimension of fBm.

We would like to make the remark, that according to Theorem 7.2.1 in Giraitis et al. (2012), for
the aoutocovariance of an ARFIMA process, we have γ(k) ≈ cdk

2d−1. Thus, in terms of the de-
cay of autocovariance and memory properties (see Definition 3.1.2 in Giraitis et al. (2012)), the
ARFIMA(0, d, 0) process corresponds to a fractional noise with Hurst parameter H = d + 1/2.
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Also, an ARFIMA process, in an asymptotic sense, has similar spectral properties to that of frac-
tional Brownian motion incremets. On one hand this means, that an ARFIMA process offers a
potential way to test estimators calibrated to fractional Brownian motion. On the other hand, it is
reasonable to apply the above baseline Hurst parameter estimators for estimating the parameter d of
ARFIMA(0, d, 0).

The logarithmic likelihood procedure, dubbed as Whittle’s method, involves the optimization of a
quantity that compares the estimated spectrum to the actual spectrum of the underlying parametric
process. This method, on an algorithmic level, has to be tailored to the subject of inference, by
providing, in a preliminary way, the parametric spectral density of the underlying process. This test
is widely used for inference on the Hurst parameter, and it is the state of the art method for parameter
estimation tasks that target ARFIMA processes.

To estimate the Hurst parameter of a fractional Ornstein-Uhlebeck process, the paper (Brouste & Ia-
cus, 2011a) provides a statistical method (QGV) that is based on building an estimator that compares
generalized quadratic variations corresponding to certain filtered versions of the input samples. The
method presents consistent and asymptotically Gaussian estimators, and can be considered a state
of the art analytical tool regarding Hurst parameter inference on fOU processes.

3 METHODS

3.1 TRAINING PARADIGM

In contrast to a situation characterized by a limited amount of data, we have the opportunity to
leverage synthetic data generators to train our neural network models on a virtually infinite dataset.
The loss computed on the most recent training batches simultaneously serves as a validation loss,
as each batch comprises entirely new synthetic data. This setup not only ensures the absence of
overfitting in the traditional sense but also highlights the sole potential issue associated with this
training paradigm: the quality of the process generator itself. If the generator fails to approximate
the target distribution effectively, there is a risk of overfitting the generator’s inherent errors. Thus,
the availability of high-quality process generators is essential.

Our setup to obtain parameter estimators by utilizing generators for given families of stochastic pro-
cesses is the following. Let Θ be the set of the possible parameters and let P be the prior distribution
on Θ. For a fixed a ∈ Θ, the generator Ga denotes an algorithm that generates sample paths of a
stochastic process, where the sample paths are distributed according to the process distribution Qa.
This is deterministic in the sense that every iteration, returns a sample path. This algorithm however
can be treated as a random object, by introducing randomness into the parameter a by setting a = ϑ,
where ϑ is a random variable distributed according to some law P . Denote the compound generator
by G(ϑ). Now, suppose we have G(ϑ) as input and we would like to estimate ϑ. Formally, an optimal
M estimator would minimize the MSE E[M(G(ϑ)) − ϑ]2. By having independent realizations of
series from G(ϑ), we can consider the training set T . Training a proper neural network M on T
with the squared loss function would be a heuristic attempt to obtain the above M estimator. We
may assume that Q is only parametrized by the target parameter a. This can be done without loss of
generality, because if Q is parametrized by other parameters besides a, then we can just randomize
those parameters and have Qa be redefined as the resulting mixed distribution.

3.2 GENERATING FRACTIONAL PROCESSES

To generate the fractional processes fBM and fOU, we employed the circular matrix embedding
method belonging to the Davies-Harte procedure family (Davies & Harte, 1987). In the available
Python packages (Christopher Flynn, 2020), the original Davies-Harte method for generation is ac-
cessible. However, the generation procedure we use is based on Kroese’s method (Kroese & Botev,
2013), which we have re-implemented specifically for generating sequences using the most efficient
tools within the Python framework. In our implementation, for multiple sequences, we store the
covariance structure so that it does not need to be recomputed each time it is needed. Additionally,
the modified version of the traditional Cholesky method is available in the implemented package,
which yields a similar level of acceleration for generating large quantities of data, comparable to the
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currently available solutions. More details on the generation method and our measurements related
to its adequacy are in Section E of the Appendix.

3.3 NEURAL NETWORK ARCHITECTURE

There are three kinds of invariances that we might require from the network M: shift, scale, and
drift invariance. In order to make an fBm Hurst-estimator which works well in practice, we want
to rely on all three of the above invariances. We can obtain shift invariance by transforming the
input sequence to the sequence of its increments. Differentiating the input this way also turns drift
invariance to shift invariance. By performing a standardization on the sequence of increments we can
ensure drift and scale invariance. The standardizing phase can also be considered as an additional
layer to the network, applying the transformation x 7→ (x−x)/σ̂(x) to each sequence of increments
x in the batch separately, where σ̂(x) is the empirical standard deviation over the sequence x, and x
is the arithmetic mean over x.

After the optional layers to ensure invariances, the next layers of M constitute a sequential regressor.
This part of the network first transforms the input sequence into a higher dimensional sequence, after
which each dimension of the output is averaged out, resulting a vector. Finally, a scalar output is
obtained by an MLP (Haykin, 1994). We considered two options for the sequence transformation.
Mconv, where the regression is achieved using a multilayer 1D convolution (Kiranyaz et al., 2021),
and MLSTM, where we use an LSTM (Hochreiter & Schmidhuber, 1997). We found that unless M
is severely underparametrized, the specific hyperparameter configuration does not have a significant
effect on its performance. Generally MLSTM achieves a little better loss than Mconv, while Mconv
is computationally faster than MLSTM. Slight differences can arise in the speed of convergence,
but these are not relevant due to the unlimited data and fast generators. The following are the
hyperparameters that we used in the experiments below.

Mconv utilizes a 1D convolution with 6 layers. The input has 1 channels, and the convolution
layers have output channels sizes of 64, 64, 128, 128, 128, and 128. Every layer has stride 1,
kernel size 4 and no padding. The activation function is PReLU after each layer. MLSTM consists
of an unidirectional LSTM with two layers, its input dimension is 1, the dimension of its inner
representation is 128. In both models, we use an MLP of 3 layers (output dimensions of 128, 64 and
1), with PReLU activation function between the first two layers. AdamW optimization on the MSE
loss function was used for training the models (Loshchilov & Hutter, 2017). The learning rate was
set to 10−4 and the train (and validation) batch size to 32.

3.4 TECHNICAL DETAILS

The process generators were implemented in Python (Van Rossum & Drake, 2009), using Numpy
(Harris et al., 2020) and SciPy (Virtanen et al., 2020). We imported Higuchi’s method from the
package AntroPy (Vallat, 2022). The R/S method was imported from the package hurst (Mottl,
2019). We generated the ARFIMA trajectories using the arfima package (Kononovicius, 2021). The
framework responsible for the training process was implemented in Pytorch (Paszke et al., 2019).
Every neural module we used was readily available in Pytorch. We managed our experiments using
the experiment tracker (neptune.ai, 2022). The neural models were trained on Nvidia RTX 2080 Ti
graphics cards. Training took approximately one GPU hour to one GPU day per model, depending
on the type of process, the applied architecture, and on the length of sequences used for training. A
shorter training time can mostly be expected from the acceleration (parallelization) of the sequence
generation.

4 EXPERIMENTS

4.1 METRICS

In addition to the standard MSE loss we use two metrics. For a H-estimator M , let bε(x) =
mε(x)− x be the empirical bias function of radius ε, where mε(x) is the average of estimations the
estimator M produces for the input sequences with H ∈ [x− ε, x+ ε]. Similarly, let the empirical
standard deviation function σε(x) be defined as empirical standard deviation of the estimations M
produces for inputs inside the sliding window of radius ε.
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Let us denote the approximate absolute area under the Hurst–bias curve by b̂ε := ε
∑[1/ε]

j=0 |bε(εj)|,
and the approximate area under the Hurst–σ curve by σ̂ε := ε

∑[1/ε]
j=0 σε(εj). We use these two

metrics in addition to MSE, as they highlight different aspects of the estimators performance.

4.2 EVALUATING NEURAL FBM HURST ESTIMATORS ON DIFFERENT LENGTH REALIZATIONS

Due to self-similarity properties of fractional Brownian motion, and the stationarity of incre-
ments, a standardizing layer in the network architecture enables us to train only on realizations
∆FBM(H,n, 0, n). This simplified procedure yields an estimator that, in case of inference, is uni-
versally efficient regardless of the equidistant time-scale we choose, and regardless of the terminal
time of the targeted process. Due to ergodicity properties of the underlying process, using the term
standardizing is adequate - regardless of the fact that we have co-dependent data points as inputs.

In order to evaluate the empirical consistency of the fBm estimators we devised two experiments. We
generated the sequences for training and evaluation from FBM(H,n, 0, n), where H ∼ U(0, 1)
is random. In the first experiment we trained the neural models Mconv and MLSTM on n = 100.
Mconv and MLSTM were both working on the increments, with the standardization layer turned on,
to ensure scale, shift and drift invariance. This initial training phase was performed on 200 and 100
virtual epochs each containing 100000 sequences for Mconv and MLSTM respectively. We fine-tuned
the initial models on n = 200, 400, 800, 1600, 3200, 6400 and 12800 for an additional 20 and 10
virtual epochs for Mconv and MLSTM respectively. At the end we got a model which was trained on
all of the sequence lengths in the list, albeit not all at the same time. For example the loss of the
model fine-tuned for n = 3200 was measured after fine tuning the previous version fine-tuned for
n = 1600. We can see the results in Tables 1–2, and Figure 1 on the left side, and Figure 2. This
represents the best-case scenario for the neural models in terms of sequence length, because loss
was measured on sequences with the same length as the models were fine-tuned for.

Figure 1: MSE losses of the different estimators by sequence length on a log-log scale. On the left:
comparison of the baseline estimators and the fine-tuned neural models. On the right: the empirical
consistency of the different dedicated LSTM models.

We also evaluated the empirical consistency of MLSTM trained exclusively on certain length se-
quences. We can see the results in Table 2, and Figure 1 on the right side. Trained on shorter
sequences the performance of MLSTM improved when tested on longer sequences, but not as fast
as MLSTM variants trained on longer sequences. MLSTM variants trained on longer sequences still
performed well on shorter sequences, but not ass well as dedicated variants.
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In our measurement environment, we found that the neural network estimators have a very good
precision-speed trade-off when inferring. The advantage was only partly due to GPU usage. Infer-
ence on CPU for 10000 sequences of length 3200 took 1m 32s for Mconv and 5m 43s for MLSTM.
GPU inference on 10000 sequences of length 3200 took 10s for Mconv and 9s for MLSTM.

Figure 2: Empirical bias b0.025 (on the left) and standard deviation σ0.025 (on the right) of the fBm
estimators by Hurst value. Measured on sequences of length 12800. The b0.025 of estimator R/S
ranges from 0.125 to -0.075, and was truncated on the plot.

Table 1: MSE losses of different fBm Hurst-estimators by sequence length. To enable direct com-
parisons with other solutions in the literature, we also included the performance of MLSTM where
only shift invariance is ensured by turning off the standardizing layer (M∗

LSTM), here the training and
evaluation was performed on ∆FBM(H,n, 0, 1).

MSE loss (×10−3)

seq. len. R/S variogram Higuchi Whittle Mconv MLSTM M∗
LSTM

100 27.6 9.30 10.6 4.33 4.27 4.07 0.214
200 18.9 5.05 4.21 2.00 1.99 1.91 0.0826
400 13.9 2.92 1.99 1.00 0.959 0.917 0.0366
800 10.8 1.75 1.05 0.540 0.476 0.453 0.0141
1600 8.62 1.09 0.593 0.324 0.240 0.224 0.00715
3200 6.74 0.724 0.360 0.225 0.122 0.114 0.00373
6400 5.57 0.502 0.229 0.179 0.0628 0.0579 0.00646
12800 4.70 0.365 0.155 0.157 0.0333 0.0297 0.00318

Table 2: MSE losses of LSTM-based models trained on different sequence lengths.

train
MSE loss by validation seq. len. (×10−3)

seq. len. 100 200 400 800 1600 3200 6400

100 4.14 2.17 1.41 1.09 0.962 0.918 0.915
200 4.21 1.88 0.947 0.528 0.344 0.264 0.231
400 4.78 2.02 0.940 0.477 0.281 0.196 0.161
800 4.80 2.00 0.913 0.443 0.230 0.134 0.0888
1600 5.01 2.11 0.952 0.447 0.220 0.113 0.0617
3200 5.44 2.23 0.972 0.454 0.221 0.111 0.0608
6400 5.59 2.30 1.01 0.471 0.229 0.121 0.0692
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4.3 EVALUATING NEURAL ARFIMA PARAMETER ESTIMATORS

We also trained MLSTM models for estimating the parameter d of the ARFIMA(0, d, 0) process. Here
we performed no standardization, and were working with the input sequence, not the increments. We
trained MLSTM on sequences of length 200, 400, 800, 1600, 3200, 6400 and 12800. We evaluated
the classical Hurst estimation techniques for the inference of d as described in Section 2.4. We also
evaluated Whittle’s method calibrated specifically for the ARFIMA d-estimation. We can see the
results in Table 3, and Figure 3.

We tested the MLSTM model which was trained on FBM(H, 12800, 0, 12800) on ARFIMA(0, d, 0)
trajectories, and an MLSTM which was trained on ARFIMA(0, d, 0) trajectories of length 12800 on
∆FBM(H, 12800, 0, 12800) trajectories. As Figure 3 shows, the models perform remarkably —
with minor asymmetric bias with respect to the parameter range. This phenomenon attracts a logic
that the model either captures the decay rate of autocovariance of fractional noise or some fractal
property of sample paths. A number of additional stress tests – where a parameter estimation model
trained with a given process was evaluated on a different type of process – can be found in Section
D of the Appendix.

Figure 3: Empirical bias b0.025 (on the left) and standard deviation σ0.025 (on the right) of the
ARFIMA(0, d, 0) estimators by d. Measured on sequences of length 12800.

Table 3: MSE losses of different ARFIMA(0, d, 0) d-estimators by sequence length.

MSE loss (×10−3)

seq. len. R/S variogram Higuchi Whittle MLSTM

100 33.1 17.3 14.8 9.51 5.96
200 24.0 12.6 8.33 4.00 3.03
400 18.6 9.83 5.67 1.82 1.54
800 14.9 8.11 4.67 0.846 0.787
1600 12.6 7.70 4.24 0.401 0.390
3200 9.90 7.00 3.80 0.200 0.199
6400 8.64 6.95 3.80 0.0960 0.104
12800 7.51 6.94 3.75 0.0487 0.0552
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Figure 4: On the left: scatterplot of MLSTM model finetuned up to 12800 length fBm sequences,
inferring on ARFIMA(0, d, 0) processes of d ∈ (−0.5, 0.5) and length 12800. On the right:
scatterplot of MLSTM model trained on ARFIMA(0, d, 0) sequences of length 12800, inferring on
∆FBM(H, 12800, 0, 12800) sequences.

4.4 EVALUATING NEURAL FOU PARAMETER ESTIMATORS

Estimating the parameters of the fractional Ornstein-Uhlenbeck process is significantly more diffi-
cult. We evaluated the MLSTM model on the estimation of the Hurst parameter of fOU. Here MLSTM
was not working with the increments, but standardization was turned on to ensure scale and shift
invariance. As we stated in section 2.3 these invariances enable training on FOU(η,H, α, 0, 1)
without the loss of generality. Additionally we evaluated the quadratic generalized variation (QGV)
estimator for the Hurst parameter, as described in (Brouste & Iacus, 2011a). We trained MLSTM
on sequences of length 200, 400, 800, 1600, 3200, 6400 and 12800 with the fine-tuning technique
similar to the previous section. We generated the sequences for training and evaluation of the Hurst
estimators from FOU(η,H, α, 0, 1), where H ∼ U(0, 1), α ∼ Exp(100), η ∼ N(0, 1) are random.

Table 4: Performance metrics of different fOU Hurst-estimators by sequence length

MSE loss (×10−3) b̂0.025 (×10−3) σ̂0.025 (×10−2)

seq. len. QGV MLSTM QGV MLSTM QGV MLSTM

100 41.0 3.38 106 9.26 9.86 5.53
200 34.2 1.74 97.1 4.84 8.07 4.00
400 29.4 0.919 86.4 2.59 6.92 2.92
800 25.0 0.494 76.2 1.52 5.88 2.15
1600 20.6 0.269 65.1 0.827 5.09 1.59
3200 16.3 0.149 53.8 0.575 4.37 1.18
6400 12.6 0.0810 43.7 1.95 3.68 0.842

5 CONCLUSION

In this work, we have demonstrated the utility of sequence-processing neural networks as an effec-
tive estimation tool for determining parameters connected to long-memory, e.g. the Hurst exponent.
Specifically, we presented the superior performance and consistency of pure neural network-based
models with several commonly used techniques in the context of fBm, fOU, and ARFIMA pro-
cesses. An interpretation of these results is that complex statistical descriptors can emerge as rep-
resentations by neural networks. As a future endeavor we plan to investigate this phenomenon in
greater detail. We believe that the proposed parameter estimators of stochastic processes, based on
recurrent neural networks, with their usability and flexibility, form a good basis for the estimation
methods that can be used for more intricate processes.

9
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A APPENDIX - INTRODUCTION

The material in the Appendix is organized in the following way. Firstly, a short description of the
conventional numerical-statistical estimation mechanisms used in our experiments is presented in
Section B. We add more numerical results from our measurements in Section C.

We want to understand how the neural network-based Hurst parameter estimators trained on e.g.
the fBM process perform when applied to other types of processes. From these measurements, we
expect to gain insight into what properties of the process the estimator responds to, such as memory,
self-similarity, or the fractal dimension of the trajectory. Results of this type of experiment are
presented in Section D.

The further part of the measurements supports the proper functioning of the neural parameter esti-
mation models. For this, on the one hand, we examine the adequacy of our generator systems used
for teaching by performing high-precision statistical tests on the generated realizations (Section E).
On the other hand, we also tested the neural estimators on sequences produced with tried-and-tested
process generators implemented independently from our project (Section F).

We note that the Python codes of the process generator and the neural network-based estimators will
be available.
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B SUMMARY OF THE BASELINE ESTIMATORS

B.1 RESCALED RANGE ANALYSIS

The term and concept of rescaled range analysis stems from multiple works of Harold E. Hurst - see
e.g. [4], a study in hydrology, and for a historical account on the methodology see (Graves et al.,
2017). The statistics R/S, defined below, is the rescaled and mean adjusted range of the progressive
sum of a sequence of random variables, more precisely, given Z1, Z2, ..., for a positive integer n
consider the statistics

R/S(n) =
max1≤k≤n

{
Xk − k

nXn

}
−min1≤k≤n

{
Xk − k

nXn

}√
1
n

∑n
k=1

(
Zk − 1

nXn

)2 , (2)

where Xk =
∑k

i=1 Zi. The analysis is done via assuming an asymptotics for the statistics (2),
namely we postulate that on the long run, it holds that R/S(n) ≈ cnh, where c is an unknown
constant and h is the parameter we are looking for. Utilizing a one parameter log-log regression on
the above formula, that is, using the relation log(R/S(n)) = log(c) + h log(n), one can estimate h.

Turning to fractional Brownian motion, it is shown in [6], that its increment process, fractional
Gaussian noise has the property R/S(n) ≈ c0n

H , where H is the Hurst parameter of the underlying
fractional process, and c0 is some positive constant: yielding a numerical method for the estimation
of H .

A known limitation of this methodology - when the underlying process is a fractional Brownian
motion - is that using the statistics in (2) produces inferred values that are lower when the true value
of H is in the long memory range, and substantially higher values when the time series shows heavy
anti-persistence – see for example [7]. A possible mitigation of this is to introduce a correction that
calibrates the method to fit fractional Brownian motion data and use the corrected estimator as a
baseline.

B.2 VARIATION ESTIMATORS

A generalization of the variogram estimator based on the variogram of order p for a stochastic
process with stationary increments is utilized in this paper (Gneiting et al., 2012). The variogram of
order p is defined as γp(t) = 1

2E|Xi − Xi+t|p. Notably, when p = 2, the variogram is obtained,
while for p = 1, the madogram is obtained. The case of p = 1

2 corresponds to the rodogram. In this
study, we specifically focus on the case of p = 1, where the fractal dimension can be estimated. The

fractal dimension is determined using the following formula: D̂V ;p = 2 − 1
p

log V̂p( 2
n )−log V̂p( 2

n )
log 2 .

By applying the derived fractal dimension, we can calculate the Hurst exponent (H) as H = 2 −
D(Gneiting & Schlather, 2004).

B.3 HIGUCHI’S METHOD

Higuchi’s method (Higuchi, 1988) relies on the computation of the fractal dimension by a one di-
mensional box counting. For a sliding box size b ∈ N and a starting point i ∈ N, i ≤ b, consider

Lb(i) =
1[

n−i
b

] [n−i
b ]∑

k=1

∣∣Xi+kb −Xi+(k−1)m

∣∣ . Then let Lb :=
1
b

∑b
i=1 Lb(i). If X ∼ fBm(H, 0, σ)

then E(Lb) = cbH holds. Thus, the slope coefficient of the linear regression log(Lb) ∼ log(b) yields
an estimate for H .

B.4 WHITTLE’S METHOD

The likelihood procedure dubbed as Whittle’s method, see e.g. (Moran & Whittle, 1951), is based
on approximating the Gaussian log-likelihood of a sample of random variables X = (X1, ..., Xn),
where the underlying process is stationary and Gaussian. We give the details in the case when we
wish to estimate the Hurst parameter of fractional Brownian motion with Hurst parameter H ∈
(0, 1), and we apply Whittle’s method on its increments. Denoting with ΓH the covariance matrix
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corresponding to the vector X , the likelihood of the sample with respect to H can be written as
L(X) = (2π)−n/2 |ΓH |−1/2

e−
1
2X

TΓ−1
H X , where |ΓH |, Γ−1

H denotes the determinant and the inverse
of the matrix ΓH respectively, and XT denotes the transpose of the vector X . To speed up the
procedure, instead of numerical computations, an approximation can be introduced, see e.g. (Beran,
2017), and the Hurst parameter H can be approximated by minimizing the quantity

Q(H) =

∫ π

−π

I(λ)

fH(λ)
dλ, (3)

where I(λ) is the periodogram, an unbiased estimator of the spectral density fH , defined as I(λ) =∑n−1
j=−(n−1) γ̂(j)e

ijλ, with the complex imaginary unit i, and where the sample autocovariance γ̂(j),

using the sample average X̄ = 1
n

∑n
k=1 Xk, is γ̂(j) =

∑n−|j|−1
k=0

(
Xk − X̄

) (
Xk+|j| − X̄

)
. The

quantity in (3) is usually approximated with the sum Q̃(H) =
∑⌊n/2⌋

k=1
I(λk)
fH(λk)

, with λk = 2πk
n , to

obtain an asymptotically correct estimate Ĥ of the Hurst parameter H .

C EFFICIENCY OF MODELS MEASURED IN AGGREGATED EMPIRICAL BIAS
AND STANDARD DEVIATIONS

Table 5: Absolute area under Hurst-bias curve of different fBm Hurst-estimators by sequence length.

b̂0.025 (×10−3)

seq. len. R/S variogram Higuchi Whittle Mconv MLSTM

100 116 34.9 58.1 10.7 12.2 11.3
200 98.0 26.5 27.7 6.84 5.54 5.24
400 87.1 20.7 14.5 5.79 2.63 2.58
800 79.1 17.0 7.82 5.03 1.40 1.32
1600 71.4 13.9 4.63 4.90 0.765 0.656
3200 62.6 11.8 2.89 4.88 0.411 0.403
6400 58.0 9.79 1.74 5.03 0.241 0.211
12800 53.7 8.34 1.23 5.04 0.140 0.131

Table 6: Absolute area under Hurst - empirical standard deviation curve of different fBm Hurst-
estimators by sequence length.

σ̂0.025 (×10−2)

seq. len. R/S variogram Higuchi Whittle Mconv MLSTM

100 9.62 8.67 8.25 6.25 6.16 6.01
200 7.35 6.33 5.65 4.30 4.27 4.15
400 5.69 4.78 4.04 3.01 3.00 2.91
800 4.58 3.61 2.97 2.11 2.12 2.05
1600 3.71 2.74 2.22 1.50 1.51 1.46
3200 3.34 2.14 1.67 1.09 1.08 1.04
6400 2.76 1.67 1.28 0.791 0.775 0.743
12800 2.34 1.34 0.998 0.590 0.564 0.534
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Table 7: Absolute area under d - bias curve of different ARFIMA(0,d,0) d-estimators by sequence
length.

b̂0.025 (×10−3)

seq. len. R/S variogram Higuchi Whittle MLSTM

100 122 77.5 71.9 38.3 14.6
200 109 68.8 57.8 19.8 7.37
400 98.1 63.2 50.9 10.3 3.95
800 90.1 58.9 48.7 5.48 2.11
1600 82.7 57.8 46.9 2.70 1.17
3200 73.3 56.9 45.1 1.60 0.614
6400 68.3 56.9 44.5 0.862 0.350
12800 63.6 57.4 43.9 0.495 0.216

Table 8: Absolute area under d - empirical standard deviation curve of different ARFIMA(0,d,0)
d-estimators by sequence length.

σ̂0.025 (×10−2)

seq. len. R/S variogram Higuchi Whittle MLSTM

100 9.84 8.67 8.79 8.85 7.21
200 7.49 6.48 5.94 5.96 5.27
400 5.82 4.84 4.20 4.12 3.81
800 4.68 3.64 3.04 2.85 2.74
1600 3.83 2.77 2.22 1.98 1.98
3200 3.44 2.18 1.66 1.40 1.42
6400 2.84 1.72 1.27 0.976 1.03
12800 2.37 1.40 0.980 0.696 0.744

D STRESS-TESTING THE NEURAL ESTIMATORS WITH VARIOUS PROCESSES

Assume that we have a black-box estimator denoted by Ξ that receives as input a large number of
sample paths DH of a fractional Brownian motion with unknown parameter H ∈ (0, 1). The task of
the estimator is to reproduce the quantity H . If it succeeds, then we can symbolically express this
fact with the equality

Ξ(DH) = H.

If the above equality holds, one can investigate the unknown methodology that the machine Ξ utilizes
to produce its output. The estimator may capture at least three different characteristic quantities: the
box dimension of the paths, the properties associated with memory, or the exponent of self-similarity.

D.1 SUM OF TWO FBMS: BOX DIMENSION VERSUS MEMORY

To differentiate between fractal properties of paths (box dimension) and the decay of auto-covariance
(memory), let H1 < H2 be two real numbers in the set (0, 1/2)∪ (1/2, 1), and let BH1

t and BH2
t be

two independent fractional Brownian motions with parameters H1 and H2 respectively. Consider
the process defined by Xt = BH1

t + BH2
t . On the one hand, if Ξ captures the asymptotic decay

of the autocovariance of the given input, then we have Ξ[X] = H2. On the other hand, contrary
to the above case, if Ξ captures the box dimension of the given input, then Ξ[X] = H1. This way,
the above heuristic reasoning gives a possible method to test the otherwise unknown behavior of the
estimator Ξ regarding its hidden estimation procedure.

Driven by these motivations, after training MLSTM for the parameter estimation of the fBm, we
tested it on the above fBm sums. We considered cases where H1 was fixed and H2 ∼ U(0, 1) was
random. The resulting scatter plot can be seen in Figure 5. Apparently, MLSTM tends to infer values
Ĥ ∈ (H1, H2). Therefore, MLSTM does not seem to learn the box dimension nor the memory but
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an ”in-between” quantity. Changing the input sequence length does not change this phenomenon at
its core; it only reduces the width of the scatter, i.e., the variance. This confirms our heuristic ideas
about the inferral logic of a neural network trained on realizations of the pair (G,ϑ) (see Subsec.
3.1.). Namely, for an input x the neural network tries to find the expected value E(ϑ|G = x). It is
natural that this obscure conditional expected value does not coincide with any known measurement
of memory or dimension.

Figure 5: Scatterplot of MLSTM on fBm sum inputs with fixed H1 and uniform random H2 values.
Series length n = 6400. x : H2, y : the sum’s H value estimated by MLSTM

D.2 LÉVY PROCESSES: BOX DIMENSION VERSUS SELF-SIMILARITY

On the one hand, it is a well-known fact that symmetric α-stable Levy processes, for α ∈ (0, 2],
are self-similar with self-similarity exponent 1/α, and according to Seshadri & West (1982) the box
dimension of such processes, for α > 1/2, can be given by the formula 2− 1/α. On the other hand,
they do not have memory in the sense that increments are independent. This way, one can assess
if the estimator Ξ, in case of an α-stable Lévy process as input, denoted by Dα, produces inferred
values according to the law

Ξ[Dα] =
1

α
corresponding to the self-similarity of the underlying, or contrary to this, it rather follows a logic
that supports evidence that it infers according to the law

Ξ[Dα] = 2− 1

α

corresponding to box dimension.

We tested several models, calibrated to fractional Brownian motion, on α-stable Levy processes.
The results can be seen in Figure 6. In the case of α = 2, the law of an α-stable Levy process
coincides with that of a standard Brownian motion that is also a fractional Brownian motion with
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Hurst parameter H = 1/2. This way, the inferred value at α = 2, that is 1/2, is not at all unforeseen.
However, when moving away from α = 2, the model first displays heavy variance, and when moving
close to α = 0, we see the concentration of inferred values around some levels — that is, as we
anticipate, specific to the unique learning phase of the model used.

Figure 6: Scatterplot of MLSTM models finetuned up to different lengths of fBm sequences inferring
on Lévy processes of length 6400 and stability parameter α.

D.3 AUTOREGRESSIVE PROCESSES

We tested MLSTM on autoregressive dynamics of order 1; results are shown in Figure 7. There
are two parameter values that can be explained with high confidence. On the one hand, when the
speed of mean reversion vanishes, inferred values do so too: this corresponds to the fact that, in
some sense, as we approach zero with the Hurst parameter H , that is when H → 0, increments
of fractional Brownian motion display a behavior that is comparable to that of white-noise. On the
other hand, when the speed of mean reversion is close to 1, then the autoregressive process coincides
with a random walk driven by the underlying noise and, as such, corresponds to standard Brownian
motion, that is, a fractional Brownian motion with Hurst parameter H = 1/2, which explains the
inferred value. The regularity of the inference curve can probably be explained by the continuous
nature of neural networks.
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Figure 7: Scatterplot of MLSTM model finetuned up to 12800 length fBm sequences, inferring on
autoregressive processes of order 1 and length 12800.

D.4 ORNSTEIN–UHLENBECK PROCESSES

We tested MLSTM on the standard Ornstein-Uhlenbeck process; results are shown in Figure 8. The
inferred value at α = 0 is 1/2 as expected — since the model receives an input that it already
encountered in the learning phase. We see a decreasing convex curve when the input parameter de-
viates from zero. A possible explanation is that when α ̸= 0, the autocovariance shows exponential
decay - contrary to the power decay associated with the data the model perceived when calibrated.

Figure 8: Scatterplot of MLSTM model finetuned up to 12800 length fBm sequences, inferring on
Ornstein–Uhlenbeck processes of length 12800.
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E STATISTICAL TESTS FOR THE PROCESS GENERATORS

E.1 DETAILS OF THE GENERATION METHODS

The implemented generation methods can be used for the simulation of sample paths of iso-normal
stochastic processes: including fractional integrals (such as fractional Brownian motion, and the
fractional Ornstein-Uhlenbeck process). Publication of this work is forthcoming.

Narrowing to the case of fractional Brownian motion, since it is a Gaussian process, a usual method-
ology can be used for generating trajectories. That is, for a given length of sample path, it is enough
to produce a square root decomposition of its covariance matrix over the timestamps. One option
is to use the Cholesky method (which can also be used in a more general situation). The other
used method utilizes the circulant embedding of the matrix (Davies & Harte, 1987), and fast-Fourier
transform (Kroese & Botev, 2013; Dieker & Mandjes, 2003), which to our best knowledge yields
paths faster than all known exact methods.

The details are the following. Let us consider the covariance function of the fBm

cov(Wt,Ws) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ≥ 0

where H ∈ (0, 1). Generating of fBm on an equidistant time grid 0 = t0 < t1 < . . . < tn = 1
can be achieved by generating the increment process (X1, X2, . . . , Xn) of the fBm, a fractional
Gaussian noise (fGn), where Xt = Wi − Wi−1. By the cumulative sum of the increment process
we have

Wti = cH
i∑

k=1

Xk

where i = 1, 2, . . . , n and c = 1/n.

The fGn can be characterized as a discrete zero-mean Gaussian process with the following covari-
ance function

cov(Xi, Xi+k) =
1

2

(
|k + 1|2H + |k|2H + |k − 1|2H

)
, k = 0, 1, 2 . . .

. The fGn is stationary so it can be generated efficiently using the circulant embedding ap-
proach. Compute the first row of a symmetric (n + 1) × (n + 1) Toeplitz covariance matrix
Ωi+1,j+1 = cov(Xi, Xj). Build the 2n × 2n circulant matrix which embeds Ω in the upper left
(n + 1) × (n + 1) corner. Let r = (r1, . . . , rn+1, rn, rn+1, . . . , r2) the first row of the circulant
matrix and λ is the one-dimensional FFT of r defined as the linear transformation λ = Fr with

Fj,k = exp

(
−2πijk√

2n

)
, j, k = 0, 1, . . . , 2n− 1. The real and the imaginary parts of the first n+ 1

components of F ∗diag(
√
λ)Z, where Z is a 2n + 1 complex-valued Gaussian vector, yields two

independent fractional Gaussian realizations.

E.2 SPEED OF THE GENERATOR

Table 9: Running times of generating fBm sequences of length 105, first 1 then 100 sequences.

Method Time for 1 seq (s) Time for 100 seqs (s)

Cholesky (Christopher Flynn, 2020) 21.5s 22.8s
Cholesky 5.8s 7.14s
FFT (Christopher Flynn, 2020) 48.4ms 2.99s
FFT v1 17.7ms 224ms
FFT v2 5.80ms 547ms

In our first implementation of Kroese’s method, denoted by FFT v1, the covariance structure is
stored in objects, which slows down the execution for the first sequence since object initialization
takes time. To compare, in the case of our implementation FFT v2, there are no initialization tasks
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involved resulting in a faster generation of only one sequence. As FFT v1 does not need to re-
calculate the covariance structure for each sequence, it can generate a large number of sequences
significantly faster. Table 9 shows the comparison in speed of the available Python (Christopher
Flynn, 2020) and our new implementations.

E.3 FBM TESTS

In the case of fractional Brownian motion, validation of the generated data can take place via esti-
mation of the Hurst exponent. Among the various available statistical tools, fractal dimension-based
estimators proved to be the most accurate: we employed Higuchi’s method and p-Variation estima-
tors. Both procedures estimate the fractal dimension of sample paths; thus, utilizing the relationship
between this quantity and the Hurst exponent, these methods simultaneously provide estimators for
the Hurst parameter.

We generated 1000 sequences to assess the parameter compliance of our fBm generator, both in the
Higuchi and variogram cases. The sequence lengths were 100, 200, 400, 800, 1600, 3200, 6400, and
12800, respectively. We divided the Hurst exponent (0.1) range into intervals of 0.1, ranging from
0.1 to 0.9, and included the values 0.01 and 0.99 as well.

Higuchi’s method Higuchi (1988) relies on the computation of the fractal dimension by a one-
dimensional box counting. For sample size n, a sliding box size b ∈ N, and a starting point i ∈

N, i ≤ b, consider Lb(i) =
1[

n−i
b

] [n−i
b ]∑

k=1

∣∣Xi+kb −Xi+(k−1)b

∣∣ . Then let Lb := 1
b

∑b
i=1 Lb(i). If

X ∼ FBM(H, 0, σ) then E(Lb) = cbH holds. Thus, the slope coefficient of the linear regression
log(Lb) ∼ log(b) yields an estimate for H .

Table 10: Estimation of the average Hurst exponent from 1000 sequences

Sequence Length

Hurst 100 200 400 800 1600 3200 6400 12800

0.01 −0.0376 −0.0108 0.0011 0.0051 0.0078 0.0085 0.0094 0.0096
0.1 0.0520 0.0777 0.0885 0.0956 0.0979 0.0990 0.0994 0.0999
0.2 0.1561 0.1796 0.1884 0.1958 0.1983 0.1987 0.1993 0.1997
0.3 0.2468 0.2766 0.2896 0.2956 0.2965 0.2990 0.2989 0.2994
0.4 0.3495 0.3750 0.3888 0.3932 0.3972 0.3984 0.3992 0.3995
0.5 0.4484 0.4740 0.4895 0.4939 0.4977 0.4986 0.4991 0.4998
0.6 0.5440 0.5742 0.5860 0.5952 0.5967 0.5985 0.5994 0.5997
0.7 0.6411 0.6711 0.6864 0.6918 0.6968 0.6982 0.6989 0.6996
0.8 0.7335 0.7697 0.7833 0.7902 0.7934 0.7974 0.7979 0.7991
0.9 0.8219 0.8563 0.8755 0.8816 0.8896 0.8904 0.8953 0.8970
0.99 0.9191 0.9504 0.9611 0.9699 0.9726 0.9758 0.9776 0.9785
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Table 11: Std. of the estimation of the Hurst exponent from 1000 sequences

Sequence Length

Hurst 100 200 400 800 1600 3200 6400 12800

0.01 0.0310 0.0213 0.0151 0.0097 0.0072 0.0049 0.0036 0.0024
0.1 0.0491 0.0336 0.0231 0.0168 0.0123 0.0084 0.0060 0.0040
0.2 0.0658 0.0449 0.0320 0.0222 0.0151 0.0107 0.0076 0.0054
0.3 0.0762 0.0516 0.0362 0.0257 0.0181 0.0126 0.0090 0.0064
0.4 0.0827 0.0586 0.0385 0.0283 0.0192 0.0135 0.0095 0.0066
0.5 0.0878 0.0599 0.0413 0.0291 0.0200 0.0146 0.0101 0.0071
0.6 0.0953 0.0632 0.0430 0.0303 0.0217 0.0149 0.0104 0.0072
0.7 0.0973 0.0711 0.0476 0.0344 0.0250 0.0174 0.0128 0.0089
0.8 0.1067 0.0716 0.0521 0.0397 0.0310 0.0228 0.0177 0.0143
0.9 0.1028 0.0726 0.0569 0.0455 0.0378 0.0323 0.0277 0.0251
0.99 0.0706 0.0507 0.0422 0.0365 0.0324 0.0288 0.0264 0.0244

In Gneiting et al. (2012), for a stochastic process with stationary increments, based on the variogram
of order p, a generalization of the p-variation estimators is utilized. The variogram of order p is
defined as γp(t) = 1

2E|Xi − Xi+t|p. Notably, when p = 2, the variogram is obtained, while
p = 1 yields the madogram. The case of p = 1

2 corresponds to the rodogram. In this study, we
specifically focus on the case of p = 1, where the fractal dimension can be estimated using the

formula D̂V ;p = 2 − 1
p

log V̂p( 2
n )−log V̂p( 2

n )
log 2 . By applying the derived fractal dimension, we can

calculate the Hurst exponent (H) as H = 2−D Gneiting & Schlather (2004).

Table 12: Estimation of the average Hurst exponent from 1000 sequences

Sequence Length

Hurst 100 200 400 800 1600 3200 6400 12800

0.01 0.0214 0.0154 0.0125 0.0124 0.0114 0.0105 0.0091 0.0102
0.1 0.1280 0.1037 0.1044 0.1070 0.1019 0.1009 0.1012 0.1002
0.2 0.2224 0.2191 0.2083 0.2078 0.2040 0.2019 0.2010 0.2004
0.3 0.3330 0.3218 0.3115 0.3083 0.3039 0.3028 0.3017 0.3012
0.4 0.4455 0.4284 0.4177 0.4146 0.4095 0.4060 0.4038 0.4025
0.5 0.5500 0.5341 0.5282 0.5201 0.5153 0.5105 0.5073 0.5050
0.6 0.6611 0.6453 0.6347 0.6292 0.6220 0.6158 0.6134 0.6101
0.7 0.7549 0.7476 0.7403 0.7344 0.7307 0.7254 0.7208 0.7179
0.8 0.8442 0.8434 0.8376 0.8342 0.8321 0.8303 0.8281 0.8247
0.9 0.9159 0.9184 0.9211 0.9194 0.9214 0.9204 0.9220 0.9219
0.99 0.9811 0.9826 0.9829 0.9847 0.9844 0.9853 0.9859 0.9862
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Table 13: Std. of the estimation of the Hurst exponent from 1000 sequences

Sequence Length

Hurst 100 200 400 800 1600 3200 6400 12800

0.01 0.1099 0.0823 0.0558 0.0403 0.0283 0.0197 0.0147 0.01
0.1 0.1087 0.0772 0.0535 0.0397 0.0268 0.0197 0.0138 0.0096
0.2 0.104 0.0733 0.0522 0.0379 0.0255 0.0182 0.0129 0.0092
0.3 0.0972 0.069 0.0509 0.0353 0.0242 0.0179 0.0123 0.0089
0.4 0.0891 0.0645 0.0463 0.0337 0.0227 0.0164 0.0114 0.0084
0.5 0.0841 0.0648 0.0448 0.0329 0.0231 0.0169 0.0120 0.0081
0.6 0.0829 0.0607 0.0459 0.0338 0.0246 0.0187 0.0138 0.0104
0.7 0.0763 0.0601 0.0471 0.0368 0.0311 0.0246 0.0190 0.0152
0.8 0.0724 0.0579 0.0475 0.0411 0.0351 0.0298 0.0251 0.0225
0.9 0.0630 0.0505 0.0427 0.0373 0.0337 0.0305 0.0278 0.0261
0.99 0.0360 0.0302 0.0264 0.0230 0.0219 0.0201 0.0187 0.0176

It can be observed that the estimation results are fairly similar for both methods, although the
Higuchi method provided slightly more accurate results, while the first-order variogram performs
better at the edges. It is also worth noticing that the length of the generated sequence influences the
accuracy of these estimations.

E.4 FOU TEST

We apply a three-step statistical analysis for testing the data quality generated from the fOU imple-
mentation. Assuming in real-life scenarios that a time series follows a fractional Ornstein-Uhlenbeck
process, we require knowledge of all the parameters. During the test, the first step involves utilizing
a generalized quadratic variation-based estimation to determine the Hurst exponent of the fractional
process. Brouste & Iacus (2011b)

ĤN =
1

2
log2

VN,a2

VN,a

where a is a discrete filter and

VN,a =
∑
i=0

N −K

(
K∑

k=0

akXi+k

)2

is the generalized quadratic variations associated to the filter a.

Table 14: Estimation of the average Hurst exponent from 1000 sequences

Sequence Length

Hurst α 400 800 1600 3200 6400 12800 25600 51200

0.1 0.1 0.0538 0.1257 0.0252 0.1184 0.1096 0.1086 0.1035 0.0966
0.2 0.2 0.1962 0.2378 0.2050 0.1972 0.2059 0.2098 0.2061 0.1980
0.3 0.3 0.2891 0.2592 0.2960 0.2974 0.2988 0.3143 0.3125 0.2983
0.4 0.4 0.3798 0.3310 0.3678 0.4087 0.3928 0.3860 0.3954 0.4000
0.5 0.5 0.5379 0.5540 0.5041 0.4724 0.4729 0.5048 0.5043 0.4943
0.6 0.6 0.5986 0.5628 0.5877 0.6015 0.6001 0.6029 0.6085 0.5941
0.7 0.7 0.5983 0.7274 0.7177 0.7090 0.7018 0.7060 0.6958 0.7001
0.8 0.8 0.7940 0.8031 0.7212 0.8262 0.7959 0.7915 0.8051 0.8007
0.9 0.9 0.9458 0.8666 0.9109 0.8967 0.8996 0.9127 0.8925 0.9047
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In the second step, we estimate the parameter σ̂ using the following formula:

σ̂N =

2 · −VN,a∑
k,l akal|k − l|2ĤN∆2ĤN

N

 1
2

.

Table 15: Estimation of the average diffusion (σ) from 1000 sequences

Sequence Length

Hurst α 400 800 1600 3200 6400 12800 25600 51200

0.1 0.1 0.8272 1.1346 0.7195 1.1097 1.0479 1.0529 1.0300 0.9849
0.2 0.2 0.9614 1.1860 1.0269 0.9965 1.0174 1.0403 1.0372 0.9910
0.3 0.3 0.9512 0.8083 0.9920 0.9996 1.0130 1.0751 1.0700 0.9925
0.4 0.4 0.8966 0.7102 0.8638 1.0516 0.9697 0.9341 0.9748 0.9963
0.5 0.5 1.1722 1.3135 1.0419 0.8775 0.8900 1.0193 1.0229 0.9680
0.6 0.6 0.9960 0.8165 0.9227 1.0228 1.0062 1.0118 1.0534 0.9703
0.7 0.7 0.6046 1.1819 1.0958 1.0521 1.0173 1.0301 0.9723 1.0129
0.8 0.8 0.9786 0.9846 0.6245 1.1918 0.9740 0.9600 1.0389 1.0090
0.9 0.9 1.5738 0.7436 1.1043 0.9756 1.0040 1.1355 0.9389 1.0461

Proposition E.4.1. Let a be a filter of order L ≥ 2. Then, both estimators ĤN and σ̂N are strongly
consistent, i.e (

ĤN , σ̂N

)
−→ (H,σ) as N −→ +∞.

Moreover, we have asymptotical normality property, i.e. N −→ +∞, for all H ∈ (0, 1),
√
N
(
ĤN −H

)
L−→ N (0,Γ1(θ,a))

√
N

logN
(σ̂N − σ)

L−→ N (0,Γ2(θ,a))

where Γ1(θ,a) and Γ2(θ,a) symmetric definite positive matrices depending on σ, H , α and the
filter a.Brouste & Iacus (2011b)

In the third step, utilizing the estimated values of σ̂ and the Ĥ exponent, we can search for the mean
reversion parameter, which is the parameter determining the rate at which the process reverts to its
mean. This can be done using the following approach:

α̂N =

 2
∑N

n=1 X
2
n

σ̂2
NNΓ

(
2ĤN + 1

)


−1

2ĤN

.

Parameter estimation for the fractional Ornstein-Uhlenbeck process is a complex and intricate task.
During our tests, we always had knowledge of the initial parameter set and compared the estimation
results to it. By defining each parameter separately, we could observe the error step by step. It’s
important to note that the drift parameter estimation incorporates errors caused by previous estima-
tions and is visible in the outcome. In practice, the fOU can be observed at discrete time points, so
the selection of observation points should follow the theorem below.
Proposition E.4.2. Let the observations at discrete time points {tk = kh, k = 0, 1, . . . , n}. Suppose
that h depends on n and n → ∞, h → 0 and nh → ∞. In addition, the following assumptions can
be made on h and n Nualart & Nualart (2018):

1. When H ∈
(
0, 3

4

)
, nhp → 0 for some p ∈

(
1, 3+2H

1+2H ∧ (1 + 2H)
)

as n → ∞

2. When H = 3
4 ,

nhp

log(nh) → 0 for some p ∈
(
1, 9

5

)
as n → ∞
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3. When H ∈
(
3
4 , 1
)
, nhp → 0 for some p ∈

(
1, 3−H

2−H

)
as n → ∞.

Table 16: Estimation of the average drift (α) from 1000 sequences

Sequence Length

Hurst α 400 800 1600 3200 6400 12800 25600 51200

0.1 0.1 0.2571 2.2414 0.0000 0.1449 0.0699 0.2260 0.1740 0.1261
0.2 0.2 3.5961 1.6139 0.5186 0.4294 0.2692 0.2674 0.1725 0.1942
0.3 0.3 0.3219 0.1408 0.1984 0.4023 0.3906 0.4249 0.5208 0.3603
0.4 0.4 0.1260 0.1165 0.4620 0.6631 0.4218 0.3101 0.3975 0.4579
0.5 0.5 1.8456 1.1717 0.5133 0.4307 0.3433 0.4093 0.5899 0.4792
0.6 0.6 1.1175 0.6835 0.5353 0.5251 0.4033 0.6845 0.4593 0.5990
0.7 0.7 1.2353 1.7241 1.0004 0.6470 0.6282 0.7228 0.6592 0.8343
0.8 0.8 1.1798 1.2134 0.4609 1.1801 0.6363 0.6720 0.9703 0.7691
0.9 0.9 3.0794 0.4992 1.7640 1.2009 1.3379 1.8577 0.5694 0.7958

The generated sequences for the estimations were set up as follows: H , α ∈ (0.1, 0.9), σ = 1,
where H represents the Hurst exponent, σ is the diffusion parameter, and α is the drift parameter.
In the case of the drift and diffusion parameter, the step size was 0.1. Additionally, we generated
1000 sequences with lengths of 400, 800, 1600, 3200, 6400, 12800, 25200, 51200 and averaged them
out. The obtained results clearly indicate that this procedure is highly sensitive to the length of the
generated sequence. As the time series becomes longer, the estimation becomes more accurate. It is
important to note that we set the step size dt to 0.01 for each generation. The estimation results can
be further improved by selecting the ideal value of dt for each applied sequence length.

F TESTS ON SEQUENCES GENERATED BY THE YUIMA R PACKAGE

We evaluated some of our models on sequences generated by the R package YUIMA Brouste et al.
(2014). In all of the cases, the evaluated models were fine-tuned for the longest sequence length in
the respective tables; as such, they do not yield the best possible metrics for other sequence lengths.
In every case, 105 realizations were generated. In the case of the fOU and fBm, the prior distribution
of the parameters was exactly as specified in Section 4. The experiments we conducted with these
processes are also similar to those of Section 4. The results of these experiments can be seen in
Tables 17 and 18.

Table 17: Performance metrics of fBm Hurst estimators MLSTM and Mconv by sequence length on
sequences generated by the YUIMA package.

MSE loss (×10−3) b̂0.025 (×10−3) σ̂0.025 (×10−2)

seq. len. MLSTM Mconv MLSTM Mconv MLSTM Mconv

100 4.78 5.16 25.7 19.3 6.12 6.61
200 2.07 2.19 12.9 9.73 4.21 4.41
400 0.947 1.00 6.10 4.79 2.92 3.03
800 0.449 0.470 3.33 2.47 2.03 2.10
1600 0.222 0.236 2.04 1.84 1.43 1.49
3200 0.111 0.121 1.46 1.88 1.011 1.06
6400 0.0565 0.0668 1.35 2.68 0.715 0.748
12800 0.0300 0.0412 1.40 3.07 0.511 0.535
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Table 18: Performance metrics of fOU Hurst estimator MLSTM by sequence length on sequences
generated by the YUIMA package.

seq. len. MSE (×10−3) b̂0.025 (×10−3) σ̂0.025 (×10−2)

100 8.19 16.0 8.37
200 2.85 7.23 5.08
400 1.22 4.13 3.35
800 0.577 2.79 2.32
1600 0.293 2.19 1.65
3200 0.151 1.94 1.17
6400 0.0815 2.25 0.839
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