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Abstract
Text style transfer is a widely explored task001
in natural language generation which aims to002
change the stylistic properties of the text while003
retaining its style-independent content. In this004
work, we propose the task of emotion style005
transfer with a specified intensity in an un-006
supervised setting. The aim is to rewrite a007
given sentence, in any emotion, to a target008
emotion while also controlling the intensity009
of the target emotion. Emotions are gradi-010
ent in nature, some words/phrases represent011
higher emotional intensity, while others repre-012
sent lower intensity. In this task, we want to013
control this gradient nature of the emotion in014
the output. Additionally, we explore the issues015
with the existing datasets and address them. A016
novel BART-based model is proposed that is017
trained for the task by direct rewards. Unlike018
existing work, we bootstrap the BART model019
by training it to generate paraphrases so that020
it can explore lexical and syntactic diversity021
required for the output. Extensive automatic022
and human evaluations show the efficacy of023
our model in solving the problem.024

1 Introduction025

Text style transfer is a popular task in natural lan-026

guage generation that controls a certain attribute027

or stylistic property in the output text, e.g. senti-028

ments (Shen et al. (2017), Liu et al. (2021)), formal-029

ity (Rao and Tetreault, 2018), politeness (Madaan030

et al., 2020), emotions (Helbig et al., 2020), lin-031

guistic style based of authors (Syed et al., 2020).032

Early works in style transfer was supervised in033

nature with the availability of parallel data (Carlson034

et al. (2017), Jhamtani et al. (2017)). Creating a035

parallel corpus is time-consuming and expensive.036

Thus recent focus has been on unsupervised style037

transfer, working on a non-parallel corpus. Broadly,038

non-parallel style transfer can be divided into three039

categories: 1) Explicit style-content disentangle-040

ment, 2) Implicit style-content disentanglement,041

and 3) without disentanglement (Hu et al., 2020).042

 Input:  
 " Where did you get chocolate?" demanded Cherry,           
  looking very angry.

Output | Target Emotion: Joy | Target Intensity: High 
 "Where did you get Chocolate?" Cherry laughed, looking   
  very  happy.

Output | Target Emotion: Joy | Target Intensity: Low
 "Where did they get chocolate?" Cherry asked laughing. 

Figure 1: An example to demonstrate the output of our
model. The input to the model is a sentence in any emo-
tion, target emotion, and target intensity. The model
rewrites the sentence in the target emotion and inten-
sity while preserving the sentence’s semantics.

In style-content disentanglement, the model tries 043

to separate the stylistic part of the text from the 044

content of the text either explicitly or in latent rep- 045

resentation (implicitly). Different techniques like 046

explicit identification and replacement, back trans- 047

lation, adversarial learning, and controllable gen- 048

eration (Sudhakar et al. (2019), Lee (2020),Shen 049

et al. (2017), Prabhumoye et al. (2018)) are used. 050

However, separating emotions from the content of 051

the text is difficult and, at times, impossible as emo- 052

tions are intertwined with content. In such a setting 053

style (emotion) - content disentanglement is impos- 054

sible and unnecessary. So, for the task, we explore 055

style transfer without disentanglement. Techniques 056

such as adversarial learning, controllable genera- 057

tion, reinforcement learning, probabilistic model- 058

ing, and pseudo-parallel corpus have been explored 059

in this setting (Lample et al. (2019), Sudhakar et al. 060

(2019), He et al. (2020), Dai et al. (2019), Liu 061

et al. (2021)). We explore reinforcement learning 062

(RL) as it has shown promising results in text style 063

transfer and other NLP tasks. It will also allow 064

us to explore linguistic knowledge of the language 065

model (through rewards) to train our generator, as 066

discussed in the following sections. 067

Emotion style transfer is challenging as emotions 068
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are on the fence between content and style (Helbig069

et al., 2020). Unlike sentiment, emotions are gra-070

dient in nature; different words/phrases represent071

different levels of emotional intensity. In this task,072

we control this gradient nature of the emotion in073

the output. The aim is to rewrite a given sentence,074

in any emotion, to a target emotion (say joy) while075

controlling the intensity of the target emotion (high076

or low). It is important to note here that input could077

be any emotion. This setting is different from sen-078

timent or formality style transfer, where we know079

the style of the source. The target intensity could080

be either high or low. One approach to solving the081

problem is first to transfer emotion and then change082

the intensity of the transferred sentences. However,083

Goyal et al. (2021) have shown that multiple steps084

of style transfer suffer from a semantic loss in the085

output. Thus we approach emotion transfer with086

required intensity in one single step instead of mul-087

tiple cascaded steps.088

Due to dataset limitations, we only deal with four089

emotions: anger, fear, joy, and sadness. However,090

the proposed technique can be easily expanded to091

other emotions if enough data is available. The key092

contributions of this paper are:093

1) A novel task of emotion transfer with a specified094

intensity, high or low. Unlike existing style transfer095

work, the style (emotion) transfer here is gradient096

in nature, and the input to the model could be from097

any style (emotion).098

2) A novel architecture to solve the task, where the099

training is bootstrapped by training the model to100

generate paraphrases. This allows the model to ex-101

plore lexical and syntactic diversity in generation.102

3) Analyzing existing datasets for emotions and103

intensity, identifying and addressing issues with104

them. The existing data for emotions is insufficient105

to train a reinforcement learning based model, so it106

is augmented with distant learning.107

2 Related Work108

The reinforcement learning-based approach is a109

popular technique in unsupervised text style trans-110

fer. Xu et al. (2018) explored a cycled reinforce-111

ment learning method, Gong et al. (2019) had ex-112

plored a reinforcement-learning-based generator-113

evaluator architecture. Luo et al. (2019) proposed114

a dual reinforcement learning framework. Recent115

work has used a pre-trained language model’s lin-116

guistic knowledge and reinforcement learning to117

achieve a new state-of-the-art unsupervised text118

style transfer. Liu et al. (2021) has used a GPT 119

2 (Radford et al., 2019) based model along with 120

direct rewards, Goyal et al. (2021) has used a pre- 121

trained language model to achieve multi-style trans- 122

fer and Lai et al. (2021) achieved new SOTA in for- 123

mality style transfer by using linguistic knowledge 124

of BART. Reinforcement learning has also been 125

explored in summarization (Lee and Lee (2017), 126

Paulus et al. (2018)), text simplification (Laban 127

et al., 2021), zero-shot classification (Ye et al., 128

2020), question generation (Gupta et al., 2020), 129

and neural machine translation (Wu et al., 2018). 130

Multiple attribute text style transfer is another 131

thread of work related to ours that aims to transfer 132

multiple dimensions of style (say formality, senti- 133

ment, gender, etc.). This task was first proposed 134

by Lample et al. (2019). Lample et al. (2019) pro- 135

posed a novel model that controls several factors 136

of variation in textual data using back-translation. 137

(Syed et al., 2020) explored the linguistic capa- 138

bilities of a language model to rewrite a text in a 139

target author style. Goyal et al. (2021) explored the 140

rewriting capability of a language model to multi- 141

ple target-style dimensions by employing multiple 142

style-aware language models as discriminators. 143

3 Approach 144

The objective is to rewrite (via a generator g) an 145

input sentence in required target emotion and inten- 146

sity while preserving the semantics. Let the output 147

be x̂, then x̂ = g(x, e, i), where x is the source sen- 148

tence in any emotion. e is the target emotion, and i 149

is the target intensity. i could be either high or low. 150

3.1 Generator 151

We use a BART (Lewis et al., 2020) model as a gen- 152

erator g and finetune it to generate x̂. BART is a 153

denoising autoencoder for pretraining sequence-to- 154

sequence models. Given the source sentence x and 155

a target sentence x̂, the loss function used to fine- 156

tune the BART model is the cross-entropy between 157

the decoder’s output and the target sentence. 158

3.2 Bootstrapping the Training 159

We bootstrap the model on a task that helps with 160

our end goal before starting pure reinforcement 161

learning (RL) based training. Existing works use 162

DAE loss (Goyal et al., 2021), cycle consistency 163

loss (Liu et al., 2021), etc., to bootstrap the model. 164

We bootstrap the model by training it to gener- 165

ate paraphrase. As discussed before, emotions are 166
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Figure 2: Model Architecture.

gradient in nature, with different words/phrases167

representing the different intensities of the emo-168

tion. So, we need to use different words or phrases169

based on the target emotion and intensity. Thus170

having a model that knows how to paraphrase and171

explore lexical and syntactic diversity helps with172

our task, as we will show through qualitative and173

quantitative results. To train the model to generate174

paraphrases, we use the aggressively filtered subset175

of PARANMT-50M (Wieting and Gimpel, 2018)176

released by Krishna et al. (2020). This is a parallel177

corpus, and the model is trained by minimizing178

cross-entropy loss between the generator’s output179

and target paraphrase.180

L(φ) = −Σi log(p(x̂i|x̂1:i−1, x;φ))181

Here φ denotes the parameters of the generator.182

In the appendix, we compared our model results183

when bootstrapped with denoising autoencoding184

loss and its issues.185

3.3 Rewards186

Semantic Similarity: This reward ensures that187

the output of the generator preserves the seman-188

tics of the input. To evaluate semantic similarity,189

existing literature has used the BLEU score (Pa-190

pineni et al., 2002), however, the BLEU score is191

restrictive, discourages output diversity, and does192

not up-weight important semantic words over other 193

words (Krishna et al., 2020). To address this, we 194

use cosine similarity between the sentence embed- 195

dings of input and the generator’s output. Unlike 196

n-gram metrics, sentence embeddings are not lexi- 197

cally restrictive and will allow the model to explore 198

different words/phrases based on required inten- 199

sity and emotion. To obtain sentence embeddings 200

we use Sentence-BERT (Reimers and Gurevych, 201

2019). Thus the semantic similarity rewards (rsim) 202

becomes: 203

rsim = COSINE(Embeddingx̂, Embeddingx) 204

Fluency: This reward ensures that the output 205

sentence is fluent and grammatically correct. We 206

use language model (GPT 2) fluency as described 207

in Laban et al. (2021). The language model assigns 208

a probability to a sequence of words. This proba- 209

bility is used to measure the fluency of generated 210

text. We use the language model to obtain a likeli- 211

hood of the original paragraph ( LM(x) ) and of the 212

generated output LM(x̂). The fluency score (rflu) 213

is given by, 214

rflu =

[
1− LM(x)− LM(x̂)

λ

]
, (1) 215

where λ is a tunable hyper-parameter. If the LM(x̂) 216

is lower than LM(x) by λ or more, rflu = 0. If 217

3



Output by generator TE TI rsim rflu rcla rint

While heading to the back of the pub, I
glance back at Daweson and wink
angry angry. angry high 0.839 0.4272 7.6033 1.2304
May I warn you that remaining dormant here
could put us in danger happy happy. joy low 0.871 0.1461 4.5710 1.4564

Table 1: The table shows the unnatural output that the model produced. The output has a word representing target
emotion and intensity added at the end of the sentence. Thus, to prevent our model from producing unnatural
output, we use naturalness reward. (TE: Target Emotion and TI: Target Intensity)

LM(x̂) is above or equal to LM(x), then rflu = 1,218

and otherwise, it is a linear interpolation. We set λ219

= 1.3 as it is the value for which the paired Newsela220

dataset achieves an average LMScore of 0.9.221

Emotion Classifier Based Reward: For every222

target emotion, we finetune a RoBERTa (Liu et al.,223

2020) based classifier to provide a signal to the gen-224

erator about the target emotion. This classifier is225

trained to identify target emotion from other emo-226

tions. The log-likelihood of the output being in227

the target emotion is taken as the classifier-based228

reward. Thus,229

rcla = − log( 1 - P(e | x̂, θcla)),230

where P(e | x̂, θcla) is the probability of output by231

generator x̂ being in target emotion e and θcla are232

parameters of the classifier. RoBERTa model also233

brings in its linguistic knowledge, thus making the234

generator more robust.235

Emotion Intensity Based Reward: Following236

existing literature, we define intensity as a real237

value between 0(low) and 1(high). We finetune238

a RoBERTa (Liu et al., 2020) based regressor to239

provide a signal to the generator about the target240

intensity. This regressor takes a sentence and out-241

puts a real value between [0, 1], which specifies242

the target emotion’s intensity of the sentence. As243

discussed above, the target intensity could be either244

high or low. When the target intensity is high, we245

want the rewards to be large when x̂ intensity is246

close to 1, and if the target intensity is low, we want247

the rewards to be large when x̂ intensity is close to248

0. Thus the intensity reward is,249

rint =

{
− log(1−Reg(x̂, θreg)), if i = high,

− log(Reg(x̂, θreg)), if i = low
250

where Reg(x̂, θreg) is the intensity of the generator251

output x̂ as predicted by the RoBERTa based re-252

gressor and θreg are the parameters of the regressor.253

Naturalness Reward: On observing the output254

by the generator when trained on the above rewards,255

we saw that the generator was producing unnatu-256

ral sentences by adding words representing target257

emotion and intensity at the end of the output. As 258

shown in Table 1, these unnatural sentences have 259

high rewards; however, they are undesirable. Liu 260

et al. (2021) also made similar observations and 261

following them, and we train a RoBERTa based 262

classifier to detect if the sentence is natural or not. 263

The log-likelihood of the output being natural is 264

taken as a naturalness-based reward. Thus, 265

rnat = − log( 1 - P(n | x̂, θnat)) 266

where P(n | x̂, θnat), is the probability of x̂ being 267

natural and θnat is the parameter of naturalness 268

classifier. This classifier is trained along with gen- 269

erator in a GAN like setup. The input to the gener- 270

ator (x) forms positive class and the output of the 271

generator (x̂) forms the negative class to train the 272

naturalness classifier. It is trained by minimizing 273

the binary crossentropy loss. We train the natural- 274

ness model for 200 steps before using it (i.e. λnat 275

= 0, if step <=200). 276

3.4 Learning 277

All these rewards are discrete sampling, and the 278

gradient could not be propagated through it. Thus, 279

we use REINFORCE (Williams, 1992) algorithm 280

to optimize the model. 281

∇θg Ex̂∼pg(x̂)[r∗(x̂)] 282

= Ex̂∼pg(x̂)[∇θg log pg(x̂)r∗(x̂)] 283

Here, r∗ is either of the reward discussed in the 284

previous section. 285

To provide stability to training, we pause the 286

training after every n step. Then we use the gener- 287

ator trained so far to run inference on the training 288

data. Then for the next n step of training, we cal- 289

culate cross-entropy loss between these inferred 290

sentences and the output of generator g (during 291

training). If we do not update it after every n step, 292

the model is pushed back by the cross-entropy loss. 293

As the training proceeds, the model learns to gener- 294

ate text in the required style, but the cross-entropy 295

loss is calculated with outdated sentences, thus 296

pushing the model back. We use n = 8000. Thus, 297
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Lce(φ) = −Σi log(p(x̂i|x̂1:i−1, x′;φ))298

where x′ represents inferred sentence and φ denotes299

the parameters of the generator.300

To train the generator, we use the weighted aver-301

age of the losses defined above:302

L(θg) = λceLce(θg) + λsimLsim(θg) +303

λfluLflu(θg) + λclaLcla(θg) + λintLint(θg) +304

λnatLnat(θg)305

where λ denotes the weight of the corresponding306

term. Optimal value of different λ is reached after307

extensive experimentation. We observed that lin-308

early decreasing λcla and linearly increasing λint309

produced better results. Figure 2 shows the overall310

architecture of the model.311

4 Dataset & Training312

Emotion Intensity: We use the dataset released313

by Mohammad et al. (2018) to train our intensity314

model. It is the largest emotion intensity dataset315

and is created through crowdsourcing. This dataset316

consists of a tweet and its emotional intensity and317

covers four emotions, anger, fear, joy, and sadness.318

The emotional intensity is a real value between319

0 (low) and 1 (high). Since this dataset consists320

of tweets, one needs to be careful in using it as321

it is abundant in emoji and hashtags. Emojis and322

hashtags (at the end) are generally used to express323

emotions and could affect the intensity of the tweet.324

Thus, we remove all the tweets that have emojis or325

hashtags at the end. This ensures that the model326

learns intensity through the content of the tweet327

and not emojis and hashtags.328

The username in Twitter are fancy consisting of329

a combination of numbers, names, underscore, etc.330

We observed that these fancy tweet handles were331

affecting the performance of the model. So, we332

tried three different approaches to deal with it:333

1. Replace tweet handles with a special token334

([NAME]).335

2. Completely removing tweet handles.336

3. Replace tweet handles with a random name. We337

use the names library1 for this.338

We tested on tweets that do not contain any user-339

name and found that replacing tweet handles with a340

random name performed the best. Thus, we replace341

tweet handles with a random name. We trained a342

RoBERTa based regression model for all our exper-343

iments due to RoBERTa’s excellent performance in344

various NLP tasks and the linguistic knowledge it345

carries. Following Mohammad et al. (2018) we use346

1https://pypi.org/project/names/

Emotion Train Test PCC
Anger 1102 515 0.811
Fear 1243 498 0.777
Joy 967 323 0.812
Sadness 1001 399 0.790

Table 2: Intensity dataset statistics and the Pearson Cor-
relation Coefficient on the test set. PCC: Pearson Cor-
relation Coefficient

Emotion Train Test Acc. M F1
Anger 1400 246 93.74% 0.889
Fear 1200 277 93.14% 0.889
Joy 1700 300 97.07% 0.954
Sadness 1300 308 93.08% 0.892
No Emo. 1400 371 - -

Table 3: Emotion classification dataset statistics and re-
sults on the test set. M F1: Macro F1 Score, No Emo.:
No emotions

the Pearson Correlation Coefficient to evaluate our 347

models. Table 2 contains the dataset statistics and 348

the Pearson Correlation Coefficient of our model 349

on the test set. 350

Emotion Classification: Several datasets have 351

been created and published for emotion classifica- 352

tion. Bostan and Klinger (2018) studied fourteen 353

different datasets for emotion understanding and 354

combined them into a single large dataset. Having 355

data from multiple sources is good as the model 356

becomes more robust. However, some of these 357

fourteen datasets have their limitations. Strappar- 358

ava and Mihalcea (2007) consists of news headlines 359

and thus are not complete sentences. Also, it is a 360

multi-label annotated dataset and thus cannot be 361

used for our purpose. Crowdflower 2016, Moham- 362

mad et al. (2014), Liu et al. (2017), Schuff et al. 363

(2017), and Mohammad (2012) are the datasets 364

containing text from social media, and thus sen- 365

tences are very ill-formed, ungrammatical, have 366

heavy dependencies on hashtags and emojis, and 367

have noisy labeling. Therefore after careful consid- 368

eration, we use the following datasets. 369

1. Blogs dataset released by Aman and Szpakowicz 370

(2007). 371

2.Emotion stimulus dataset released by Ghazi et al. 372

(2015). It consists of sentences annotated with the 373

cause of the emotion. 374

3. Dialouges dataset released by Li et al. (2017). It 375

consists of sentences from conversations. 376

4. Tales corpus released by Alm and Sproat (2005). 377

It consists of sentences from fairytales. 378

5. Dataset used in training the intensity model re- 379

leased by Mohammad et al. (2018). Since it is the 380

5
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Emotion Train Test Acc. M F1
Anger 1400 246 93.74% 0.889
Fear 1200 277 93.14% 0.889
Joy 1700 300 97.07% 0.954
Sadness 1300 308 93.08% 0.892
No Emo. 1400 371 - -

Table 4: Emotion classification dataset statistics and re-
sults on the test set. M F1: Macro F1 Score, No Emo.:
No emotions

Emotion Train Test
Anger 36000 1880
Fear 36000 1520
Joy 36000 1872
Sadness 36000 1162

Table 5: Distantly learned data for RL training

largest among the five datasets, we use a subset of381

it to prevent the model from learning its biases.382

We finetune a RoBERTa model to identify target383

emotion from other emotions. We report classi-384

fication accuracy, Macro F1 score, and statistics385

for each emotion in Table 4. No emotions data386

is collected from the Blogs dataset. Note that the387

statistics in the table represent the number of sen-388

tences in that emotion. The classifier was trained389

to differentiate the target emotion (labeled 1) from390

others (labeled 0).391

Reinforcement Learning Training: For RL392

training, we need a large amount of data. How-393

ever, the data described in section 4.2 is compara-394

tively smaller and insufficient for RL training. So395

we augment this data through distant supervision.396

Specifically, we take the classifier trained in sec-397

tion 4.2 and use it to identify emotional sentences398

in the book corpus 2 (classification probability >=399

0.9). Table 5 shows the statistics of the number of400

sentences in different emotions collected through401

distant learning.402

Experimental Details: We train the model for403

75,000 steps on two RTX 2080 TI (11 GB). It takes404

about 28 hours for the entire training (including405

bootstrapping). We use a learning rate of 10−5 and406

a batch size of 6. As discussed we ran inference on407

training data after every 8000 step.408

Table 6 shows different weights of the loss terms.409

As discussed, we found that linearly decreasing the410

weight of the classifier loss and linearly increasing411

the weight of the intensity loss produced better412

results than keeping them constant. It must be413

noted that some other values of these weights might414

2https://battle.shawwn.com/sdb/books1/
books1.tar.gz

perform better on automatic metrics, but the output 415

quality was poor. So, we manually checked the 416

outputs to arrive at the most appropriate weights. 417

5 Results and Discussions 418

We evaluate the performance of our model on four 419

grounds: 1) Semantic similarity between input and 420

output. This is measured using cosine similarity be- 421

tween sentence embeddings of input and output. 2) 422

Language model perplexity to measure fluency and 423

grammatical correctness of the output. It should be 424

low. 3) Transfer Accuracy, measured through the 425

emotion classifier that we trained above. 4) Output 426

intensity, measured through the intensity regres- 427

sor we trained above. We test the performance of 428

our model on two different test datasets - created 429

through human annotation (described in section 430

4.2) and learned through distant supervision (de- 431

scribed in section 4.3). 432

5.1 Automatic Evaluations 433

Table 7 shows the results of automatic evaluations 434

on Human annotated data. Please refer to appendix 435

for results on distantly learned data. 436

The transfer strength is low when the target in- 437

tensity is low. This is expected because once we go 438

to lower intensity, sometimes the classifier is not 439

able to detect the transformed sentence as being 440

in target emotion. Higher intensity sentences are 441

easier to detect by a classifier compared to a lower 442

intensity sentence. 443

While going to lower intensity, we must be care- 444

ful. If the model does not change a few sentences, 445

then the intensity of such output would be low, 446

and thus overall average intensity would be low. 447

This will be a false positive, as we do not know 448

if the model is going for lower intensity or is it 449

just not changing a few sentences and getting a 450

low-intensity score. So we study the cosine scores, 451

intensity, and perplexity of only those sentences 452

identified to be in target emotion by our classifier. 453

This study suggests that the model is writing sen- 454

tences in target intensity with high cosine similarity 455

and low perplexity. Please refer to appendix for 456

exact scores. 457

The trend suggests that semantic similarity is 458

easy to achieve when the target intensity is low, but 459

at the same time, the fluency of the model suffers 460

when going for lower intensity. 461
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TE TI λce λsim λflu λcla start λcla end λint start λint end λnat

Anger high 0.75 0.75 0.75 1.5 0.1 1 2.5 1
low 0.75 0.75 0.75 1.5 0.5 0.1 2 1

Fear high 0.75 0.75 0.75 1 0.5 0.1 1.5 1
low 0.75 0.75 0.75 1.5 0.5 0.1 2.5 1

Joy high 0.75 0.75 0.75 1.5 0.1 1 2.5 1
low 0.75 0.75 0.75 1.5 0.5 0.1 2 1

Sadness high 0.75 0.75 0.75 1.5 0.1 1 2.5 1
low 0.75 0.75 0.75 2 0.5 0.1 3 1

Table 6: Weights for different loss terms. TE: Target Emotion, TI: Target Intensity

Model TE TI Semantic Similarity Perplexity Classification Accuracy Intensity
Our Anger High 0.780 188.54 64.58 0.571
Our Low 0.801 189.81 46.79 0.423
Our Fear High 0.750 163.59 55.62 0.600
Our Low 0.812 229.73 54.26 0.375
Our Joy High 0.729 164.77 77.80 0.491
Our Low 0.762 193.63 63.37 0.335
Our Sadness High 0.749 187.69 71.11 0.565
Our Low 0.762 164.02 59.83 0.444

Table 7: Automated evaluations results on human annotated test data. TE: Target Emotion, TI: Target Intensity.

TE TI MS GC TS Intensity
Anger High 3.96 4.32 4.49 83.12

Low 4.03 4.18 3.55 63.23
Fear High 4.12 3.93 4.19 73.38

Low 3.74 3.83 3.16 51.77
Joy High 3.72 4.25 4.25 73.45

Low 3.67 4.02 3.63 58.27
Sadness High 3.73 3.69 3.90 72.02

Low 3.51 3.71 2.90 45.69

Table 8: Human evaluations results. TE: Target Emo-
tion, TI: Target Intensity (integer value between 0 and
100), MS: Meaning Simiarity, GC: Grammatical Cor-
rectness, TS: Transfer Strength.

5.2 Human Evaluations462

While automatic metrics provide an understanding463

of how good our model is, they have their limita-464

tions. So to better understand the performance of465

the model, we conducted extensive human evalua-466

tions. We evaluated the model on four parameters -467

meaning similarity, transfer strength, grammatical468

correctness, and target emotion intensity. The first469

three parameters were measured on a five-point470

Likert scale. Participants had to give an integer471

value between 0 (low intensity) and 100 (high in-472

tensity) for target emotion intensity. Participants473

were shown the input sentence and two possible474

outputs for given target emotion (one output for475

high intensity and the other for low) in a random-476

ized order. Following the guidelines by Clark et al.477

(2021), we provide ample examples to the partici-478

pants for them to judge more accurately.479

We took 32 triplets (input, high-intensity output,480

and low-intensity output), with eight triplets from 481

each target emotion. Each triplet was annotated 482

by atleast 3 participants. Table 8 shows the results 483

of human evaluations. These results are in line 484

with our automatic evaluations and thus add confi- 485

dence to the efficacy of our proposed approach in 486

achieving emotion style transfer with a specified 487

intensity. 488

5.3 Qualitative Examples 489

Table 9 shows some output using the approach. 490

The first output offers an interesting insight into the 491

model. While the phrase shouts angrily indicates 492

that the target emotion is anger, the intensity is 493

controlled by the sentence’s first part. The model 494

changed Fucking right, I’ll! to I’ll take care of you! 495

for the low-intensity output. We observed in our 496

dataset that the word Fucking usually occurs in a 497

high-intensity setting, and thus the model takes care 498

of it. The second depicts how bootstrapping using 499

paraphrasing helped. The paraphrase’s knowledge 500

allowed the model to start the sentence with What 501

a beautiful.... for high-intensity output and thus it 502

expored syntactic diversity. Starting the sentence 503

with What is stressing on beauty and how it is a 504

big cause of worry (notice the use of the word 505

concerned in low-intensity output). Third example 506

shows how our model uses punctuation to express 507

intensity. Notice the use of an exclamation mark 508

in high-intensity output and a question mark in 509

low-intensity output. The last output shows varied 510

intensity output for target emotion as sadness. 511
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TE TI Sentence
Input "Fucking right I will!" Bill shouts nervously.
Output Anger High "Fucking right, I’ll!" Bill shouts angrily.
Output Anger Low "I’ll take care of you!" Bill shouts angrily.

Input The young lord was overjoyed to see what a beautiful wife his friends
had found for him.

Output Fear High What a beautiful wife his friends found for him worried the young lord.

Output Fear Low The young lord was concerned to see what a beautiful wife his friends
had found for him.

Input "I want to know where Frank is!" Sparky could hardly believe he was yelling.
Output Joy High "I want to know where Frank is!" Sparky laughed, surprised he was happy.
Output Joy Low "I want to know where Frank is?" Sparky asked laughing.
Input "Richard?" she asked, fear making her blood run cold.
Output Sadness High "Richard?" She asked, her blood sank with despair.
Output Sadness Low "Richard?" She frowned, her blood heat up.

Table 9: Some outputs of our model. TE: Target Emotion, TI: Target Intensity

6 Conclusion512

This work proposed and solved a novel problem513

statement of emotional style transfer with a speci-514

fied intensity. The proposed BART-based deep rein-515

forcement learning-based architecture can rewrite516

an input sentence in required intensity and target.517

Qualitative and quantitative results show that boot-518

strapping the model by training it to generate para-519

phrases helped the model explore various lexicons520

based on the need. Through extensive human and521

automatic evaluations, we show the efficacy of our522

model. Our code and associated dataset will be523

made open source.524
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A Appendix803

The appendix includes:804

1) Results of automatic evaluation of when tested805

on distantly learned data.806

2) Results on output sentences identified to be in807

target emotion.808

3) Results when bootstrapping is done with DAE809

loss instead of paraphrasing.810

4) More outputs by our model.811

B Results of distant learned data812

Table 10 shows the results of automatic evalua-813

tions of our model on data created through dis-814

tant supervision as described in section 4.3. The815

numbers, in general, are better when compared to816

human-created data. This is expected as automati-817

cally created data carries the model’s biases, which818

the generator could exploit. Human-created data819

shows much more diversity and, in general, more820

challenging to deal with than distantly learned data.821

822

C Results on output sentences identified823

to be in target emotion824

As discussed in section 6.1, we need to be careful825

while evaluating the model, especially when target826

intensity is low. If the model does not change a few827

sentences, then the intensity of such output would828

be low, and thus overall average intensity would829

be low. This will be a false positive, as we do not830

know if the model is going for lower intensity or is831

it just not changing a few sentences and getting a832

low-intensity score. So, we study the cosine scores,833

intensity, and perplexity of only those sentences834

identified to be in target emotion by our classifier.835

Table 11 shows the results for the sentences in the836

target emotions. It suggests that the model is writ-837

ing sentences in required intensity with high cosine838

similarity and a little high perplexity.839

D Results when bootstrapping is done840

with DAE loss instead of paraphrasing.841

We have bootstrapped our model by training it to842

generate paraphrases. This will allow greater lexi-843

cal and syntactic diversity needed for target emo-844

tion and intensity. Another popular approach to845

bootstrap the training is to train the model by opti-846

mizing on denoising autoencoding loss. The model847

is given a noisy version of the text, and it is trained848

to reconstruct the sentence. The noisy version is 849

created by replacing a token with a special mask 850

(<mask>) token with a probability of 0.15. 851

Table 12 compares the performance of our model 852

when bootstrapped with DAE loss. We see that the 853

model performs well in semantic similarity, trans- 854

fer accuracy, and intensity metrics but has very 855

poor perplexity. On closely examining the output 856

of the DAE bootstrapped model, we observed that 857

the model is replacing random words in the input 858

sentence with words that represent target emotion 859

and intensity, which is undesirable. This is the rea- 860

son semantic similarity is high as only a few words 861

are getting replace. Table 13 shows some such out- 862

puts. Emotion and its intensity are a function of 863

a sentence and not just random words, and thus, 864

replacing random words will not solve our task. 865

Thus, though the DAE bootstrapped model results 866

seem better in numbers, the actual output sentences 867

are wrong, bad, and undesirable. 868

E More outputs by our model 869

Table 14 shows some more outputs by our model 870

for better qualitative understanding of our approach 871

and model. 872
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Model TE TI SS Perplexity CA Intensity
Our Anger High 0.783 147.36 80.40 0.559
Our Low 0.801 134.57 67.36 0.444
Our Fear High 0.753 137.16 70.01 0.590
Our Low 0.790 184.51 69.72 0.357
Our Joy High 0.751 145.65 81.77 0.492
Our Low 0.768 159.61 76.09 0.364
Our Sadness High 0.767 136.46 78.24 0.539
Our Low 0.765 145.56 76.02 0.457

Table 10: Automated evaluations results on distantly learned test data. TE: Target Emotion, TI: Target Intensity,
SS: Semantic Similarity, CA: Classification Accuracy.

TE TI Semantic Similarity Perplexity Intensity
Human Annotated Data

Anger High 0.768 208.68 0.613
Low 0.797 263.36 0.513

Fear High 0.715 148.24 0.715
Low 0.806 239.81 0.442

Joy High 0.706 157.74 0.527
Low 0.754 207.23 0.381

Sadness High 0.706 209.76 0.593
Low 0.752 189.23 0.501

Distantly Learned Data
Anger High 0.771 145.29 0.585

Low 0.797 147.60 0.498
Fear High 0.732 129.80 0.963

Low 0.784 183.33 0.384
Joy High 0.730 142.14 0.519

Low 0.763 162.40 0.393
Sadness High 0.711 124.83 0.572

Low 0.755 148.19 0.487

Table 11: Automated evaluations results on sentences identified to be in target emotion. TE: Target Emotion, TI:
Target Intensity.
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Model TE TI SS Perplexity CA Intensity
Human Annotated Data

DAE Anger High 0.766 491.71 44.67 0.482
Paraphrase 0.780 188.54 64.58 0.571
DAE Low 0.842 346.73 15.33 0.391
Paraphrase 0.801 189.81 46.79 0.423
DAE Fear High 0.657 332.73 91.58 0.812
Paraphrase 0.750 163.59 55.62 0.600
DAE Low 0.853 355.90 49.82 0.462
Paraphrase 0.812 229.73 54.26 0.375
DAE Joy High 0.846 428.38 53.47 0.364
Paraphrase 0.729 164.77 77.80 0.491
DAE Low 0.835 379.18 62.35 0.332
Paraphrase 0.762 193.63 63.37 0.335
DAE Sadness High 0.828 449.79 87.98 0.657
Paraphrase 0.749 187.69 71.11 0.565
DAE Low 0.813 440.13 86.21 0.541
Paraphrase 0.762 164.02 59.83 0.444

Distantly Learned Data
DAE Anger High 0.781 174.26 57.11 0.469
Paraphrase 0.783 147.36 80.40 0.559
DAE Low 0.847 165.32 26.02 0.376
Paraphrase 0.801 134.57 67.36 0.444
DAE Fear High 0.747 241.87 97.67 0.770
Paraphrase 0.753 137.16 70.01 0.590
DAE Low 0.856 389.45 71.46 0.473
Paraphrase 0.790 184.51 69.72 0.357
DAE Joy High 0.859 389.63 69.87 0.397
Paraphrase 0.751 145.65 81.77 0.492
DAE Low 0.846 208.15 83.68 0.363
Paraphrase 0.768 159.61 76.09 0.364
DAE Sadness High 0.786 306.77 97.32 0.679
Paraphrase 0.767 136.46 78.24 0.539
DAE Low 0.828 289.78 92.64 0.508
Paraphrase 0.765 145.56 76.02 0.457

Table 12: Automated evaluations results when bootstrapping is done with DAE loss. TE: Target Emotion, TI:
Target Intensity, SS: Semantic Similarity, CA: Classification Accuracy.

TE TI Sentence
Input Oh, I didn’t know, perhaps I shouldn’t ask him to come then?
Output Sadness High Oh, I didn’t sad, perhaps I shouldn’t ask him to come then?
Input But what about poor Gussie, look at the state he’s in!
Output Joy Low But what about poor Gussie, look at the state he’s laughing.
Input Then anger sparked through me. "What the fuck for?"
Output Fear High Then anger sparked through me frightened. "What the fuck for?"

Table 13: Examples depicting issues with DAE loss. Random words are getting replaced with words denoting
target emotion and intensity. Such sentences are grammatically incorrect and do not solve our goal to rewrite a
sentence in given target emotion and intensity.
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TE TI Sentence
Input Made a right tit of yourself last night, didn’t you, Simes?
Output Anger High You’ve fucking made a right tit of yourself, haven’t you, Simes?
Output Anger Low You made a right tit out of yourself last night, didn’t you?
Input Taysha couldn’t help but smile at the men’s teasing.
Output Anger High Taysha couldn’t contain her anger with the men’s teasing.
Output Anger Low Taysha smiled angrily at the men’s teasing.
Input "Owww!" Anastasia clutched my hair, forcing me to lean over her.
Output Anger High Anastasia clutched my hair angrily, forced me to sit down next to her.
Output Anger Low "oh, my God!" Anastasia clutched my hair and caused me to lean
Input Mizou told me. Do you need to sit down? You look pretty shaken.
Output Anger High You look very angry. Do you have to sit down? Mizou asked angrily.
Output Anger Low Mizou told angrily, "do you have to sit down? You look scared.
Input "How the hell do we carry this a mile down the road?" asked Forest.
Output Fear High "how the hell do we carry it a mile?" Forest asked afraidly.
Output Fear Low "how do we carry it a mile down the road?" Forest asked concernedly.
Input His parents were furious over the engagement business
Output Fear High The engagement business scared his parents.
Output Fear Low The engagement business was concerned by his parents.
Input A chill shot down Joe’s spine. "You sure did do good, Marie. You sure did."
Output Fear High "you’ve done well, Marie," Joe said with a worried feeling.
Output Fear Low "you really did good, Marie," Joe said concernedly.
Input " Debbie would be pleased , " she said .
Output Fear High " Debbie would be happy," she said afraidly.
Output Fear Low " Debbie’d like, " she said concernedly.
Input "You brought a cat through a portal!!" he exclaimed.
Output Joy High "you brought a cat through the portal!" He laughed, happy.
Output Joy Low "you brought a cat through the portal?" He asked laughing.
Input Yes, I was annoyed she hadn’t told me back then.
Output Joy High She didn’t tell me back then. I was happy.
Output Joy Low Yes, I was surprised she didn’t tell me.

Input Yep," Dad replied with a chuckle. "You were as nervous as an ant
on a hot tin can.

Output Joy High "you were happy, like an ant on a hot tin can," Dad laughed.
Output Joy Low "yes," Dad said, "you were happy as an ant on a hot tin can.

Input "But how do you know Redfeld?" insisted Tom, still alarmed at
this revelation.

Output Joy High "how do you know Redfeld?" Tom laughed, still happy at the revelation.
Output Joy Low "but how do you know Redfeld?" Tom asked joyfully.
Input Then I forgot all about my worries and doubts, and my adventure began.
Output Sadness High I forgot all about my worries and doubts, and I started grimly.
Output Sadness Low Then I forgot my despair and doubts, and my adventure began.
Input She gazed at Ruth , and her face seemed to fill up with horror.
Output Sadness High She looked despairing at Ruth and her face filled with despair.
Output Sadness Low She frowned at Ruth, and her face widened.
Input Pigling Bland, much alarmed, determined to leave at daybreak.
Output Sadness High Pigling Bland, much despairing and wanting to go at daybreak.
Output Sadness Low Pigling Bland frowned much, ready to leave at daybreak.
Input And I couldn’t even dream last night, so now I’m deprived of that.
Output Sadness High I couldn’t dream last night, so now I’m down grimly.
Output Sadness Low I couldn’t dream last night, so now I’m missing it.

Table 14: Model’s Output
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