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ABSTRACT

We introduce KOSMOS-2, a Multimodal Large Language Model (MLLM), en-
abling new capabilities of perceiving object descriptions (e.g., bounding boxes)
and grounding text to the visual world. Specifically, we represent text spans
(i.e., referring expressions and noun phrases) as links in Markdown, i.e., “[text
span](bounding boxes)”, where object descriptions are sequences of loca-
tion tokens. To train the model, we construct a large-scale dataset about grounded
image-text pairs (GRIT) together with multimodal corpora. KOSMOS-2 integrates
the grounding capability to downstream applications, while maintaining the con-
ventional capabilities of MLLMs (e.g., perceiving general modalities, following
instructions, and performing in-context learning). KOSMOS-2 is evaluated on a
wide range of tasks, including (i) multimodal grounding, such as referring ex-
pression comprehension and phrase grounding, (ii) multimodal referring, such as
referring expression generation, (iii) perception-language tasks, and (iv) language
understanding and generation. This study sheds a light on the big convergence of
language, multimodal perception, and world modeling, which is a key step toward
artificial general intelligence. Code can be found in https://aka.ms/kosmos-2.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Hao et al., 2022; Alayrac et al., 2022; Huang et al.,
2023; Driess et al., 2023; OpenAI, 2023) have been a general-purpose interface across language,
vision, and vision-language tasks. They are able to perceive general modalities, including texts,
images, and audio, and generate responses using free-form texts under zero-shot and few-shot settings.

In this study, we unlock the referring and grounding capabilities of multimodal large language models,
with the aim to construct a more flexible and general human-computer interface about vision-language
tasks, Figure 1. With such a model, users can directly point to objects or image regions without
requiring detailed text descriptions referring to them. It also enables the model to respond with visual
answers (i.e., bounding boxes), supporting more vision-language tasks such as referring expression
comprehension while resolving their co-reference ambiguity.

Our proposed model, referred to as KOSMOS-2, is a Transformer-based causal language model built
upon KOSMOS-1 (Huang et al., 2023), but has the major differences of grounding and referring
capabilities. To unlock the grounding capability, we first construct a web-scale dataset of grounded
image-text pairs (GRIT), which are built upon a subset of image-text pairs from LAION-2B (Schuh-
mann et al., 2022) and COYO-700M (Byeon et al., 2022). GRIT is combined with the multimodal
corpora (i.e., text corpora, image-text pairs and interleaved image-text data) to train the model. To
construct GRIT, we propose an approach to extract and link text spans (i.e., noun phrases and referring
expressions) in image captions to spatial coordinates (e.g., bounding boxes) of the corresponding
objects or image regions. Spatial coordinates of each object are converted to a sequence of location
tokens, which are appended atop text span of the object as an expansion. The expanded text span
serves as a “hyperlink” ([text span](location tokens)) to connect the objects or regions
of the image to the caption, as shown in Figure 1. Given the “hyperlink” data and trained in the
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Grounding

Kosmos-2: Multimodal Large Language Model

[a campfire](<loc4> <loc1007>)

[It](<loc44> <loc863>) sits next to 

Referring

Figure 1: KOSMOS-2 is a multimodal large language model which has new capabilities of multimodal
grounding and referring. KOSMOS-2 can understand multimodal input, follow instructions, perceive
object descriptions (e.g., bounding boxes), and ground language to the visual world.

causal language modeling fashion, KOSMOS-2 links text spans in the generated free-form text re-
sponse to image regions, which facilities generating more accurate, informational, and comprehensive
vision-language predictions. Utilizing a pronoun as the text span in conjunction with location tokens,
KOSMOS-2 can perceive the referring object and incorporate it into the reasoning process. This
simple transform enables the ability of referring, providing a more flexible interaction interface.

Experimental results show that KOSMOS-2 achieves not only competitive performance on language
and vision-language tasks, but also leading performance on grounding tasks (phrase grounding and
referring expression comprehension) and referring tasks (referring expression generation). The
grounding capability born with KOSMOS-2 enables it be applied to more downstream tasks, such as
grounded image captioning, and grounded visual question answering.

2 GRIT:WEB-SCALE GROUNDED IMAGE-TEXT PAIRS

To learn the grounding capability, we first construct a large-scale dataset of Grounded Image-Text
pairs (GRIT), based on image-text pairs from a subset of COYO-700M (Byeon et al., 2022) and
LAION-2B (Schuhmann et al., 2022). To this end, a pipeline is designed to extract and link text
spans (i.e., noun phrases and referring expressions) in the caption to their corresponding image
regions, Figure 2. The pipeline consists of two steps: generating noun-chunk-bounding-box pairs and
producing referring-expression-bounding-box pairs, which are detailed in what follows.

Step-1: Generating noun-chunk-bounding-box pairs Given an image-text pair, we first extract
noun chunks from the caption and associate them with image regions through a pretrained object
detector. In specific, spaCy (Honnibal et al., 2020) is employed to parse the caption (“a dog in a
field of flowers") and extract all noun chunks (“a dog”, “a field” and “flowers”). To reduce potential
noise, we eliminate certain abstract noun phrases that are challenging to recognize in the image, such
as “time”, “love”, and “freedom”. Subsequently, the image and extracted noun chunks are fed to a
pretrained grounding model (e.g., GLIP (Li et al., 2022b)) to obtain the associated bounding boxes.
The non-maximum suppression algorithm is applied to remove bounding boxes that have a high
overlap with others, regardless of whether they are associated with the same noun chunk or not. The
noun-chunk-bounding-box pairs with predicted confidence scores higher than 0.65 are kept. If no
bounding boxes are retained, we discard the corresponding image-caption pair.
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Figure 2: The pipeline to construct web-scale grounded image-text pairs.

Step-2: Producing referring-expression-bounding-box pairs To endow model with the ability to
ground diverse and complex linguistic descriptions, we expand noun chunks to referring expressions.
In specific, spaCy is employed again to obtain dependency relations of the caption. A noun chunk
is then expanded to a referring expression by recursively traversing its children in the dependency
tree and concatenating children tokens with the noun chunk. We do not expand noun chunks with
conjuncts. The noun chunks without children tokens are retained for the subsequent process. As
illustrated in Figure 2, the noun chunk ‘a dog’ is expanded to “a dog in a field of flowers”, the noun
chunk ‘a field’ is expanded to “a field of flowers”, and the noun chunk ‘flowers’ remains unchanged
as it cannot be expanded.

Furthermore, we only retain text spans that are not contained by others. As demonstrated in Figure 2,
we keep the referring expression “a dog in a field of flowers” and drop “a field of flowers” and ‘flowers’
(as they are contained by “a dog in a field of flowers”). The bounding box of the noun chunk (‘a dog’)
is assigned to the corresponding generated referring expression (“a dog in a field of flowers”).

So far, we have more than 91M images, 115M text spans, and 137M associated bounding boxes. In
comparison with publicly available visual grounding datasets, as shown in Table 8 in Appendix C.1,
GRIT significantly improves the data scale. More data samples of GRIT are shown in Appendix C.3.

3 KOSMOS-2: GROUNDED MULTIMODAL LARGE LANGUAGE MODEL

KOSMOS-2 is a grounded MLLM, which follows the model architecture and training objective of
KOSMOS-1, but integrates grounding and referring capabilities. For example, a KOSMOS-2 model
can accept image regions drawn by users, provide visual answers (i.e., bounding boxes), and ground
the text output to the visual world. To endow the model with grounding and referring capabilities, we
add grounded image-text pairs to the training data. For a text span (e.g., noun phrase and referring
expression) and its corresponding bounding boxes in a grounded image-text pair, we discretize
continuous coordinates of bounding boxes to a sequence of location tokens which are uniformly
encoded alongside text tokens. We then link the location tokens and their corresponding text span via
a “hyperlink” data format. Based on grounded image-text pairs, a KOSMOS-2 model is trained to
establish a mapping between image regions and their corresponding location tokens and connect the
image regions with their associated text spans.

3.1 GROUNDED INPUT REPRESENTATION

Given a text span and its associated bounding boxes in a grounded image-text pair, we first convert
the continuous coordinates of bounding boxes to a sequence of discrete location tokens (Chen et al.,
2021). For an image with width W and height H , we respectively divide both the width and height
into P segments. A total of P × P bins are calculated, with each bin comprising (W/P ) × (H/P )
pixels. For each bin, we use a location token to represent the coordinates within that bin. When
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mapping location tokens back to the continuous coordinates in the image, we utilize the center pixel
coordinates of each bin.

Each bounding box can be represented using its top-left point (xtl, ytl) and bottom-right point (xbr,
ybr), which are discretized to top-left and bottom-right location tokens, respectively. A top-left
location token (<loctl>) and a bottom-right one (<locbr>) are used with special boundary tokens
(<box> and </box>) to form the bounding box representation: <box><loctl><locbr></box>.
In instances where the text span is linked to multiple bounding boxes, a special token, <delim>, is
employed to concatenate the location tokens of these bounding boxes. The resulting representation
can be expressed as: <box><loci

tl><loc
i
br><delim>...<loc

j
tl><loc

j
br></box>.

Accordingly, we arrange the text span and its associated location tokens in a format resembling a
“hyperlink” in Markdown. For the text span with a single bounding box, the resultant sequence is
“<p> text span </p><box><loctl><locbr></box>”, where <p> and </p> are special tokens
indicating the beginning and end of the text span. Such a format conveys to the model that image
regions within <loctl><locbr> are associated with ‘text span’.

Take Figure 1 as an exmaple, the input representation is:

<s><image>Image Embedding </image><grounding><p>It</p><box><loc44><loc863>
</box> sits next to <p>a campfire</p><box><loc4><loc1007></box></s>

where <s> and </s> indicate the start- and end-of-sequence, and <image> and </image>
represent the beginning and end of encoded image embeddings. <grounding> is a special token
employed to signal the model that the subsequent sequence includes text spans and their associated
location tokens. We map input text tokens and location tokens to embeddings via a lookup table. A
vision encoder, accompanied by a re-sampler module, is utilized to acquire image embeddings.

For language-only data, cross-modal paired data (i.e., image-text pairs), and interleaved multi-
modal data, we use the same input representations as of KOSMOS-1. Therefore, in these cases, the
<grounding> token is not required to be prepended.

3.2 GROUNDED MULTIMODAL LARGE LANGUAGE MODEL

KOSMOS-2 uses a Transformer-based causal language model as the foundation architecture and is
trained through the autoregressive language modeling task. In addition to multimodal corpora used in
KOSMOS-1 (including text corpora, image-caption pairs, and interleaved image-text data), we add
GRIT into training. The training loss only considers discrete tokens, such as text and location tokens.
The model learns to locate and understand image regions through the location tokens, associate text
spans to image regions, and output bounding boxes of the image region using location tokens.

KOSMOS-2 enhances MLLMs (Huang et al., 2023) by incorporating grounding and referring capabil-
ities. Specifically, we can use “<grounding>...<p>text span</p>” as input to prompt KOSMOS-2
to generate location tokens for the ‘text span’ in multimodal grounding tasks. We can also employ
a pronoun as a text span in conjunction with location tokens, such as “<grounding>...<p>It
</p><box><loctl><locbr></box>”, to enable KOSMOS-2 to perceive the referring objects
or regions, providing a flexible human-computer interaction fashion. Furthermore, we can simply
prepend the ‘<grounding>’ token in conventional vision-language tasks (like image captioning)
to facilitate new applications, resulting in more accurate, informative, and comprehensive responses.

3.3 MODEL TRAINING

Setup KOSMOS-2 is trained upon GRIT, text corpora, image-caption pairs, and interleaved image-
text data. The training procedure involves a batch size of 419K tokens, consisting of 185K tokens
from text corpora, 215K tokens from original and grounded image-caption pairs, and 19K tokens
from interleaved data. The model is trained for 60K steps, utilizing approximately 25 billion tokens,
using an AdamW optimizer with β = (0.9, 0.98), a weight decay of 0.01, and a dropout rate of 0.1.
The learning rate increases to 2e-4 during the first 375 warm-up steps and linearly decays to zero.
The model is trained on 256 V100 GPUs for 24 hours. To tell the model when to ground text output
to the visual world, we prepend the ‘<grounding>’ token to the grounded caption during training.
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Grounded MLLM

A man in a blue hard 
hat and <p> orange 
safety vest </p>

<box> <loc165> <loc360> </box>

(1) Phrase grounding (2) Referring expression comprehension

Grounded MLLM

<box> <loc68> <loc425> </box>

<p> A man in a blue 
hard hat and orange 
safety vest </p>

Figure 3: Input format of evaluations on phrase grounding and referring expression comprehension.

The vision encoder has 24 layers with 1,024 hidden size and 4,096 FFN intermediate size. The
multimodal large language model component is a 24-layer MAGNETO Transformer (Wang et al.,
2022a; Ma et al., 2022) with 2,048 hidden dimensions, 32 attention heads, and 8,192 FFN intermediate
size. The total number of trainable parameters amounts to approximately 1.6B. The image resolution
is set to 224×224 and the patch size is 14×14. To discretize the continuous coordinates, we divide
the width and height of the image into 32 equally sized bins, with each bin encompassing an area
of 7×7 pixels. A total of 32×32 location tokens are added to the vocabulary. KOSMOS-2 uses the
weights of KOSMOS-1 for initialization, the newly added 32×32 word embeddings of location tokens
are initialized randomly. We update all the parameters during training and instruction tuning.

Instruction Tuning After model training, instruct tuning is used to better align KOSMOS-2 with
human instructions. We combine vision-language instruction dataset (i.e., LLaVA-Instruct (Liu
et al., 2023a)) and language-only instruction datasets (i.e., Unnatural Instructions (Honovich et al.,
2022) and FLANv2 (Longpre et al., 2023)) with the training data to tune the model. In addition, we
construct grounded instruction data by utilizing the pairs of bounding boxes and text spans in GRIT.
Given an expression-bounding-box pair, we use “<p> expression </p>” as the input instruction, and
prompt the model to generate the corresponding location tokens of the bounding boxes. We also use
the prompt like “<p> It </p><box><loctl><locbr></box> is” to ask the model to generate
expressions according to its bounding boxes. More templates are included in Appendix C.2.

4 EVALUATION

KOSMOS-2 is initially assessed on multimodal grounding (Sec. 4.1) and multimodal referring
(Sec. 4.2) tasks to evaluate its new capabilities, while also being tested on perception-language
(Sec. 4.3) and language tasks (Sec. 4.4) to examine conventional MLLM abilities. As mentioned in
Sec. 3.2, the grounding capability allows new applications to emerge for KOSMOS-2. More details
can be found in Appendix A.

4.1 MULTIMODAL GROUNDING

To evaluate the ability of multimodal grounding, we use a generative fashion to test KOSMOS-2 on
grounding tasks including phrase grounding and referring expression comprehension. The former
requires the model to predict a set of bounding boxes based on one or more given phrases that maybe
interrelated within a single caption. The latter encourages the model to locate the object described in
a text referring expression within a given image.

For both phrase grounding and referring expression comprehension tasks, KOSMOS-2 generates
location tokens which are then converted to bounding boxes for evaluation. The input format is
“<s><image> Image Embedding </image><grounding>...”, where “<grounding>” is used
to prompt the model to generate locations tokens in its response.
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Model Zero-shot Val Split Test Split
R@1 R@5 R@10 R@1 R@5 R@10

VisualBert (Li et al., 2019) ✗ 70.4 84.5 86.3 71.3 85.0 86.5
MDETR (Kamath et al., 2021) ✗ 83.6 93.4 95.1 84.3 93.9 95.8
GLIP (Li et al., 2022b) ✗ 86.7 96.4 97.9 87.1 96.9 98.1
FIBER (Dou et al., 2022) ✗ 87.1 96.1 97.4 87.4 96.4 97.6
GRILL (Jin et al., 2023) ✓ - - - 18.9 53.4 70.3

KOSMOS-2 ✓ 77.8 79.2 79.3 78.7 80.1 80.1

Table 1: Phrase grounding results on Flickr30k Entities. We report the R@1, R@5, and R@10
metrics, where R@1/5/10 means calculating the recall using the top 1/5/10 generated bounding boxes.

4.1.1 PHRASE GROUNDING

We evaluate phrase grounding task on Flickr30k Entities (Plummer et al., 2015) val and test splits. To
reduce ambiguity, we do not prompt the model with individual phrases; instead, we use the current
phrase along with the preceding words as input where preceding words serve as context: “ ... <p>
{phrase} </p>”. For the example shown in Figure 3(1), the model needs to predict the locations of
phrases “A man”, “a blue hard hat”, “orange safety vest” and “an intersection” in the caption “A man
in a blue hard hat and orange safety vest stands in an intersection.”. To generate location tokens for
the phrase “A man” that is the beginning of the caption, the prompt is “<p>A man</p>”. For phrase
“orange safety vest”, the prompt is “A man in a blue hard hat and <p>orange safety vest</p>”.
When there are multiple persons in the image, the context “A man in a blue hard hat and” explicitly
helps the model locate the object to reduce ambiguity.

We convert location tokens in "<box>...</box>" from the model’s response into bounding
boxes. A generated bounding box is correct if its intersection over union (IoU) with the ground-truth
bounding box is greater than 0.5. If KOSMOS-2 generates a location sequence that can not be
converted correctly (e.g., “<box><loctl></box>”), we treat it as a negative sample. We use the
ANY-BOX protocol in MDETR (Kamath et al., 2021) and report the R@1, R@5, and R@10 metrics,
where R@1/5/10 means calculating the recall using the top 1/5/10 generated bounding boxes. If there
are fewer than 5 or 10 bounding boxes generated by KOSMOS-2, we use all available bounding boxes.

Results Table 1 presents results on Flickr30k Entities (Plummer et al., 2015) val and test splits.
KOSMOS-2 outperforms GRILL (Jin et al., 2023), which relies on an attached detector, by a large
margin under zero-shot setting. Moreover, our model outperforms the finetuned VisualBert (Li et al.,
2019) model by 7.4% R@1 on both val and test splits. Compared with other models, KOSMOS-2 does
not involve prior designs (e.g., object queries or proposals), leading to similar results among R@1,
R@5, and R@10. These results demonstrate that KOSMOS-2 can generate high-quality locations
without the need for post-processing redundant locations.

4.1.2 REFERRING EXPRESSION COMPREHENSION

The model is tested using three well-established datasets: RefCOCO (Yu et al., 2016), RefCOCO+ (Yu
et al., 2016) and RefCOCOg (Mao et al., 2015). Both RefCOCO and RefCOCO+ were generated
through a two-player game while RefCOCO+ is designed to exclude spatial relations. RefCOCOg
incorporates spatial relations and features longer expressions. Different from phrase grounding on
Flickr30k entities, we measure this task by using referring expression as the input: “<s><image>
Image Embedding </image><grounding> <p> referring expression </p>”. For the example
in Figure 3(2), the input sequence is “<p>A man in a blue hard hat and orange safety vest</p>”.
The predicted bounding box is correct if its IoU with the ground-truth bounding box is greater than
0.5. The failed decoded sequence is treated as a negative sample. Regardless of whether the model’s
response contains one or multiple bounding boxes, we only use the first generated bounding box to
measure the accuracy.

Results Table 2 reports referring comprehension results on RefCOCO, RefCOCO+ and RefCOCOg.
KOSMOS-2 also obtains promising zero-shot performance on the comprehension task, significantly
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Model Zero- RefCOCO RefCOCO+ RefCOCOg
shot val testA testB val testA testB val test

UNITER (Chen et al., 2019) ✗ 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77
MDETR (Kamath et al., 2021) ✗ 87.51 90.40 82.67 81.13 85.52 72.96 83.35 83.31
OFA (Wang et al., 2022c) ✗ 90.05 92.93 85.26 84.49 90.10 77.77 84.54 85.20
FIBER (Dou et al., 2022) ✗ 90.68 92.59 87.26 85.74 90.13 79.38 87.11 87.32
VisionLLM (Wang et al., 2023) ✗ 86.70 - - - - - - -
GRILL (Jin et al., 2023) ✓ - - - - - - - 47.50

KOSMOS-2 ✓ 52.32 57.42 47.26 45.48 50.73 42.24 60.57 61.65

Table 2: Accuracy of referring expression comprehension.

Grounded MLLM

<p> It </p> <box> 
<loc627> <loc895> 
</box> is 

the front most cow to the 
right of other cows.

(1) Zero-shot evaluation (2) Few-shot evaluation

Grounded MLLM

<p> It </p> <box> 
<loc627> <loc895> 
</box> is 

the front most cow to the 
right of other cows.

<p> It </p> 
<box> <loc261> 
<loc1011> 
</box> is the 
giraffe in the 
middle.

Figure 4: The input format of referring expression generation evaluation under (1) zero-shot and (2)
few-shot settings. The bounding boxes shown in the image are for visualization purposes.

outperforming previous zero-shot models on RefCOCOg benchmark. However, compared to previous
well-finetuned works, KOSMOS-2 achieves slightly lower performance on RefCOCO and RefCOCO+
than on RefCOCOg. This discrepancy can be attributed to the data distribution present in RefCOCO
and RefCOCO+, where they tend to use a shorter referring expression (e.g., “left bottom”) during
the two-player game. Hence, one of our future goals is to enhance MLLMs’ ability to accurately
understand more types of human expressions.

4.2 MULTIMODAL REFERRING

In addition to multimodal grounding tasks, we evaluate the model’s ability to understand image
regions or objects users refer to via inputting bounding boxes. Compared with previous MLLMs that
can only refer image regions or objects to the model via detailed text descriptions, directly referring
to image regions using its bounding boxes is more effective and reduces ambiguity.

We evaluate the model on the referring expression generation task, which aims to generate unambigu-
ous text descriptions of specific objects or regions within the bounding box. We employ the widely
used RefCOCOg dataset (Mao et al., 2015) to evaluate the model’s performance under both zero-shot
and few-shot settings, showcasing its adaptability in different scenarios.

Evaluation Setup The model is tasked with generating an associated text description for an object
or region given its location tokens of the bounding boxes (e.g., “<box><loctl><locbr></box>”).
Benefiting from the unified input format, we use “<p> It </p><box><loctl><locbr></box>
is” as prompt to encourage the model to predict its text description. Figure 4 (1) and (2) demonstrate
the input format for zero-shot and few-shot referring expression generation, respectively. Following
previous works, we report results using METEOR and CIDEr metrics. The image resolution is
224×224. Greedy search is used for decoding.

Results Table 3 presents the zero-shot and few-shot results of on RefCOCOg. We compare
KOSMOS-2 with a finetuned listener-speaker model, which introduces an added reward-based module
(SLR). Our model obtains impressive zero-shot performance and even outperforms finetuned SLR by
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Model Setting RefCOCOg
Meteor CIDEr

SLR (Yu et al., 2017) Finetuning 15.4 59.2
SLR+Rerank (Yu et al., 2017) Finetuning 15.9 66.2

KOSMOS-2
Zero-shot 12.2 60.3
Few-shot (k = 2) 13.8 62.2
Few-shot (k = 4) 14.1 62.3

Table 3: Results of referring expression generation on RefCOCOg.

Model Flickr30k VQAv2
CIDEr VQA acc.

FewVLM (Jin et al., 2022) 31.0 -
METALM (Hao et al., 2022) 43.4 41.1
Flamingo-3B (Alayrac et al., 2022) 60.6 49.2
Flamingo-9B (Alayrac et al., 2022) 61.5 51.8
BLIP-2 (Vicuna-13B) (Li et al., 2023b) 71.6 65.0
KOSMOS-1 (Huang et al., 2023) 67.1 51.0

KOSMOS-2 (1.6B) 80.5 51.1

Table 4: Zero-shot image captioning results on the Flickr30k test set and zero-shot visual question
answering results on the VQAv2 test-dev set.

1.1 CIDEr scores. For the few-shot setting, KOSMOS-2 achieves larger improvements, highlighting
its in-context learning ability.

4.3 PERCEPTION-LANGUAGE TASKS

In addition to multimodal grounding and referring tasks, we also evaluate KOSMOS-2 on the vision-
language tasks. In particular, we perform zero-shot evaluations on two popular tasks, including image
captioning and visual question answering. Appendix E provides a more comprehensive comparison
on SEED-Bench (Li et al., 2023a) between KOSMOS-2 and recent MLLMs.

For image captioning, we evaluate the model on the widely used Flickr30k Karpathy split test set.
The beam search algoirthm is used for caption generation, with a beam size of 5. The results are
reported using CIDEr (Vedantam et al., 2015) metrics evaluated by COCOEvalCap1. The prompt

“An image of” is used to generate the image description. For visual question-answering, we evaluate
zero-shot performance on the test-dev set of VQAv2. Greedy search is used for decoding. We report
VQA scores obtained from VQAv2 evaluation server2. “Question: {question} Answer: {answer}” is
used as the prompt for the dataset. The image resolution is 224×224 for both two tasks.

Table 4 displays the zero-shot performance. For image captioning on Flickr30k, KOSMOS-2 with
much fewer parameters achieves a remarkable score of 80.5, which significantly outperforms
Flamingo-3B (60.6), Flamingo-9B (61.5), and BLIP-2 (Vicuna-13B) (71.6) with large margins.
For visual question answering on VQAv2, KOSMOS-2 achieves a VQA accuracy of 51.1, which is
on par with KOSMOS-1 (51.0) but lower than BLIP-2 (Vicuna-13B) at 65.0. With more compre-
hensive functions, e.g., grounding and referring capabilities, KOSMOS-2 demonstrates competitive
performance in perception-language tasks.

4.4 LANGUAGE TASKS

We evaluate KOSMOS-2 on eight language tasks, including cloze and completion tasks (StoryCloze,
HellaSwag), Winograd-style tasks (Winograd, Winogrande), commonsense reasoning (PIQA), and

1https://github.com/salaniz/pycocoevalcap
2https://eval.ai/challenge/830/overview
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Model Story
Cloze

Hella
Swag Winograd Winogrande PIQA BoolQ CB COPA

LLM 72.9 50.4 71.6 56.7 73.2 56.4 39.3 68.0
KOSMOS-1 72.1 50.0 69.8 54.8 72.9 56.4 44.6 63.0
KOSMOS-2 72.0 49.4 69.1 55.6 72.9 62.0 30.4 67.0

Table 5: Zero-shot performance comparisons of language tasks between KOSMOS-2, KOSMOS-1 and
LLM. LLM uses the same text data and training setup to reimplement a language model as KOSMOS-
1. For a fair comparison, we report results of KOSMOS-2 and KOSMOS-1 without instruction tuning.
Results of KOSMOS-1 and the LLM baseline are from Huang et al., 2023.

three SuperGLUE benchmark (Wang et al., 2019) datasets (BoolQ, CB, and COPA). We report the
zero-shot results in Table 5. Compared with KOSMOS-1, KOSMOS-2 achieves similar performance on
StoryCloze, HellaSwag, Winograd, Winogrande, and PIQA, experiences a decrease in performance
on CB, but shows improvement on BoolQ and COPA. In summary, KOSMOS-2 demonstrates new
multimodal grounding and referring capabilities when achieving comparable performance on language
tasks, which demonstrates its potential to be a versatile model.

5 RELATED WORK

The thriving development of large language models (LLMs, Brown et al., 2020; Chowdhery et al.,
2022; Touvron et al., 2023) has paved the way for multimodal large language models (MLLMs,
OpenAI, 2023; Alayrac et al., 2022; Wang et al., 2022b; Li et al., 2023b; Huang et al., 2023; Driess
et al., 2023; Pan et al., 2023; Lv et al., 2023), which seek to integrate language understanding and
reasoning with multimodal perception and comprehension. Flamingo (Alayrac et al., 2022) fuses a
pretrained vision encoder and an LLM by introducing gated cross-attention structures, demonstrating
impressive multimodal in-context learning capability. KOSMOS-1 (Huang et al., 2023) is another work
showing impressive performance under zero/few-shot and multimodal chain-of-thought prompting
settings. It is trained from scratch using web-scale multimodal corpora. Recently, instruction-tuning
based MLLMs (Liu et al., 2023a; Zhu et al., 2023; Dai et al., 2023; Ye et al., 2023; Gong et al., 2023)
endow pretrained LLMs (Touvron et al., 2023; Chiang et al., 2023) multimodal instruction-following
capability by constructing high-quality multimodal instruction datasets. Meanwhile, some works are
proposed to bridge vision systems with LLMs. VisionLLM (Wang et al., 2023) provides a flexible
interaction interface for visual tasks, such as object detection, and segmentation. DetGPT (Pi et al.,
2023) combines an MLLM and an extra detector (Liu et al., 2023b) for grounding.

Compared to detectors or grounding models (Chen et al., 2021; Yang et al., 2021; Li et al., 2022b; Liu
et al., 2023b), KOSMOS-2 benefits from the advantages of LLMs, such as the ability to comprehend
more complex linguistic descriptions and perform superior reasoning. In contrast to existing MLLM
methods, KOSMOS-2 incorporates grounding as a foundational capability for MLLMs in various
downstream applications, resulting in more informative and comprehensive predictions. Please see
Appendix F for more comparisons.

6 CONCLUSION

We proposed KOSMOS-2, a multimodal large language modal, that can ground to the visual world.
Specifically, we pretrained KOSMOS-2 by augmenting the multimodal corpora used in KOSMOS-1
with GRIT, a large-scale dataset of Grounded Image-Text pairs, which is created by extracting
and associating noun phrases and referring expressions in the caption to the objects or regions in
the scene. KOSMOS-2 enabled new capabilities of perceiving image regions and grounding text
output to the visual world, which makes grounding as a foundation capability of MLLMs in many
downstream applications. Extensive experiments demonstrated that KOSMOS-2 exhibited competitive
performance in language tasks, while achieving impressive results in vision-language tasks, grounding
tasks, and referring tasks. KOSMOS-2 sheds a light on the big convergence of language, multimodal
perception, multimodal grounding, and multimodal referring.
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A EXAMPLES OF KOSMOS-2

We evaluate KOSMOS-2 on a variety of tasks, including multimodal grounding, multimodal referring,
vision-language, and language tasks, as discussed in Section 4. To provide a more intuitive under-
standing of the model’s capabilities, we have included several visualizations in this section. Figure 5
(1) illustrates an example of multimodal grounding, while Figure 5 (4-6) and Figure 9 (2) showcase
multimodal referring via bounding boxes.

However, as previously mentioned, the grounding capability of KOSMOS-2 enables a range of
new applications to emerge. For instance, Figure 6 highlights the potential of the multimodal
referring capability for enhancing human-AI interaction in visual dialogue. In Figure 7, our approach
exhibits its in-context learning ability for fine-grained object detection, utilizing both text and image
descriptions. Examples of grounded visual question answering can be seen in Figure 5 (2-3) and
Figure 8 (1), while Figure 5 (7) and Figure 9 demonstrate grounded detailed image captioning.

Image credits: We would like to express our gratitude for the images sourced from the WHOOPS
corpus (Bitton-Guetta et al., 2023), SA-1B (Kirillov et al., 2023), and MS COCO (Lin et al., 2014).

B TRAINING HYPERPARAMETERS

The hyperparameters of KOSMOS-2 are listed in Table 6, while the instruction tuning hyperparameters
are listed in Table 7.

Hyperparameters

Image embedding number 64
Location tokens 1,024

Training steps 60,000
Warmup steps 375
Optimizer AdamW
Learning rate 2e-4
Learning rate decay Linear
Adam β (0.9, 0.98)
Weight decay 0.01

Batch size of text corpora 93
Batch size of original image-caption pairs 1,117
Batch size of grounded image-text pairs 1,117
Batch size of interleaved data 47

Table 6: Hyperparameters of KOSMOS-2

Hyperparameters

Training steps 10,000
Warmup steps 375
Learning rate 1e-5
Batch size of language instruction data 117
Batch size of vision-language instruction data 351
Batch size of grounded image-text pairs

& grounded instruction data 1404

Batch size of text corpora 30
Batch size of interleaved data 15

Table 7: Instruction tuning hyperparameters of
KOSMOS-2

C GRIT

C.1 COMPARISON WITH OTHER DATASETS

We compare the created GRIT with existing publicly accessible visual grounding datasets in Table 8.
One can see that our GRIT dataset significantly outperforms other existing visual grounding datasets
in terms of the number of images, objects, and text spans. With 90,614,680 images, 137,349,210
objects, and 114,978,233 text spans, GRIT is a considerably larger dataset than any of its counterparts,
such as Flickr Entities (Plummer et al., 2015), RefCOCOg (Mao et al., 2015), RefCOCO (Yu et al.,
2016), RefCOCO+ (Yu et al., 2016), and Visual Genome (Krishna et al., 2016).

In addition, the data in GRIT is more diverse: regarding the text description, GRIT encompasses both
referring expressions and noun chunks. Each referring expression or noun chunk could be associated
with one or more bounding boxes. More importantly, the image-caption pairs utilized in the GRIT
dataset are derived from large-scale web datasets (e.g., LAION-2B (Schuhmann et al., 2022) and
COYO-700M (Byeon et al., 2022)), which implies a rich variety of content covering various scenes
and topics. This diversity contributes to providing a more comprehensive and realistic setting for
visual grounding tasks, ultimately enhancing the generalization capabilities of models.
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the left eye of emoji
Question: How many cows are 

here? Answer: 
Question: What does the 

sign say? Answer:
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two cows present in the image.
The sign says "Welcome to 

Carnaby Street."
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Question: What is the biggest 

difference betwen bottle-1 and 

bottle-2? Answer:

Question: Why is this animal 

unusual? Answer:

(1) (2) (3)
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ti
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n

The biggest difference between 

bottle-1 and bottle-2 is the label.

This animal is unique because it is a 

turtle. Turtles are known for their slow 

and steady pace, whereas rabbits are 

known to be agile and quick. It is not 

common for a turtle to be faster than a 

rabbit, especially in terms of speed.

a buoy attached to 

the boat.

(4) (5) (6)

Question: What is it? Answer:

Describe this image in detail:

C
o

m
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le
ti

o
n

A snowman sits next to a campfire in 

the snow. He is wearing a hat, scarf, 

and mittens. There are several pots

nearby, likely containing a hot meal 

for the snowman. The scene is 

serene and peaceful, with the 

snowman looking at the fire with a 

warm smile.

(7)

In
p

u
t 

P
ro

m
p

t

Figure 5: Selected examples generated by KOSMOS-2. The examples include (1) visual grounding,
(2)-(3) grounded question answering, (4)-(6) multimodal referring via bounding boxes, and (7)
grounded image captioning. (Best viewed in color)
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What he is doing?

The man is riding a 
horse.

How about this man?

He is holding a flag.

Which person is this 
one facing to?

The person on the 
right side of the fence.

What is the name of 
this building?

Sydney Opera House.

When it was completed?

In 1973.

What is the name of 
this?

Sydney Harbour 
Bridge.

Figure 6: Examples of visual dialogue generated by KOSMOS-2. (Best viewed in color)
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<p>a downy woodpecker</p>

<box><loc97><loc942></box>

<box><loc115><loc958></box>

Description of three toed 
woodpecker: it has black and 
white stripes throughout the body 
and a yellow crown. Description 
of downy woodpecker: it has 
white spots on its black wings and 
some red on its crown.

<p>a downy woodpecker</p>

<box><loc115><loc958></box>

This is a downy woodpecker 

<p>a downy woodpecker</p>

❌

✔

✔

With text 
description

With image 
description

Figure 7: Examples of object detection with multimodal descriptions from KOSMOS-2.
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(1) Grounded question answering

Question: Where is the coach? 

Answer: <p>The coach</p>

The coach is standing in the 

middle of the field.

Question: What does it say? 

Answer:

"Je suis Charlie!" is written in 

French on a chalkboard.

Question: Where is it? Answer: 

In a microwave oven.

In
p

u
t 

P
ro

m
p

t
C

o
m

p
le

ti
o

n

You are driving this car. To pick 

up that man,  you need to

go through the intersection 

and turn right.

Question: What will happen to it?

Answer:

It will melt away as it warms up. 

Question: What makes this image

weird? Answer:

The image is weird because the 

snowman is sitting next to a 

campfire in the snow. 

(2) Multimodal referring via bounding boxes

Figure 8: Examples generated by KOSMOS-2. (Best viewed in color)
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In
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t 

P
ro

m
p

t

Describe this bird in detail:

C
o

m
p

le
ti

o
n

The eagle is a large bird 

with a black and white 

body and a yellow beak. 

It has large, dark wings

and a pointed tail. It 

stands on a stump and 

spreads its wings, 

displaying its 

magnificent plumage.

In
p

u
t 

P
ro

m
p

t

Describe this image in detail:

Six fighter jets fly in 

formation in the sky, 

creating a beautiful 

cloud trail.C
o

m
p

le
ti

o
n

In
p

u
t 

P
ro

m
p

t

Describe this image in detail:

C
o

m
p

le
ti

o
n

A man is standing in 

front of a fire, blowing 

the flames out of his 

mouth. He is in the 

middle of a tropical 

setting with palm trees

surrounding him.

Figure 9: Examples of grounded image captioning generated by KOSMOS-2. (Best viewed in color)

Dataset Images Objects Text Spans Avg Expression Length
Flickr Entities (Plummer et al., 2015) 31,783 275,775 513,644 -
RefCOCOg (Mao et al., 2015) 26,711 54,822 85,474 8.43
RefCOCO (Yu et al., 2016) 19,994 50,000 142,209 3.61
RefCOCO+ (Yu et al., 2016) 19,992 49,856 141,564 3.53
Visual Genome (Krishna et al., 2016) 108,077 4,102,818 - -

GRIT (Ours) 90,614,680 137,349,210 114,978,233 4.7

Table 8: Comparison GRIT with existing visual grounding datasets.

C.2 TEMPLATES FOR GROUNDED INSTRUCTION DATA

Table 9 presents the instruction templates of expression generation based on its associated bounding
boxes during instruction tuning.

C.3 EXAMPLES OF GRIT

We present some examples of the GRIT corpus in Figures 10,11,12,13. The grounded image-text
pairs span over various domains and contain different numbers of objects.
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1. “What is <p> it </p><box><loctl><locbr></box>? It is {expression}."
2. “What is <p> this </p><box><loctl><locbr></box>? This is {expression}."
3. “Describe <p> this object </p><box><loctl><locbr></box>. This object is {expression}."
4. “<p> It </p><box><loctl><locbr></box> is {expression}."
5. “<p> This </p><box><loctl><locbr></box> is {expression}."
6. “<p> The object </p><box><loctl><locbr></box> is {expression}."

Table 9: Instruction templates used for expression generation.

Ablation Settings RefCOCO RefCOCO+ Flickr30k RefCOCOg
val testA testB val testA testB val test val test

Baseline 52.3 57.4 47.3 45.5 50.7 42.2 77.8 78.7 60.6 61.7

- Instruction tuning 49.2 56.3 43.8 45.1 50.1 40.6 76.7 77.5 59.6 60.0
- Expression data 41.4 45.1 38.1 35.7 37.1 34.3 78.5 79.0 29.2 28.3

Table 10: Ablation of linguistic description type of objects. Zero-shot Recall@1 metric is tested on
Flick30k while zero-shot accuracy protocol is reported on RefCOCO/+/g.

D ABLATION STUDY

In Section 2, a pipeline is proposed for constructing web-scale grounded image-text pairs in two steps:
generating noun-chunk-bounding-box pairs and producing referring-expression-bounding-box pairs.
This process results in two types of text descriptions: noun-chunks and referring expressions. To
assess the impact of these two description types on the final visual grounding performance, ablation
studies are conducted. It is found that using referring expression data alone is insufficient for training
the model. Therefore, a mixture of the two types of data (text spans) is used for training, which also
serves as the default setting.

From Table 10, it can be observed that the performance experiences a slight degradation when the
instruction tuning phase is disabled. This can be attributed to our utilization of referring expression
data to enhance the multimodal referring capability during the instruction tuning phase. Upon further
removal of the referring expression data (i.e., disabling Step 2 in Figure 2), there is a significant decline
in the results on referring expression comprehensive benchmarks. This highlights the effectiveness of
the construction pipeline we proposed in Section 2.

E EVALUATION ON SEED-BENCH

Existing benchmarks for MLLMs are limited by inadequate qualitative examples and unsuitable
assessments for open-form output. To address, SEED-Bench (Li et al., 2023a) was proposed as a su-
perior benchmark, which consists of 19K multiple choice questions with accurate human annotations
and covers 12 evaluation dimensions across both image and video modalities. This comprehensive
and objective benchmark enables precise and in-depth evaluation of MLLMs. On SEED-Bench, we
compare KOSMOS-2 with popular MLLMs including MiniGPT4 (Zhu et al., 2023), LLaVA (Liu
et al., 2023a), BLIP-2 (Li et al., 2023b), InstructBLIP (Dai et al., 2023), MultiModal-GPT (Gong
et al., 2023), mPLUG-Owl (Ye et al., 2023), VideoChat (Li et al., 2023c) and Video-ChatGPT (Maaz
et al., 2023), Table 11.

As shwon in Table 11, KOSMOS-2 demonstrates remarkable performance with significantly fewer
parameters than the counterparts. Although it is marginally outperformed by InstructBLIP (Dai et al.,
2023), KOSMOS-2 surpasses the other models in the comparison. Specifically, KOSMOS-2 achieves
the best results in scene understanding, instance location, instance interaction, visual reasoning, and
action recognition tasks.

One noteworthy observation is that KOSMOS-2 excels in several instance-level tasks (e.g., instance
location, instance interaction), indicating that its grounding capability is crucial for fine-grained
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Table 11: Performance comparison on SEED-Bench (Li et al., 2023a). T1 to T12 represent various
tasks in the fields of Image and video understanding and reasoning: T1 - Scene Understanding,
T2 - Instance Identity, T3 - Instance Attribute, T4 - Instance Location, T5 - Instance Counting, T6
- Spatial Relation, T7 - Instance Interaction, T8 - Visual Reasoning, T9 - Text Recognition, T10 -
Action Recognition, T11 - Action Prediction, and T12 - Procedure Understanding. Furthermore, TI
represents the average performance across the first nine image-based tasks, TV signifies the average
performance on the last three video-related tasks, and TAll indicates the mean performance over all
twelve tasks.

Model Language Model Performance on 12 tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 TI T10 T11 T12 TV TAll

Large Language Models
LLaMA LLaMA-7B 26.3 27.4 26.2 28.3 25.1 28.8 19.2 37.0 9.0 26.6 33.0 23.1 26.2 27.3 26.8
Vicuna Vicuna-7B 23.4 30.7 29.7 30.9 30.8 28.6 29.8 18.5 13.4 28.2 27.3 34.5 23.8 29.5 28.5

Multimodal Large Language Models (Image)
MultiModal-GPT LLaMA-7B 43.6 37.9 31.5 30.8 27.3 30.1 29.9 51.4 18.8 34.5 36.9 25.8 24.0 29.2 33.2
LLaVA LLaMA-7B 42.7 34.9 33.5 28.4 41.9 30.8 27.8 46.8 27.7 37.0 29.7 21.4 19.1 23.8 33.5
mPLUG-Owl LLaMA-7B 49.7 45.3 32.5 36.7 27.3 32.7 44.3 54.7 28.8 37.9 26.7 17.9 26.5 23.0 34.0
MiniGPT-4 Vicuna-7B 56.3 49.2 45.8 37.9 45.3 32.6 47.4 57.1 11.8 47.4 38.2 24.5 27.1 29.9 42.8
BLIP-2 Flan-T5-XL 59.1 53.9 49.2 42.3 43.2 36.7 55.7 45.6 25.9 49.7 32.6 47.5 24.0 36.7 46.4
InstructBLIP Vicuna-7B 60.2 58.9 65.6 43.6 57.2 40.3 52.6 47.7 43.5 58.8 34.5 49.6 23.1 38.1 53.4
KOSMOS-2(ours) Decoder-only 1.3B 63.4 57.1 58.5 44.0 41.4 37.9 55.7 60.7 25.9 54.4 41.3 40.4 27.0 37.5 50.0

Multimodal Large Language Models (Video)
Video-ChatGPT LLaMA-7B 37.2 31.4 33.2 28.4 35.5 29.5 23.7 42.3 25.9 33.9 27.6 21.3 21.1 23.5 31.2
VideoChat Vicuna-7B 47.1 43.8 34.9 40.0 32.8 34.6 42.3 50.5 17.7 39.0 34.9 36.4 27.3 33.7 37.6

understanding and reasoning. This highlights the superiority of KOSMOS-2 in handling complex
tasks that require a deeper understanding of the underlying data.

F DISCUSSION WITH MORE METHODS

In the field of Vision-Language Models (VLMs), several innovative approaches have been proposed,
emphasizing the incorporation of spatial information or object detection in pretraining. OFA (Wang
et al., 2022c) targets unifying various cross and mono modal tasks including image generation,
visual grounding, image captioning, image classification, language modeling, etc., and has achieved
impressive performances, by utilizing the concept of bounding boxes as tokens from Pix2Seq (Chen
et al., 2021). PEVL (Yao et al., 2022) also processes spatial positions as discrete tokens (Chen et al.,
2021) and integrated them with language tokens in a unified masked language modeling framework.
X-VLM (Zeng et al., 2021) presents an approach that concentrates on multi-grained pretraining. It
leverages bounding boxes to glean region-level visual features, aligning them with fine-grained text
descriptions through contrastive learning. GLIPv2 (Zhang et al., 2022) model streamlines the process
by merging localization pretraining with vision-language pretraining. It employs three tasks: phrase
grounding, region-word contrastive learning, and masked language modeling. GRILL (Jin et al.,
2023) leverages object-text alignments for learning object grounding and localization, facilitating
task transferability, demonstrating adaptability across various tasks such as visual question answering,
captioning, and grounding tasks, with zero or few training instances.

Unlike these approaches, our proposed model, KOSMOS-2, aims to unlock the referring and ground-
ing capabilities of multimodal large language models (MLLMs) by training location and language
tokens in an auto-regressive paradigm. KOSMOS-2 not only performs well on conventional vision-
language tasks such as image captioning, visual question answering, and visual grounding, but also
integrates these capabilities into downstream tasks to enable new applications in an open-ended style,
thereby extending the capabilities of MLLMs. As Bugliarello et al. emphasize, teaching VLMs object
concepts is essential for effectively learning fine-grained skills (Yao et al., 2022; Zeng et al., 2021; Li
et al., 2022a). This perspective provides a plausible explanation for our impressive evaluation results
on conventional benchmarks and a comprehensive benchmark for MLLMs.

Previous research (Li et al., 2022a; Lee et al., 2021; Bugliarello et al., 2023a) has underscored the
significance of data curation in bolstering performance. In this work, we have taken a different
approach by creating the GRIT dataset, specifically designed to unlock new capabilities for MLLMs.
The methodology employed in the construction of this dataset is generalizable and could offer
valuable insights for the larger research community in creating large-scale, task-specific datasets.
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Figure 10: Example from GRIT. Caption: “A serving of kale and roasted vegetable salad on
an aluminium tray served with a small white bowl filed with creamy light green avocado Caesar
dressing”.

Figure 11: Example from GRIT. Caption: “A Keto Chicken Nugget being dipped into a bowl of keto
honey mustard.”.
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Figure 12: Example from GRIT. Caption: “Solar cells on a red roof are in the foreground. The
Sydney skyline is in the background.”.

Figure 13: Example from GRIT. Caption: “Woman standing outdoors in a city landscape and wearing
a hijab. Her arm is around a young girl who is hugging her side. The background is blurred.”.
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