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Abstract
This paper aims to provide differential privacy
(DP) guarantees for Markov chain Monte Carlo
(MCMC) algorithms. In a first part, we establish
DP guarantees on samples output by MCMC algo-
rithms as well as Monte Carlo estimators associ-
ated with these methods under assumptions on the
convergence properties of the underlying Markov
chain. In particular, our results highlight the criti-
cal condition of ensuring the target distribution is
differentially private itself. In a second part, we
specialise our analysis to the unadjusted Langevin
algorithm and stochastic gradient Langevin dy-
namics and establish guarantees on their (Rényi)
DP. To this end, we develop a novel methodology
based on Girsanov’s theorem combined with a per-
turbation trick to obtain bounds for an unbounded
domain and in a non-convex setting. We estab-
lish: (i) uniform in n privacy guarantees when the
state of the chain after n iterations is released, (ii)
bounds on the privacy of the entire chain trajec-
tory. These findings provide concrete guidelines
for privacy-preserving MCMC.

1. Introduction
The framework of differential privacy (DP) (Dwork, 2006;
Dwork et al., 2006) has become the standard approach for
designing statistical and machine learning algorithms with
quantitative guarantees on the information that their output
reveals about the data. In particular, the DP guarantees of
Bayesian statistical methods have already been investigated
in various works, typically focusing on the DP analysis of
samples drawn from the posterior distribution associated
with the data and problem at hand (Wang et al., 2015; Dimi-
trakakis et al., 2017; Geumlek et al., 2017; Hu et al., 2025).
In practice, Markov chain Monte Carlo (MCMC) algorithms
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are required to produce approximate samples from the pos-
terior, and for this reason their DP guarantees have also
been the object of extensive research (Heikkilä et al., 2019;
Yıldırım & Ermics, 2019; Li et al., 2019; Chourasia et al.,
2021; Altschuler & Talwar, 2022; Zhang & Zhang, 2023).

Several works obtain DP of the one-step transitions of the
MCMC algorithm by injecting extra noise in various ways,
e.g. in the acceptance-rejection step of Metropolis-Hastings-
type algorithms (Heikkilä et al., 2019; Yıldırım & Ermics,
2019), or leveraging the additional randomness already
introduced by subsampling strategies (Wang et al., 2015;
Bierkens & Duncan, 2022), optionally together with clip-
ping of the gradient that drives the moves of the chain (Song
et al., 2013; Abadi et al., 2016). Many iterations of the
MCMC chain are required to approach the posterior distri-
bution, and the typical strategy to obtain guarantees on the
DP of the algorithm after some number n of iterations is
to use composition bounds (Abadi et al., 2016; Wang et al.,
2019; Bassily et al., 2014; Ganesh et al., 2023). However,
the privacy implied using composition bounds for Markov
chains naturally decays with the number of steps (Kairouz
et al., 2015) and as a consequence the injected noise must
scale with the number of iterations in order to obtain uni-
form privacy bounds for the final draw. Many other works
using different techniques to prove uniform-in-time privacy
bounds for the final draw from a Markov chain have bad
dependence on the radius of the state space or the stepsize,
see (Altschuler & Talwar, 2022; Asoodeh & Diaz, 2023).
These limitations were overcome in Chourasia et al. (2021),
in which uniform-in-time bounds on the (Rényi) DP of gra-
dient descent-type algorithms was obtained, however under
a strong convexity assumption.

Contributions of this work In this paper we study the
differential privacy of MCMC algorithms. The paper is
divided in two parts.

In the first part (Section 3) we consider general MCMC algo-
rithms and establish clear connections between the DP guar-
antees of the posterior distribution and of a corresponding
MCMC algorithm. Assuming DP of the posterior, Proposi-
tions 3.2 and 3.10 show (ε, δ)-DP for the MCMC algorithm
when we either release the n-th state of the chain or a (noisy)
Monte Carlo estimator. These result show that, under suit-
able assumptions, the MCMC algorithm inherits the “good"
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privacy properties of the posterior. Analogously, Proposi-
tions 3.3 and 3.4 illustrate how “bad" privacy properties of
the posterior affect the privacy of an MCMC algorithm. In
particular, Proposition 3.3 shows how an MCMC algorithm
violates DP at a certain level (ε, δ) whenever it is sufficiently
close to the posterior, assuming the posterior is not (ε, δ′)-
DP for some δ′ > δ. On the other hand, Proposition 3.4
shows that if the posterior has weaker DP guarantees than
the MCMC algorithm, then the law of the MCMC chain
after n iterations can be far from the posterior in total vari-
ation distance. These results emphasise the importance of
starting with a differentially private posterior, rather than
only focusing on the one-step DP of the MCMC algorithm
as often suggested in the literature. This viewpoint guaran-
tees that the output of the MCMC algorithm can then be
both private and close to the posterior.

In Section 4 we prove privacy bounds for a class of Markov
chains in a non-convex setting, using a novel approach to
establish uniform-in-time (ε, δ)-DP and Rényi-DP guaran-
tees of the nth state of the chain, as well as bounds for the
trajectory up to the nth state. We show in Section 4.1 that it
is possible to prove privacy guarantees via high probability
bounds on the Radon-Nikodym derivative of different proba-
bility measures on the underlying probability space. In Sec-
tion 4.2 we illustrate how this strategy can be applied to the
case of MCMC algorithms based on diffusions, where we
rely on Girsanov’s theorem to express the Radon-Nikodym
derivative. Using a careful perturbation technique, we are
able to apply our approach to the case where only the final
state after n iterations is released, and not the entire path. In
this case, we obtain uniform-in-time guarantees both for DP
and Rényi-DP. Our strategy of proof also allows to obtain
bounds for the entire trajectory of a variety of stochastic al-
gorithms, improving on (ϵ, δ)-DP composition bounds and
matching Rényi composition bounds. In particular, we show
that the entire trajectory up to the n-th iteration is (ε, δ)-DP,
where ε is O(n+

√
n log(1/δ)) and δ > 0 is constant, and

also (α, ε)-Rényi-DP with ε = O(αn) for α > 0 constant.
These techniques have the additional advantage of extend-
ing easily to the continuous time case. We then focus our
analysis on two classical MCMC algorithms based on the
Langevin diffusion: the unadjusted Langevin algorithm and
its stochastic gradient variant (see Section 5). In doing so,
we address the open problem of obtaining uniform-in-time
DP guarantees in a non-convex setting.

2. Preliminaries
In Bayesian statistics, the primary object of interest is the
posterior distribution of the parameter θ ∈ E given an ob-
served dataset D ∈ S. The posterior distribution, denoted

as πD, is of the form

πD(B) =

∫
B

LD(θ)λ(dθ)

/
ZD , B ∈ B(E) ,

where (E,B(E)) is a Borel space, LD(θ) is the likelihood
associated with D, λ is a prior distribution for the param-
eter, and ZD =

∫
E
LD(θ)η(dθ). In order to make prac-

tical use of the Bayesian framework, it is then essential
to have access to key statistics of the posterior distribu-
tion, such as its moments. MCMC algorithms aim to solve
this task relying on a Markov chain, (XD

n )n⩾1, which
has law that converges to πD asymptotically in the num-
ber of iterations n. Throughout the paper, we shall de-
note the transition kernel of the Markov chain as PD :
E× B(E) → [0, 1], where this means XD

n ∼ PD(X
D
n−1, ·)

and also that XD
n ∼ Pn

D(X
D
0 , ·), where XD

0 is the initial
state of the chain. In particular, MCMC algorithms can be
used to estimate expectations πD(f) :=

∫
E
f(θ)πD(dθ),

for some statistics f : E → R thanks to associated
Monte Carlo averages 1

N

∑N
n=1 f(X

D
n ), in the sense that

limN→∞
1
N

∑N
n=1 f(X

D
n ) = πD(f) (Robert & Casella,

2004). There can be several possible outputs of an MCMC
algorithm, such as XD

n , the state of the chain at time n, or
(XD

1 , . . . , XD
n )), the entire path up to time n, or also the

Monte Carlo estimator 1
N

∑N
n=1 f(X

D
n ). In either case, we

can think of our MCMC methods as a randomised algorithm
A(D), that is a random function of the dataset. We refer to
Roberts & Rosenthal (2004) for an introduction to the main
concepts required to obtain (asymptotically) valid MCMC
algorithms.

We call randomised algorithm any function D 7→ A(D),
such that A(D) is a random variable on a probability space
(Ω,P,F). We denote the law of a randomised algorithm A
as PA(D), that is defined for any measurable set B as

PA(D)(B) := P(A(D) ∈ B).

The framework of differential privacy (Dwork, 2006) com-
pares the output of a randomised algorithm obtained giving
two adjacent datasets as input. Various notions of adjacency
between datasets can be introduced, where the most popular
considers adjacent any two datasets that differ in only one
entry. Below we state the definition of differential privacy.
Definition 2.1. A randomised algorithm A is (ε, δ)-
differentially private, for ε, δ ⩾ 0, if for any measurable set
B ∈ B(E)

PA(D)(B) ⩽ eε PA(D′)(B) + δ,

for any pair of adjacent datasets D,D′ ∈ S.

Following Definition 2.1, we say that a posterior distribution
is (ε, δ)-differentially private when, for all measurable sets
B, it holds that

πD(B) ⩽ eε πD′(B) + δ, (1)
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for all adjacent datasets D,D′. This is interpreted as a pri-
vacy guarantee of an i.i.d. sample from the posterior.

A related notion of privacy that we consider in this article is
that of Rényi differential privacy (Mironov, 2017). In order
to introduce the Rényi-DP we first need to define the Rényi
divergence. For α > 1 and two probability distributions, P
and Q, for which their Radon-Nikodym derivative is well
defined, their Rényi divergence is

Dα(P∥Q) :=
1

α− 1
log

(∫
Ω

(
dP

dQ

)α

dQ

)
. (2)

We then have the following definition.

Definition 2.2. A randomised algorithm A is (α, ε)-Rényi
differentially private , ε ⩾ 0 and α > 1, if for all adjacent
sets D,D′ it holds that Dα(PA(D)∥PA(D′)) ⩽ ε.

When α → ∞ we recover (ε, 0)-DP. Notice also that a
(α, ε)-Rényi-differentially private algorithm is also (ε −

1
α−1 log δ, δ)-differentially private for any δ ∈ (0, 1) (see
Proposition 3 in Mironov (2017)). Similarly to (1), we say
a posterior distribution is (α, ε)-Rényi-differentially private
when Dα(πD∥πD′) ⩽ ε for all adjacent datasets D,D′.

3. From convergence to differential privacy
This section establishes the connection between the DP of
an MCMC algorithm and its convergence to the posterior
distribution.

3.1. Differential privacy of a Markov chain after n steps

Here we are interested in the following question: what is the
relation between the differential privacy of the n-th state of
an MCMC algorithm, the differential privacy of the target
distribution, and the total variation distance between them?

In order to address the question above, we consider the
randomised algorithm As(D) = XD

n , where (XD
k )k∈N is

a Markov chain with transition kernel PD and that is ini-
tialised from a probability distribution νD. The law of XD

n

is denoted as νDP
n
D(·) :=

∫
νD(dx)P

n
D(x, ·). If ∥ · ∥TV

denotes the total variation distance (see Definition A.1),
for two families of probability distributions µD, νD that
satisfy ∥µD − νD∥TV ⩽ β, we have that (ε, δ)-DP of µD
implies (ε, δ + β(eε + 1))-DP of νD (see Proposition A.2
in Appendix A.1 for the proof of this result). In the case of
MCMC algorithms, the law of A(D) depends on the num-
ber of iterations n, and so will its total variation distance
to πD. Nevertheless, also in our case we can apply Propo-
sition A.2 to address the question above. In this sense we
make the following assumption, which requires a bound on
the total variation distance that is uniform over datasets and
decreasing in the number of iterations.

Assumption 3.1 (Data-uniform convergence of the Markov

chain). Consider a family of transition kernels {PD : E×
B(E) → [0, 1] : D ∈ S} and a family of initial distributions
{νD : D ∈ S}. There exist a positive, decreasing function
R such that limm→∞ R(m) = r ⩾ 0, and a constant ζ < ∞
such that for all D ∈ S and all n ∈ N

∥νDPn
D − πD∥TV ⩽ ζ R(n) . (3)

In particular, Assumption 3.1 requires that ζ and R are
independent of the dataset. The function R is typically such
that either limm→∞ R(m) = r = 0, that is the when case
the MCMC algorithm is asymptotically exact, or r > 0, that
is the case when the MCMC algorithm is biased, for instance
as a result of using an unadjusted discretisation scheme of
a continuous time process. Under this assumption, we can
obtain the following relations between the DP guarantees of
As(D) and πD.

Proposition 3.2. Consider the randomised algorithm
As(D) ∼ νDP

n
D and suppose Assumption 3.1 is verified.

The following statements hold:

(i) If π is (ε, δ)-differentially private, then As(D) is (ε, δ +
κR(n))-differentially private with κ = ζ(eε + 1).

(ii) If As(D) is (ε, δ)-differentially private for any n , then
π is (ε, δ + (1 + eε)ζr)-differentially private.

Proof. The first statement is obtained applying Proposi-
tion A.2. The second statement follows applying Propo-
sition A.2 to obtain that πD is (ε, δ + (1 + eε)ζ R(n))-
differentially private, then taking the limit as n → ∞.

The first statement is similar to Proposition 3 in Wang et al.
(2015). We note also that the second statement in Proposi-
tion 3.2 is still valid when the convergence bound (3) is not
data-uniform.

A simple corollary of Proposition 3.2-(ii) is that any MCMC
algorithm that is asymptotically exact, i.e. such that r = 0,
will fail to be (ε, δ)-differentially private for some num-
ber of iterations n when the posterior itself is not (ε, δ)-
differentially private. The following proposition gives a
quantitative result in this direction.

Proposition 3.3. Suppose Assumption 3.1 is verified. Let
ε ⩾ 0, δ ∈ [0, 1), and δ′ ∈ (δ, 1) and suppose πD is not
(ε, δ′)-differentially private. Let

n∗ = inf{n ∈ N : (1 + eε)ζR(n) ⩽ δ′ − δ}.

Then, As(D) ∼ νDP
n
D is not (ε, δ)-differentially private for

all n ⩾ n∗.

Proof. The result follows applying Proposition A.3, that
can be found in Appendix A.2.
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Proposition 3.3 gives that As(D) ∼ νDP
n
D is not (ε, δ)-

differentially private whenever it is sufficiently close to πD,
assuming πD is not (ε, δ′)-differentially private for some
δ′ > δ.

Finally, we show that νDPn
D can be far from πD when νDP

n
D

is (ε, δn)-differentially private, while the posterior distribu-
tion violates a weaker DP guarantee. In particular, we say
that the posterior distribution is not (ε, δ)-differentially pri-
vate when there exist adjacent datasets D,D′ ∈ S and a
measurable set B such that πD(B) > eεπD′(B) + δ.

Proposition 3.4. Consider the randomised algorithm
A(D) ∼ νDP

n
D and assume it is (ε, δ̄)-differentially private.

Let {πD : D ∈ S} be a family of posterior distributions
that is not (ε, δ)-differentially private for some δ > δ̄. Then,
there exists a dataset D ∈ S such that

∥νDPn
D − πD∥TV >

e−ε

1 + e−ε
(δ − δ̄) . (4)

Proof. The statement follows by an application of Proposi-
tion A.4 in Appendix A.3.

The statement of Proposition A.4 in Appendix A.3 gives
more insight than the statement above. Indeed, it shows
that, for any pair of adjacent datasets D,D′ for which there
exists a measurable set B such that πD(B) > eεπD′(B) + δ,
(4) holds for either D or D′. This means that the n-th
state of the MCMC algorithm can be far from the posterior
distribution for numerous datasets. In practice, a posterior
distribution π can violate (ε, δ)-DP even for large ε and δ
unless it is carefully designed (Dimitrakakis et al., 2017).
Hence, Proposition 3.4 shows that it is essential to design π
carefully.

3.2. Differential privacy of Monte Carlo estimators

We are now concerned with the task of releasing an esti-
mate of an expectation πD(f) :=

∫
E
f(x)πD(dx) obtained

running an MCMC algorithm for N iterations. Specifically,
we are given an observable f : E → R and we simulate a
Markov chain XD with transition kernel PD to obtain the
ergodic average 1

N

∑N
n=1 f(X

D
n ). Similarly to the previous

section, our strategy to obtain a DP guarantee will be based
on an assumption that requires the ergodic average to be
close to the truth, i.e. πD(f).

We consider the randomised algorithm

A(D) =
1

N

N∑
n=1

f(XD
n ) + L, (5)

where L is a random variable that is independent of the chain
XD and f is the observable of interest. Here, it is crucial
to add noise to the ergodic average to prevent an adversary
from distinguishing between two adjacent datasets based

on the observed output. In particular, L should satisfy the
following assumption, which makes the release of scalars
that are close to each other differentially private.
Assumption 3.5. Let η ∈ (0,∞). There exist (ε, δ) ∈
R+ × [0, 1) such that, for any measurable set B and any
a, b ∈ R for which |a− b| ⩽ η, it holds

P(a+ L ∈ B) ⩽ eε P(b+ L ∈ B) + δ.

A typical choice is to draw L from the Laplacian distribution
with scale parameter η/ε, which for any η ∈ (0,∞) satisfies
Assumption 3.5 with parameters (ε, 0) (Dwork et al., 2006).

In order to take advantage of Assumption 3.5, we shall
require that the ergodic averages for the observable f cor-
responding to two Markov chains for two adjacent datasets
D,D′ are η-close with high probability. Without such a
property, an adversary would be able to distinguish between
two adjacent datasets based on the observed Monte Carlo
estimator. We formalise this requirement in the next assump-
tion.
Assumption 3.6. Let {Pn

D : D ∈ S} be a family of Markov
kernels and {νD : D ∈ S} a family of initial distributions
and let N ∈ N. There exist η < ∞, δ̃ ∈ (0, 1) that are
independent of D,D′, such that for any adjacent datasets D
and D′

P

(∣∣∣∣∣ 1N
N∑

n=1

f(XD
n )− 1

N

N∑
n=1

f(XD′

n )

∣∣∣∣∣ ⩽ η

)
⩾ 1− δ̃ ,

for some joint processes (XD
n , XD′

n )Nn=1 such that
(XD

n )Nn=1 and (XD′

n )Nn=1 are two Markov chains respec-
tively with transition kernels PD and PD′ , and initial distri-
butions νD, νD′ .

Note that in Assumption 3.6, we do not suppose that XD
n

and XD′

n are independent and we can consider any cou-
pling between νDP

n
D and νD′Pn

D′ . Moreover, we remark
that Assumption 3.6 should hold only for the observable of
interest.

In order to obtain a guarantee on the DP of A, we shall
assume that L satisfies Assumption 3.5 with η as given by
Assumption 3.6. Notice that the variance of the noise in-
jected in the output to achieve a fixed level of DP ε increases
with η. In particular, in the case of Laplacian noise we find

Var(A(D)) = Var

(
1

N

N∑
n=1

f(XD
n )

)
+

η

ε
.

Therefore, the variance of the injected noise scales linearly
with η.

We are now ready to state our result, that is obtained apply-
ing a more general argument that holds for any algorithm of
the type A(D) = gD + L, where gD is a random function
that depends on D (see Proposition A.6 in Appendix A.4).
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Proposition 3.7. Let f : E → R and let A be the corre-
sponding randomised mechanism defined in (5). Suppose
Assumption 3.6 holds for some η ∈ (0,∞), δ̃ ∈ [0, 1), and
that L satisfies Assumption 3.5 with the same η and some
ε ∈ R+, δ ∈ [0, 1− δ̃). Then, A is (ε, δ + δ̃)-differentially
private.

Proof. The result follows applying Proposition A.6.

Verifying Assumption 3.6 directly would require ad-hoc
arguments. Therefore we now introduce two conditions
that are sufficient to ensure that Assumption 3.6 holds. We
start with a high-probability, non-asymptotic bound on the
convergence of the ergodic average to the true value, πD(f).

Assumption 3.8. Let f : E → R. Let {Pn
D : D ∈ S} be

a family of Markov kernels and {νD : D ∈ S} a family of
initial distributions and let N ∈ N. Denote by (XD

n )Nn=1

a Markov chain with transition kernel PD for any D ∈ S.
There exist δ̃ ∈ (0, 1) and C < ∞ such that for any D ∈ S

P

(∣∣∣∣∣ 1N
N∑

n=1

f(XD
n )− πD(f)

∣∣∣∣∣ ⩽ C

)
⩾ 1− δ̃.

This assumption can be typically verified using some mixing
properties of the family of Markov kernels {Pn

D : D ∈ S},
that should be uniform over D ∈ S as stated in Assump-
tion 3.1; see e.g. Paulin (2015); Durmus et al. (2023) and
the reference therein.

Then, we require that the absolute value of the difference
between πD(f) and πD′(f) is bounded by a constant for
any adjacent datasets D,D′. This ensures that the output A
localises around similar values and thus can be private.

Assumption 3.9. There exists γf < ∞ such that

|πD(f)− πD′(f)| ⩽ γf ,

for any adjacent datasets D,D′ ∈ S.

We now state our main result of the section.

Proposition 3.10. Suppose Assumptions 3.8 and 3.9 hold
for some C, δ̃, γf . Suppose also that L satisfies Assump-
tion 3.5 for η = 2C + γf . Then the randomised mechanism
A defined in (5) is (ε, δ + 2δ̃ − δ̃2)-differentially private.

Proof. The proof is based on showing that Assumption 3.6
holds under our assumptions. The details can be found in
Appendix A.5.

4. Characterising the Privacy of Diffusions
In this section we describe our proof strategy to obtain DP
guarantees of MCMC algorithms based on diffusions. We

focus here on Radon-Nikodym derivatives, which is essen-
tially an abstraction of the well-known approach using the
density function of the random mechanism, see for example
in Section 3.1 of Desfontaines & Pejó (2022) or Lemma
7.1.5 of Vadhan (2017) for Lemma 4.1. This framework
allows us to calculate privacy parameters via Girsanov’s
theorem, which describes a change of measure on the prob-
ability space.

4.1. Differential Privacy with Radon-Nikodym
Derivatives

We shall start describing our approach considering an ab-
stract randomised algorithm A(D) : Ω → X taking values
in some (measurable) space X and defined on a probability
space (Ω,F ,P). This shall be interpreted in the sequel as
the output of an MCMC algorithm such as its n-th state
or its full path up to the the n-th state. Here we stress the
dependence on P and denote the distribution of A(D) for
any D ∈ S as

P P
A(D)(B) = P(A(D) ∈ B) ,

for any measurable set B ⊂ X . Our strategy to obtain DP of
the mechanism A is based on a change of measure argument.
In particular, for every pair of adjacent datasets D,D′ ∈ S
we shall find a probability measure Q on (Ω,F) such that
the law of A(D) under Q is equal to the law of A(D′) under
P. This is to say,

P P
A(D) = PQ

A(D′) . (6)

Note that Q depends on D,D′, but to avoid overloading
the notation, we keep this dependence implicit. When P
and Q are mutually absolutely continuous, we can define
the Radon-Nikodym (RN) derivative dQ

dP : Ω → R, together
with its inverse dP

dQ . That is to say, for every random variable
Z : Ω → X one has

EQ[Z] = E
[
Z
dQ
dP

]
,

where EQ denotes integration on Ω with respect to Q, while
E denotes integration with respect to P. Since dQ

dP is a
mapping from the probability space, we can treat it as a
random variable taking values in R.

Now that we have set the framework, we can show how to
obtain DP of A bounding the Radon-Nikodym derivative
with high probability.

Lemma 4.1. Let A be a random mechanism and suppose
for every two adjacent datasets there exists a measure Q
such that (6) holds. Suppose furthermore for every such Q
the Radon-Nikodym derivative, dP

dQ , is well defined, and also
that

P
(
dP
dQ

> eε
)

⩽ δ.
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Then, A is (ε, δ)-differentially private.

Proof. The proof follows by splitting the expectation of the
relevant indicator function into regions where dP

dQ is large
and small. Full details can be found in Appendix B.1.

In the next section, we will rely on Lemma 4.1 to obtain DP
guarantees for diffusion-based MCMC algorithms, where
the Radon-Nikodym derivative can be obtained by Gir-
sanov’s theorem. The following lemma is essentially a
corollary of the data processing inequality, see Theorem 9
in van Erven & Harremos (2014).

Lemma 4.2. Let A be a random mechanism and consider
two constants α > 1, ε > 0. Suppose for every D,D′ ∈
S there exists a measure Q such that (6) holds. Suppose
in addition that the Radon-Nikodym derivative dP

dQ is well
defined and

E
[(

dP
dQ

)α−1]
⩽ e(α−1)ε.

Then, A is (α, ε)-Rényi differentially private.

Proof. The proof can be found in Appendix B.2.

Remark 4.3. For all results in this paper, bounds in (ε, δ)-
DP can be achieved by converting a Rényi-DP bound, as
mentioned in Section 2. However, we presented Lemmas 4.1
and 4.2 separately since Lemma 4.2 applies more generally,
and in particular does not require control of the tails of
dP/dQ.

4.2. Differential privacy of stochastic differential
equations

In this section we shall consider the DP of random mecha-
nisms A that involve the solution of a stochastic differen-
tial equation (SDE). We are particularly interested in two
distinct random mechanisms generated by (7): the single
time evaluation As(D) = XD

T taking values in Rd, and
also the whole path Ap(D) = (XD

t )t∈[0,T ] taking values in
C([0, T ],Rd), that is the space of continuous functions on
[0, T ] taking values in Rd.

The general SDE we study is

dXD
t = fD(X

D
κ(t), ηκ(t))dt+

√
2/β dWt, (7)

with initial condition XD
0 = x0 ∈ Rd. Here Wt is Brown-

ian motion, fD : Rd × Y → Rd is a measurable function,
κ : [0,∞) → [0,∞) is a function satisfying κ(t) ⩽ t,
(ηt)t⩾0 is a stochastic process independent of (Wt)t⩾0 tak-
ing values in some space Y , and β > 0 is an inverse tem-
perature parameter that scales the noise. The function κ
allows us to consider discrete time approximations obtained

e.g. applying the Euler scheme to a continuous time SDE.
For instance, the choice κ(t) := γ⌊t/γ⌋ corresponds to
the backwards projection onto the grid {nγ}n∈N. In this
case one has that XD

nγ is equal in law to the Markov chain
(xD

n )n∈N

xD
n+1 = xD

n + γfD(x
D
n , ηnγ) +

√
2γ/β zn+1 ,

and (zn)n⩾1 is a sequence of independent standard normal
random variables. The process (ηt)t⩾0 allows us to consider
additional sources of randomness, for instance the random
mini-batches that give the stochastic gradient in the noisy
SGD algorithm.
Remark 4.4. We assume without further commentary that
(7) has a unique strong solution. This holds when κ is a
projection onto a grid, and also when κ(t) = t under weak
conditions (Zhang, 2005).

In the following result, we demonstrate that our proof strat-
egy can be used to give privacy bounds for As(D) that are
uniform in T > 0. We remark that the condition (9) can
be satisfied in non-convex settings, which to the best of our
knowledge have not been addressed thus far in the literature.

Proposition 4.5 (Privacy of the final value). Let T > 0 and
assume there exist constants L,C, c > 0 such that for every
adjacent datasets D,D′ ∈ S one has for any x, y ∈ Rd and
s ∈ Y

|fD(x, s)− fD′(y, s)| ⩽ L|x− y|+ c , (8)

and (XD
t )t∈[0,T ] and (XD′

t )t∈[0,T ] are solutions of (7) with
drifts fD and fD′ respectively, driven by the same Brownian
motion (Wt)t ⩾ 0, such that almost surely1 it holds that

sup
t∈[0,T ]

|XD
t −XD′

t | ⩽ C . (9)

Then for δ > 0, α ⩾ 1 one has that As(D) = XD
T is

(εδ, δ)-private and (α, εα)-Rényi private for

εδ = C2/4 +
√

C2 log(1/δ), εα = αC2/4,

where C2 = β(C(L+ 1) + c)2.

Proof. We fix a pair of adjacent datasets D,D′ ∈ S and
T > 0, and define an auxiliary process (Zt)t∈[0,T ] satisfying

Zt = XD
t for t ∈ [0, T − 1], ZT = XD′

T .

In particular, Zt is given by perturbing the dynamics of
XD

T on t ∈ [T − 1, T ] in such a way that it approaches
XD′

T . By the assumption that XD
t and XD′

t are almost

1Since the measures P and Q are absolutely continuous, here
and elsewhere we don’t distinguish for which measure the event in
question is almost sure.
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surely close, one may define this perturbation in such a way
that it is almost surely bounded. Therefore via Girsanov’s
theorem we can find a measure Q satisfying the assump-
tions of Lemmas 4.1 and 4.2. Full details are presented in
Appendix B.6.

Furthermore, we have the following result on the privacy of
the entire trajectory of XD up to a time T > 0.

Proposition 4.6 (Privacy of the path). Consider the family
of processes (7). Suppose there exists c > 0 such that for
every adjacent datasets D,D′ ∈ S and x ∈ Rd, η ∈ Y one
has

|fD(x, η)− fD′(x, η)| ⩽ c . (10)

Then for δ > 0, α ⩾ 1 one has that the algorithm
Ap(D) = (XD

T )t∈[0,T ] is (εδ, δ)-differentially private and
(α, εα)-Rényi differentially private for

εδ = C1(T )/4 +
√
C1(T ) log(1/δ), εα = αC1(T )/4 ,

and C1(T ) = c2βT .

Proof. Fixing adjacent datasets D,D′ ∈ S, we use Gir-
sanov’s theorem to define a measure Q under which
(XD′

t )t∈[0,T ] is equal in distribution to (XD
t )t∈[0,T ] under P.

Using bounds on the assumed discrepancy between the drifts
(10), we may control the Radon-Nikodym derivative dP/dQ
in such a way as to obtain the result applying Lemmas 4.1
and 4.2. Full details are presented in Appendix B.5.

5. Privacy of Langevin-based algorithms in the
non-convex setting

In this section we obtain (Rényi)-DP for both the trajectory
and the final value of two Langevin-based MCMC algo-
rithms: ULA and noisy SGD. All bounds in this section are
derived from Propositions 4.5 and 4.6.

5.1. Sampling from Bayesian posteriors with ULA

Consider a posterior distribution with density with respect
to the Lebesgue measure on Rd of the form

πD(x) ∝ e−UD(x), (11)

for UD : Rd → R. We can approximately sample from πD
with ULA, that is the Markov chain

xD
n+1 = xD

n − γ∇UD(x
D
n ) +

√
2γ zn+1, (12)

with initial condition xD
0 = x0 ∈ Rd, and where (zn)n⩾1 is

a sequence of i.i.d. standard Gaussians on Rd, and γ > 0
is the step size. ULA arises as the Euler discretisation of
the overdamped Langevin diffusion and has been shown to
be successful for sampling from Bayesian posteriors under

a range of assumptions (Neal, 1992; Roberts & Tweedie,
1996; Durmus & Moulines, 2019). We shall consider the pri-
vacy of both the final draw xD

n ∈ Rd, and of the entire chain
(xD

1 , ..., x
D
n ) ∈ Rdn, under a non-convex assumption on UD.

The particular assumption we place upon the posterior in the
following theorem is close to the convexity outside of a ball
condition considered in Durmus & Moulines (2017) and
Erdogdu et al. (2022). The strongly convex part K could be
interpreted as a regulariser.

Assumption 5.1. Consider a posterior distribution (11) and
suppose for every dataset D ∈ S one may write UD = VD+
K, where VD,K : Rd → R are continuously differentiable
functions. In addition suppose that there exists a constant
c > 0 such that supx∈Rd |∇VD(x)| ⩽ c. Furthermore, ∇K
is L-Lipschitz, that is

|∇K(x)−∇K(y)| ⩽ L|x− y|,

for all x, y ∈ Rd, and also strongly convex, that is there
exists a > 0 such that for all x, y ∈ Rd.

⟨∇K(x)−∇K(y), x− y⟩ ⩾ a∥x− y∥2. (13)

Theorem 5.2. Suppose Assumption 5.1 holds and let
As(D) = xD

n be the n-th state of the ULA targeting πD
with step-size γ ∈ (0, 2a/L2). Then, for δ > 0 and α ⩾ 1,
As(D) is (εδ, δ)-differentially private and (α, εα)-Rényi
differentially private for

εδ = C3/4 +
√

C3 log(1/δ), εα = αC3/4,

where C3 = c2( 2(L+1)
a−γL2/2 + 1)2.

Proof. The proof here uses Proposition 4.5. One considers
a continuous time interpolation of the ULA algorithm (12),
at which point it just suffices to show that the closeness
condition (9) holds for the continuous time interpolation.
Full details are given in Appendix C.1.

Note that the above bound does not depend on the number of
steps. Furthermore, since recent analysis like (Chewi et al.,
2022) suggests that ULA recovers the true posterior in Rényi
divergence as γ → 0 and n → ∞, taking the limit as γ → 0
in Theorem 5.2 suggests that true posterior is differentially
private with C3 > 0 replaced with C4 = c( 2(L+1)

a + 1).

Now we consider the privacy of the entire chain under
slightly different assumptions.

Assumption 5.3. There exists a constant c > 0 such that
the posterior πD in (11) satisfies for any adjacent datasets
D,D′ ∈ S and all x ∈ Rd

|∇UD(x)−∇UD′(x)| ⩽ c .

Note that the following result places no requirement on the
step size, but it does depend on the number of steps.

7
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Theorem 5.4. Suppose Assumption 5.3 holds and let
Ap(D) = (xD

1 , . . . , x
D
n ) be the path of ULA up to state

n ∈ N. Then, for δ > 0, α ⩾ 1, the algorithm Ap(D) is
(εδ, δ)-differentially private and (α, εα)-Rényi differentially
private for

εδ = C5(n)/4 +
√
C5(n) log(1/δ), εα = αC5(n)/4 ,

where C5(n) = nγc2.

Proof. We use the continuous time interpolation of (12),
along with Proposition 4.6. Then since (xD

1 , ..., x
D
n ) is equal

in law to a mapping from (XD
T )t∈[0,nγ], the result follows

from the data processing inequality (see Theorem 9 in van
Erven & Harremos (2014)).

5.2. Noisy stochastic gradient descent

In this section we study the DP of a stochastic-gradient
variant of the ULA. This algorithm is essentially a noisy
version of the stochastic gradient descent and can be used
to minimise the loss function

LD(x) :=
1

m

m∑
i=1

ℓ(x, di) , (14)

where we assumed the dataset is of the form D =
{d1, ..., dm}. The algorithm we consider is driven by the
following Markov chain:

xD
n+1= xD

n − γ

s

∑
i∈An+1

∇xℓ(x
D
n , di) +

√
2γ/βzn+1 , (15)

where ℓ : Rd × Y → R, (An)n⩾1 is a sequence of inde-
pendent random variables uniformly distributed on subsets
of {1, ...,m} of size s ⩽ m, the step size is γ > 0, and
(zn)n⩾1 is a sequence of i.i.d. standard Gaussians on Rd,
independent of (An)n⩾1. Here ℓ(x, di) is interpreted as the
loss incurred for datum di. We remark that the algorithm
(15) is known in the MCMC literature as stochastic gradient
Langevin dynamics (Welling & Teh, 2011).

In order to prove DP of the algorithm, we shall work under
the following assumption on the loss function.

Assumption 5.5. Consider the loss function (14), where

ℓ(x, d) = v(x, d) + k(x) ,

for functions v : Rd × S → R and k : Rd → R that are
once continuously differentiable. Furthermore, ∇k is L-
Lipschitz and for c, a > 0 one has |∇xv(x, d)| ⩽ c for any
x ∈ Rd and any datum d, as well as

⟨∇k(x)−∇k(y), x− y⟩ ⩾ a∥x− y∥2 .

We then have the following result.

Theorem 5.6. Suppose Assumption 5.5 holds and consider
the algorithm As(D) = xD

n described in (15) with γ ∈
(0, 2a/L2) and stochastic gradient of size s ⩽ m. Then, for
δ > 0 and α ⩾ 1, one has that As is (εδ, δ)-differentially
private and (α, εα)-Rényi differentially private for

εδ = C6/4 +
√

C6 log(1/δ), εα = αC6/4 ,

where C6 = c2β( 2(L+1)
a−γL2/2 + 1)2.

Proof. The proof here is similar to the proof of Theorem 5.2,
with minor alterations due to the stochastic gradient and the
inverse temperature parameter β > 0. Full details are given
in Appendix C.2.

Theorem 5.6 is only a minor refinement of Theorem 5.2, and
in particular the privacy guarantee does not improve with the
size m of the dataset. However, in the strongly convex case
where each ∇v is constant, the following theorem (similar
to Theorem 2 in Chourasia et al. (2021)) shows that privacy
does increase with s ⩽ m.

Theorem 5.7. Consider the setting of Theorem 5.6, but
suppose that for any datum d ∈ D with D ∈ S one has
that ∇xv(x, d) is constant in x ∈ Rd. Then, for δ > 0 and
α ⩾ 1, one has that As is (εδ, δ)-differentially private and
(α, εα)-Rényi differentially private for

εδ = C7 +
√
C7 log(1/δ), εα = αC7/4 ,

where C7 = c2β
s2 ( 2(L+1)

a−γL2/2 + 1)2.

Proof. The proof can be found in Appendix C.3.

It is an open problem as to how m and s affect the privacy
of the noisy SGD algorithm in the setting of Theorem 5.6.
However, the following result on the path of noisy SGD
improves with the size s ⩽ m of the stochastic gradient.

Theorem 5.8. Consider the loss function (14), and suppose
there exists c > 0 such that for every D,D′ ∈ S and d ∈
D, d′ ∈ D′ one has that

|∇xℓ(x, d)−∇xℓ(x, d
′)| ⩽ c.

Then, for δ > 0 and α ⩾ 1, the algorithm Ap(D) =
(xD

1 , . . . , x
D
n ) shown in (15) is (εδ, δ)-differentially private

and (α, εα)-Rényi differentially private for

εδ = C8 +
√
C8 log(1/δ), εα = αC8/4 ,

where C8(n) =
βc2

s2 nγ.

Proof. The proof is very similar to the proof of Theorem 5.4.
Full details are given in Appendix C.4.
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The results of Ryffel et al. (2022) and Ye & Shokri (2022)
suggest that one may obtain superior bounds by fully ex-
ploiting the randomness of the stochastic gradient. However,
for simplicity we do not consider this in the current work.

5.3. Commentary on Bounds Presented

We have studied two kinds of dimension-independent pri-
vacy guarantees: for the final draw, and for the entire tra-
jectory of an MCMC chain. In particular, our bounds for
the privacy of the final draw in Theorems 5.2 and 5.6 are
uniform-in-time in a non-convex setting on an unbounded
space, which addresses Question 1.2 and provides an up-
per bound for Question 1.1 in Altschuler & Talwar (2022).
Also, unlike the results of Altschuler & Talwar (2022), our
bounds do not depend on the size of the state space (which
is unbounded), and do not blow up as the step-size goes
to 0. In this sense, we therefore generalise the results of
Chourasia et al. (2021) to a non-convex setting. Indeed, our
results match Chourasia et al. (2021) in the strongly convex
regime.

On the other hand, our results for the entire trajectory we
improved on known composition bounds for (ϵ, δ)-privacy,
matching composition bounds for Rényi privacy. This re-
moves the need for complicated (ϵ, δ)-DP privacy account-
ing, and provides a simple framework which extends natu-
rally to the continuous time case. In particular, our (ε, δ)-
DP bounds in Theorems 5.2 and 5.6 feature uniform val-
ues of δ > 0, and ε = O(n +

√
n log(1/δ)) dependence

on the number of steps n, whilst the advanced compo-
sition bounds presented in Kairouz et al. (2015) achieve
ε = O(n+

√
n log(e+ (ε

√
n/δ))).

6. Conclusions
We have presented a variety of results on the differential
privacy of MCMC algorithms. Our results clarify the im-
portance of choosing a Bayesian posterior distribution that
has good DP guarantees, or else an MCMC algorithm can-
not be expected to both private and close to convergence.
Our results imply that it is crucial to design the MCMC
algorithm together with the Bayesian model, in order to
allow an end-to-end private inference. We have also dis-
cussed a novel approach to prove DP based on bounding the
Radon-Nikodym derivative of the algorithm. This strategy
allowed us to obtain new non-convex results that extend
the known privacy properties of Langevin-based MCMC
algorithm. We expect that a more careful analysis could
allow extensions of our results to more general assumptions
on the posterior distribution. Our approach can be applied
to very general randomised algorithms and not only to those
considered in this article. We leave extensions to more com-
plex settings such as Bayesian federated learning for future
work.
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A. Proofs and general results for Section 3
In this section we give proofs and general statements relative to Section 3. These rely on the following definition.

Definition A.1. Let µ and ν be two probability distributions on (E,B(E)). Their total variation (TV) distance is

∥µ− ν∥TV := sup
B∈B(E)

|µ(B)− ν(B)|.

A.1. Auxiliary result for Proposition 3.2

The following result is analogous to Proposition 12 in Minami et al. (2016).

Proposition A.2. Let {µD : D ∈ S} and {νD : D ∈ S} be two families of probability distributions that satisfy
∥µD−νD∥TV ⩽ β for any D ∈ S . If {µD : D ∈ S} is (ε, δ)-differentially private, then {νD : D ∈ S} is (ε, δ+β(eε+1))-
differentially private.

Proof. Let D,D′ ∈ S denote two adjacent datasets and B be a measurable set. First, we observe that under our assumption
and by the definition of the total variation distance we have |µD(B)− νD(B)| ⩽ β. This implies following inequalities for
any D:

µD(B) ⩽ νD(B) + β, (16)
νD(B) ⩽ µD(B) + β. (17)

Using these inequalities as well as the (ε, δ)-DP of µ, we find that

νD(B) ⩽ µD(B) + β

⩽ eεµD′(B) + δ + β

⩽ eε (νD′(B) + β) + δ + β,

which concludes the proof.

A.2. General result for Proposition 3.3

Proposition A.3. Let {µD : D ∈ S} and {νD : D ∈ S} be two families of probability distributions that satisfy
∥µD − νD∥TV ⩽ β for any D ∈ S. Let ε > 0, δ ∈ [(1 + eε)β, 1), and suppose {νD : D ∈ S} is not (ε, δ)-differentially
private. Then, {µD : D ∈ S} is not (ε, δ − (1 + eε)β)-differentially private.

Proof. Let D,D′ ∈ S denote two adjacent datasets and B be a measurable set such that

νD′(B) ⩾ eενD(B) + δ,

i.e. such that the definition of DP for the family {νD : D ∈ S} is violated. Now, applying the inequality (17) followed by
the inequality above we find

µD′(B) ⩾ νD′(B)− β

⩾ eενD(B) + δ − β.

Then, we apply inequality (16) to find

µD′(B) ⩾ eεµD(B) + δ − (1 + eε)β,

which proves the result.

12
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A.3. General result for Proposition 3.4

Proposition A.4. Let {µD : D ∈ S} and {νD : D ∈ S} be two families of probability distributions. Assume {νD : D ∈ S}
is (ε, δν)-differentially private and {µD : D ∈ S} is not (ε, δµ)-DP for δµ > δν , i.e. there exists at least one pair of adjacent
datasets D,D′ ∈ S and a measurable set B such that

µD′(B) > eεµD(B) + δµ . (18)

Define the set of pairs of adjacent datasets for which (18) holds:

S := {{D,D′} ∈ S × S : D,D′ are adjacent and there exists B such that (18) holds}.

Then, for any {D,D′} ∈ S there exists D̃ ∈ {D,D′} such that

∥νD̃ − µD̃∥TV >
e−ε

1 + e−ε
(δµ − δν) .

Proof. We take any pair of datasets {D,D′} ∈ S. Notice that (18) implies that

µD(B) < e−εµD′(B)− e−εδµ .

Moreover, (ε, δν)-DP of ν means that

νD(B) ⩾ e−ενD′(B)− e−εδν .

Using both inequalities we find

µD(B)− νD(B) < −(e−εδµ − e−εδν) + e−εµD′(B)− e−ενD′(B)

< −e−ε(δµ − δν) + e−ε(µD′(B)− νD′(B)) .

Suppose now that ∥µD′ − νD′∥TV ⩽ ζ for some constant 0 ⩽ ζ ⩽ δµ − δν . This implies that µD′(B) − νD′(B) ⩽ ζ.
Therefore, we find

µD(B)− νD(B) < −e−ε(δµ − δν − ζ) .

Since δµ − δν − ζ ⩾ 0 by construction, taking the absolute value we find

|µD(B)− νD(B)| > e−ε(δµ − δν − ζ) .

By the definition of TV distance

∥µD − νD∥TV ⩾ |µD(B)− νD(B)| > e−ε(δµ − δν − ζ) .

Clearly, when ∥µD′ − νD′∥TV ⩽ ζ does not hold, it must be that ∥µD′ − νD′∥TV > ζ . This shows that there exists a dataset
D̃ ∈ {D,D′} such that either ∥µD̃ − νD̃∥TV > ζ or ∥µD̃ − νD̃∥TV > e−ε(δµ − δν − ζ). Therefore it always holds that

∥µD̃ − νD̃∥TV > min{ζ, e−ε (δµ − δν − ζ)} .

Optimising the bound for ζ ∈ [0, δµ − δν ], we find that the lower bound above is maximised for ζ∗ = e−ε

1+e−ε (δµ − δν),

which satisfies the equation ζ∗ = e−ε(δµ − δν − ζ∗).

A.4. General result for Proposition 3.7

Consider the randomised algorithm
A(D) = gD + L, (19)

where gD is a random variable that depends on the dataset, and L satisfies Assumption 3.5 and is independent of gD. We
make the following assumptions, which is the general version of Assumption 3.6.

13
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Assumption A.5. Let D,D′ ∈ S denote two adjacent datasets. There exist η > 0, δ̃ < 1 that are independent of D,D′ such
that

P (|gD − gD′ | ⩽ η) ⩾ 1− δ̃ .

Assumption 3.5 and Assumption A.5 are enough to obtain the following guarantee on the differential privacy of the
randomised algorithm (19).

Proposition A.6. Let A be the randomised mechanism defined in (19), where L is independent of gD for any D ∈ S.
Suppose Assumption A.5 holds, as well as Assumption 3.5 for η as in Assumption A.5. Then A is (ε, δ̃ + δ)-differentially
private.

Proof. Let B be any measurable set. We find

P (A(D) ∈ B) = P (A(D) ∈ B, |gD − gD′ | ⩽ η) + P (A(D) ∈ B, |gD − gD′ | > η) . (20)

The first term on the right hand side of (20) can be bounded using Assumption 3.5. Indeed, Assumption 3.5 can be used
since we are on the event |gD − gD′ | ⩽ η and because L and gD, gD′ are independent. Following this reasoning, we find

P (gD + L ∈ B, |gD − gD′ | ⩽ η) ⩽ eεP (gD′ + L ∈ B, |gD − gD′ | ⩽ η) + δ

⩽ eεP(A(D′) ∈ B) + δ.

In the last inequality we simply discarded the event {|gD − gD′ | ⩽ η}. Applying Assumption A.5 we can bound the second
term in (20) as follows:

P (A(D) ∈ B, |gD − gD′ | > η) ⩽ P (|gD − gD′ | > η) ⩽ δ̃.

We have obtained the result.

A.5. Proof of Proposition 3.10

Let D,D′ ∈ S be two adjacent datasets. We introduce a joint process (XD
n , XD′

n )Nn=1 such that (XD
n )Nn=1 and (XD′

n )Nn=1

are two independent Markov chains respectively with transition kernels PD and PD′ , and initial distributions νD, νD′ . We
now define two sets, B1 and B2, that represent respectively Assumption 3.8 and Assumption 3.6:

B1 :=

{∣∣∣∣∣ 1N
N∑

n=1

f(XD̃
n )− πD̃(f)

∣∣∣∣∣ ⩽ Cδ̃,N , for D̃ = D,D′

}
and

B2 :=

{∣∣∣∣∣ 1N
N∑

n=1

f(XD
n )− 1

N

N∑
n=1

f(XD′

n )

∣∣∣∣∣ ⩽ 2Cδ̃,N + γf

}
.

Now notice that B1 ⊂ B2 under our assumptions, and hence P(B2) ⩾ P(B1). Indeed, an application of Assumption 3.9
gives∣∣∣∣∣ 1N

N∑
n=1

f(XD
n )− 1

N

N∑
n=1

f(XD′

n )

∣∣∣∣∣ ⩽
∣∣∣∣∣ 1N

N∑
n=1

f(XD
n )− πD(f)

∣∣∣∣∣+ |πD(f)− πD′(f)|+

∣∣∣∣∣ 1N
N∑

n=1

f(XD′

n )− πD′(f)

∣∣∣∣∣
⩽ 2Cδ̃,N + γf .

Then, notice that, since the two chains are independent, we find

P(B1) = P

(∣∣∣∣∣ 1N
N∑

n=1

f(XD
n )− πD(f)

∣∣∣∣∣ ⩽ Cδ̃,N

)
P

(∣∣∣∣∣ 1N
N∑

n=1

f(XD′

n )− πD′(f)

∣∣∣∣∣ ⩽ Cδ̃,N

)
.

Hence, by Assumption 3.8
P(B1) ⩾ (1− δ̃)2 = 1− (2δ̃ − δ̃2).

Therefore, we have obtained P(B2) ⩾ 1− (2δ̃ − δ̃2). The result then follows by Proposition A.6.
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B. Proofs and auxiliary results for Section 4
B.1. Proof of Lemma 4.1

Consider a measurable set B ⊂ X and denote X = A(D), Y = A(D′). Let us introduce the set where the Radon-Nikodym
derivative is larger than a constant eε as

Kε :=

{
ω :

dP
dQ

(ω) > eε
}
.

Then we can decompose P(X ∈ B) as

P(X ∈ B) = E[1X∈B1Kε
] + E[1X∈B1Kc

ε
].

Hence, since by assumption we can control the Radon-Nikodym derivative with high probability, in the sense that P (Kε) ⩽ δ,
we find that

E[1X∈B1Kε
] ⩽ δ.

On the other hand, we have

E[1X∈B1Kc
ε
] = EQ

[
1X∈B1Kc

ε
× dP

dQ

]
⩽ eεEQ [1X∈B] = eεP(Y ∈ B),

as required.

B.2. Proof of Lemma 4.2

By the data processing inequality (Theorem 9, (van Erven & Harremos, 2014)) one has

Dα(P
P
A(D)∥P

P
A(D′)) = Dα(P

P
A(D)∥P

Q
A(D)) ⩽ Dα(P∥Q).

The result then follows by the definition of Rényi DP in (2) since

EQ

[(
dP
dQ

)α]
= E

[(
dP
dQ

)α−1]
.

B.3. Girsanov’s theorem for SDEs

Here we apply Girsanov’s theorem to obtain the Radon-Nikodym derivative of the law of two SDEs with different drifts. The
precise formulation we choose here is chosen so as to be able to apply the result to the diffusion (7) featured in Section 4.2.
We shall assume Novikov’s condition (21).

Lemma B.1. Consider two processes Xi
t for i = 1, 2 on a filtered probability space (Ω,F , (Ft)t⩾0,P) that solve the SDEs

dX1
t = g(X1

κ(t), ηκ(t))dt+
√
2/βdWt,

dX2
t = g(X2

κ(t), ηκ(t))dt+ utdt+
√
2/βdWt.

where X1
0 , X

2
0 = x0 ∈ Rd, (Wt)t⩾0 is a standard Brownian motion, g : Rd → Rd is a function, κ : [0,∞) → [0,∞)

satisfies κ(t) ⩽ t, (ηt)t⩾0 is a stochastic process independent of (Wt)t⩾0 and ut is a Ft-adapted process. Let the SDE
given for each i = 1, 2 have a unique strong solution, and suppose for T > 0 that

E

[
exp

(
1

2

∫ T

0

|ut|2 dt

)]
< ∞. (21)

Then there exists a measure Q such that the random variable (X1
t )t∈[0,T ] on the probability space (Ω,F , (Ft)t⩾0,Q) is

equal in law to (X2
t )t∈[0,T ] on the probability space (Ω,F , (Ft)t⩾0,P), and furthermore

dQ
dP

= exp

(√
β

2

∫ T

0

⟨us,dWs⟩ −
β

4

∫ T

0

|us|2ds
)
. (22)

15
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Proof. For t ⩾ 0 let us define the new process

W̃t :=

√
β

2

∫ t

0

usds+Wt,

We may now use Girsanov’s theorem to find a measure Q such that (W̃t)t∈[0,T ] is a Brownian motion under Q. Particularly,
under (21) one has by Corollary 5.13, Section 3.5 of Karatzas & Shreve (1991) that

exp

(√
β

2

∫ t

0

⟨us,dWs⟩ −
β

4

∫ t

0

|us|2ds
)
,

is a (Ft)t⩾0-martingale under P, so by Girsanov’s theorem, i.e. Theorem 5.1, Section 3.5 of Karatzas & Shreve (1991), one
has that (W̃t)t∈[0,T ] is a Brownian motion under Q given by (22). Then since one may write

dX1
t = g(X1

κ(t), ηκ(t))dt+
√
2/βdW̃t, X1

0 = x0 ∈ Rd,

and since both SDEs have unique strong solution one sees that (X1
t )t∈[0,T ] defined on the probability space

(Ω,F , (Ft)t⩾0,Q) must be equal in law to (X2
t )t∈[0,T ] defined on (Ω,F , (Ft)t⩾0,P).

B.4. Bounds on Stochastic Integrals

In this section we present two well-known bounds for exponentials of stochastic integrals.
Lemma B.2. Let ut be a (Ft)t⩾0-measurable process such that for some T,K > 0 one has supt∈[0,T ]|ut| ⩽ K. Then

E
[
exp

(∫ T

0

⟨us,dWs⟩
)]

⩽ eTK2/2.

Proof. Since we have that |ut| ⩽ K almost surely, one sees that for every t ⩾ 0

E
[
exp

(
1

2

∫ t

0

|us|2ds
)]

< ∞.

Therefore by Corollary 5.13, Section 3.5 of Karatzas & Shreve (1991) one has that

exp

(∫ t

0

⟨us,dWs⟩ −
1

2

∫ t

0

|us|2ds
)
,

is a martingale. Then using the assumed bound |ut| ⩽ K again one has

E
[
exp

(∫ T

0

⟨us,dWs⟩ − TK2/2

)]
⩽ E

[
exp

(∫ T

0

⟨us,dWs⟩ −
1

2

∫ T

0

|us|2ds
)]

= 1,

at which point the result follows.

Lemma B.3. For ut as in Lemma B.2, one has for any a > 0

P
(∫ T

0

⟨us,dWs⟩ > a

)
⩽ exp

(
− a2

2TK2

)
.

Proof. Let υ > 0 and a ∈ R. By Markov’s inequality

P
(∫ T

0

⟨us,dWs⟩ > a

)
= P

(
exp

(
υ

∫ T

0

⟨us,dWs⟩
)

> eaυ
)

⩽ e−aυE
[
exp

(
υ

∫ T

0

⟨us,dWs⟩
)]

,

so that applying Lemma B.2 one has

P
(∫ T

0

⟨us,dWs⟩ > a

)
⩽ e−aυ+Tυ2K2/2.

The result follows by minimising υ.
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B.5. Proof of Proposition 4.6

Let us fix adjacent datasets D,D′ ∈ S. Then by the assumptions and the version of Girsanov’s theorem presented in
Lemma B.1, one sees that there exists a measure Q under which (XD

t )t∈[0,T ] is equal in law to (XD′

t )t∈[0,T ] under P, that is

PQ
(XD

t )t∈[0,T ]
= P P

(XD′
t )t∈[0,T ]

,

and furthermore
dQ
dP

= exp

(√
β

2

∫ T

0

⟨h(XD
κ(t), ηκ(t)),dWt⟩ −

β

4

∫ T

0

|h(XD
κ(t), ηκ(t))|

2dt

)
,

for
h(x, η) := f(x, η,D)− f(x, η,D′).

Then, Lemmas 4.1 and 4.2 give that DP and Rényi-DP can be obtained by controlling respectively the tails and the moments
of dP

dQ .

Let us first focus on the DP bound. For any δ > 0, let εδ := Tc2β/4 + c
√
βT log(1/δ). Since |h| ⩽ c by assumption, one

has

P
(
dP
dQ

> eεδ
)

⩽ P
(
exp

(
−
√

β

2

∫ T

0

⟨h(XD
κ(t), ηκ(t)),dWt⟩

)
> exp

(
εδ −

β

4

∫ T

0

|h(XD
κ(t), ηκ(t))|

2dt)

))
⩽ P

(
exp

(
−
√

β

2

∫ T

0

⟨h(XD
κ(t), ηκ(t)),dWt⟩

)
> exp

(
εδ −

β

4
Tc2

))
= P

(∫ T

0

⟨−
√

β

2
h(XD

κ(t), ηκ(t)),dWt⟩ > c
√
βT log(1/δ)

)

Now, applying Lemma B.3 for ut = −
√

β
2h(X

D
κ(t), ηκ(t)), which under our assumptions satisfies |ut| ⩽ c

√
β
2 , we find

P
(
dP
dQ

> eεδ
)

⩽ δ.

Finally, Lemma 4.1 gives the wanted (ε, δ)-DP bound.

Now we derive the bound on the Rényi-DP for α > 1. Lemma 4.2 shows that it is sufficient to bound

E
[(

dP
dQ

)α−1]
= E

[
exp

(
β(α− 1)

4

∫ T

0

|h(XD
κ(t), ηκ(t))|

2dt− (α− 1)

√
β

2

∫ T

0

⟨h(XD
κ(t), ηκ(t)),dWt⟩

)]
.

We can bound the first term using that |h(XD
κ(t), ηκ(t))| ⩽ c, while the second term can be dealt applying Lemma B.2 for

ut = (1− α)(β/2)1/2h(XD
κ(t), ηκ(t)). This gives

E
[(

dP
dQ

)α−1]
⩽ exp

(
β(α− 1)

4
Tc2

)
E
[
exp

(∫ T

0

⟨(1− α)

√
β

2
h(XD

κ(t), ηκ(t)),dWt⟩
)]

⩽ exp

(
β

4
Tc2α(α− 1)

)
.

By Lemma 4.2 this implies Rényi-DP with ε = β
4Tc

2α.

B.6. Proof of Proposition 4.5

Let us assume T ⩾ 1, noting that the result holds by Proposition 4.6 for T ⩽ 1. Let us fix adjacent datasets D,D′ ∈ S and
let us define the process (Zt)t∈[0,T ] by

dZt = fD(Zκ(t), ηκ(t))dt+ utdt+
√
2/βdWt, Z0 = x0 ∈ Rd,
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where ut is supported on t ∈ [T − 1, T ] and in particular

ut := [fD′(XD′

κ(t), ηκ(t))− fD(Zκ(t), ηκ(t))− (ZT−1 −XD′

T−1)]1t∈[T−1,T ].

Then, for t ∈ [T − 1, T ] one has

Zt −XD′

t = ZT−1 −XD′

T−1 +

∫ t

T−1

(
fD(Zκ(s), ηκ(s)) + us − fD′(XD′

κ(s), ηκ(s))
)
ds

= ZT−1 −XD′

T−1 −
∫ t

T−1

(ZT−1 −XD′

T−1)ds

= (T − t)
(
ZT−1 −XD′

T−1

)
,

and hence ZT = XD′

T almost surely. Furthermore, since (7) has a unique strong solution for each dataset one has that
Zt = XD

t for t ∈ [0, T − 1] almost surely. Therefore by assumption one has for t ∈ [0, T − 1] that

|Zt −XD′

t | = |XD
t −XD′

t | ⩽ C.

Furthermore note that, for t ∈ [T − 1, T ],

|Zt −XD′

t | = (T − t)|XD
T−1 −XD′

T−1|

⩽ |XD
T−1 −XD′

T−1|
⩽ C.

Hence, for t ∈ [0, T ] one has

|Zκ(t) −XD′

κ(t)| ⩽ C.

Using (8) one may therefore bound

|ut| ⩽ L|XD′

κ(t) − Zκ(t)|+ c+ C ⩽ C(L+ 1) + c.

Now observe that by Lemma B.1, under the measure Q given as

dQ = exp

(√
β

2

∫ T

T−1

⟨ut,dWt⟩ −
β

4

∫ T

T−1

|ut|2dt
)
dP,

one has that

PQ
(Zt)t∈[0,T ]

= P P
(XD

t )t∈[0,T ]
. (23)

Moreover, since ZT = XD′

T almost surely, by (23) one has that

PQ
XD′

T

= PQ
ZT

= P P
XD

T
.

Now, we wish to apply Lemmas 4.1 and 4.2 to obtain the wanted guarantees respectively on the DP and Rényi-DP of
our randomised algorithm. For any δ > 0 and α > 1, let us set εδ = C2/4 +

√
C2 log(1/δ) and εα = αC2/4, where

C2 = β(C(L+ 1) + c)2. Proceeding as in the proof of Proposition 4.6 one may show that

P
(
dP
dQ

⩾ εδ

)
⩽ δ, Dα(P∥Q) ⩽ εα,

which is sufficient to apply Lemmas 4.1 and 4.2.
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C. Proofs for Section 5
C.1. Proof of Theorem 5.2

Let us fix adjacent datasets D,D′ ∈ S and consider two versions (xD
n )n⩾1 and (xD′

n )n⩾1 of the ULA algorithm (12)
targeting πD and πD′ respectively. Let (xD

n )n⩾1 and (xD′

n )n⩾1 be driven by the same sequence (zn)n⩾1 of iid standard
Gaussians. Let us define

en := xD
n − xD′

n ,

so that by the strong monotonicity and L-Lipschitz assumption on ∇K one has

|en − γ∇K(xD
n )− γ∇K(xD′

n )|2 ⩽ (1− 2γa+ γ2L2)|en|2.

Now let us show
0 ⩽ 1− 2γa+ γ2L2 ⩽ 1. (24)

For the lower bound one can show by standard calculus that the minimum value attained for γ > 0 in the above expression
is 1− a2/L2. To see that this is greater than 0, note that by the monotonicity assumption (13), applying Cauchy-Schwarz
one must have

|∇K(x)−∇K(y)| ⩾ a|x− y|,

and therefore one must have L ⩾ a. The upper bound in (24) follows simply by the assumption γ ∈ (0, 2a/L2). Then since√
1− x ⩽ 1− x/2 for x ∈ [0, 1], one may conclude

|en − γ∇K(xD
n )− γ∇K(xD′

n )| ⩽ (1− γa+ γ2L2/2)|en|.

By the assumption that that |∇V |, |∇V ′| ⩽ c, one therefore has that

|en+1| ⩽ |en − γ∇K(xD
n )− γ∇K(xD′

n )|+ |γ∇V D(xD
n )− γ∇V D′

(xD′

n )|
⩽ (1− γa+ γ2L2/2)|en|+ 2γc.

Iterating this bound from n = 0 (since e0 = 0) one obtains for all n ⩾ 1 that

|en| ⩽
2c

a− γL2/2
. (25)

Now let us consider the following interpolation of the ULA algorithm. Let us define κγ : [0,∞) → [0,∞) by κγ(t) :=
γ⌊t/γ⌋, that is, the projection backwards onto {0, γ, 2γ, ...}. Then consider the continuous time process

dXD
t = −∇UD(X

D
κγ(t)

)dt+
√
2dWt, XD

0 = x0 ∈ Rd,

and likewise for D′. It is easy to verify that since the coefficients of the drift are fixed in-between the time-discretisation grid
{0, γ, 2γ, ...}, one has that the law of XD

nγ is equal to the law of (xD
n ), and likewise for D′. Furthermore, since XD

T and
XD′

t are driven by the same Brownian motion, one may apply (25) to conclude that

sup
t⩾0

|XD
κγ(t)

−XD′

κγ(t)
| ⩽ 2c

a− γL2/2
.

So as to satisfy the assumptions of Proposition 4.5 we need to extend this bound from grid points κγ(t) to the whole of
t ⩾ 0. To see this note that

XD
t −XD′

t = XD
κγ(t)

−XD′

κγ(t)
− (t− κγ(t))[∇UD(X

D
κγ(t)

)−∇UD′(XD′

κγ(t)
)], (26)

and furthermore for arbitrary x, y ∈ Rd and t > 0, if one defines

f(t) := |x+ yt|2 = |x|2 + 2t⟨a, y⟩+ t2|y|2,

then since f ′′ > 0 the function f cannot have a local maximum anywhere. Therefore

sup
t∈[a,b]

f(t) ⩽ max{f(a), f(b)}.
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Applying this principle to (26) one sees that

sup
t⩾0

|XD
t −XD′

t | ⩽ 2c

a− γL2/2
.

Therefore one sees that the assumptions of Proposition 4.5 are satisfied for L, c > 0 as in the Proposition, and C = 2c
a−γL2/2 ,

and the result therefore follows by choosing T = nγ

C.2. Proof of Theorem 5.6

As in the proof of Theorem 5.2, for adjacent data D = (d1, ..., dm),D′ = (d′1, ..., d
′
m) we show that xD

n and xD′

n are almost
surely close. The strategy here is essentially the same. Letting en := xD

n − xD′

n as before, one has∣∣∣∣∣en − γ

s

∑
i∈An+1

(∇k(xD
n )−∇k(xD′

n ))

∣∣∣∣∣
2

= |en|2 − 2
γ

s

∑
i∈An+1

⟨en,∇k(xD
n )−∇k(xD′

n )⟩

+

∣∣∣∣γs ∑
i∈An+1

(∇k(xD
n )−∇k(xD′

n ))

∣∣∣∣2,
so that since by the Lipschitz assumption and the fact An+1 ⊂ {1, 2, ...,m} is of size s, one obtains∣∣∣∣γs ∑

i∈An+1

(∇k(xD
n )−∇k(xD′

n ))

∣∣∣∣ ⩽ γL|en|.

Then applying the convexity assumption one obtains

|en − γ

s

∑
i∈An+1

(∇k(xD
n )−∇k(xD′

n ))|2 ⩽ (1− 2a+ L2γ2)|en|2, (27)

so that since as before one has 0 ⩽ 1− 2a+ L2γ2 ⩽ 1, one may square root to see that

|en+1| = |en − γ

s

∑
i∈An+1

(∇k(xD
n )−∇k(xD′

n ))|2 + γ

s

∑
i∈An+1

|∇xv(x
D
n , di)−∇xv(x

D′

n , d′i)|, (28)

so that using the assumption |∇xv(·, ·)| ⩽ c one sees that the bound (25) from before also holds in this setting.

Now let us find a continuous time interpolation of the SGD process (15). For the stochastic gradient we consider the process
(ηt)t⩾0 given for n ∈ N and t ∈ (nγ, (n+ 1)γ) as ηt = An+1, where (An)n⩾1 is the sequence of i.i.d. random variables
uniformly distributed on subsets of size s ⩽ m of {1, 2, ...,m}. Then for every data D = (x1, ..., xm) one may define the
process (Y D

t )t⩾0 as the solution to the SDE

dY D
t = −1

s

∑
i∈ηt

∇xℓ(Y
D
κγ(t)

, di)dt+
√
2/βdWt, (29)

where κγ is the backwards projection to {0, γ, 2γ, ...} as in the proof of Theorem 5.2. Then it is easy to verify that the law
of Y D

nγ is equal to the law of xD
n , at which point one can use the strategy from the proof of Theorem 5.2 to obtain that

sup
t⩾0

|Y D
t − Y D′

t | ⩽ 2c

a− γL2/2
,

at which point as before the result follows from Proposition 4.5, paying attention to the value of β > 0 assumed in the
definition (15) of the SGD algorithm.

C.3. Proof of Theorem 5.7

Here we modify slightly proof of Theorem 5.6 previously. Specifically, note that if D = (d1, ..., dm) and D′ = (d′1, ..., d
′
m)

are adjacent then only one of their entries is different, that is there exists i ∈ {1, 2, ...,m} such that di ̸= d′i, however for
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j ∈ {1, 2, ...,m} such that j ̸= i one has dj = d′j . Therefore, since we have assumed vθ(·, d) to be constant for every
d ∈ D, one may bound

γ

s

∑
i∈An+1

|∇xv(x
D
n , di)−∇xv(x

D′

n , d′i)| ⩽
2cγ

s
,

and therefore using (27) and (28) one has that

|en+1| ⩽ (1− γa+ γ2L2/2)|en|+
2cγ

s
,

and as a result
sup
n⩾1

|en| ⩽
2c

s(γL2/2− Y)
.

Then extending this bound to the continuous interpolation (29) as in the proofs of Theorems 5.2 and 5.6, and applying
Proposition 4.5 as before, the result follows.

C.4. Proof of Theorem 5.8

The proof here is very simple: note that the assumptions imply that for every pair of adjacent datasets D,D′ and x ∈ Rd,
since An+1 is a subset of size s ⩽ m of {1, 2, ...,m}, one has D = (d1, ..., dm), D′ = (d′1, ..., d

′
m) that differ in only one

element, so ∣∣∣∣∣∣1s
∑
i∈ηt

∇xℓ(x, di)−
1

s

∑
i∈ηt

∇xℓ(x, d
′
i)

∣∣∣∣∣∣ ⩽ c/s.

Therefore one may apply Proposition 4.6 to (29), and then since the law of (Y D
0 , Y D

γ , ...Y D
nγ) is equal to the law of

(xD
0 , ..., x

D
n ) and (Y D

0 , Y D
γ , ...Y D

nγ) is equal to a mapping from (Yt)t∈[0,nγ], the result follows from the data processing
inequality (see Theorem 9 in van Erven & Harremos (2014)).
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