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Abstract

Contrastive Language-Image Pretraining (CLIP) models excel at understanding
image-text relationships but struggle with adapting to new data without forgetting
prior knowledge. To address this, models are typically fine-tuned using both new
task data and a memory buffer of past tasks. However, CLIP’s contrastive loss
suffers when the memory buffer is small, leading to performance degradation on
previous tasks. We propose a memory-efficient, distributionally robust method that
dynamically reweights losses per class during training. Our approach, tested on
class incremental settings (CIFAR-100, ImageNet1K) and a domain incremental
setting (DomainNet) adapts CLIP models quickly while minimizing catastrophic
forgetting, even with minimal memory usage.

1 Introduction

In dynamic environments, machine learning systems must continuously learn and adapt to new
information. Continual learning (CL) allows models to acquire new skills while retaining knowledge
from past tasks, which is essential as data evolves over time. While there is extensive research
on addressing the challenge of catastrophic forgetting in traditional supervised models, most meth-
ods—such as parameter regularization, knowledge distillation, and dynamic architectures—have not
been applied to models like CLIP, which excel at understanding image-text relationships.

CLIP models need CL to adapt to real-world data streams. However, CL with CLIP models is
still under-explored. Recent works, such as those by [[15] and [6]], have shown promising results
in mitigating forgetting through rehearsal-based approaches and memory buffers. Despite these
advances, a key question remains: how can we efficiently leverage memory buffers in CLIP’s CL to
balance new and old task performance?

Our study addresses this by proposing two approaches: one treats old and new data equally during
fine-tuning, while the other dynamically reweights class losses using Distributionally Robust Opti-
mization (DRO). We evaluate these methods in class-incremental and domain-incremental settings,
demonstrating improved retention of past knowledge and efficient adaptation to new tasks with
minimal memory requirements.
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2 Related Works

Continual Learning There are many approaches to address catastrophic forgetting. One approach is
through replay methods, which update models with a combination of new task data and examples
from previous tasks stored in a memory buffer. While effective, maintaining these buffers increases
computational costs and poses challenges under privacy constraints. Generative replay methods
attempt to mitigate this by synthesizing prior task data, though their success depends on the quality
of the generated examples. Dynamic model expansion is another technique, where architectures are
extended after each task. For example, [17] trains a new model per task, which avoids forgetting
but is impractical for large models. [16] reduces memory usage by retaining the previous model for
distillation, while [[19] only expands specific network blocks. Knowledge distillation (KD) is another
approach, transferring knowledge from previous tasks to a target model. Methods like [14, [1} 5]
utilize predictions from prior models as pseudo-labels for training on current tasks.

Contrastive Pretraining In the realm of self-supervised learning (SSL), contrastive learning has
emerged as a key technique. Unimodal methods like [2| [18] create positive pairs from augmented
input data, while bimodal methods such as CLIP [[13} [18] treat different modalities (e.g., image
and caption) as positive pairs. Unimodal methods like [1]] adapt pretrained models using memory
banks, while [S]] uses SSL objectives for cross-task knowledge transfer. Bimodal methods, like CLIP,
have shown strong performance in both zero-shot and fine-tuning settings [[15}[7]], and recent studies
explore their potential in continual learning contexts [[L5} 6} [1} 4} [10].

3 Methods

Notation. Let Fy, E5 denote the image encoder and text encoder respectively, parameterized by
w. A datasets D consists of 7 tasks where each task contains a subset of the dataset Dt where
D' N D" =0,Vt # tand N, = |D'|.

Class Incremental Learning In class incremental learning, new tasks come with new classes. The
ultimate goal is to continually build a classification model for all classes. In other words, the model
should not only acquire the knowledge from the current task D! but also preserve the knowledge
from former tasks. After each task, the trained model is evaluated over D}, ,; = {(x;,v:)}, ¥i €
V; = Y7 U...Y; and all the previously measured task DY, ., = {(x;,v:)}, forb=1,....t — 1

Domain Incremental Learning In domain incremental learning, the goal is to update a model given
some new data from another domain with the same set of labels. After being trained on tasks ¢, the
model is evaluated on DY, ., = {(xi,y:)}, yi € Yz

3.1 Bimodal Contrastive Continual Learning

CLIP models, as shown in recent studies [[13} 18], possess the ability to process both image and text
inputs by learning a joint embedding across modalities. Their impressive performance on image tasks
without task-specific training is largely due to the contrastive learning objectives used during training.
Moreover, encoding labels with the text encoder further boosts classification performance [7].

Building on CLIP models’ ability to jointly encode labels and images improves resistance to catas-
trophic forgetting and enhances adaptability to new data. To extend CLIP for CL, we propose a
bimodal contrastive learning objective tailored to the class-incremental setting. The contrastive
objective during each task is defined as:

Loontrastive = — L Z log exp((By(wi, x:) " Ex(wi, i) /7)
contrastive Nt + ‘Mt‘ x; EDTUM, ZijDtth eXp((El (Wt, Xi)TEQ(Wt7 yj))/T) (1)
— 1 Z log exp((Ba(we, yi) " E1(we, %)) /7)
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Here, D; represents data for the current task, and M; is a memory bank storing past task samples.
Labels y; are encoded as text using E5. To address computational constraints, we maintain a constant
memory size, keeping an equal number of randomly sampled examples per class.



A key challenge in optimizing this objective arises from the summation over the entire dataset for
contrastive terms:

gr(w,x;, D' UM") = Z exp((By(wi,%;)" Ea(wi,y;))/T) @
y; ED UM,

gr(w,yi, D'UMY) = " exp((Ba(wi,yi) " Er(we,x;))/7) ©)
xJ'GDtUMt

To reduce the computational cost, we use moving average estimators u! and u? for g; and g7. The
gradient estimator is then computed using a mini-batch B as:

m= g Z V(B (Wi, %) Ea(wi, yi))+
x;€EB

This method, which maintains a moving average across tasks, allows information from prior tasks to
carry forward, enhancing CL. We call this approach the Global Contrastive Loss (GCL).

=7 V91(W, %, B)+ =——=Vgr(w,yi, B) (4)
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3.2 Group Distributionally Robust Optimization

Due to the fixed memory size, after completing each task, we reduce the number of examples per
class to accommodate new ones. This leads to an imbalance between previous and current task data
distributions. While our Global Contrastive Loss (GCL) is effective for standard classification tasks,
it doesn’t handle these imbalances well. To address this, we introduce a group distributionally robust
objective (DRO) that assigns greater weight to classes with higher losses during training.

We first define a contrastive loss for a specific class k as:

nk

1
hy = I (1log g1(w,x;, D' UM?") + 7log ga(w,y;, D' UM?)) (5)
A

where g; and g9 are computed for negative samples and are influenced by a pairwise squared hinge
loss. This formulation improves learning, especially in the context of partial AUC loss [20].

The group DRO objective is then min,, maxpea Zfito prhi — AKL(p, 1/K}) or equivalently,

1 & h
mln/\log— Zexp ( ;) 6)

This objective increases the weight for harder classes (those with higher losses) to reduce the
imbalance.

In its compositional form, the DRO involves nested functions, making gradient estimation challenging.
To address this, we apply a method from Stochastic Compositional Optimization, maintaining moving
average estimators for the loss terms and contrastive components. These estimators allow us to
efficiently compute the gradient using mini-batches:

1 Ue,, 1
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This approach ensures robust handling of imbalanced data distributions while efficiently optimizing

the DRO objective.

4 Experiments

In this section, we evaluate the effectiveness of the two methods referred to as GCL and GDRO in
the class and domain incremental learning setting. For each of our experiments, we begin with a
pretrained CLIP model [3}8]]. Our experiments are written in PyTorch [11]] and are run on 4 NVIDIA
RTX A5000 GPUs.



Algorithm 1 The GDRO Method for Continual Learning of CLIP models

1: Setu® = 0, v° = 0 and initialize w

2. fort=1,...,7T do

3:  Sample a batch B

4:  For each class ¢;, € B, sample a minibatch of data points denoted by 5.

5. For each ¢ € B,, update ui(]) =(1- fy)ui(j_l) +vg1(w,x;, Dt U M?)
6:  For each ¢;, € B., update u;f(]) =(1- w)ug(rl) + g2 (W, y;, Dt U M?)
7 )
8

9

For each ¢;, € B,., update ug) =(1- y)ugfl + vhi

Let o) = (1= 7)ol=0 4 4% 31 exp (HT’“)
Compute a gradient estimator V; by

1 cn 1 1 1
i1 % o (5 am X (v i)
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10:  Updatev; = (1 — B1)vj—1 + 51V
11:  Update w; 1 = w; — v, (or Adam-style)
12: end for

4.1 Datasets

We consider two class incremental datasets, namely CIFAR-100 and ImageNet. For domain incremen-
tal learning we evaluate our methods on DomainNet [[12] which consists nearly 0.6 million images
from 6 domains with 345 imbalanced classes.

4.2 Evaluation

We measure the performance of a model by its ability to perform on the current task and the previous
tasks that it has been previously trained on. In this section, we describe the metrics used throughout our
experiments to evaluate our method. To show the learning process, after each stage, the trained model
is evaluated over all classes that have already been trained, i.e., the t-th test set Df, ., = {(x;, i)}

y; € Yy = Y1 U...Y;. Denoted by A; the accuracy evaluated on D}, , after stage .

4.3 Baselines

In our image experiments, we evaluate various baseline methods using a pretrained CLIP model
with a VIT-B/16 vision encoder, starting with a zero-shot performance assessment to gauge prior
knowledge. Our goal is to outperform this baseline with methods compared against benchmarks such
as EWC [9], DER [19], iCaRL [14]], Co2L [1], and FOSTER [16], all utilizing the same pretrained
encoder. Some dynamic expansion methods were omitted due to computational constraints.

For domain-incremental experiments on image datasets, we compare our approach with CaSSLe [3],
focusing on the supervised contrastive objective for optimal results.

We ensure fair comparison by using consistent weight decay, batch size, and optimizer settings
across methods, while fine-tuning the learning rate and number of epochs. For our DRO method, we
additionally tune hyperparameters such as y, A, and the margin. We also vary memory sizes to test
the effectiveness of our methods under different conditions.

4.4 Class Incremental Learning

ImageNet1k Data We further test our approach on the ImageNet1K dataset, splitting it into 10 tasks
with 100 classes each. Due to the larger number of classes, we evaluate the methods with larger
memory sizes. A finetuning baseline is also included, where the model is trained on all available data
to establish an upper performance bound. Results are illustrated in Figure [I]

Our methods significantly outperform others across all memory sizes. Notably, unimodal contrastive
approaches like Co2L [1]] experience a sharp performance drop as memory size decreases. This is
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Figure 1: We report the mean and standard deviation of incremental learning curve accuracy over 3
runs on ImageNetlk at different memory sizes.

because Co2L relies on a self-supervised contrastive objective and requires labeled data from the
memory bank for downstream tasks, which is limited when memory size is small.

CIFAR-100 Data We evaluate our method in a class-incremental learning (CIL) setting on the
CIFAR-100 dataset, which is split into 10 tasks of 10 classes each. We assess performance across
various memory sizes and report the accuracy after the final task. In addition, we compare our GDRO
method with a baseline where finetuning is done solely with cross-entropy loss at each new task.
Results are shown in Figure[I]

As memory size decreases, our method performs comparably to zero-shot evaluation, indicating
that while some forgetting occurs, our method maintains solid performance as it progresses through
tasks. When comparing the contrastive method with the DRO method, we observe that the contrastive
method performs better with larger memory sizes, but its performance drops significantly when no
memory is available. In contrast, the DRO method maintains more stable performance under memory
constraints.

4.5 Domain Incremental Learning

We evaluate our methods in the domain incremental learning (DIL) setting, beginning with the
image-based DomainNet dataset. Accuracy is assessed after each task as performance on all prior
tasks, and we also report the model’s zero-shot performance before any training. Results are shown
in Figure[T]

Both of our methods outperform the baseline zero-shot results. As seen in our CIL experiments,
contrastive CL methods like CaSSLe [S] struggle to retain knowledge from previous tasks due to
the absence of a memory bank, as it relies on a self-supervised objective at each step. In contrast,
our DRO objective outperforms the GCL method after completing all tasks, demonstrating better
retention and adaptability.

5 Conclusion and Discussion

We propose two methods using bimodal contrastive learning to jointly embed labels and input data
for CL. The first incorporates label embeddings with a memory buffer to retain past task knowledge,
while the second dynamically reweights harder examples to address class imbalance in the buffer.

Using a pretrained CLIP vision encoder, we evaluate these methods in class-incremental and domain-
incremental learning on image datasets. Our contrastive method excels with a larger memory buffer,
while dynamic reweighting proves most effective with a smaller buffer.

The results show that embedding both input data and labels reduces forgetting more effectively than
linear classifiers. Reweighting classes enhances retention, especially with limited memory, highlight-
ing the benefits of multimodal learning and adaptive weighting for CL in dynamic environments.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Hyuntak Cha, Jacho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings
of the IEEE/CVF International conference on computer vision, pages 9516-9525, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597-1607. PMLR, 2020.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws
for contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2818-2829, 2023.

Yawen Cui, Zitong Yu, Rizhao Cai, Xun Wang, Alex C. Kot, and Li Liu. Generalized few-shot
continual learning with contrastive mixture of adapters, 2023.

Enrico Fini, Victor G Turrisi Da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari,
and Julien Mairal. Self-supervised models are continual learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9621-9630, 2022.

Saurabh Garg, Mehrdad Farajtabar, Hadi Pouransari, Raviteja Vemulapalli, Sachin Mehta, Oncel
Tuzel, Vaishaal Shankar, and Fartash Faghri. Tic-clip: Continual training of clip models, 2024.

Sachin Goyal, Ananya Kumar, Sankalp Garg, Zico Kolter, and Aditi Raghunathan. Finetune like
you pretrain: Improved finetuning of zero-shot vision models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 19338-19347, 2023.

Ryan King, Tianbao Yang, and Bobak J Mortazavi. Multimodal pretraining of medical time
series and notes. In Machine Learning for Health (ML4H), pages 244-255. PMLR, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521-3526, 2017.

Jiyong Li, Dilshod Azizov, Yang Li, and Shangsong Liang. Contrastive continual learning with
importance sampling and prototype-instance relation distillation, 2024.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1406-1415, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001-2010, 2017.

Vishal Thengane, Salman Khan, Munawar Hayat, and Fahad Khan. Clip model is an efficient
continual learner, 2022.

Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and
compression for class-incremental learning. In European conference on computer vision, pages
398—414. Springer, 2022.



[17]

[18]

[19]

[20]

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3014-3023, 2021.

Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, and Tianbao
Yang. Provable stochastic optimization for global contrastive learning: Small batch does not
harm performance. In International Conference on Machine Learning, pages 25760-25782.
PMLR, 2022.

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars:
Towards memory-efficient class-incremental learning. arXiv preprint arXiv:2205.13218, 2022.

Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, and Tianbao Yang. When AUC meets
DRO: optimizing partial AUC for deep learning with non-convex convergence guarantee. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvdari, Gang Niu, and Sivan
Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages
27548-27573. PMLR, 2022.



	Introduction
	Related Works
	Methods
	Bimodal Contrastive Continual Learning
	Group Distributionally Robust Optimization

	Experiments
	Datasets
	Evaluation
	Baselines
	Class Incremental Learning
	Domain Incremental Learning

	Conclusion and Discussion

