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Abstract: Acquiring food items with a fork poses an immense challenge to a
robot-assisted feeding system, due to the wide range of material properties and
visual appearances present across food groups. Deformable foods necessitate
different skewering strategies than firm ones, but inferring such characteristics for
several previously unseen items on a plate remains nontrivial. Our key insight is to
leverage visual and haptic observations during interaction with an item to rapidly
and reactively plan skewering motions. We learn a generalizable, multimodal
representation for a food item from raw sensory inputs which informs the optimal
skewering strategy. Given this representation, we propose a zero-shot framework to
sense visuo-haptic properties of a previously unseen item and reactively skewer it,
all within a single interaction. Real-robot experiments with foods of varying levels
of visual and textural diversity demonstrate that our multimodal policy outperforms
baselines which do not exploit both visual and haptic cues or do not reactively
plan. Across 6 plates of different food items, our proposed framework achieves
71% success over 69 skewering attempts total. Supplementary material, datasets,
code, and videos can be found on our website.
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1 Introduction
Realizing the full capabilities of assistive robots in the home, hospitals, or elderly care facilities
remains challenging due to the dexterity required to complete many day-to-day tasks. Eating free-
form meals is one such example with many nuances in perception and manipulation that can be easy
to overlook. However, automating the task of feeding, one of six essential activites of daily life
(ADL) [1], has the potential to improve quality of life for over one million people in the U.S. who are
unable to feed themselves due to upper-extremity mobility impairment, their caregivers, families with
young children and elders, and anyone impacted by the substantial time and effort required in meal
preparation and feeding [2, 3, 4].

In recent years, there have been significant efforts to tackle the challenging problem of robot-assisted
feeding. Solutions on the market have limited traction as they rely heavily on pre-programmed
trajectories, pre-specified foods, have limited autonomy, or require manual utensil interchange [5, 6].
Meanwhile, academic research on assistive feeding largely centers around data-driven methods but
has yet to show widespread generalization across food groups [7, 8, 9, 10]. As a necessary first step
towards feeding, we focus on the problem of bite acquisition — acquiring bite-sized items from
a plate or bowl — using a robot with a fork-equipped end-effector. Developing a bite acquisition
strategy sensitive to differences in geometry and deformation both across and within food classes is
a challenging problem: Skewering position and orientation matters for items with irregular shape,
such as a broccoli floret where skewering at the stem is preferable to the head for stability of the
acquisition. The fragility of food also affects the optimal skewering strategy, as delicate items such
as thin banana slices are more likely to slip off a fork oriented vertically and instead benefit from
an angled fork insertion and scooping strategy [11]. On the other hand, hard baby carrots require
a vertical insertion angle for effective and stable acquisition [11]. In addition, instances within the
same class of foods can also exhibit visual similarity but textural contrast (raw vs. boiled carrots,
silken vs. extra firm tofu, cheddar vs. mozzarella cheese); choosing the optimal skewering strategy
therefore depends on more than just vision.

Prior works show that food classification objectives can lead to visual features that can be used for
downstream policy learning [7, 8, 9]. They also introduce an action taxonomy for skewering to
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Figure 1: Left: Our method learns zero-shot skewering of food items with a Franka Panda robot. Given an
overhead plate observation, we localize food items and probe them to reveal haptic and visual data. Using the
multimodal data as input, HapticVisualNet infers the optimal skewering trajectory on the fly – angled skewering
for soft items like banana slices, or vertical skewering for firm textures such as a broccoli stem.

discretize the complex space of possible acquisition trajectories [7, 8, 9, 12, 13]. Although these
visual-only skewering strategies are able to classify food with different geometry, they lack critical
information about deformation and may fail to differentiate between foods within the same food class
that appear similar but have drastically different properties, such as boiled and raw carrots.

Preliminary experiments suggest that a boiled carrot requires the fork to skewer the item at an angle to
avoid breakage or dropping during acquisition, whereas a rigid carrot requires a more forceful vertical
approach to pierce the item. Gordon et al. [10] try to address this issue by leveraging post-hoc haptic
feedback to update a visual policy after skewering. This work requires multiple trials of interaction
per unseen food item to reason about item deformation through haptic feedback. However, repeated
skewering attempts can easily damage fragile items (e.g. overcooked carrots or thin slices of banana)
and potentially change the properties of the food, leading to breakage or squishing over multiple
robot interactions. These repeated interaction strategies do not scale to unseen food classes either,
for the same reasons. On the other hand, open-loop strategies that do not adapt skewering plans
mid-motion are also limited in their ability to handle unseen items with unknown properties.

Therefore, bite acquisition methods should be able to zero-shot generalize to new foods both within
and across food classes, just like how humans skewer bites of food without the need for multiple
interactions with the food.

Our key insight is to jointly fuse haptic and visual information during a single skewering interaction to
learn a more robust and generalizable food item representation. We develop a bite acquisition system
along with a visuo-haptic skewering policy that leverages this learned representation. The proposed
representation informs the skewering policy of both geometry and deformation food properties on-
the-fly, thus enabling a reactive policy which zero-shot generalizes to unseen plates of food within
and across food classes. Our experiments with a wide range of food items with varying geometry
and deformability demonstrate that our method outperforms those that (1) do not jointly use haptic
and visual cues and (2) do not reactively plan upon contact, achieving 71% skewering success across
21 items total. Our contributions include:

• A skewering system that employs coarse-to-fine visual servoing to approach a food item, sense
multimodal properties upon contact, and reactively plan skewering in the same continous interaction

• A zero-shot skewering policy that captures geometry and deformation by fusing visual and haptic
information with demonstrated generalization to unseen food items

• Experimental validation on diverse seen and unseen food items, with varying degrees of visual
likeness and deformation

• An open-source dataset for multimodal food perception and custom end-effector mount designs,
which we hope expands the scope of assistive feeding research
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2 Related Work
We build on prior works studying multisensory robot learning both within and beyond the food
domain. In this section, we will discuss related work in robot-assisted feeding, food manipulation,
and more generally multimodal robotic perception and manipulation.

Robot-Assisted Feeding Feeding can be split into two stages: bite acquisition and bite transfer.
Previous work in bite transfer — transferring an acquired bite to a user’s mouth for consumption
— suggests that transfer is largely contingent upon acquisition [14, 7, 13]. To enable reliable bite
acquisition and thus transfer, recent acquisition frameworks combine image-based perception [7,
8, 9, 10, 13] — bounding boxes and food pose estimates — with an action space consisting of
parameterized primitives that modulate fork roll/pitch relative to item geometry. SPANet (Skewering
Position Action Network) [8] is one such forward model mapping food image observations to
actions, which has been shown to reasonably clear plates containing 16 types of fruits and vegetables.
SPANet is trained on 2.5K fork interactions (81 hours of supervision [9, 8]) which does not readily
scale to new foods. Follow-up works aim to rapidly adapt SPANet to unseen food items using a
contextual bandit to learn the optimal primitive selection strategy from real interactions. Approaches
include updating SPANet predictions online by observing the binary outcome of acquisition attempts
on unseen items [9], and additionally haptic time-series readings recorded post-hoc [10]. A key
assumption in [10] is that the visual context observed pre-skewer and the haptic context observed
post-hoc are equivalent alternate representations for the underlying food state, which does not always
hold (e.g., firm and soft tofu appear to be almost identical but yield different haptic readings). In our
work, we do not restrict ourselves to this assumption and consider the more general setting where
visually similar items may have different physical properties. In addition, we do not assume access to
repeated interaction trials with the food, and consider a zero-shot planning setting. Bhattacharjee
et al. [12], Song et al. [15] explore classifying food compliance or skewering outcomes from haptic
data from a single interaction, but delegate reactive planning given these representations to future
work. To address these gaps, we learn a multisensory policy that learns zero-shot skewering from
pre-skewer and post-contact paired images and haptic readings.

Food Manipulation Recent simulated benchmarks for household food manipulation explore food
preparation, lunch packing, and food storage [16]; pouring water [17]; pile manipulation for chopped
food [18]; and drinking/feeding [19]. While these works largely abstract away the state space of
food, recent work in real robotic food slicing explores multimodal food representation learning from
interaction using datasets consisting of paired visual, tactile, and audio information [20, 21, 22, 23, 24].
In particular, Gemici and Saxena [20] propose to infer haptic properties (‘brittleness’, ‘tensile
strength’, ‘plasticity’, etc.) from probing actions that can inform slicing actions, but does not consider
visual properties. Likewise, Zhang et al. [25] use vibrations from probing interactions to adapt
slicing motions. The learned haptic representations from these work are not directly transferable to
acquisition due to hardware and task differences, but we adopt the notion of using probing actions to
inform skewering in our work.

Integrating Vision and Haptics in Robotics Vision-only manipulation has proven effective in
robotic domains such as semantic grasping [26, 27] and deformable manipulation [28], but contact-
rich tasks such as peg insertion [29] or robotic Jenga [30] have been shown to benefit from combining
vision, force, and proprioception as inputs to a learned policy [31, 32]. In light of these works, we
propose to learn reactive, visuo-haptic policies for bite acquisition which remains largely unexplored.

3 Method
Our goal is to learn a multisensory manipulation policy which outputs skewering actions to clear a
plate of bite-sized food without any previous skewering attempts for this food item. We consider
foods of varying degrees of geometric, visual, and textural similarity, all on the same plate. We
first formalize the bite acquisition setting in Section 3.1 and introduce our action space to tackle the
problem in Section 3.2. Next, we discuss our interaction protocol for sensing visuo-haptic properties
of food (Section 3.3), enabling us to learn a multimodal skewering policy (Sections 3.4-3.5).

3.1 Problem Formulation
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Figure 2: Skewering action space:
fork pitch �, roll �, and position
(x, y, z).

At each timestep t 2 1, . . . , T , we assume access to a the current
RGB-D image observation It 2 RW⇥H⇥C of a plate of food and
an N -length history of haptic readings Ht 2 RN⇥6, denoting 6-axis
readings from an F/T sensor on a fork-mounted end-effector. Similar
to prior work, we consider an action space parameterized by fork
(x, y, z) position, roll �, and pitch �. We define an action at 2 A,
visualized in Fig. 1, as follows [9, 10]:

at = (x, y, z,�z, �,��) (1)

At time t, the fork starts in position (x, y, z) with pitch � = 0�

and roll � and moves downward �z < 0 while optionally tilting
�� � 0� to skewer an item (Figure 2).

We use lt[at] 2 {0, 1} to denote the binary loss of executing action at, where lt[at] = 1 denotes
failure, for example food failing to be picked up, slipping off the fork after skewering, or breakage or
damage as a result of skewering. We opt for a binary loss objective as it is difficult to quantify more
nuanced notions of success such as degree of damage to an item or stability of a skewer.

We aim to learn a policy ⇡✓(at | It, Ht) that minimizes
P

T

t
lt[at] given no previous interactions.

Our policy learns to map visual and haptic information to a discrete set of skewering primitives using
a small but diverse labelled dataset that can be collected offline. By conditioning the policy on haptic
readings during a short initial contact period with the the food item, our method HapticVisualNet can
extract food properties that are inaccessible to vision using only a single skewering interaction. First
we outline how we represent the discrete set of primitives for skewering.

3.2 Skewering Action Primitive Parameterization

To successfully skewer a food item, the fork position and roll must align with the location and
orientation of a food item. The fork pitch must also adapt to the compliance of a food item (i.e.
a soft banana slice favors an angled fork approach to prevent slip, while a raw carrot favors a
vertical approach for piercing). Thus, our action space employs two primitives, vertical skewer
or angled skewer, to account for rigid or compliant items, respectively. We implement vertical
skewer with �� = 0�, denoting no tilt during skewering, and angled skewer with �� > 0�,
where the fork gradually tilts from vertical to an angled approach during insertion into a fragile food
item (Figure 2). Prior work includes both angled and vertical skewering strategies amongst an even
larger set of primitives, but we empirically find that our simplified taxonomy reduces redundancy
in this larger action space and can handle an equivalently broad range of food items, evaluated in
Section 4 [8, 10]. In order to decide between these strategies on-the-fly, we condition our policy not
only on visual information but also on haptic information at the point of contact with the food item,
discussed in the next section.

3.3 Sensing Multimodal Data Via Probing

We introduce a probing motion to obtain visuo-haptic information about a food item by bringing the
fork in contact with the item surface but without actually skewering it. The multisensory information
collected from probing serves as input to ⇡✓ which rapidly decides the skewering primitive to execute.
Between the probing and skewering phases, the fork remains stationary and in constant contact with
the food item, thus enabling a fluid transition between phases.

Our probe-then-skewer approach requires localizing an item and approaching with precision so as
to not accidentally shift or topple it while making contact. To accomplish this, we first detect items
from a plate image using a pre-trained RetinaNet food bounding box detector from Gallenberger et al.
[7]. Similar to prior work, we also train a network (SkeweringPoseNet) which refines the estimated
item location by predicting a keypoint for the item center within the local bounding box, and a fork
roll angle �̂ with which to approach [8]. We can obtain the 3D predicted item location (x̂, ŷ, ẑ) in
robot frame by using depth information. Next, we continuously servo to the item using a learned
model (ServoNet) which detects the fork-item offset as keypoints from streamed RGB images. Using
this framework, we probe a food item and record a post-contact image observation It and the short
window of force magnitude readings Ht. In Section 3.4, we discuss how these multisensory readings
inform the optimal skewering strategy.
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3.4 Multimodal Representation and Policy Learning

To learn ⇡✓(at | It, Ht), we propose HapticVisualNet, a network which takes observations captured
by the probing motion and reactively outputs the appropriate skewering action. HapticVisualNet takes
as input a post-contact image of a food item It 2 RW⇥H⇥3 and Ht, the force magnitude readings
recorded from the F/T sensor during the first N milliseconds of contact in the initial probing period.

HapticVisualNet maps (It, Ht) to an |A|-d vector denoting the likelihood of success for each action
primitive, in our case vertical skewer and angled skewer. The model first encodes visual
information and haptic information separately, and then concatenates these features to produce
a joint visuo-haptic representation. The policy then predicts action success likelihood from this
representation. We implement HapticVisualNet as a multi-headed network with a ResNet-18 backbone
for the visual encoder and a LSTM for the haptic encoder. We pass the concatenated visual and
haptic encodings to a linear layer followed by a softmax to obtain primitive successes, and choose the
maximum likelihood predicted primitive as the skewering action.

3.5 Training and Data Collection

We train HapticVisualNet on a small but diverse dataset of 300 paired post-contact images and haptic
readings, augmented 8x using image affine and colorspace transforms as well as temporal scaling and
shifting of the haptic readings. The dataset consists of hard items labeled vertical skewer (raw
carrots / broccoli / zucchini / butternut squash, grapes, cheddar cheese, and celery) and soft items
labeled angled skewer (banana, kiwi, ripe mango, boiled carrots / broccoli / zucchini / butternut
squash, avocado, and mozzarella cheese).

In practice, we use an N = 26 ms. contact window of haptic readings, from the initial probing
period, which we find adequately captures force-surface interactions. Using a 20-30 ms. window of
contact is also a common choice of haptic representation in other reactive, contact-rich manipulation
settings [29, 10]. For each paired example, we manually assign the optimal primitive label —
vertical or angled skewer — based on whether the annotator considers the item hard or soft.
This process requires 3 hours of data collection and labeling time total (a 27x reduction from the
81 hours reported in SPANet [10]), and without the need for actual skewering attempts during data
collection. We intend for the inclusion of haptic data to prevent overfitting to visual features, enabling
a more generalizable, food representation trained with greater sample efficiency. Both ServoNet
and SkeweringPoseNet are implemented using a ResNet-18 backbone, each trained on 200 images
of the same items (2 hours of supervision) and augmented to a dataset of 3,500 paired images and
annotations. Additional training and implementation details are in Appendix C.

In summary, our method leverages offline datasets to learn visuo-haptic features to more robustly
predict between a set of discrete skewering actions. The probing motion used to obtain haptic
information is connected seamlessly to the chosen skewering motion, leading to one continuous and
adaptive zero-shot skewering policy aware of haptics and vision.

4 Evaluation

Figure 3: 6 Plates for Evaluation, covering a wide range of foods. From left to right: 1: Raw banana, broccoli,
zucchini, carrot, grapes, cucumber. 2 (Unseen): Raw pineapple, mango, dragonfruit, canteloupe, honeydew,
pear. 3: Raw butternut squash, boiled butternut squash. 4: Raw broccoli florets. 5 (Unseen): Pasta, dumpling,
boiled yam/sweet potato, raw yam/sweet potato. 6 (Unseen): Ice cream mochi, snow peas, canned peaches.

In this section, we seek to evaluate (1) the benefits of combining both vision and haptics for bite
acquisition as opposed to only using a subset of modalities, (2) the effectiveness of reactive skewering
compared to open-loop strategies, and (3) the generalization capabilities of our system to previously
unseen foods. We first perform classification ablations of HapticVisualNet in (Section 4.1) and then
deploy our system in the real world for trials on both seen and unseen foods (Section 4.2-4.4).
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Figure 4: Skewering Success and Failure Modes: We visualize the number of items acquired over total
acquisition attempts for all methods across Plates 1-3. Failure modes include exceeding the maximum number
of consecutive attempts (3+ tries per item), dropping after skewering, the item being unstable on the fork after
skewering (affecting transfer), damage or breakage to fragile items, or failure to detect an item due to bounding
box anomalies. HapticVisNet (ours) performs best on each plate, while causing the least failures.

4.1 Ablative Studies
We evaluate the contributions of both visual and haptic data towards primitive classification by training
and evaluating HapticVisualNet against two variants which observe exclusively the post-contact
haptic readings or post-contact image after probing.

Figure 5: Confusion matrices for classification accuracy
for the skewering primitive (angled skewer or
vertical skewer), on a held-out test dataset of 60
images, for each model. Darker off-diagonals and lighter
on-diagonals indicate more accurate models.

Figure 5 shows the confusion matrices for
classification accuracy. HapticVisualNet
achieves the highest overall and per-class
classification accuracy, and omitting either
modality hurts accuracy. We hypothesize
that the reduced performance of the vision-
only model stems from visually similar but
texturally dissimilar foods in our dataset, for
which inferring the primitive is challenging
without haptic context. On the other hand,
the haptic-only model learns a naı̈ve solution
of mapping high magnitude contact events to
vertical skewering and low readings to angled skewer. This is brittle for anomalous foods
like broccoli which benefit from a vertical skewer, yet may yield low contact readings if the fork
comes in contact at the head instead of the stem. Similarly, the fork can easily penetrate a thin banana
slice and touch the plate during probing, yielding high contact readings when an angled skewer
is still preferable. In the subsequent sections, we evaluate HapticVisualNet (HapticVis) against the
haptic only (Haptic), vision only (Vis), and SPANet baselines on real food acquisition trials. See
Appendix D for additional ablations of the learned multimodal representation and HapticVisualNet
sample efficiency.

4.2 Hardware Setup
Our setup consists of a 7DoF Franka Emika Panda robot with the default gripper. We outfit the
gripper with a custom 3D-printed mount comprised of a standard fork, a Mini45 ATI F/T sensor, and
a D435i RealSense camera. We perform all acquisition trials on a plastic dinner plate on an anti-slip
surface. We instantiate each primitive, parameterized according to Equation (1) as follows, assuming
a fixed �z and discretized ��:

• probe = (x̂, ŷ, ẑ-APPROACH HEIGHT, -APPROACH HEIGHT, �̂, 0�)
• vertical skewer = (x̂, ŷ, ẑ, -DT*0.17m/sec, �̂, 0�)
• angled skewer = (x̂, ŷ, ẑ, -DT*0.08m/sec, �̂, 65�)

Here, (x̂, ŷ, ẑ) denotes a predicted food item location, obtained by deprojecting a predicted pixel in a
depth image from ServoNet to a 3D location. SkeweringPoseNet also predicts the fork roll �̂. We
first probe the item starting from an APPROACH HEIGHT of 0.01cm, observe a post-contact image It,
and record haptic readings Ht 2 R26 over the first 26-milliseconds of contact. Given these inputs,
HapticVisualNet infers either vertical skewer or angled skewer which we execute.

The robot controller runs at 20Hz (DT = 0.05), and primitives terminate early if the fork reaches a
pre-defined z-distance (the plate height) or force limit. After skewering, the end-effector scoops until
the fork is nearly horizontal with � = 80�, emulating the start of a feasible transfer trajectory.
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4.3 Baselines

We deploy all methods — HapticVis (ours), Haptic, Vis, and SPANet — on the real robot setup of
Section 4.2 and classification networks trained according to Section 4.1. The HapticVis, Haptic, and
Vis methods all perform probing-then-skewering, but run inference using both, only haptic, or only
visual sensory information obtained from probing, respectively.

We also implement SPANet given the pre-trained visual models and original taxonomy of six
skewering primitives reported in [8]. SPANet performs zero-shot primitive inference given an
overhead image observation of a food item, without probing. SPANet still uses our ServoNet to plan,
analogous to the original implementation which similarly accounted for fork-food precision error.

4.4 Real World Bite Acquisition Results

We compare all methods on the challenging task of clearing plates containing 10 bite-sized food
items, evaluated according to skewering success and the distribution of skewering failure modes
encountered (Table 1). We define a skewering success as one in which the fork picks up the item with
at least 2 tines inserted and the item remains on the fork for up to 5 seconds after scooping as in [8].
Failure modes are detailed in Figure (4). Between successful acquisitions, a human operator removes
the acquired item from the fork. Upon skewering failure, an attempted item remains on the plate and
can be re-attempted up to 3 times before being manually removed and marked as a failure.

Plates 1-3 – Full System Evaluation: We first perform a full-system evaluation of HapticVis and all
baselines on 3 plates. Plate 1 contains in-distribution fruits and vegetables that HapticVisualNet was
trained on which include both textural and visual diversity, Plate 2 consists of unseen assorted fruits
with visual diversity but similar textures, and Plate 3 contains in-distribution boiled and raw butternut
squash cubes which appear similar but greatly differ in softness. When adjusted for perception failures
(e.g., bounding box false negatives) which affect all methods, HapticVis outperforms all methods
across Plates 1-3 (Figure 4). The bulk of HapticVis failures center around near-misses or perception
failures which are less drastic than damaging items or exceeding skewering attempts (Figure 4). Vis
slightly underperforms Haptic across all plates and achieves lowest performance on Plate 3, where
mispredicted vertical skewer or angled skewer actions can miss/damage soft-boiled squash,
or fail to penetrate hard raw squash. SPANet achieves lowest performance, mostly due to erroneously
executing vertical strategies to pick up soft items like bananas and ripe dragonfruit in many cases.
SPANet’s underperformance relative to HapticVis, Haptic, and Vis suggests the effectiveness of
reactive strategies compared to open-loop acquisition, and that our simplified action space is just as
expressive as SPANet’s larger taxonomy. We acknowledge that the performance gap may in part
be attributed to hardware differences (different robot, different fork mount) in the original SPANet
compared to our re-implementation.

Plate 4 – Texturally Misleading Food: While Haptic is the most competitive baseline on Plates
1-3, we run additional experiments between HapticVis and Haptic on a plate of only broccoli florets
(Plate 4). In cases where the stem is occluded from view or the fork servos to the leafy region to
make contact, Haptic tends towards misclassifying the low readings as angled skewer, leading to
frequent failures to pierce the item which HapticVis is better equipped to recognize and avoid.

Plates 5-6 – Generalization to Out-of-Distribution Foods: Finally, we stress-test the generalization
capabilities of HapticVis on two plates of unseen foods, Plate 5 and Plate 6, containing the items
listed in Table 1. Across Plates 5-6, HapticVis achieves 58% success, a 19% improvement over
Vis, indicating the promise of multimodal representations for zero-shot food skewering. HapticVis
performs best on soft canned pears and boiled/raw root vegetables which are most comparable to
the items in the training distribution, closely followed by pasta and ice cream mochi. The majority
of failures occur due to the fragility of dumplings and thinness of snow peas which are difficult to
pierce. Still, by fusing haptic and visual information, HapticVis is better equipped to generalize to
visually and texturally diverse foods. See Appendix E for additional stress-tests of HapticVisualNet.

Overall, HapticVisualNet benefits from the use of both vision and haptics from just a single interaction,
and outperforms single-modality baselines for a variety of challenging food plates. We show that
skewering strategies that reactively update the strategy (HapticVis, Haptic, Vis) are more robust to
texturally and visually diverse food items than open loop strategies (SPANet). With its multimodal
representation, HapticVisualNet can also zero-shot generalize to challenging unseen food classes.
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Plate Type # Items Acquired / Total Attempts
Plate Items Visuals Haptics Category HapticVis Haptic Vis SPANet

1 Assorted fruits and vegetables Diverse Diverse Seen 9/10 9/12 7/10 8/20
2 Assorted tropical fruits Diverse Similar Unseen 10/11 9/11 8/13 10/14
3 Boiled/raw butternut squash Similar Diverse Seen 8/11 9/14 10/18 7/12
4 Broccoli florets Similar Similar Seen 8/13 7/17 – –
5 Pasta, dumplings, boiled/raw root veggies Diverse Diverse Unseen 7/11 – 9/13 –
6 Mochi, snow peas, canned pear Diverse Diverse Unseen 7/13 – 5/23 –

71% 63% 51% 54%

Table 1: Physical Results: We evaluate the ability of all methods to clear 6 plates (Figures 4), each initially
containing 10 items. The number of items acquired refers to items successfully skewered ( 10 in all cases
due to dropped items or early termination with bounding box false negatives). The total attempts refers to all
attempted acquisitions until termination or clearance (� 10 in all cases due to failed items remaining on the
plate for up to 3 consecutive re-attempts). HapticVis outperforms baselines in 5/6 plates. The symbol – denotes
experiments that are not useful in the specific testing scenario.

5 Discussion

Summary In this work, we present a framework for zero-shot food acquisition of a diverse range of
bite-sized items using multimodal representation learning. Our approach uses interactive probing to
sense complex, multisensory food properties upon contact in order to reactively plan a skewering
strategy. We deploy the learned policy along with a learned visual servoing controller on a robot for
zero-shot skewering of unseen food items. Our experiments span a wide range of food appearances
and textures, and validate the need for multimodal reasoning and reactive planning to clear plates.

Limitations and Future Work One limitation in our approach is the use of a small action space for
acquisition. While our set of primitives can generalize to a wide range of foods, our current strategies
are not equipped to handle thin, flat items like finely sliced produce or leafy salad greens, which may
require new techniques like positioning the fork under an item to scoop, gathering multiple items
together before skewering, or using plate walls for stabilization. Other food groups like noodles
would benefit twirling, and foods with irregular geometries might require toppling into a stable
pose before skewering. Another limitation in this work is the supervision used to currently train
our multimodal policy. However, since our policy learns from sparse labels, we are excited by the
possibility of automatically detecting skewering outcomes to self-supervise the training procedure for
HapticVisualNet. Finally, in future work we hope to tackle challenging food groups such as filled
dumplings which easily break and extremely thin snow peas which are hard to pierce.
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