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MMDRFuse: Distilled Mini-Model with Dynamic Refresh for
Multi-Modality Image Fusion

Anonymous Author(s)

Figure 1: Left: Comparison of our Mini Model (MMDRFuse) with other advanced image fusion solutions in terms of model
efficiency, including model size (KB), average running time (MS), and two image quality assessments SSIM and VIF. Right:
Supervision designs of our MMDRFuse, where digestible distillation refers to delivering external soft supervision, dynamic
refresh emphasises the historical impact of network parameters during training, and comprehensive loss serves as an internal
supervision that absorbs nutrients from source images.

ABSTRACT
In recent years, Multi-Modality Image Fusion (MMIF) has been ap-
plied to many fields, which has attracted many scholars to endeav-
our to improve the fusion performance. However, the prevailing
focus has predominantly been on the architecture design, rather
than the training strategies. As a low-level vision task, image fu-
sion is supposed to quickly deliver output images for observing
and supporting downstream tasks. Thus, superfluous computa-
tional and storage overheads should be avoided. In this work, a
lightweight Distilled Mini-Model with a Dynamic Refresh strategy
(MMDRFuse) is proposed to achieve this objective. To pursue model
parsimony, an extremely small convolutional network with a total
of 113 trainable parameters (0.44 KB) is obtained by three carefully
designed supervisions. First, digestible distillation is constructed
by emphasising external spatial feature consistency, delivering soft
supervision with balanced details and saliency for the target net-
work. Second, we develop a comprehensive loss to balance the pixel,
gradient, and perception clues from the source images. Third, an
innovative dynamic refresh training strategy is used to collabo-
rate history parameters and current supervision during training,
together with an adaptive adjust function to optimise the fusion
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network. Extensive experiments on several public datasets demon-
strate that our method exhibits promising advantages in terms of
model efficiency and complexity, with superior performance in
multiple image fusion tasks and downstream pedestrian detection
application.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
multi-modality image fusion, feature-level distillation, dynamic
refresh, end-to-end training

1 INTRODUCTION
Images captured by different physical sensors under diverse con-
ditions contain unique attributes, which challenge the design of
a general image processing system. Drawing on this, to unify the
visual pixel distribution at the image level, image fusion provides
a solution to combine source images into a single and compre-
hensive output image [11]. Considering the input configurations,
image fusion tasks are ranging from digital image fusion [2, 46],
multi-modality image fusion (MMIF) [38], to remote sensing image
fusion [12, 40]. In particular, MMIF [19, 49, 50] has attracted wide
attention in recent decades, which includes Infrared and Visible
Image Fusion (IVIF) [21, 31], and Medical Image Fusion (MIF) [43].

In terms of the IVIF task, the target sources are visible and
infrared images [49]. Specifically, the visible modality, captured
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by optical devices such as digital cameras, is expert at preserving
textural details and colours, while it is susceptible to illumination
conditions. On the other hand, the infrared modality, derived from
infrared imaging devices, captures the inherent heat radiation emit-
ted by living beings or powered objects. This modality is obtained
based on the variation in radiation intensity between the target and
its surroundings, lacking the supportive colour and texture con-
tained in the visible spectrum. The IVIF task aims to generate an
informative image that leverages the strengths of both, enhancing
the overall visual quality and serving various following processing
demands [11, 50]. Specifically, the fused images can be applied to
several downstream tasks, e.g., semantic segmentation [20, 35], ob-
ject tracking [4, 13], object detection [8, 34], and saliency detection
[27]. As for the MIF task, by combing images obtained through
different medical imaging devices (CT [3], MRI, PET, SPETC e.t.c.),
MIF can provide a clearer view of both the structure and functional
information of the human tissues and organs, supporting more
precious disease diagnosis [43, 50].

After decades of study, the performance of IVIF has been ad-
vanced. In contrast to traditional approaches that rely onmulti-scale
decomposition (MSD) [52], sparse representation (SR) [45], or low-
rank representation (LRR) [14], to extract handcrafted features,
more robust representations can be obtained by deep solutions,
such as convolutional neural networks (CNNs), Transformers, and
their hybrid versions [11]. To pursue better visual effects, various
functional blocks have been developed, e.g., aggregated residual
dense block [21] and gradient residual dense block [31]. To facilitate
smooth training, residual connections [15, 17] and skip connec-
tions [37] are adopted to prevent gradient vanishing or distortion
in the generated images. Besides modifying network modules, more
efforts have been explored to formulate fusion as a generation task.
For instance, [19, 23], utilise a generator to obtain the fused image,
accompanied by two discriminators to guarantee its fidelity com-
pared to the sources. Essentially, the generator contains multiple
CNN layers, and this adversarial training scheme is easy to crash
and hard to control. Such computation burden is also suffered by
the diffusion solution [50], which obtains stable and controllable
high-quality fused images without discriminator but requires more
computation resources than previous approaches.

Despite the performance promotion achieved by the above
attempts, all the involved network designs suffer from excessive
complexity and redundancy. Therefore, striking a balance between
model performance and resource requirements is a pressing issue
that needs to be addressed. Motivated by knowledge distillation
[9, 44], it is straightforward to compress the teacher parameters into
a relatively smaller student model. Essentially, we propose to estab-
lish a strong teacher model with powerful feature extraction and
reconstruction ability. To deliver effective supervision, as shown in
Figure 1, we adopt three dedicated designs to integrate supervision
signals from teacher, source images, and history records.

Specifically, a digestible distillation strategy is proposed to re-
lax the strict consistency constraints between the student network
and the teacher network on the intermediate feature dimension.
We construct groups of isomorphic transformation modules within
both the teacher and student networks individually. Based on the
output characteristics at each stage, wematch them from the feature
end and output end. To exploit the source input images, intensity

details, edge gradients, and perception semantics are comprehen-
sively reflected by our loss function. Furthermore, to reinforce the
cues embedded in the historical parameters of the training process,
we propose the dynamic refresh strategy. A set of dual evaluation
metrics are devised to distinguish whether the current cues are use-
ful or not. The useful one demonstrates that our training trajectory
is correct at present and can be refreshed as internal supervision
signals, while the inadequate one can be optimized by the above
signals.

In this paper, we design a Distilled Mini-Model with Dynamic
Refresh for Multi-Modality Image Fusion (MMDRFuse). As shown in
Figure 1, our MMDRFuse achieves promising fusion performance,
while it is significantly smaller than other SOTA models, with only
113 trainable parameters (0.44 KB). The contributions of our work
can be summarised as follows:

• An end-to-end fusion model with a total of 113 trainable
parameters and 0.44KB size, which can efficiently facilitate
fusion and support downstream tasks. This mini model un-
veils that boosting image fusion performance benefits more
from providing suitable supervision rather than stacking
complex networks.

• A digestible distillation strategy to relax the feature-level
consistency, softening the supervision from the teacher
model.

• A comprehensive loss function to preserve intrinsic clues
from source inputs, collaborating pixels, gradients, and per-
ceptions.

• A dynamic refresh strategy to effectively manage the his-
torical states of parameters during training, endowed with
a dual evaluation metric system to adaptively refine super-
vision signals towards the correct direction.

• Promising performance in terms of fusion quality and effi-
ciency against SOTA methods both in IVIF and MIF tasks.
The obtained 113 parameters can even support downstream
pedestrian detection without any semantic information as
input.

2 RELATEDWORK
2.1 Advanced MMIF Formulations
Recent studies in MMIF can be broadly categorised into Auto-
Encoder (AE) paradigm [6, 15, 17, 18, 49], GAN-based paradigm
[19, 24], Transformer-based paradigm [22, 49], downstream task-
driven paradigm [19, 31, 48], and text-driven paradigm [6]. Among
the involved techniques, AE exploits an encoder to extract features
from source images and a decoder to obtain fused images by re-
constructing the latent features. To get rid of the limitations of
handcrafted fusion rules, [17] devises a residual fusion network
to smooth the training stage. To alleviate computation, [49] uses
Lite-Transformer to fuse base features and detail features come
from different modalities. Besides network design, [37] directly
conducts an end-to-end fusion network with a memory unit to
allocate effective supervision signals.

To better support downstream tasks, [19] proposes a bilevel op-
timisation formulation based on GANs and Object Detection (OD)
network, forming a cooperative training scheme to yield optimal
network parameters with fast inference for both tasks. Besides, [31]
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Figure 2: Illusatration of our distillation process. TConv1, TConv2, ... , TConv13 represent the convolutional layers in the
teacher network. SConv1, SConv2 represent the convolutional layers in the student network. TOutput and SOutput denote
their outputs respectively.

introduces a real-time segmentation model to grind the semantic
information for the fused images. Although linking the downstream
tasks with image fusion can obtain guided semantics, such a solu-
tion sacrifices too much in computation, running time, and storage
space. To break away from existing modelling techniques, we inves-
tigate the possibility of designing internal and external supervision
signals to serve an extremely tiny model. In particular, the internal
and external supervision denote the historical state of the model
itself and the guidance of a powerful teacher model, respectively.
Such a combination is typically controlled by a dynamic refresh
strategy to harmonise the training of our 0.44KB mini model.

2.2 Distillation Techniques
Knowledge Distillation is introduced by [9] to tackle the cumber-
some of deploying computationally expensive models. According
to the locations of processing knowledge, it can be categorised into
three branches, i.e., response-level [9, 47], feature-level [5, 29, 30, 44,
51] and relation-level [25, 42] settings. Typically, [9] distils knowl-
edge by aligning the student’s output with the teacher’s output
while [29] additionally focuses on the consistency of intermediate
features between teacher and student. Following this setting, ad-
vanced studies are dedicated to paying attention to feature-based
distillation. In terms of formulating feature consistency, [44] proves
that activation-based attention transfer and gradient-based spatial
attention transfer are more effective than full-activation transfer.
Considering feature diversity, [5] proposes to gradually learn the
low-level feature maps after the high-level consistency is obtained.
However, this knowledge delivery solution still costs a lot of re-
sources during the training process.

Given that the structure of our student network is too simple
(113 parameters) to directly learn from a powerful teacher, similar
to feeding a baby, how to transfer digestible supervision from the
teacher to the student poses significant challenges. Drawing on
this, we feed the student with more finely processed knowledge

by combining feature-based and response-based distillation within
isomorphic transformation modules. This process can also be un-
derstood as a mother carefully preparing swallowable pureed food
for her child.

3 APPROACH: MMDRFUSE
3.1 Digestible Distillation
In essence, the ultimate goal of our MMDRFuse is to obtain a mini
model with satisfactory fusion performance and downstream sup-
portive power. It is impossible to completely depend on directly
training the mini model itself, which is greatly limited by its param-
eter volume. Accordingly, we first train a teacher model, which is
utilized to learn considerable feature extraction and reconstruction
ability. Furthermore, the key of teacher module is to as a transporta-
tion media, converting high-level abstract feature information into
fragments that student can digest.

Existing observation unveils that aligning knowledge at the
output end is too violent for the student model. In particular, dif-
ferent from high-level visual tracks, such as classification and de-
tection, the output of a fusion system is low-level pixels, which
challenges the strictness of teacher guidance. Therefore, we propose
to add a buffer before the final output to transfer the supervision
that can be digested better. At the same time, feature maps of the
middle layer is supposed to be consistently distributed as the teacher
model [44], which can help to produce the expected output.

We adopt a relatively complex teacher network to obtain
a model with robust fusion ability. This network incorporates a
densely connected network (DCN) responsible for extracting deep
image features comprising 64 channels. Additionally, it integrates
two convolutional layers to generate four-channel feature maps,
alongside a single-channel image. By contrast, our student model
only comprises two convolutional layers. The first one is used to
extract feature maps with four channels and the latter functions as a

3
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Figure 3: Illustration of the feature maps used to reflect per-
ception degrees. From left to right, it represents the source
image, duplicated source image, and five feature maps ex-
tracted by VGG-19, respectively.

decoder for producing the fused image.We utilise each output of the
student network to implement feature-based and response-based
distillation with the last two outputs of the teacher, respectively.
Figure 2 provides an illustration of the network architecture and
distillation mechanism.

To ensure that the student outputs closely resemble those
of the teacher network, we encourage consistency between their
outputs at the pixel level. Specifically, the feature-based distillation
and the response-based distillation can be formulated as:

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =
1
2

2∑︁
𝑖=1

∥ 𝑣𝑒𝑐 (𝐹 (𝑇𝑖 ))
∥𝑣𝑒𝑐 (𝐹 (𝑇𝑖 ))∥2

− 𝑣𝑒𝑐 (𝐹 (𝑆𝑖 ))
∥𝑣𝑒𝑐 (𝐹 (𝑆𝑖 ))∥2

∥2, (1)

where 𝑣𝑒𝑐 (·) denotes the vectorisation operation. 𝐹 (𝑥) = ∑𝐶
𝑖=1 𝑥𝑖

is a spatial mapping function used to conduct attention mapping
across channel dimensions. 𝐹 (𝑥) comprehensively considers all
channels from 𝑥 by distributing average weights to each spatial
region. On the other hand, for the feature-based distillation, 𝑆1∈
𝑅𝐻×𝑊 ×4 and𝑇1 ∈ 𝑅𝐻×𝑊 ×4 are the extracted features of the teacher
network and student network, respectively. For the response-based
distillation, 𝑆2 ∈ 𝑅𝐻×𝑊 ×1 and𝑇2 ∈ 𝑅𝐻×𝑊 ×1 are the output images
of these two networks. As these output feature maps and images
share an identical number of channels, the teacher network can
effectively impart knowledge to the student module at the same
semantic level.

3.2 Comprehensive Loss
In this section, we introduce our loss function for optimising the
fusion network from the source inputs. Firstly, we expect the out-
puts to be similar to source images at the pixel level. Specifically,
for the multimodal image fusion task, visible or MRI images usually
contain information about the light condition with texture details,
while infrared or PET images tend to present significant thermal
and functional information. Thus, an intensity loss function [31]
is designed to generate fused images that share the same pixel
distribution with source inputs, i.e.

𝐿int =
1

𝐻𝑊
∥𝑂 −𝑚𝑎𝑥 (𝐼ir, 𝐼vis)∥1, (2)

where 𝐼ir and 𝐼vis denote the source infrared and visible images,
𝑂 represents the output of the fusion network. Notably, if source
images are under normal light conditions, the intensity loss function
can help tomaintain detailed targets, clear structure, etc.However, if
the light condition in texture areas is darker than the infrared image,
the impact is dominated by the latter. Thus, it seems not enough to
rely solely on the intensity loss function. This phenomenon can be
observed by the examples of Figure 5. Therefore, we add amaximum

Figure 4:Workflow of the proposed dynamic refresh strategy.

gradient loss to help transfer gradient information mainly from the
visible image, it is defined as:

𝐿𝑔𝑟𝑎𝑑 =
1

𝐻𝑊
∥ ▽𝑂 −𝑚𝑎𝑥 (▽𝐼ir, ▽𝐼vis)∥2𝐹 , (3)

where ∥ · ∥𝐹 represents the Frobenius norm,▽ represents gradient
operator. Furthermore, to better fuse fine-grained features from
source images, we employ a normalised VGG-19 network [21] to ex-
tract hierarchical features of input and output images, formulating
a feature-based perception loss. As depicted in Figure 3, the feature
maps in the shallow layers exhibit clearer edge texture details and
gradient information, while the feature maps in deep layers become
blurred, encompassing higher-level semantic information, abstract
contexts, and salient structure information. This information is a
significant factor regarding the fusion performance [37]. Hence,
the perception loss is formulated as:

𝐿percep =

∑5
𝑖=1

∑𝐷𝑖

𝑗=1 ∥𝜙𝑖, 𝑗 (𝑂) −𝑚𝑎𝑥 (𝜙𝑖, 𝑗 (𝐼ir), 𝜙𝑖, 𝑗 (𝐼vis))∥2𝐹
5 · 𝐻 ·𝑊 · 𝐷𝑖

, (4)

where 𝐷𝑖 represents the number of channels of extraction layer
𝑖 , 𝜙𝑖, 𝑗 represents 𝑗 − 𝑡ℎ channel of accordingly 𝑖 − 𝑡ℎ feature map.
Finally, the above components collectively constitute the compre-
hensive loss function:

𝐿𝑐𝑜𝑚𝑝 = 𝛾𝐿𝑖𝑛𝑡 + 𝛿𝐿𝑔𝑟𝑎𝑑 + 𝐿𝑝𝑒𝑟𝑐𝑒𝑝 . (5)

By adding the maximum gradient loss and maximum perception
loss, our fusion network not only focuses on regions with high
brightness but also pays attention to texture information in dark
areas, which cannot be achieved solely by intensity loss. At the
same time, without intensity loss, we can not retain salient targets
only by gradient loss and perception loss. Hence, the combination
of these loss functions can complement each other’s weaknesses
while keeping their respective strengths.

3.3 Dynamic Refresh Strategy
Traditional methods often directly discard the states of parameters
from intermediate iterations during the training process, which,
we argue, can be properly utilised to serve as supervision signals.

4
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However, useful information can not be guaranteed in the interme-
diate iterations, sometimes including noises, artefacts and so on.
Hence, we need to identify the effectiveness of them. We devise
a dual evaluation system to identify them and further utilise the
advantageous parameters. We call this process as dynamic refresh,
Figure 4 illustrates the basic process. In particular, dynamic refresh
is applied throughout the entire training process, and we adopt two
metrics to measure whether it is helpful to fusion. Image quality as-
sessment structural similarity (SSIM) [36] and Gradient Magnitude
Similarity Deviation (GMSD) [41] are involved as the metrics. SSIM
measures the previous iterations from the perspective of structure,
illuminance, and contrast, while GMSD highlights texture details.
Accordingly, we measure every output during the training process
and keep the two best outputs according to two evaluation metrics,
which correspond to the green database and the yellow database in
Figure 4, respectively. The evaluation process can be described as
follows: {

𝑆𝑏𝑠 =𝑆𝑆𝐼𝑀 (𝑂𝑏𝑠 , 𝐼𝑖𝑟 ) + 𝑆𝑆𝐼𝑀 (𝑂𝑏𝑠 , 𝐼𝑣𝑖𝑠 )
𝑆𝑐𝑢𝑟 =𝑆𝑆𝐼𝑀 (𝑂𝑐𝑢𝑟 , 𝐼𝑖𝑟 ) + 𝑆𝑆𝐼𝑀 (𝑂𝑐𝑢𝑟 , 𝐼𝑣𝑖𝑠 )

, (6)

{
𝐺𝑏𝑔 =𝐺𝑀𝑆𝐷 (𝑂𝑏𝑔, 𝐼𝑖𝑟 ) +𝐺𝑀𝑆𝐷 (𝑂𝑏𝑔, 𝐼𝑣𝑖𝑠 )
𝐺𝑐𝑢𝑟 =𝐺𝑀𝑆𝐷 (𝑂𝑐𝑢𝑟 , 𝐼𝑖𝑟 ) +𝐺𝑀𝑆𝐷 (𝑂𝑐𝑢𝑟 , 𝐼𝑣𝑖𝑠 )

, (7)

where 𝑂𝑐𝑢𝑟 symbols the output of current epoch, 𝑂𝑏𝑠 symbols
the historical output with the best SSIM value, 𝑂𝑏𝑔 symbols the
historical output with the best GMSD value. 𝑆𝑏𝑠 ,𝑆𝑐𝑢𝑟 represent
the SSIM value of the best history output and the current output,
respectively.𝐺𝑏𝑔 ,𝐺𝑐𝑢𝑟 represent the GMSD value of the best history
output and the current output, respectively.

By calculating SSIM and GMSD values of the current output
and the two best historic outputs, once the value of the current
output is higher than the recorded outputs, they will be replaced by
the current output, which achieves dynamic update. The refreshing
process can be described as follows:

𝑂bs =

{
𝑂bs, if 𝑆bs ≥ 𝑆cur
𝑂cur, if 𝑆bs < 𝑆cur

, 𝑂bg =

{
𝑂bg, if 𝐺bg ≥ 𝐺cur
𝑂cur, if 𝐺bg < 𝐺cur

.

(8)
On the contrary, the current output can learn from historic

outputs by following refresh loss:

𝐿𝑠 =

∑5
𝑖=4

∑𝐷𝑖

𝑗=1 ∥𝜙𝑖, 𝑗 (𝑂𝑐𝑢𝑟 ) − 𝜙𝑖, 𝑗 (𝑂𝑏𝑠 )∥2𝐹
2 · 𝐻 ·𝑊 · 𝐷𝑖

+ ∥𝑂𝑐𝑢𝑟 −𝑂𝑏𝑠 ∥1
𝐻𝑊

(9)

𝐿𝑔 =

∑3
𝑖=1

∑𝐷𝑖

𝑗=1 ∥𝜙𝑖, 𝑗 (𝑂𝑐𝑢𝑟 ) − 𝜙𝑖, 𝑗 (𝑂𝑏𝑔)∥2𝐹
3 · 𝐻 ·𝑊 · 𝐷𝑖

+
∥ ▽𝑂𝑐𝑢𝑟 − ▽𝑂𝑏𝑔 ∥2𝐹

𝐻𝑊
(10)

Motivated by the phenomenon presented in Figure 3, we combine
perception loss of the last two feature maps before max-pooling
operation with intensity loss function, to collectively serve as super-
vision signals by the item of 𝐿𝑠 . Similarly, we combine perception
loss of the first three feature maps before the max-pooling opera-
tion with maximum gradient loss function, to collectively serve as
supervision signals by the item of 𝐿𝑔 . 𝐿𝑠 can help to fuse context and
spatial structure, brightness, and contrast information from 𝑂𝑏𝑠 ,
while 𝐿𝑔 can help to fuse texture detail and gradient information
from 𝑂𝑏𝑔 . Furthermore, we measure the gap between 𝑆𝑏𝑠 and 𝑆𝑐𝑢𝑟 ,

as well as 𝐺𝑏𝑔 and 𝐺𝑐𝑢𝑟 to serve as two self-adaptive coefficient:{
𝑔𝑎𝑝𝑠 =𝑆𝑐𝑢𝑟 − 𝑆𝑏𝑠

𝑔𝑎𝑝𝑔 =𝐺𝑐𝑢𝑟 −𝐺𝑏𝑔
. (11)

Hence, our dynamic refresh loss can be described as follows:

𝐿𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ = 𝑔𝑎𝑝𝑠𝐿𝑠 + 𝑔𝑎𝑝𝑔𝐿𝑔 . (12)

Finally, we use comprehensive loss and refresh loss to collectively
train our teacher model and further combined with distillation loss
to train our student model. The total loss function can be described
as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜃𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 + 𝜆𝐿𝑐𝑜𝑚𝑝 + 𝐿𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ . (13)

4 EVALUATION
4.1 Setup
4.1.1 Datasets andMetrics. We performMMDRFuse on three types
of fusion tasks: Infrared and Visible Image Fusion (IVIF), Medical
Image Fusion (MIF), and Pedestrian Detection (PD). We select six
SOTA methods to compare with our method, including TextFusion
[6], MUFusion [37], LRRNet [16], MetaFusion [48], DeFusion [18],
and TarDAL [19]. To better prove the generalisation ability of our
design, we only train our model (both teacher and student) on the
IVIF task, and directly apply the trained model to other tasks. The
training dataset isMSRS [32], we select 1083 image pairs from it, and
they are cropped into 128×128 image patches, ending with 16245
image pairs. For the MMIF task, we conduct test experiments on
three datasets: MSRS, LLVIP [10], and RoadScene [39]. The image
numbers of them are 361, 250, and 50, respectively. For the MIF task,
we directly test the model on MRI-SPECT and MRI-PET, which
include 73 and 42 image pairs, respectively.

For the PD task, we trained six SOTAmethods and our method
on 2000 image pairs from the MSRS dataset, and then test the detec-
tion effect on 250 image pairs from the LLVIP dataset. We perform
PD experiments by using the Yolov5 as a detector to evaluate the
pedestrian detection performance with the value of mAP@.5:.95,
which provides a more comprehensive evaluation by calculating
the average precision according to the IOU threshold from 0.5 to
0.95, taking into account the performance of the model throughout
the entire retrieval process. The training epoch, batch size, and
optimizer are set as 3, 16, and SGD optimiser, respectively.

Besides, we adopt six metrics to fairly judge our method in-
cluding entropy (EN) [1], standard deviation (SD) [33], mutual
information (MI) [28], visual information fidelity (VIF) [7], struc-
tural similarity index measure (SSIM) [36], and 𝑄𝐴𝐵/𝐹 [26]. EN
measures fused images from the perspective of information theory,
which is primarily used to assess the amount of information and
complexity contained in the fused image. SD is a statistical met-
ric, that measures an image from its brightness and contrast, but
sometimes it can be disturbed by noise. MI measures the amount
of information that two images share in common. VIF not only
considers the pixel-level similarity with source images, but also
cares about human visual perception. SSIM measures fused images
from structure, illuminance and contrast. 𝑄𝐴𝐵/𝐹 not only focuses
on the visual quality of the image but also takes into account the
preservation of the image content and structure.
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Figure 5: The visualised validity verification of the compre-
hensive loss function and dynamic refresh retrain strategy.
Stage I: only using intensity loss function, Stage II: adding
gradient loss function and perception loss function, Stage III:
combining with dynamic refresh strategy.

4.1.2 Implement Details. Our experiments are conducted on a
Linux server with an NVIDIA GeForce RTX 3090 GPU. We first
train the teacher model with 8 epochs and the number of batch
size is 45. Then we adopt the trained teacher models to collectively
train the student model with 30 epochs and the batch size is 30. For
hyperparameters setting, we set 𝛾 = 1, 𝛿 = 0.1, 𝜃 = 0 and 𝜆 = 1
for teacher model, and 𝛾 = 2, 𝛿 = 1, 𝜃 = 0.1 and 𝜆 = 1 for student
model, respectively. In terms of the optimiser, we utilise the Adam
optimizer with an initial learning rate equal to 10−4.

4.2 Ablation Studies
Due to the dynamic refresh being impacted by the comprehen-
sive loss items, we first verify the efficacy of comprehensive loss,
including intensity loss, maximum gradient loss, and maximum
perception loss, individually. Subsequently, we demonstrate the
effectiveness of our dynamic refresh strategy and the distillation
mechanism step by step.

4.2.1 Comprehensive Loss Function and Dynamic Refresh Strategy.
As we mentioned in the comprehensive loss function part, the
intensity loss is mainly used to retain the pixel distribution, salient
targets and general structural information. The maximum gradient
item and maximum perception item are further utilised to retain
texture, gradient and high-level semantic information. We initially
explore their effects on the teacher model. From Figure 5, we can
see the fused image only trained by intensity loss (Stage I), for
areas with lower brightness in visible light images like the blue
box and red box, it indeed fails to preserve textural details and
gradient information. After applying the maximum gradient loss
and maximum perception loss function (Stage II), from the ground
shadows within the red and blue boxes, it can be observed that the
missing information becomes increasingly rich and clearly visible.

Our dynamic refresh strategy is mainly adopted to sufficiently
explore the vital information contained in intermediate outputs.
With the combined effect of comprehensive loss functions, the ex-
traction power becomes increasingly strong, fully absorbing the
information contained in not only the source images but also the
historical reference outputs. From the last image in Figure 5 (Stage
III), We can see the information within the red and blue boxes dis-
played with unprecedented clarity, little artifact and noise. Besides,
quantitative results displayed in Table 1 show that our compre-
hensive loss function and dynamic refresh strategy are effective.

Table 1: Quantitative ablation study results of comprehensive
loss and dynamic refresh on LLVIP. Boldface and underline
show the best and second-best values, respectively.

Configurations SD VIF 𝑄𝐴𝐵/𝐹 SSIM
I Before 𝐿𝑔𝑟𝑎𝑑 & 𝐿𝑝𝑒𝑟𝑐𝑒𝑝 48.40 0.83 0.51 0.85
II After 𝐿𝑔𝑟𝑎𝑑 & 𝐿𝑝𝑒𝑟𝑐𝑒𝑝 48.26 0.87 0.61 0.87
III After dynamic refresh 49.39 0.94 0.70 0.90

Table 2: Quantitative ablation study results of distillation on
LLVIP. Boldface shows the best value.

Configurations SD VIF 𝑄𝐴𝐵/𝐹 SSIM
I without distillation 44.78 0.73 0.48 0.79
II with direct distillation 44.93 0.77 0.56 0.78
III with digestible distillation 46.98 0.81 0.57 0.85

Table 3: Quantitative ablation student model size of distilla-
tion on LLVIP. Boldface shows the best value.

Model Size(kb) SD VIF 𝑄𝐴𝐵/𝐹 SSIM
student1 1021.01 49.80 0.81 0.62 0.87
student2 7.01 51.07 0.81 0.63 0.89
student3 0.44 46.98 0.81 0.57 0.85
teacher 4347.57 49.39 0.94 0.70 0.90

4.2.2 Distillation Mechanism. We design a student model with
only two convolutional layers and 113 trainable parameters by util-
ising a powerful teacher. Specifically, distillation is performed at
the feature and response ends. To verify the effectiveness of distil-
lation, we conduct an ablation study including the student model
without distillation, the student model with direct distillation, and
the student model with our digestible distillation. From the first
two rows on Table 2, we can observe that students can only learn a
little bit of the superficial aspects from the teacher through direct
distillation, resulting in a decrease in SSIM. In contrast, through our
digestible distillation, all four metrics have shown notable improve-
ments. Positive evidence of these four metrics means the quality of
the fused image itself is higher than before, sharing more detailed
information with source images from both pixel level and visual
perception perspectives.

In fact, there are many volumes of targeted students available
for us to choose from. During this process, we gradually compress
the student model down to the minimum, where different model
sizes correspond to different compression ways and varying effects.
As displayed in Table 3, from the perspective of metrics value, we
should opt for the second student model. However, in pursuit of
an extremely mini model size, we choose the third configuration,
which achieves an extremely tiny size, while dose not compromising
performance to a significant extent.

Finally, we obtain the mini model with only 113 trainable
parameters. Before we display the fusion performance of our ex-
periments, we first compare the model efficiency and complexity
with several SOTA approaches, as displayed in Table 4. Among all
the involved methods, our MMDRFuse exhibits the smallest model
size, the least number of floating-point operations, and the fastest
average running time. In the following experiments, we will fur-
ther demonstrate that our MMDRFuse not only enjoys advantages
in efficiency and complexity but also leads to promising model
performance.
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Table 4: Comparison of Model Efficiency and Complexity
with SOTA approaches. Boldface shows the best value.

Methods Venue Size(KB) Flops(G) Time(MS)
TextFusion 24’ Arxiv 288.51 88.708 11.17
MUFusion 23’ Inf. Fus. 4333.76 240.669 7.91
LRRNet 23’ TPAMI 192.20 60.445 523.35

MetaFusion 23’ CVPR 3170.76 1063.000 325.37
DeFusion 22’ ECCV 30759.66 322.696 339.59
TarDAL 22’ CVPR 1158.50 388.854 124.10

MMDRFuse Ours 0.44 0.142 0.62

4.3 Infrared and Visible Image Fusion
4.3.1 Qualitative Comparison. We show the qualitative compari-
son results in Figure 6 and Figure 7. In Figure 6, MUFusion, LRRNet,
and MetaFusion not only distort the colour of the sky but also ex-
hibit numerous artifacts around the license plate, as shown within
the yellow box. Besides, DeFusion and TextFusion result in a blurry
appearance of the leaves within the red box. TarDAL shows a rela-
tively apparent contrast in the red box, but the colour of the building
seems so bright that we can not clearly see the content within it.
While our MMDRFuse can show a clear result in the above points.
Furthermore, Our method can illuminate objects in the dark, even
though those objects are not very clear in the source images, such
as the pillar in Figure 7.

4.3.2 Quantitative Comparison. To objectively demonstrate the
performance of MMDRFuse, we conduct quantitative experiments
on three typical datasets, which include MSRS, LLVIP, and Road-
Scene. The MSRS dataset covers scenes from urban streets to rural
roads under various lighting conditions, containing rich semantic
information. The LLVIP dataset mainly includes urban and street
environments under low-light conditions. The RoadScene dataset,
on the other hand, contains scenes with roads, vehicles, pedestrians,
and more under various lighting conditions. We show the quan-
titative results in Table 5. Our method consistently ranks first in
three metrics (MI, VIF, 𝑄𝐴𝐵/𝐹 ) across the three datasets, and first
or second in two metrics (EN, SSIM). Besides, in terms of the SD
metric that is susceptible to noise, we rank first on MSRS, second on
RoadScene, and do not perform particularly well on LLVIP, which
is a common occurrence and does not detract from our excellent
performance.

The outstanding performance in full-reference (MI, VIF,𝑄𝐴𝐵/𝐹 ,
SSIM) and no-reference (EN, SD) indicators show that the fusion
results not only closely resemble the source images at the visual
and pixel levels, but also possess rich, high-quality information
within each fused image itself. The above results also demonstrate
that our mini model can adeptly handle a variety of scenes and
lighting conditions, and it surpasses much larger models in both
visual effects and evaluation metrics, perfectly achieving a balance
between performance and various costs.

4.4 Medical Image Fusion
4.4.1 Qualitative Comparison. To verify the generalisation ability
of our method, we directly apply the above six SOTA methods
and our design to MIF without retraining. We show the qualitative
results of MRI-PET images in Figure 8. From the green and red
boxes, we can observe that our MMDRFuse not only preserves the
detailed internal structural information displayed in MRI images

Figure 6: Visual comparison with SOTA on MSRS.

Figure 7: Visual comparison with SOTA on LLVIP.

Figure 8: Visual comparison with SOTA on MRI-PET.

but also retains the distribution of the radioactive tracers shown
in PET images, providing a more comprehensive set of diagnostic
information. While TextFusion, LRRNet, and MetaFusion lose the
information of internal structure. MUFusion, LRRNet, MetaFusion,
and DeFusion dilute the distribution of the radioactive tracers. MU-
Fusion and TarDAL introduce extra artifacts in the detailed internal
structure.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Quantitative results of the IVIF task. Boldface and
underline show the best and second-best values, respectively.

(a) Dataset: MSRS Infrared-Visible Dataset

Methods EN SD MI VIF 𝑄𝐴𝐵/𝐹 SSIM
TextFusion 6.03 38.02 2.44 0.72 0.52 0.76
MUFusion 5.96 28.48 1.17 0.60 0.42 0.71
LRRNet 6.19 31.76 2.03 0.54 0.45 0.43

MetaFusion 6.37 39.64 1.16 0.71 0.48 0.78
DeFusion 6.34 34.86 2.15 0.75 0.51 0.93
TarDAL 6.48 37.58 1.82 0.70 0.42 0.70

MMDRFuse 6.81 45.37 3.02 1.00 0.64 1.00
(b) Dataset: LLVIP Infrared-Visible Dataset

Methods EN SD MI VIF 𝑄𝐴𝐵/𝐹 SSIM
TextFusion 7.05 47.82 1.99 0.71 0.53 0.77
MUFusion 7.03 40.44 1.69 0.68 0.47 0.70
LRRNet 6.67 35.42 1.64 0.56 0.47 0.65

MetaFusion 7.14 48.90 1.16 0.61 0.29 0.60
DeFusion 7.25 43.93 2.33 0.74 0.43 0.83
TarDAL 7.58 61.77 2.21 0.65 0.42 0.71

MMDRFuse 7.34 46.98 3.02 0.81 0.57 0.85
(c) Dataset: RoadScene Infrared-Visible Dataset

Methods EN SD MI VIF 𝑄𝐴𝐵/𝐹 SSIM
TextFusion 6.86 38.43 2.45 0.68 0.44 0.94
MUFusion 7.51 54.92 1.72 0.51 0.34 0.78
LRRNet 7.12 43.90 2.09 0.51 0.38 0.71

MetaFusion 7.17 48.66 1.60 0.51 0.36 0.75
DeFusion 6.80 32.86 2.08 0.50 0.38 0.86
TarDAL 7.21 44.88 2.43 0.53 0.39 0.83

MMDRFuse 7.24 54.45 3.09 0.72 0.45 0.89

4.4.2 Quantitative Comparison. We display the quantitative results
on both MRI-SPECT and MRI-PET image pairs in Table 6. Our
MMDRFuse ranks first in four metrics (SD, MI, VIF, 𝑄𝐴𝐵/𝐹 ) and
ranks second or third in two metrics (EN, SSIM). Combined with the
above qualitative results we can notice that methods (MUFusion,
TarDAL) introduce extra artifacts that can reach high values of
EN, methods (MetaFusion, DeFusion) dilute the distribution of the
radioactive tracers can obtain high values of SSIM, which can not
provide much assistance for diagnosis. Therefore, after performing
a comprehensive analysis of the above results, our MMDRFuse with
an extreme mode size and considerable performance is better suited
to meet the needs of medical image fusion.

4.5 Pedestrian Detection
To further validate the performance of our MMDRFuse on down-
stream detection tasks, we conduct experimental exploration on
pedestrian detection. As can be seen from Figure 9, although LRR-
Net ([16]) achieves the best detection precision, it requires signif-
icantly more time and computational resources than our design.
Furthermore, compared with MetaFuse ([48]), which introduces
the detection task as additional supervision, our method performs
better even without any prior settings in detecting pedestrians.
This can be attributed to the introduction of perceptual loss, com-
bined with the dynamic refresh strategy and distillation mechanism
that jointly learns advanced semantic information. In contrast, our
method can precisely detect pedestrians from significant targets

Table 6: Quantitative results of the MIF task. Boldface and
underline show the best and second-best values, respectively.

(a) Dataset: MRI-SPECT Infrared-Visible Dataset

Methods EN SD MI VIF 𝑄𝐴𝐵/𝐹 SSIM
TextFusion 3.83 41.32 1.77 0.52 0.21 0.32
MUFusion 4.37 54.19 1.65 0.46 0.44 0.36
LRRNet 3.98 42.16 1.63 0.34 0.20 0.21

MetaFusion 3.62 45.43 1.64 0.47 0.39 1.40
DeFusion 3.73 51.33 1.82 0.59 0.55 1.47
TarDAL 4.69 58.41 1.79 0.56 0.48 0.37

MMDRFuse 3.99 64.11 1.96 0.61 0.63 0.40
(b) Dataset: MRI-PET Infrared-Visible Dataset

Methods EN SD MI VIF 𝑄𝐴𝐵/𝐹 SSIM
TextFusion 4.30 60.1 1.74 0.63 0.36 0.38
MUFusion 4.82 60.81 1.54 0.43 0.42 0.38
LRRNet 4.36 48.30 1.56 0.37 0.21 0.22

MetaFusion 4.08 63.47 1.68 0.50 0.51 1.43
DeFusion 3.32 49.26 1.40 0.45 0.45 1.18
TarDAL 4.38 52.99 1.79 0.46 0.45 0.30

MMDRFuse 4.38 75.22 1.93 0.65 0.69 0.45

Figure 9: Performance comparison in terms of average de-
tection precision and average speed on RGBT pedestrian
detection.

within contrasting backgrounds without detecting semantic in-
formation as input and with less running time as well as a mini
model size under 1 KB, achieving satisfactory detection results at a
considerably marginal cost.

5 CONCLUSION
An investigation into compressing the image fusion model is con-
ducted in this work. We utilise the specially designed comprehen-
sive loss function and the dynamic refresh strategy based on inter-
mediate fusion results to first formulate a fusion model. Further
combined with the digestible distillation strategy, we successfully
train an extremely tiny (0.44 KB) student network from the teacher
model. Experimental results on multiple tasks demonstrate that
our mini model not only exhibits advantages in efficiency and
complexity but also achieves promising results on the MMIF and
downstream detection tasks.
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