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ABSTRACT

We address the problem of learning a machine learning model from training
data that originates at multiple data owners in a cross-silo federated setup, while
providing formal privacy guarantees regarding the protection of each owner’s data.
Existing solutions based on Differential Privacy (DP) achieve this at the cost of
a drop in accuracy. Solutions based on Secure Multiparty Computation (MPC)
do not incur such accuracy loss but leak information when the trained model is
made publicly available. We propose an MPC solution for training differentially
private models. Our solution relies on an MPC protocol for model training, and an
MPC protocol for perturbing the trained model coefficients with Laplace noise in
a privacy-preserving manner. The resulting MPC+DP approach achieves higher
accuracy than a pure DP approach, while providing the same formal privacy
guarantees.

1 INTRODUCTION

The ability to induce a machine learning (ML) model from data that originates at multiple data
owners (clients) in a cross-silo federated setup, while protecting the privacy of each data owner, is
of great practical value in a wide range of applications, for a variety of reasons. Most prominently,
training on more data typically yields higher quality ML models. For instance, one could train a
more accurate model to predict the length of hospital stay of COVID-19 patients when combining
data from multiple clinics. This is a cross-silo application where the data is horizontally distributed,
meaning that each data owner (clinic) has records/rows of the data (HFL). Furthermore, being able
to combine different data sets enables new applications that pool together data from multiple data
owners, or even from different data owners within the same organization. An example of this is an
ML model that relies on lab test results as well as healthcare bill payment information about patients,
which are usually managed by different departments within a hospital system. This is an example of
a cross-silo application where the data is vertically distributed, i.e. each data owner has their own
columns (VFL). While there are clear advantages to training ML models over data that is distributed
across multiple data owners, in practice often these data owners do not want to disclose their data to
each other, because the data in itself constitutes a competitive advantage, or because the data owners
need to comply with data privacy regulations.

The importance of enabling privacy-preserving model training in federated setups has spurred a
large research effort in this domain, most notably in the development and use of Privacy-Enhancing
Technologies (PETs), prominently including Federated Learning (FL) (Kairouz et al. (2021)), Dif-
ferential Privacy (DP) (Dwork et al. (2014)), Secure Multiparty Computation (MPC) (Cramer et al.
(2015)), and Homomorphic Encryption (HE) (Lauter (2021)). Each of these techniques has its own
(dis)advantages. Approaches based on (combinations of) FL, MPC, or HE alone do not provide
sufficient protection if the trained model is to be made publicly known, or even if it is only made
available for black-box query access, because information about the model and its training data is
leaked through the ability to query the model (Fredrikson et al. (2015); Tramèr et al. (2016); Song
et al. (2017); Carlini et al. (2019)). Formal privacy guarantees in this case can be provided by DP,
however at a cost of accuracy loss that is inversely proportional to the privacy budget (see Sec. 2). To
mitigate this accuracy loss, we propose an MPC solution for training DP models.

Our Approach. Rather than having each party training local models on their own data sets, we have
the parties running an MPC protocol on the totality of the data sets without requiring each party
to disclose their private information to anyone. Since we restrict our analysis to generalized linear
models, we then have these parties using MPC to generate the necessary noise and privately adding
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it to the weights of the trained classifier to satisfy DP requirements. We show that this procedure
yields the same accuracy and DP guarantees as in the global DP model however without requiring the
parties to reveal their data, model parameters, or gradients to a central aggregator, or to anyone else
for that matter. Indeed, the MPC protocols effectively play the role of a trusted curator implementing
global DP. The resulting classifier can be published in the clear, or used for private inference on top
of MPC. Our solution is applicable in cross-silo federated scenarios in which the data is horizontally
distributed as well as in cross-silo federated scenarios where the data is vertically distributed. It
obtained the highest accuracy in the iDASH2021 Track III competition on confidential computing,
where the challenge was to propose a federated learning algorithm for training of a model to predict
the risk of wild-type transthyretin amyloid cardiomyopathy using medical claims data from different
hospitals, while providing DP guarantees.1

2 PRELIMINARIES

Differential Privacy. DP is concerned with providing aggregate information about a data set D
without disclosing information about specific individuals in D (Dwork et al. (2014)). A data set D′

that differs in a single entry from D is called a neighboring database. A randomized algorithm A
is called (ϵ, δ)-DP if for all pairs of neighboring databases D and D′, and for all subsets S of A’s
range,

P(A(D) ∈ S) ≤ eϵ · P(A(D′) ∈ S) + δ. (1)

In other words, A is DP if A generates similar probability distributions over outputs on neighboring
data sets D and D′. The parameter ϵ ≥ 0 denotes the privacy budget or privacy loss, while δ ≥ 0
denotes the probability of violation of privacy, with smaller values indicating stronger privacy
guarantees in both cases. ϵ-DP is a shorthand for (ϵ, 0)-DP. A can for instance be an algorithm that
takes as input a data set D of training examples and outputs an ML model. An (ϵ, δ)-DP randomized
algorithm A is commonly created out of an algorithm A∗ by adding noise that is proportional to the
sensitivity of A∗. We describe the Laplace noise technique that we use to this end in detail in Sec. 4.

Secure Multiparty Computation. MPC is an umbrella term for cryptographic approaches that
allow two or more parties to jointly compute a specified output from their private information in a
distributed fashion, without revealing the private information to each other (Cramer et al. (2015)).
MPC is concerned with the protocol execution coming under attack by an adversary which may
corrupt one or more of the parties to learn private information or cause the result of the computation
to be incorrect. MPC protocols are designed to prevent such attacks being successful, and can be
mathematically proven to guarantee privacy and correctness. We follow the standard definition of
the Universal Composability (UC) framework (Canetti (2000)), in which the security of protocols is
analyzed by comparing a real world with an ideal world. For details, see Evans et al. (2018).

An adversary can corrupt a certain number of parties. In a dishonest-majority setting the adversary is
able to corrupt half of the parties or more if he wants, while in an honest-majority setting, more than
half of the parties are always honest (not corrupted). Furthermore, the adversary can have different
levels of adversarial power. In the semi-honest model, even corrupted parties follow the instructions
of the protocol, but the adversary attempts to learn private information from the internal state of the
corrupted parties and the messages that they receive. MPC protocols that are secure against semi-
honest or “passive” adversaries prevent such leakage of information. In the malicious adversarial
model, the corrupted parties can arbitrarily deviate from the protocol specification. Providing security
in the presence of malicious or “active” adversaries, i.e. ensuring that no such adversarial attack can
succeed, comes at a higher computational cost than in the passive case. The protocols in Sec. 4 are
sufficiently generic to be used in dishonest-majority as well as honest-majority settings, with passive
or active adversaries. This is achieved by changing the underlying MPC scheme to align with the
desired security setting.

As an illustration, we describe the well-known additive secret-sharing scheme for dishonest-majority
2PC with passive adversaries. In Sec. 5 we additionally present results for honest-majority 3PC and
4PC schemes with passive and active adversaries; for details about those MPC schemes we refer
to Araki et al. (2016); Dalskov et al. (2021). In the additive secret-sharing 2PC scheme there are
two computing parties, nicknamed Alice and Bob. All computations are done on integers, modulo
an integer q. The modulo q is a hyperparameter that defines the algebraic structure in which the
computations are done. A value x in Zq = {0, 1, . . . , q − 1} is secret shared between Alice and Bob

1http://www.humangenomeprivacy.org/2021/competition-tasks.html
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by picking uniformly random values x1, x2 ∈ Zq such that x1 + x2 = x mod q. x1 and x2 are
additive shares of x (which are delivered to Alice and Bob, respectively). Note that no information
about the secret value x is recovered by any of the individual shares x1 or x2, but the secret-shared
value x can be trivially revealed by combining both shares x1 and x2. The parties Alice and Bob can
jointly perform computations on numbers by performing computations on their own shares, without
the parties learning the values of the numbers themselves.

For protocols in the passive-security setting, we use [[x]] as a shorthand for a secret sharing of x, i.e.
[[x]] = (x1, x2). Given secret-shared values [[x]] = (x1, x2) and [[y]] = (y1, y2), and a constant c,
Alice and Bob can jointly perform the following operations, each by doing only local computations
on their own shares:2
• Addition of a constant (z = x+ c): Alice and Bob compute (x1 + c, x2). Note that Alice adds c to

her share x1, while Bob keeps the same share x2. This operation is denoted by [[z]]← [[x]] + c.
• Addition (z = x+ y): Alice and Bob compute (x1 + y1, x2 + y2) by adding their local shares of x

and y. This operation is denoted by [[z]]← [[x]] + [[y]].
• Multiplication by a constant (z = c · x): Alice and Bob compute (c · x1, c · x2) by multiplying their

local shares of x by c. This operation is denoted by [[z]]← c[[x]].
Multiplication of secret-shared values [[x]] and [[y]] is done using a so-called multiplication triple
(Beaver (1992)), which is a triple of secret-shared values [[u]], [[v]], [[w]], such that u and v are
uniformly random values in Zq and w = u · v. Given that they have a multiplication triple, Alice
and Bob can compute [[d]] = [[x]] − [[u]] and [[e]] = [[y]] − [[v]], and, in a communication step, open
d and e by disclosing their respective shares of d and e to each other. Next, they can compute
[[z]] = [[w]] + d · [[v]] + e · [[u]] + d · e, which is equal to [[x · y]]. We denote this operation by
[[z]] ← πMUL([[x]], [[y]]). Each multiplication requires a fresh multiplication triple. Such triples can
be predistributed by a trusted initializer (TI). In case a TI is not available or desirable, Alice and
Bob can simulate the role of the TI, at the cost of additional pre-processing time and computational
assumptions, see Mohassel and Zhang (2017).

Building on these cryptographic primitives, MPC protocols for other operations can be developed,
including for privacy-preserving training of ML models and noise generation to provide DP guar-
antees (see Sec. 4). Our protocols use well known subprotocols for division πDIV of secret-shared
values, square root πSQRT of secret-shared values, and generation of random values from a uniform
distribution πGR−RANDOM (Keller (2020)).

3 RELATED WORK

Our approach preserves input privacy, i.e., it ensures that the training data sets are not exposed
(except under ϵ-DP guarantees) to anyone but their original holders during (1) model training and (2)
publication or inference. As we describe below, existing methods either do not fully protect input
privacy, or they do so at the cost of higher accuracy loss than our approach.

MPC/HE based Model Training. Many cryptography based methods have been proposed for
privacy-preserving learning of ML models with data from multiple data owners, including for linear
regression models (Gascón et al. (2017); Agarwal et al. (2019)), (ensembles of) decision trees (Lindell
and Pinkas (2000); de Hoogh et al. (2014); Abspoel et al. (2021); Adams et al. (2022)), and neural
network architectures (Mohassel and Zhang (2017); Wagh et al. (2019); Guo et al. (2020); De
Cock et al. (2021)). These techniques protect input privacy during training while still, in principle,
producing the same ML models that one would obtain in the clear (i.e. when no encryption is used).
The latter is both a blessing, as there is no accuracy loss, and a problem, as upon model publication or
during inference, the trained models leak the same kind of information as models trained in-the-clear
(Fredrikson et al. (2015); Tramèr et al. (2016); Song et al. (2017); Carlini et al. (2019)). Because
these methods do not provide DP guarantees, we do not compare with them in Sec. 5.

DP and FL based Model Training. Much of the literature on training DP models (Abadi et al.
(2016)) is developed for the global DP (a.k.a. central DP) paradigm, which assumes the existence of
a trusted curator (aggregator) who collects all the data and then trains a DP model over it, e.g. by
adding noise to the gradients or the model coefficients. These methods do not preserve input privacy,
since data owners need to disclose their data sets to the aggregator. A local DP approach in which
privacy loss is controlled by having the data owners add noise to their input data before disclosing it

2We often omit the modular notation for conciseness.
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to the aggregator, results in substantial utility degradation. We eliminate the need for a trusted curator
by simulating this entity through MPC protocols that are run directly by the parties themselves.

Another related existing approach combines Federated Learning (FL) with DP. In FL, each of the data
owners participates in model training on their end and only exchanges trained model parameters or
gradients with the central server (Kairouz et al. (2021)). To provide DP guarantees, the data owners
can add noise to protect the values that they send to the central server. In Sec. 5 we compare with
such an approach in which the data owners perturb their model coefficients before sending them
to the central server for aggregation. This approach works only in the horizontally distributed data
setting, while our approach (see Sec. 4) works in the vertically distributed setting as well.

Combinations of MPC and DP. The key idea in our proposed approach is to train DP models while
performing as much of the computations as possible in MPC protocols in order to preserve accuracy.
MPC and DP for ML have been well studied in isolation, but the strong privacy protections that can
result from their synergy are still being explored (Wagh et al. (2021)). We combine MPC and DP
to protect training data privacy during training and during inference. In practice, we simulate the
trusted curator present in the centralized DP model by using MPC. While in the past such approach
was avoided, due to the high computational cost of training the models on top of MPC, we argue
that, with advances in protocols and computing power, the higher utility provided by such approach
justifies its adoption in several situations. The idea to replace the trusted curator from the global
DP paradigm with MPC to get better privacy at the same high utility will gain traction. Böhler and
Kerschbaum (2021) for instance have recently explored this idea for detecting the top k most frequent
items across different data sets. They let each party locally compute partial noises which are then
combined, which is different from our approach of letting the parties execute an MPC protocol to
jointly sample secret-shared noise.

Combining MPC with DP has been proposed in the context of FL, where the data is horizontally
distributed (see e.g. Acar et al. (2017); Jayaraman et al. (2018); Pathak et al. (2010)). No solutions
for the vertically partitioned scenario exist. Another possible approach is to use cryptographic
protocols (not necessarily MPC) and differential privacy, such as in Jayaraman et al. (2018); Pathak
et al. (2010); Chase et al. (2017); Byrd and Polychroniadou (2020); Truex et al. (2019), in order to
train individual models on the data sets in possession of the computing parties and aggregate these
models by averaging their coefficients. Again, this approach does not work for vertically partitioned
data. Moreover, our solution trains the final model on the union of all the individual data sets, thus
essentially obtaining the same utility that is achievable in the trusted curator scenario. Protocols
for obliviously sampling from biased coins on MPC have been proposed in Champion et al. (2019).
In Gu et al. (2021), a framework for combining MPC and Federated learning is proposed, but it
only works for the case of horizontally partitioned data. Moreover, the noise generation process
described in Gu et al. (2021) happens in the clear (by each server) and it is combined by using secret
sharing. That requires more noise than in our proposal (where the noise is generated within MPC),
thus reducing the utility of the data.

4 METHOD

Overview. We work in the scenario described in Fig. 1 distinguishing between the data owners who
hold the training data sets, and the computing parties who run the MPC protocols for model training
and noise addition. Our solution works in scenarios in which each data owner (e.g. hospital or bank)
is also a computing party, as well as in scenarios where the data owners outsource the computations
to untrusted servers (computing parties) instead. The data holders secret share their data with a set of
computing servers. The servers run an MPC protocol and produce an ML model protected by DP.
We implement our solution for 2, 3 and 4 computing servers, but they are general and work with any
number of computing servers as well as data holders, by choosing an appropriate underlying MPC
scheme for the desired number of computing parties (see Sec. 2). The resulting model can be used
for private inference (on top of the underlying MPC protocol) or made open to the public.

The core of our solution is an MPC protocol πDP implementing a mechanism for providing ϵ-DP by
perturbing the coefficients of a trained logistic regression (LR) model with the addition of a noise
vector η that is sampled according to the density function

h(η) ∝ e−
nϵΛ
2 ∥η∥ (2)

In the above expression, n is the number of instances that were used to train the LR model, and Λ is
the regularization strength parameter used during training. This technique provides ϵ-DP provided
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that (C1) each input feature vector has an L2 norm of at most 1; and (C2) the LR model is trained
using L2 regularization. If (C1) and (C2) are fulfilled, then the sensitivity of LR with regularization
parameter Λ is at most 2

nΛ (Chaudhuri and Monteleoni (2008); Chaudhuri et al. (2011)).

Figure 1: Privacy-preserving training of
an ϵ-DP model with MPC

Protocol 1: πNORM for secure L2 normalization
Input :A secret-shared vector [[x]] of length d
Output :Secret-shared L2 normalized vector [[xnorm]]

1 Declare vector [[xnorm]] of length d
2 [[S]]← 0
3 for i = 1 to d do
4 [[S]]← [[S]] + πMUL([[xi]], [[xi]])
5 end
6 [[v]] = πDIV(1, πSQRT([[S]]))
7 for i = 1 to d do
8 [[xnorm

i ]]← πMUL([[xi]], [[v]])
9 end

10 return [[xnorm]]

In all MPC protocols used in this paper, secret sharings are in Zq with q = 2λ, i.e. a power 2 ring.
In Sec. 5 we present results with λ = 64 for a varying number of data owners, and for 2, 3, and 4
computing parties. Since all computations in MPC are done over integers in Zq (see Sec. 2), the
data owners first convert the real numbers in their data to integers using a fixed-point representation
(Catrina and Saxena (2010)) and subsequently split the integer values into secret shares which are
sent to the computing parties (see Fig. 1). While the original value of a secret-shared number can
be trivially revealed by combining the shares, the secret-sharing based MPC schemes ensure that
nothing about the inputs is revealed to any subset of the computing parties that can be corrupted by
an adversary. This means, in particular, that no computing party by itself learns anything about the
actual values of the inputs. Next, the computing parties proceed by performing computations on the
shares. In particular, the computing parties:

1. Jointly run MPC protocol πLR to L2 normalize the training data, and to subsequently infer a
LR model using L2 regularization from the normalized data. At the end of this protocol, the
coefficients of the model are secret-shared between the parties.

2. Jointly run MPC protocol πDP to add a noise vector to the secret-shared model coefficients. At the
end of this protocol, the noisy coefficients of the model are secret shared between the parties.

3. Disclose their shares of the LR coefficients so that they can be combined in a final ϵ-DP LR model.

As the noise in step 2 is generated and added to the weights using MPC, the computing parties
will not learn it, hence they will not be able to retrieve the actual model coefficients from the noisy
coefficients that are disclosed in step 3.

Protocol πLR for Model Training. At the beginning of the LR training protocol, the computing
parties have secret shares of a set of labeled training examples S = {([[x]], [[t]])}, each consisting
of a secret-shared input feature vector x of length m and a secret shared label t. πLR is based
on an existing MPC protocol for training a LR with full gradient descent (GD) (Keller (2020)).
We extended this protocol in two ways. First, to satisfy condition (C1), before the start of model
training, we let the computing parties apply L2 normalization to the secret shares of each training
example [[xnorm]] by running πNORM. Pseudocode for πNORM is provided separately in Prot. 1
because we also need it as a subprotocol for πDP. If the data is horizontally distributed across the
data owners, then each data owner can apply sample-wise L2 normalization to their own instances
before secret sharing the training instances with the computing parties. The computing parties in this
case can skip the use of πNORM for this purpose, which will reduce the training runtime. Second,
to comply with condition (C2), we implemented regularization by changing the weight update rule
to [[∆w]] ← C[[∆w]] − α[[∆w]] − Λα[[w]]. In this expression, [[w]] and [[∆w]] are the weights and
gradients as maintained in secret-shared form throughout the model training; C is the momentum; α
is the learning rate; and Λ is the regularization penalty. Pseudocode for πLR is provided in Appendix
A.
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Protocol 2: πDP for secure output pertur-
bation
Input :A secret-shared vector [[w]] with d

model coefficients wi; regularization
penalty Λ; total number n of training
examples; privacy budget ϵ.

Output :Secret-shared vector [[w̃]] with
perturbed model coefficients

1 [[s]]← πGSS(d)
2 [[s]]← πNORM([[s]], d)
3 [[γ]]← [[0]]
4 for i = 1 to d do
5 [[u]]← πGR−RANDOM(0, 1)
6 [[u]]← −πLN([[u]])
7 [[γ]]← [[γ]] + [[u]]
8 end
9 c← 2/(n · ϵ · Λ)

10 [[γ]]← c[[γ]]
11 Initialize vector [[w̃]] of length d to [[0]]
12 for i = 1 to d do
13 [[si]]← πMUL([[si]], [[γ]])
14 [[w̃i]]← [[wi]] + [[si]]
15 end
16 return [[w̃]]

Protocol 3: πGSS for secure sampling of a
vector from a Gaussian distribution
Input :Vector length d.
Output :A secret-shared vector [[s]] of length d

sampled from Gaussian distribution
with mean 0 and variance 1

1 Declare vector [[s]] of length d
2 for i = 0 to d/2 do
3 [[u]]← πGR−RANDOM(0, 1)
4 [[v]]← πGR−RANDOM(0, 1)
5 [[r]]← πSQRT(−2πLN([[u]]))
6 [[θ]]← 2π[[v]]
7 [[s2i]]← πMUL([[r]], πCOS([[θ]]))
8 [[x2i+1]]← πMUL([[r]], πSIN([[θ]]))
9 end

10 if d is odd then
11 [[p]]← πGSS(2)
12 [[sd−1]]← [[p0]]
13 end
14 return [[s]]

Protocol πDP for Noise Generation. At the end of MPC protocol πLR, the coefficients w of the
trained LR model are secret-shared between the parties. Next, the parties run the MPC protocol πDP,
presented in pseudocode in Prot. 2, to generate noise and add it to the model coefficients to provide
DP guarantees. Protocol πDP implements the output perturbation method (or sensitivity method)
(Chaudhuri and Monteleoni (2008); Chaudhuri et al. (2011)) in a privacy-preserving way. While
the original output perturbation method relies on the fact that the model coefficients are known or
disclosed to a single entity, such as a trusted curator, we do not make such an assumption. Instead,
the model coefficients remain secret-shared among the computing parties, neither of which knows the
true values. The challenge is for the parties to jointly generate noise that is appropriate for the true
model coefficients that they cannot see, without learning the true value of the noise. Indeed, no entity
should learn the true value of the noise, so that the noisy model coefficients can safely be disclosed at
the end of the process (see step 3 in the overview at the beginning of this section), without leaking
information that would violate the DP guarantees.

In the output perturbation method, sensitivity is defined using the L2 norm, and the noise vector is
sampled from a particular instance of a multidimensional power exponential distribution h(η) ∝
e−

nϵΛ
2 ∥η∥. Following Sánchez-Manzano et al. (2002), the computing parties can obtain secret shares

of a vector s sampled according to the distribution h(η), by following these steps, in which d is the
length of the vector (i.e. the number of model coefficients):
1. Generate a d-dimensional Gaussian vector s. That is, each coordinate of the vector is sampled

from a Gaussian distribution with mean zero and variance one. To this end, Line 1 in Prot. 2
calls πGSS (see pseudocode in Prot. 3) which relies on the transform by Box and Muller (1958) to
generate samples of the Gaussian unitary distribution, namely ⌈d/2⌉ pairs of Gaussian samples.
For each pair, on Line 3–4 in Prot. 3, the computing parties securely generate secret shares
of two random numbers u and v uniformly distributed in [0,1] by executing πGR−RANDOM. In
πGR−RANDOM, each party generates l random bits, where l is the fractional precision of the power
2 ring representation of real numbers, and then the parties define the bitwise XOR of these l bits
as the binary representation of the random number jointly generated. On Line 5–8 in Prot. 3, the
parties then jointly compute a secret sharing of

√
−2 ln(u)·cos(2πv) and of

√
−2 ln(u)·sin(2πv)

using MPC protocols πSQRT, πSIN, πCOS, and πLN (Keller (2020)). In case d is odd, one more
sample needs to be generated. The parties do so on Line 11–12 in Prot. 3 by executing πGSS to
sample a vector of length 2 and only retain the first coordinate.

2. Normalize s, that is divide each coordinate of s by its L2 norm (Line 2 in Prot. 2). After steps 1-2,
the parties have secret-shares of a random d-dimensional vector on the unit sphere (this follows
from the spherical symmetry of the multivariate Gaussian distribution).
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3. In this step the computing parties change the magnitude of the vector obtained above to an appro-
priate value by sampling the gamma distribution Γ(d, 2

nϵΛ ) to obtain a value γ, and multiplying
each coordinate of the normalized vector produced in step 2 with γ. To generate a secret-shared
sample [[γ]] from the Γ(d, 2

nϵΛ ) distribution, on Line 3–8 in Prot. 2, the computing parties generate
secret shares of d independent samples from the exponential distribution with rate parameter one
(here denoted by Exp(1)) and add them. To generate secret shares of one such sample we use the
inverse transform sampling over MPC, which consists of computing − lnu, where u is a random
number with precision equal to l bits generated by the computing parties within the interval [0, 1]:
(a) On Line 5 the parties execute πGR−RANDOM as in Prot. 3 to generate a random number with

precision l in [0, 1]. Denote this number by u.
(b) On Line 6 the parties compute secret shares of − ln(u).

Finally, on Line 9–11 the parties scale the sum by multiplying the secret shares with the factor 2
nϵΛ .

On Line 13, they then multiply each coordinate of s with γ to obtain the appropriate magnitude.
The obtained vector is then added to the vector of model coefficients on Line 14.

The importance of protocol πDP stems from the fact that it enables the parties to generate secret shares
of noise, without each party learning the true value of the noise that they add to the model coefficients
in Line 14 of Prot. 2. The correctness of the protocol follows from the correctness of the inverse
transform sampling algorithm, and the fact that Exp(1) = Γ(1, 1) and that

∑d
i=1 Γ(1, 1) = Γ(d, 1).

Moreover, it follows from the definition of the Gamma distribution that c · Γ(d, 1) = Γ(d, c). The
security of the whole protocol follows from the security guarantees provided by the cryptographic
primitives (Keller (2020)).

5 RESULTS

iDASH 2021 Results. We submitted our approach to a competition hosted by a National Center for
Biomedical Computing funded by the NIH. In Track III of the iDASH 2021 competition, participants
were invited to submit solutions for learning a ML model from training data hosted by two virtual
centers, while providing DP guarantees. The centers represent data owners who have medical records
of respectively 831 patients and 882 patients. Both data sets have the same schema, consisting of
1,874 boolean input attributes and a boolean target variable. The goal is to train a classifier for
diagnosis of transthyretin amyloid cardiomyopathy using medical claims data (Huda et al. (2021)).
Solutions submitted to the competition were required to run on two machines. They were evaluated
in terms of (1) training runtime on two nodes with Intel Xeon E3-1280 v5 processors (4 physical
cores, hyper-threading enabled) and 64 GiB memory; (2) accuracy on a held-out test of 429 patients.

Tab. 1 contains the results for the best performing teams satisfying the ϵ-DP requirement (with ϵ set as
3 by the organizers). The first row corresponds to the approach presented in Sec. 4. We implemented
the πLR and πDP protocols in MP-SPDZ, an open source framework for MPC (Keller (2020)).3
Being aware of the pitfalls of implementing DP with floating point arithmetic, our implementation
follows the best practice of using fixed-point and integer arithmetic as recommended by, for example,
OpenDP.4 See Appendix C for more details. As the underlying MPC scheme for the iDASH2021
competition, we used semi2k (a semi-honest adaptation of Cramer et al. (2018)) with mixed circuits
that employ techniques using secret random bits (extended doubly-authenticated bits; edaBits)
(Escudero et al. (2020)). This MPC scheme enables secure 2PC against semi-honest adversaries
and complied with the requirements of the competition. As the regularizer for LR training, we used
N(w) = 1

2w ·w, in which w denotes the vector of weights (coefficients) of the LR model, i.e. we
used Λ = 1.

All methods in Tab. 1 provide ϵ-DP guarantees. The differences among the methods are in the utility
(accuracy) and in the time taken to train a DP model. Our πLR +πDP approach achieved the highest
accuracy of all methods, while taking the longest time to complete. Indeed, the runtime for the πLR

+πDP approach is orders of magnitude larger than the runtimes for the other methods. This is because
the πLR +πDP approach is the only method in Tab. 1 that uses MPC, while the other methods do
not rely on cryptographic techniques. Approach 2 was based on feature selection and training an
ensemble of LR models on selected feature subsets, while approach 4 was based on training a decision
tree in a DP manner; these approaches were not created by us, and, to the best of our knowledge, their
description has not been published in the open literature. In addition to the method from Sec. 4 we

3See https://anonymous.4open.science/r/IDASH-MPCheavy-6D69/ for our code.
4https://opendp.org
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Table 1: Results for ϵ-DP with ϵ = 3 and data from two data owners, as provided by the iDASH2021
competition organizers

Approach PETs Accuracy3 Runtime3

1. πLR+πDP (Sec. 4) MPC & DP 86.25% ∼ 15,000 sec
2. feat. sel. and LR ensemble DP 85.31% 31.942 sec
3. baseline (Sec. 5) DP 84.85% 0.27 sec
4. decision tree based DP 84.38% 0.09 sec

Table 2: 5-fold CV accuracy results for varying number of data owners for ϵ-DP with ϵ = 1.

horizontally distributed vertically distributed
# data owners baseline πLR +πDP baseline πLR +πDP

2 85.79% 87.98% − 87.98%
4 83.36% 87.98% − 87.98%
8 76.92% 87.98% − 87.98%

submitted an MPC-free baseline method to iDASH2021. We describe this method, which corresponds
to approach 3 in Tab. 1, below as we also use it for further analysis and comparison in Sec. 5.

Baseline Method. The baseline technique follows a FL setup with horizontally distributed data
in which each data owner locally trains a model on their own data and adds noise to the model
parameters at their end. Each data owner then shares its noisy parameters with a central server who
performs averaging of the noisy model parameters and sends the result to the data owners. At the end
of this process, each data owner holds the aggregated trained model. In more detail, in the baseline
technique, each data owner:
1. Applies L2 normalization to its own instances;
2. Trains a LR model on its normalized instances;5
3. Adds noise to the trained LR coefficients as per the output perturbation method (Chaudhuri et al.

(2011)).
After going through steps 1-3, the data owners can each publish their perturbed LR coefficients,
which we subsequently average to create a final model. Because steps 1–3 provide ϵ-DP (Chaudhuri
et al. (2011)), and since the data sets do not have common entries (a case of parallel composition),
the overall solution provides ϵ-DP due to the post-processing property of differential privacy.

Utility on Horizontally and Vertically Distributed Data. For the results in Tab. 2 we distributed
the data evenly among different numbers of data owners, both horizontally and vertically. The
baseline technique is only applicable when the data is horizontally distributed, while the πLR +πDP

approach works in the vertically distributed scenario as well. Even in the horizontally distributed
scenario, the πLR +πDP approach is preferable because it yields a higher accuracy, which becomes
even more evident when the data is distributed among multiple data owners. The accuracy of the
πLR +πDP approach is independent of the number of data owners and the partitioning of data, as
regardless of the partitioning, the computing parties still train a model over all the training data with
πLR and subsequently add noise once to the globally trained model coefficients with πDP, effectively
simulating the global DP paradigm but without the involvement of a trusted curator. The baseline
technique on the other hand adheres to the local DP paradigm in which each data owner adds noise
to its local model, resulting in more noise in the final aggregated model. Furthermore, the utility of
the πLR +πDP approach is independent of the number of instances and/or features owned by each
individual data owner, while the accuracy of the baseline technique degrades when individual data
owners do not have sufficient instances to train local models that generalize well. This is especially
relevant in biomedical applications that are characterized by high-dimensional data sets with relatively
few instances.

Runtime. As Tab. 3 shows, the number of computing parties, the corruption threshold, and respective
MPC schemes do have a substantial effect on the training time. The experiments for Tab. 3 were run
with the same training data as in Tab. 1 on co-located F32s V2 Azure virtual machines each of which

5We used the LR implementation from sklearn for this with penalty=‘l2’ (L2 regularization) and C = 1 (the
inverse of Λ).

8



Under review as a conference paper at ICLR 2023

Table 3: Runtimes of πLR +πDP for different number r of computing parties

r Security Horizontally distributed Vertically distributed MPC scheme

2 Passive 35687 sec 38056.92 sec Cramer et al. (2018)
3 Passive 75.83 sec 454.83 sec Araki et al. (2016)
3 Active 500.28 sec 1649.07 sec Dalskov et al. (2021)
4 Active 160.50 sec 838.02 sec Dalskov et al. (2021)

contains 32 cores, 64 GiB of memory, and network bandwidth of upto 14 Gb/s. Every computing
party ran on a separate VM instance (connected with a Gigabit Ethernet network). The times reported
include computing as well as communication times. The training was run for 1000 epochs. with
ϵ = 1, Λ = 1 and with edaBits for mixed circuit computations.

In the horizontally distributed case, the data owners can L2-normalize their instances locally while in
the vertically partitioned case the computing parties need to run MPC protocol πNORM; this accounts
for the difference in runtime between the horizontal and vertical partitioning. As expected, the
corruption threshold has the most effect on the run time. Protocols that are secure for an honest
majority of players (the protocols presented in Araki et al. (2016), and Dalskov et al. (2021)) are
much faster than protocols secure against a dishonest majority (Cramer et al. (2018)). For the same
corruption threshold, protocols secure against passive adversaries are faster than protocols secure
against active adversaries. The four party protocol proposed in Dalskov et al. (2021) manages to
obtain good run times for the case of active adversaries by further reducing the corruption threshold
to 25%, i.e. one player out of four can be corrupted by an adversary and the protocol is still secure.

Our results show that MPC implementations for honest majority in the case of realistic sized data
sets for genetic studies (a few hundred patients, and a few thousand features) are practical. We can
train such models and add DP guarantees on top of MPC in less than 1.3 min for the case of honest
majority protocols with passive security. Even in the case of stronger adversarial models, the training
can be finished in a few hours, which is still practical for many applications where the increased
accuracy payoff is valuable, especially with data that is distributed across multiple owners (Tab. 2).

6 CONCLUSION

In this paper, we described a practical and efficient adaptation of distributed logistic regression
learning: adding tractable privacy guarantees against model inversion in the absence of a trusted
curator which, in real-world scenarios, is often impractical, undesirable, or forbidden. This work led
to a 1st place in Track III of the iDASH 2021 Genome Privacy competition. Despite having been
formulated for a competition task, the design is intentionally general: it makes no assumption about
the data partitioning scenario, number of computing parties / data owners, or the security setting in
which it is applied. On the basis of linearity, πLR is interchangeable with all linear learners with no
need to reevaluate noise variance. Moreover, the exponential noise mechanism is straightforward
to replace by the Gaussian mechanism for scenarios where (ϵ, δ)-DP guarantees are acceptable. As
such, the MPC+DP method can be harnessed for model training across a broad range of use cases
without requiring extensive tuning by privacy experts.

The proposed approach effectively offers the advantages of global DP but without the involvement
of a trusted curator, because this curator is simulated by an MPC protocol instead. The trade-off
between this MPC for global DP approach and the baseline federated method with local DP can be
summarized as operating cost (or running time) versus model accuracy. We empirically showed the
added utility of collaborative learning with MPC over the standard federated approach. The effect is
particularly apparent as the number of disjoint collaborators grows. We also remark that the baseline
method, and existing methods that combine MPC with DP in FL, cannot be applied in cases where
data is vertically partitioned which is a commonly-found scenario in medicine and advertising. As
such, our MPC+DP method allows collaboration in a strictly larger space of applications. Based
on performance results, our protocol is extensible to larger data sets while remaining in a realistic
time span for model learning, but could be improved further by custom protocol implementations or
given the existence of a correlated randomness dealer in suitable scenarios. To further improve upon
accuracy, a probable research direction is to introduce MPC protocols for feature selection Li et al.
(2021) in both horizontal and vertical partitioning schemes.
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Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. https://arxiv.org/abs/1912.04977, 2021.

Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security, page 1575–1590,
2020.

Kristin E Lauter. Private ai: Machine learning on encrypted data. IACR Cryptol. ePrint Arch., 2021:
324, 2021.

Xiling Li, Rafael Dowsley, and Martine De Cock. Privacy-preserving feature selection with secure
multiparty computation. arXiv preprint arXiv:2102.03517, 2021.

Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Proceedings of the 20th
Annual International Cryptology Conference on Advances in Cryptology, pages 36–54, 2000.

Ilya Mironov. On significance of the least significant bits for differential privacy. In Proceedings of
the 2012 ACM conference on Computer and communications security, pages 650–661, 2012.

Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving machine
learning. In IEEE Symposium on Security and Privacy (SP), pages 19–38, 2017.

Manas A Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differential privacy via aggregation
of locally trained classifiers. In Advances in Neural Information Processing Systems 23, pages
1876–1884, 2010.

Eusebio Gómez Sánchez-Manzano, Miguel Angel Gomez-Villegas, and Juan-Miguel Marín-
Diazaraque. A matrix variate generalization of the power exponential family of distributions.
Communications in Statistics-Theory and Methods, 31(12):2167–2182, 2002.

Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning models that remember
too much. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 587–601, 2017.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction APIs. In 25th USENIX Security Symposium, pages 601–618, 2016.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and
Yi Zhou. A hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, pages 1–11, 2019.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-party secure computation for
neural network training. Proceedings on Privacy Enhancing Technologies, (3):26–49, 2019.

Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. DP-cryptography: marrying
differential privacy and cryptography in emerging applications. Communications of the ACM, 64
(2):84–93, 2021.

Haozhe Xie, Jie Li, Qiaosheng Zhang, and Yadong Wang. Comparison among dimensionality
reduction techniques based on random projection for cancer classification. Computational Biology
and Chemistry, 65:165–172, 2016.

12



Under review as a conference paper at ICLR 2023

A PSEUDOCODE

Pseudocode for πLR is presented in Prot. 4. πLR is based on an existing MPC protocol for training a
LR with gradient descent (Keller (2020)), which we extended in two ways to satisfy the conditions:

(C1) each input feature vector has an L2 norm of at most 1;
(C2) the LR model is trained using L2 regularization.

At the beginning of protocol πLR, the computing parties have secret shares of a set of labeled training
examples. To satisfy condition (C1), on Line 1–3 the computing parties first apply L2 normalization
to the secret shares of each training example by running protocol πNORM; pseudocode for πNORM is
provided separately in Prot. 1 in the paper.

The computing parties then begin secure training on the privately L2 normalized data from all the
data owners. The training begins with initializing the secret shares of the weights (coefficients) of the
LR model using Glorot uniform initializer (Glorot and Bengio (2010)). To this end, the computing
parties execute protocol πINIT on Line 4. The training is carried out for niter number of iterations
(epochs), which is a public constant agreed upon by all computing parties along with the learning
rate α, the regularization penalty Λ, and the momentum C. In each epoch, the MP-SPDZ module
πFWD for a secure forward pass is called on Line 6, followed by the MP-SPDZ module πBKWD for a
backward pass on Line 7. The secret shares of the weights are then updated for every epoch using
the MP-SPDZ module for updating the weights. We modified this module to satisfy (C2) with L2
regularization as per Line 9 in Prot. 4.

Protocol 4: πLR for secure logistic regression training
Input :A set S = {([[x]], [[t]])} of secret-shared training examples, each consisting of a secret-shared input

feature vector x of length m and a secret shared label t; learning rate α; regularization penalty Λ;
momentum C; number of iterations niter .

Output :A secret-shared vector [[w]] of weights wi that minimize the sum of squared errors over the
training data

1 for training examples ([[x]], [[t]]) in S do
2 [[x]]← πNORM([[x]],m)
3 end
4 [[w]]← πINIT ▷ MP-SPDZ module for Glorot uniform initializer
5 for i = 1 to niter do
6 Run πFWD ▷ MP-SPDZ module for forward pass
7 Run πBKWD ▷ MP-SPDZ module for backward pass
8 Run πUPDATE ▷ Modified MP-SPDZ module for weight updates with the modified update

rule for computing ∆w: [[∆w]]← C[[∆w]]− α[[∆w]]− Λα[[w]]
9 end

10 return [[w]]

B ADDITIONAL EXPERIMENTS

B.1 EFFECT OF PRIVACY BUDGET ϵ ON ACCURACY OF MODELS TRAINED WITH πLR +πDP

Table 4 shows the effect of the privacy budget ϵ on the accuracy of models trained with the πLR +πDP

approach. The accuracy is measured over one of the folds of the train and test data from Sec. 5. The
training is done for 1000 epochs and Λ = 1. The results are as expected, with a larger privacy budget
– i.e. less stringent privacy requirements – yielding more accurate models. The observation that the
accuracy for ϵ = 1 is at par with the accuracy for ϵ =INF (i.e. when no noise is added) is explained
by the fact that adding some noise can positively impact the generalization capability of the model.

B.2 COMPARISON WITH OTHER PERTURBATION TECHNIQUES

For the πLR +πDP approach (Sec.4) and the baseline technique (Sec. 5), we adopted the sensitivity
method that perturbs the model coefficients, i.e. the output perturbation method that was proposed as
Algorithm 1 in Chaudhuri et al. (2011). In Table 5 we compare the output perturbation technique with
other perturbation techniques, namely objective perturbation and gradient perturbation. For objective
perturbation, we ran experiments with Algorithm 2 from Chaudhuri et al. (2011) that adds noise to the
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Table 4: Accuracy of models trained with πLR +πDP for different values of ϵ

ϵ ACCURACY

0.001 37.72%
0.01 50.58%
0.1 62.57%
0.5 72.51%
1 87.42%
INF 86.84%

objective function itself.6 For gradient perturbation, we ran experiments with DP-SGD (Abadi et al.
(2016)) that adds noise to the gradients.7 For DP-SGD, we computed the required noise multiplier
for given ϵ = 1, δ = 1e− 5, batch size of 1, 300 epochs, and the number of training examples each
data owner holds. This was then passed as an argument to DP-SDG optimizer along with a clipping
threshold of 1, learning rate of 0.1, and number of micro batches equal to the batch size.

In the BASELINE-OP method in Table 5, each data owner trains a differentially private LR model
locally by perturbing the objective function. The resultant coefficients of the local models are then
averaged, resulting in a final DP model. The BASELINE-DPSGD method is entirely similar, but
in this method each data owner trains a differentially private LR model by perturbing the gradients
learned during training, i.e. with DP-SGD.

As can be seen in Table 5, contrary to what one would expect based on the analysis in Chaudhuri
et al. (2011), the accuracy results with this objective function perturbation method were not good on
the iDASH2021 data, and far worse than those with the output perturbation method. We attribute this
to the high-dimensional nature of the iDASH2021 data (many features and relatively few instances)
which is very different from the data sets used for evaluation in Chaudhuri et al. (2011). Similarly,
the LR models trained with DP-SGD on the iDASH2021 data are significantly less accurate than
those protected with output perturbation.

Table 5: Accuracy results obtained with 5-fold CV for ϵ-DP with ϵ = 1 and 2 data owners

APPROACH ACCURACY

OUR APPROACH OUTPUT PERTURBATION
πLR +πDP (SEC. 4) 87.98%
BASELINE (SEC. 5) 85.79%

OTHER APPROACHES
OBJECTIVE PERTURBATION BASELINE-OP 49.40%
GRADIENT PERTURBATION BASELINE-DPSGD 69.77%

B.3 COMPARISON WITH OTHER METHODS ON HORIZONTALLY PARTITIONED DATA

We evaluate our MPC+DP approach and compare against existing literature (Pathak et al. (2010)
and Jayaraman et al. (2018)) that adopt a combination of PETs to train LR models and provide DP
guarantees with the output perturbation technique.8 The main distinction with our method, is that –
similar as in the BASELINE method we adopted in Sec. 5 – these existing approaches let each data
owner train a model locally and then add noise to the averaged model parameters using MPC+DP
techniques. Because each data owner is required to train a model locally, these existing methods
only work in scenarios where the data is horizontally partitioned, unlike our method which is suitable
for vertically partitioned scenarios as well. We also note that the amount of noise added by each
technique is different.

For the results in Table 6 we distributed the data evenly among different numbers of data owners, in a
horizontal manner. We report 5-fold CV accuracy results averaged for 100 runs of noise generation
mechanism to consider the randomness in the noise generation. We observe that for 2 data owners, all

6We implemented this approach using IBM’s Diffprivlib library
https://github.com/IBM/differential-privacy-library.

7We implemented this approach using TF-Privacy
https://www.tensorflow.org/responsible_ai/privacy/.

8https://github.com/bargavj/distributedMachineLearning
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the techniques have close performance in terms of accuracy. Similar as for the BASELINE method in
Sec. 5, the accuracy of the models trained by existing methods drops with an increase in the number
of data owners. This may be because in existing approach, LR models are trained locally by the data
owners, while our approach benefits from training an LR model on the combined data and learns a
more generalized model. Moreover, our techniques are independent of how the data is distributed
among data owners, unlike the methods in Table 6 that work only for horizontally distributed data.

Table 6: Accuracy results for output perturbation obtained with 5-fold CV for ϵ-DP with ϵ = 1 on
horizontally partitioned data

DATA OWNERS PRIVACY TECHNIQUE ACCURACY

OUR APPROACH (πLR +πDP , SEC. 4) 87.98%

2 PATHAK ET AL. (2010) 86.43%
JAYARAMAN ET AL. (2018) - MPC OUT P 86.42%

OUR APPROACH (πLR +πDP , SEC. 4) 87.98%

4 PATHAK ET AL. (2010) 85.02%
JAYARAMAN ET AL. (2018) - MPC OUT P 85.10%

OUR APPROACH (πLR +πDP , SEC. 4) 87.98%

8 PATHAK ET AL. (2010) 84.10%
JAYARAMAN ET AL. (2018) - MPC OUT P 84.24%

B.4 EXPERIMENTS ON OTHER DATA SETS

We further evaluate our approach on the BC-TCGA and GSE2034 data sets of the iDASH 2019
competition.9 Both data sets contain gene expression data from breast cancer patients which are
normal tissue/non-recurrence samples (negative) or breast cancer tissue/recurrence tumor samples
(positive) Xie et al. (2016). We perform experiments with a 5-fold CV, where the training data is
distributed between 2 data owners in each fold.

GSE2034 Each instance in this train data set is characterized by 12,634 continuous input attributes
and a boolean target variable. There are 895 instances in total. In each iteration of the 5-fold CV,
each data owner owns 447-448 instances, 20% of which is held out for testing.

BC-TCGA Each instance in this train data set is characterized by 17,814 continuous input attributes
and a boolean target variable. There are 1,875 instances in total. In each iteration of the 5-fold CV,
each data owner owns 937-938 instances, 20% of which are held out for testing.

The secure training is run for 20 epochs for the BC-TCGA data set and 300 epochs for the GSE2034
data set with Λ = 1 and ϵ = 1. Table 7 shows accuracy results obtained with a 5-fold CV. To
appreciate the inherent difference in difficulty between the GSE2034 and the BC-TCGA classification
tasks, as the first row of results in Table 7 we include the accuracies obtained with a model trained in
the central learning paradigm, i.e. when all the training data resides with a single data owner, and
no noise is added to the model coefficients, i.e. ϵ =INF. The other rows correspond to the federated
setup from Sec. 5 with 2 data owners. The results are in line with the observation from Sec. 5 that the
πLR +πDP approach provides higher utility.

We additionally report the runtime to train the model using πLR +πDP for these data sets to illustrate
the variability in runtimes with respect to the number of training samples, epochs and a number of
features in the data set. We see an increase in runtimes for per epoch when compared to the runtimes
per epoch on iDASH, which is attributed to a large number of features (about 10x of iDASH2021 for
BC-TCGA and 7x for GSE2034). The runtimes for other threat models will follow a similar trend.
We see that for larger datasets like these it is still practical to maintain the utility of the model while
providing complete privacy guarantees.

B.5 SCALABILITY OF πLR+πDP WITH NUMBER OF COMPUTING PARTIES

The number of data holders in our solution is distinct from the number of computing parties. Our
solution is general and works with any number of computing servers as well as data holders. In Table

9http://www.humangenomeprivacy.org/2019/competition-tasks.html
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Table 7: Accuracy averaged over 5-fold CV with Λ = 1

GSE2034 BC-TCGA

# INSTANCES n 895 1,875
# FEATURES d 12,634 17,814

CENTRAL LEARNING; 1 DATA OWNER 65.55% 98.28%
BASELINE (SEC. 5); 2 DATA OWNERS 51.92% 91.37%
πLR+πDP (SEC. 4); 2 DATA OWNERS 64.55% 95.69%

RUNTIME FOR πLR+πDP; PASSIVE 3PC 276.38 SEC 57.30 SEC

Table 8: Runtimes of πLR +πDP for different number r of computing parties

MPC SCHEME r RUNTIMES COMM. OVERHEAD

GOYAL ET AL. (2021) (PASSIVE)

3 954.91 SEC 57922.70 MB
4 1022.16 SEC 83667.90 MB
5 2725.58 SEC 366679.00 MB
7 5064.27 SEC 711226.33 MB

CRAMER ET AL. (2000) & 3 21213.21 SEC 5247186.89 MB
4 23244.34 SEC 7248822.06 MB

CHIDA ET AL. (2018) (ACTIVE) 5 68176.24 SEC 25728263.60 MB
7 131391.00 SEC 70080327.38 MB

8, we report the runtimes and communication overheads to train a LR model with a varying number
of computing parties r ranging from 3 to 7. To have a comparison of runtimes and communication
overhead for different values of r, we use the same MPC scheme for each security setting. The
chosen MPC schemes can be used with any value of r > 2, and are different from the schemes that
we use in Table 3 which were specific and efficient schemes for the given value of r. It is due to
this use of different schemes that we observe a huge difference in runtimes when compared to the
runtimes reported earlier. The schemes in Table 8 are run with secret sharings in Zq where q is a
prime number10 and with edaBits for mixed circuit computations.

The training was run on the complete training dataset from iDASH2021 consisting of 1713 training
samples and 1874 features for 1000 epochs with GD, ϵ = 1, and Λ = 1. The runtimes reported include
computing as well as communication times. The total amount of data sent by all the computing
parties is shown in the last column. The runtimes and the communication overhead increase with
an increasing number of computing parties. This is because each party now needs to communicate
with a higher number of parties, and the runtimes include communication times. Also, the active
security settings take longer runtimes than their passive counterparts for a given r. These results are
in line with the literature in MPC. The communication overhead in settings with a larger number of
computing parties can be reduced with the use of a bulletin board functionality that enables efficient
communication among many parties who are simultaneously involved in computations (Agarwal
et al. (2019)).

C IMPLEMENTATION OF DP IN MPC PROTOCOLS

It is well documented that implementing DP mechanisms using floating-point arithmetic can lead to
catastrophic privacy compromises Mironov (2012). The most privacy-conscious choice, taken, for
instance, by the OpenDP project11 is to use fixed-point and integer arithmetic whenever possible.
Following this paradigm, in our implementation we have replaced Gaussian and Laplace noise with
their discrete approximations. The accuracy of the model is another point where the precision of
weights could affect the overall result. Keeping this in mind, we used 32 bits of precision, which is
more than sufficient to ensure the correct behavior of the training procedure.

10Defaults to None in MP-SPDZ and can be a maximum of bit length 256.
11https://opendp.org/
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We would like to stress that the finite precision issue is inherent to any implementation of DP on a
digital computer – it is not specific to our work on DP implemented by MPC protocols. DP theory
was created, for the most part, based on continuous distributions. However, all the practical libraries
implement DP using finite precision arithmetic. That includes, for example, all the implementations
of DP-SGD (which is based on the Gaussian mechanism). It is legitimate to wonder if security
guarantees break down in the case when continuous DP mechanisms are implemented on digital
computers. However, that question, which has to be asked of all implementations of DP mechanisms
based on continuous distributions, is outside the scope of this paper.
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