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ABSTRACT

The Shapley value is the prevalent solution for fair division problems in which
a payout is to be divided among multiple agents. By adopting a game-theoretic
view, the idea of fair division and the Shapley value can also be used in machine
learning to quantify the individual contribution of features or data points to the
performance of a predictive model. Despite its popularity and axiomatic justifica-
tion, the Shapley value suffers from a computational complexity that scales expo-
nentially with the number of entities involved, and hence requires approximation
methods for its reliable estimation. In this paper, we propose SVAkADD, a novel
approximation method that fits a k-additive surrogate game. By taking advantage
of the assumption of k-additivity, we are able to compute the exact Shapley values
of the surrogate game in polynomial time, and then use these values as estimates
for the original fair division problem. The efficacy of our method is evaluated
empirically and compared to competing methods.

1 INTRODUCTION

The continuous advances in computing hardware, providing cheaper and more computational power
to the public, contributed to the rapid and certainly significant increase in complexity that machine
learning models have experienced over the last decade. Coupled with the availability of large data
sources, these complex models exhibit noteworthy predictive performances and capabilities leading
to subfields such as generative AI (Gozalo-Brizuela & Garrido-Merchan, 2023). On the contrary,
this development comes with an ever-rising burden to understand a model’s decision-making, reach-
ing a point at which the inner workings are beyond human comprehension, and fittingly coining the
term ’black box model’. Meanwhile, societal and political influences led to a growing demand for
trustworthy AI (Li et al., 2023). The field of Explainable AI (XAI) emerges to counteract these con-
sequences, aiming to bring back understanding to the human user and developer. Among the various
explanation types (Molnar, 2021), post-hoc additive explanations convince with an intuitive appeal:
an observed numerical effect caused by the behavior of the black box model is divided among partic-
ipating entities. This allows to interpret each assigned share to an entity as its contribution towards
the behavior, e.g., the performance of a classifier (Covert et al., 2020). Beyond explainability, this
allows in feature engineering to conduct feature selection by removing features with irrelevant or
even harmful contributions (Cohen et al., 2005). Most popular (Marcı́lio & Eler, 2020) are additive
feature explanations which decompose a predicted value for a particular datapoint or generalization
performance on a test set among the involved features, enabling feature importance scores.

Treating this decomposition as a fair division problem opens the door to game theory which views
the features as cooperating agents, forming groups called coalitions to achieve a task and collect a
common reward that is to be shared. Such scenarios are captured by the simple but expressive and
thus widely applicable notion of cooperative games (Peleg & Sudhölter, 2007), modeling the agents
as a set of players N and assuming that a real-valued worth ν(A) can be assigned to each coalition
A ⊆ N by a value function ν. Among multiple propositions the Shapley value (Shapley, 1953)
prevailed as the most favored solution to the fair division problem. The Shapley value assigns to
each player a share of the collective benefit, more precisely a weighted average of all its marginal
contributions, i.e., the increase in collective benefit a player causes when joining a coalition. Its
popularity is rooted in the fact that it is provably the only solution concept to fulfill certain desir-
able axioms (Shapley, 1953) which arguably formalize and capture a widespread understanding of
fairness. For example, in the context of supply chain cooperation (Fiestras-Janeiro et al., 2011), the
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gain when joining a coalition and reducing costs may be shared among the companies based on the
Shapley values. The greater a company’s marginal contributions to the cost reduction, the greater
the benefit, measured by the Shapley value, that this company should receive.

The range of domains to which the Shapley value is applicable to exceeds by far the sphere of eco-
nomics as its utility has been recognized by researchers of various disciplines. Most prominently,
it has recently found its way into the branch of machine learning, especially as a model-agnostic
approach, quantifying the importance of entities such as features, datapoints, and even model com-
ponents like neurons in networks or base learners in ensembles (see (Rozemberczki et al., 2022)
for an overview). Adopting the game-theoretic view, these entities are understood as players which
cause a certain numerical outcome of interest. Shaping the measure of a coalition’s worth ade-
quately is pivotal to the informativeness of the importance scores obtained by the Shapley values.
For example, considering a model’s generalization performance on a test dataset restricted to the fea-
ture subset given by a coalition yields global feature importance scores (Pfannschmidt et al., 2016;
Covert et al., 2020). Conversely, local feature attribution scores are obtained by splitting the model’s
prediction value for a fixed datapoint (Lundberg & Lee, 2017). The Shapley value’s purpose is not
limited to provide additive explanations since it has also been proposed to perform data valuation
(Ghorbani & Zou, 2019), feature selection (Cohen et al., 2007), ensemble construction (Rozember-
czki & Sarkar, 2021), and the pruning of neural networks (Ghorbani & Zou, 2020). Moreover, it
has been applied to extract feature importance scores in several recent practical applications, such
as in risk management (Nimmy et al., 2023), energy management (Cai et al., 2023), sensor array
(re)design (Pelegrina et al., 2023b) and power distribution systems (Ebrahimi & Rastegar, 2024).

The uniqueness of the Shapley value comes at a price that poses an inherent drawback to practition-
ers: its computation scales exponentially with the number of players taking part in the cooperative
game. Consequently, it becomes due to NP-hardness Deng & Papadimitriou (1994) quickly infea-
sible for increasing feature numbers or even a few datapoints, especially when complex models are
in use whose evaluation is highly resource consuming. As a viable remedy it is common prac-
tice to approximate the Shapley value while providing reliably precise estimates is crucial to obtain
meaningful importance scores. On this background, the recently sharp increase in attention that
XAI attracted, has rapidly fueled the research on approximation algorithms, leading to a diverse
landscape of approaches (see (Chen et al., 2023) for an overview related to feature attribution).

Contribution. We contribute to the research branch of approximating the Shapley value by
proposing with SVAkADD (Shapley Value Approximation under k-additivity) a novel method based
on the concept of k-additive games that restricts the value function to a parameterizable structure.
Fitting a k-additive surrogate game to randomly sampled coalition-value pairs comes with a twofold
benefit. First, it reduces flexibility, leading to rapid convergence of satisfactory quality and second,
the Shapley values of the k-additive surrogate game can be computed exactly in polynomial time.
In summary, the contributions of this paper are:

(i) SVAkADD fits a k-additive surrogate game to sampled coalition values, trying to represent
the underlying arbitrary value function by a simpler structure with a parameterizable degree
of freedom while maintaining low representation error. The surrogate game’s structure
allows to compute its Shapley values in polynomial time yielding precise estimates for the
original game if the representation exhibits a good fit.

(ii) SVAkADD does not require any structural properties of the value function. Thus, our method
is domain-independent and can be applied to any cooperative game oblivious to what the
players and payoffs represent. Specifically in the field of explainability, it is model-agnostic
and can approximate local as well as global explanations.

(iii) We empirically illustrate the utility of our method at the hand of explanation tasks. Besides
demonstrating state-of-the-art approximation quality depending on the explanation type,
we also shed light onto the best fitting degree of k-additivity.

The remainder of this paper is organized as follows. Existing works related to this paper are de-
scribed in Section 2. Section 3 introduces the theoretical background behind our proposal. In Sec-
tion 4, we present our novel approximation method. We conduct empirical experiments for several
real-world datasets in Section 5. Finally, in Section 6, we conclude our findings and highlight direc-
tions for future works.
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2 RELATED WORK

The problem of approximating the Shapley value, and the recent interest it attracted from various
communities, lead to a multitude of diverse approaches to overcome its exponential complexity. First
to mention among the class of methods that can handle arbitrary games, without further assump-
tions on the structure of the value function, are those which construct mean estimates via random
sampling. Fittingly, the Shapley value of each player can be interpreted as the expected marginal
contribution to a specific probability distribution over coalitions. Castro et al. (2009) propose with
ApproShapley the sampling of permutations from which marginal contributions are extracted. Fur-
ther works, following the paradigm of sampling marginal contributions, employ the stratification by
coalition size (Maleki et al., 2013; Castro et al., 2017; van Campen et al., 2018; Okhrati & Lipani,
2020), or utilize reproducing kernel Hilbert spaces (Mitchell et al., 2022) and thus refine this ap-
proach. Departing from marginal contributions, Stratified SVARM (Kolpaczki et al., 2024a) splits
the Shapley value into multiple means of coalition values and updates the corresponding estimates
with each sampled coalition, being further refined by Adaptive SVARM (Kolpaczki et al., 2024b).
Guided by a different representation of the Shapley value, KernelSHAP (Lundberg & Lee, 2017)
solves an approximated weighted least squares problem, to which the Shapley value is its solution
if it encompasses all coalitions. Fumagalli et al. (2023) prove its variant Unbiased KernelSHAP to
be equivalent to a Monte Carlo technique incorporating importance sampling of single coalitions.
Joining this family, Pelegrina et al. (2023a) propose kADD-SHAP, which consists in a local ex-
plainability strategy that formulates the surrogate model assuming a k-additive game1. The authors
locally adopted the Choquet integral as the interpretable model, whose parameters have a straight-
forward connection with the Shapley values.

On the contrary, tailoring the approximation to a specific application of interest by leveraging struc-
tural properties, promises faster converging estimates or even closed-from polynomial solutions of
the Shapley value. A prominent example is the field of data valuation (Ghorbani & Zou, 2019; Jia
et al., 2019b) which assesses the significance of individual datapoints to a learning algorithm’s task
of producing a well-fitted model. Here, including knowledge of how datapoints tend to contribute to
this task has proven to be a fruitful approach resulting in multiple tailored approximation methods
Ghorbani & Zou (2019); Jia et al. (2019b;a). In similar fashion Liben-Nowell et al. (2012) proposed
an algorithm leveraging supermodular cooperative games. Going one step further, by assuming the
value function to be of certain parameterized shape, it is even feasible to calculate Shapley values
exactly in polynomial time w.r.t. the number of involved players. Examples include the voting game
(Bilbao et al., 2000) and the minimum cost spanning tree games (Granot et al., 2002) being used
having found applications in operations research.

Besides the Shapley value’s prominence for explaining the decision-making of a machine learning
models, it has also found its way to more applied tasks. For instance, Nimmy et al. (2023) use the
Shapley value to quantify each feature’s impact in predicting the risk degree in managing industrial
machine maintenance, Pelegrina et al. (2023b) apply it to evaluate the influence of each electrode
on the quality of recovered fetal electrocardiograms, and Brusa et al. (2023) measure the features’
importance towards machinery fault detection. Worth mentioning, each application requires an ap-
propriate modelling in terms of player set and value function in order to obtain meaningful explana-
tions. Moreover, such an analysis can be useful in feature engineering to perform feature selection.
For instance, features with low relevance towards the model performance may be removed from the
dataset without an impact into the quality of predictions (Pelegrina & Siraj, 2024).

3 THEORETICAL BACKGROUND

First, we formally introduce cooperative games and the Shapley value in Section 3.1. Next, we
present in Section 3.2 the concept of k-additivity, constituting the core idea of our approach.

1Note that kADD-SHAP is limited to local explanations. In contrast, our proposed method SVAkADD dif-
ferentiates itself by its applicability to any formulation of a cooperative game. Moreover, in the context of
explainable AI, it is capable of providing global explanations.
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3.1 COOPERATIVE GAMES AND THE SHAPLEY VALUE

A cooperative game is formally described by n players, captured by the set N = {1, . . . , n}, and an
associated payoff function ν : P(N)→ R, where P(N) represents the power set of N . This simple
but expressive formalism may for example represent a shipment coordination where companies
form a coalition in order to save costs when delivering their products. In this case, the companies
can be modelled as players and ν(A) represents the benefit achieved by the group of companies
A ⊆ N . Clearly, ν(N) is the total benefit when all companies (players) form the grand coalition
N . Commonly, one normalizes the game by defining ν(∅) = 0, i.e., the worth of the empty set.
However, in explainability, ν(∅) may take nonzero values, e.g., with no features available one may
obtain a classification accuracy of 50%. In this case, one can normalize ν by simply subtracting the
worth of the empty set from all game payoffs, i.e., ν′(A)← ν(A)− ν(∅) for all A ⊆ N .

A central question arising from a cooperative game is how to fairly share the worth ν(N) of the
grand coalition N among all participating players. The Shapley value (Shapley, 1953) emerges
as the prevalent solution concept since it uniquely satisfies axioms that intuitively capture fairness
(Shapley, 1953). Given the game (N, ν), the Shapley value of each player i is defined as

ϕi =
∑

A⊆N\{i}

(n− |A| − 1) |A|!
n!

[ν(A ∪ {i})− ν(A)] , (1)

where |A| represents the cardinality of coalition A. It can be interpreted as a player’s weighted
average of marginal contributions to the payoff. Among the fulfilled axioms such as null player,
symmetry, and additivity (see (Young, 1985) for more details and other properties), in explainability
the most useful is efficiency. It demands that the sum of all players’ Shapley values is equal to the
difference between ν(N) and ν(∅). Mathematically, efficiency means

n∑
i=1

ϕi = ν(N)− ν(∅) . (2)

Or, in the game theory framework where ν(∅) = 0, one obtains
∑n

i=1 ϕi = ν(N). In explainability,
efficiency can be used to decompose a measure of interest among the set of features. As a result,
one can interpret the importance of each feature to that measure.

Unfortunately, satisfying the desired axioms in the form of the Shapley value comes at a price.
According to Equation (1), the calculation requires the evaluation of all 2n coalitions within the
exponentially growing power set of N . In fact, the exact computation of the Shapley value is known
to be NP-hard (Deng & Papadimitriou, 1994). Hence, its exact computation does not only become
practically infeasible for growing player numbers but it is also of interest that the evaluation of only a
few coalitions suffices to retrieve precise estimates. For instance, a model has to be costly re-trained
and re-evaluated on a test dataset for each coalition if one is interested in the features’ impact on
the generalization performance. Therefore, a common goal is to approximate all Shapley values
ϕi, . . . , ϕn of a given game (N, ν) by observing only a subset of evaluated coalitionsM ⊆ P(N).
We denote the size ofM by T ∈ N and refer to it as the available budget representing the number of
samples an approximation algorithm is allowed to draw. The mean squared error (MSE) serves as a
popular measure to quantify the quality of the obtained estimates ϕ̂1, . . . , ϕ̂n and is to be minimized:

E

[
1

n

n∑
i=1

(
ϕ̂i − ϕi

)2
]
, (3)

where the expectation is w.r.t. the (potential) randomness of the approximation strategy.

3.2 INTERACTION INDICES AND k-ADDITIVITY

The underlying idea of measuring the impact (or share) of a single player i by means of its marginal
contributions finds its natural extension to sets of players S in the Shapley interaction index (Muro-
fushi & Soneda, 1993; Grabisch, 1997a) by generalizing from marginal contributions to discrete
derivatives. For any S ⊆ N its Shapley interaction I(S) is given by

I(S) =
∑

A⊆N\S

(n− |A| − |S|)! |A|!
(n− |S|+ 1)!

 ∑
A′⊆S

(−1)|S|−|A′|
ν(A ∪A′)

 . (4)
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Instead of individual importance, I(S) indicates the synergy between players in S. Although this
interpretation is not straightforward for coalitions of three or more entities, it has a clear meaning
for pairs. For two players i and j, the Shapley interaction index Ii,j quantifies how the presence of
i impacts the marginal contributions of j and vice versa. Especially in the field of explainable AI,
where players represent features, the interaction index of S = {i, j} can be interpreted as follows:

• If Ii,j < 0, there is a negative interaction (or a redundant effect) between features i, j.
• If Ii,j > 0, there is a positive interaction (or a complementary effect) between features i, j.
• If Ii,j = 0, there is no interaction between i, j. Both features act independently on average.

Note that the Shapley interaction index reduces to the Shapley value for a singleton, i.e., I({i}) =
ϕi. Moreover, there is a linear relation between the interactions and the game payoffs (Grabisch,
1997a). Indeed, from the interaction one may easily retrieve the game payoffs by the following
expression:

ν(A) =
∑
B⊆N

γ
|B|
|A∩B|I(B), (5)

where γ
|B|
|A∩B| is defined by

γs
r =

r∑
l=0

(
r

l

)
ηs−l (6)

and

ηr = −
r−1∑
l=0

ηl
r − l + 1

(
r

l

)
(7)

are the Bernoulli numbers starting with η0 = 1.

This linear transformation recovers any coalition value ν(A) by using the Shapley interaction values
of all 2n coalitions, thus including the Shapley values. Therefore, 2n many parameters are to be
defined if the whole game is to be expressed by Shapley interactions. However, in some situations
one may assume that interactions only exist for coalitions up to k many players. This assumption
leads to the concept known as k-additive games. A k-additive game is such that I(S) = 0 for all
S with |S| > k. Depending on k, this may significantly decrease the number of parameters to be
defined. For instance, in 2-additive and 3-additive games, there are only n(n+1)/2, and n(n2+5)/6
respectively, many interactions indices as the remaining parameters are equal to zero. Obviously,
this restricts the flexibility of the game but reduces the effort when defining the unknown parameters.
Indeed, for low k the number of parameters increases polynomially with the number of players.

4 k-ADDITIVE APPROXIMATION APPROACH

We present in this section our proposed SVAkADD approach to approximate Shapley values. It builds
upon the idea of adjusting a k-additive surrogate game to randomly sampled and evaluated coalitions
M (see Figure 1 for an illustration of the approach). Having fitted the surrogate game to represent the
observed coalition values with minimal error, its own Shapley values can be retrieved as estimates
ϕ̂1, . . . , ϕ̂n of the true values since the fitting promises preciseness. As the surrogate game is k-
additive, its Shapley values can be computed exactly in polynomial time. This is due to the fact that,
for k-additive games, I(S) = 0 for all S ⊆ N with |S| > k. Therefore, by assuming k-additivity,
the number of coalitions needed to define the whole game is reduced (as several parameters are set
to zero). The drawback of this strategy is the reduction in flexibility left to model the observed
game according to the obtained evaluations. However, we can still model interactions for coalitions
up to k players. Empirically, works in the literature (Grabisch et al., 2002; 2006; Pelegrina et al.,
2020; 2023a) have been using 2-additive or even 3-additive games and the obtained results were
satisfactory in modeling interactions.

Let M = {A1, . . . , AT } be the set of sampled coalitions with Ai ̸= Aj for all i ̸= j and the
sequence νM = (ν(A1), . . . , ν(AT )) representing its evaluated coalition values. With the purpose
of achieving a k-additive game based on the coalition evaluations νM, the idea in this paper consists

5
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SVA

Cooperative game Shapley valuesyields with exponential computation

Shapley values

serve as
estimates

-additive surrogate game

approximates

yields with
polynomial computation

Coalition values

sample

fit in
polynomial time

Figure 1: The from (N, ν) sampled coalition values ν(A1), . . . , ν(AT ) are used to fit a k-additive
surrogate game (N, νk). The Shapley values ϕk

1 , . . . , ϕ
k
n of (N, νk) can be calculated in polynomial

time by leveraging k-additivity. Since νk approximates ν, these serve as estimates of the true Shapley
values ϕ1, . . . , ϕn which can only be retrieved in exponential time from (N, ν).

in retrieving a k-additive value function νk for N that is as close as possible to the observations νM
and thus approximates ν. Therefore, our goal consists in minimizing the following expression:∑

A∈M
wA (ν(A)− νk(A))

2
, (8)

where wA is an importance weight associated to the coalition A. Recall from Equation (4) that there
is a linear transformation from the value function to the interaction and Shapley values. Therefore,
one may safely say that, for the k-additive game νk, there exists a linear transformation

νk(A) =
∑
B∈M

γ
|B|
|A∩B|I

k(B) , (9)

with interactions Ik(B) for all B ⊆ N of size |B| ≤ k. Note that these include the Shapley values
ϕk of the game (N, νk) since Ik({i}) = ϕk

i for all i ∈ N .

As the efficiency property will explain the marginal contributions of features from the empty set to
the grand coalition, it is important that our proposal can explain the difference between ν(∅) and
ν(N) for the true evaluations on the empty set and the grand coalition. This is ensured by imposing
the following: (i) both ∅ and N must be sampled and (ii) ν(∅) = νk(∅) as well as ν(N) = νk(N).
For (i), one may impose in the sample strategy that such coalitions are selected with probability
1. By doing this, one ensures that M ∋ ∅, N . In order to satisfy (ii), one may simply include
constraints ensuring that ν(A) =

∑
B∈M γ

|B|
|A∩B|I

k(B) for A ∈ ∅, N . With the inclusion of these
elements, the resulting optimization problem that we deal with in this paper is the following:

min
Ik

∑
A∈M\{∅,N}

wA

(
ν(A)−

∑
B∈M

γ
|B|
|A∩B|I

k(B)

)2

s.t. ν(∅) =
∑

B∈M
γ
|B|
|∅∩B|I

k(B)

ν(N) =
∑

B∈M
γ
|B|
|N∩B|I

k(B)

(10)

Note that one may assign different importance degrees to the sampled coalitions. However, in our
experiments, we considered the same weight for all of them (e.g., 1). We provide the analytical
solution to this optimization problem in Appendix A.

A relevant aspect of our proposal is how to sample T coalitionsM ⊆ P(N) in order to calculate
the value functions νM. For this purpose, we followed the same strategy adopted in (Lundberg &
Lee, 2017; Pelegrina et al., 2023a). The coalitions A ∈M are sampled according to the probability
distribution p defined by

pA =
π(A)∑

B⊆M π(B)
with π(A) =

(n− 1)(
n
|A|

)
|A| (n− |A|)

. (11)

6
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Algorithm 1 SVAkADD

1: Input: (N, ν), k, T
2: M← {∅, N}
3: νM ← (ν(∅), ν(N))

4: π(A)← (n−1)

( n
|A|)|A|(n−|A|)

for all A ⊆ N \ {∅, N}

5: pA ← π(A)∑
B⊆M π(B) for all A ⊆ N \ {∅, N}

6: while |M| < T do
7: Sample a coalition A ⊆ N with normalized distribution pA and evaluate ν(A)
8: M←M∪ {A}
9: νM ← (νM, ν(A))

10: pA ← 0
11: end while
12: (Ik(A))A⊆N :|A|≤k ← SOLVEOPTIMIZATION(M, νM, k)

13: Output: Ik({1}), . . . , Ik({n})

In order to avoid picking up the same coalition in this sampling strategy, we impose a sampling
procedure without replacement. Therefore, after sampling a coalition A, we set pA to zero and nor-
malize the remaining probabilities. This procedure is repeated until |M| = T . Algorithm 1 presents
a pseudo-code of our proposal. The algorithm requires the game (N, ν) (players and value func-
tion), the additivity degree k, and the budget T . Thereafter, based on the (normalized) probability
distribution p, it samples T coalitions from P(N) in order to define the subsetM, evaluates each,
and extends νM. Finally, it solves the optimization problem described in Equation (10) given the
importance weights wA (see Appendix A for more details). The extracted interactions Ik(A) of the
surrogate game also contain its true Shapley values ϕk since Ik({i}) = ϕk

i , which are then returned,
serving as estimates ϕ̂1, . . . , ϕ̂n for the Shapley values ϕ of the considered game (N, ν).

5 EMPIRICAL EVALUATION

In order to assess the approximation performance of SVAkADD, we conduct experiments with coop-
erative games stemming from various explanation types. While our method is not limited to a certain
domain, we find the field of explainability best to illustrate its effectiveness. We consider several real
datasets as well as different tasks. The evaluation of our proposal is mainly two-fold. Not only are
we interested in the comparison of SVAkADD against current state-of-the-art model-agnostic methods
in Section 5.2, but we also seek to investigate how the choice of the assumed degree of additivity
k affects the approximation quality (see Section 5.3). In the sequel of Section 5.1, we describe the
utilized datasets and resulting cooperative games. For more technical details see Appendix B.

5.1 DATASETS

We distinguish between three explanation tasks: global feature importance, local feature attribution,
and unsupervised feature importance.

Within global feature importance (Covert et al., 2020) the features’ contributions to a model’s gen-
eralization performance are quantified. This is done by means of accuracy for classification and
the mean squared error for regression on a test set. For each evaluated coalition a random forest is
retrained on a training set. We employ the Diabetes (regression, 10 features), Titanic (classification,
11 features), and Wine dataset (classification, 13 features).

On the contrary, local feature importance (Lundberg & Lee, 2017) measures each feature’s impact
on the prediction of a fixed model for a given datapoint. While the predicted value can directly be
used as the worth of a feature coalition for regression, the predicted class probability is required
instead of a label for classification. Rendering a feature outside of an evaluated coalition absent is
performed by means of imputation that blurs the features contained information. The experiments
are conducted on the Adult (classification, 14 features), ImageNet (classification, 14 features), and
IMDB natural language sentiment (regression, 14 features) data.
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In the absence of labels, unsupervised feature importance (Balestra et al., 2022) seeks to find scores
without a model’s predictions. This is achieved by employing the total correlation of a feature subset
as its worth, since the datapoints can be seen as realizations of the joint feature value distribution.
For this explanation type, we consider the Breast cancer (9 features), Big Five (12 features), and
FIFA 21 (12 features) datasets.

5.2 THE IMPACT OF THE ADDITIVITY DEGREE k

(a) Diabetes dataset (n = 10). (b) Titanic dataset (n = 11). (c) Wine dataset (n = 13).

(d) Adult dataset (n = 14). (e) ImageNet dataset (n = 14). (f) IMDB dataset (n = 14).

(g) Breast Cancer dataset (n = 9). (h) Big Five dataset (n = 12). (i) FIFA dataset (n = 12).

Figure 2: MSE of SVAkADD averaged over 100 repetitions in dependence of available sample budget
T for different additivity degrees k. Datasets stem from various explanation types (i) global (first
row), (ii) local (second row), and unsupervised (third row) with differng player numbers n.

In order to provide an understanding of the underlying trade-off between fast convergence (low
k) and expressiveness (high k) of the surrogate game and how the crucial choice of k affects the
approximation quality, we evaluate SVAkADD for different k. Hence, we consider different k-additive
models, for k ∈ {1, 2, 3, 4}. For each dataset, k-additive model and different number of value
function evaluations T , the obtained Shapley values ϕM,k

1 , . . . , ϕM,k
n are compared with the Shapley

values ϕ1, . . . , ϕn which we calculate exhaustively in advance. We measure approximation quality
of the estimates by the mean squared error (MSE) as given by Equation (3).

Figure 2 presents the obtained results for all datasets. SVAkADD displays consistent performance
curves across all datasets. Note that the curves for higher k begin at points of higher budget because
the greater k, the more coalition values are required to identify a unique k-additive value function
that fits the observations. We explain the behavior for low k, specifically k = 1, by the model’s
inability to achieve a good fit due to missing flexibility. As a result, its Shapley values diverge from
the true values and it reaches its optimum at relatively high MSE numbers. A similar observation
can be made for the 2-additive model in both global and local tasks. It achieves good performances
within a range of relatively low number of evaluations (around 500 to 1000 samples for the local

8
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explanations with n = 14) but diverges as more samples are included. These findings imply that
interactions up to order 2 are not sufficient to model how features jointly impact performance (global
task) or prediction outcome (local task).

What is arguably unexpected is the non-monotonic behavior of some of the performance curves, in
particular for k = 2: In some cases, the MSE decreases in the beginning and then, with additional
functions evaluations, starts to increase again. Actually, one would expect that performance only
improves with an increasing sample size, at least in expectation. One should note, however, that
the (approximate) Shapley values are not fitted directly. Instead, they are only derived from the
(k-additive) game that is fitted to the data, and even if the fit of this game is improved, it does not
automatically imply a better fit of the Shapley values.

On the other hand, both the 3-additive and 4-additive models reach the optimum and practically
remained stable as more samples are included. A slight divergence could be observed in Diabetes,
Wine and ImageNet datasets, however, much lower in comparison with the 1-additive and 2-additive
models. By comparing k = 3 and k = 4 variants, the choice of k = 3 appears preferable as it results
in quicker decreasing error curves.

There is an interesting remark about the number of samples when the 3-additive model reaches the
optimum. Recall that in such a model there are n(n2 +5)/6 parameters to be defined. By analyzing
the obtained results, we could empirically observe that twice this value is an adequate number of
value function evaluations to approximate the Shapley values (i.e., n(n2+5)/3 sampled coalitions).

5.3 COMPARISON WITH EXISTING APPROXIMATION METHODS

(a) Diabetes dataset (n = 10). (b) Titanic dataset (n = 11). (c) Wine dataset (n = 13).

(d) Adult dataset (n = 14). (e) ImageNet dataset (n = 14). (f) IMDB dataset (n = 14).

(g) Breast Cancer dataset (n = 9). (h) Big Five dataset (n = 12). (i) FIFA dataset (n = 12).

Figure 3: MSE of SVAkADD and competing methods averaged over 100 repetitions in dependence of
available sample budget T . Datasets stem from various explanation types (i) global (first row), (ii)
local (second row), and unsupervised (third row) with differng player numbers n.

9
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In our second experiment, we compare SVAkADD with other existing approximation methods. For
instance, we consider ApproShapley (given here as Permutation sampling) Castro et al. (2009), Strat-
ified sampling Maleki et al. (2013), and Stratified SVARM Kolpaczki et al. (2024a). For the purpose
of comparison, we adopt the 3-additive model to represent SVAkADD since it displays the most sat-
isfying compromise between approximation quality and minimum required evaluations as argued in
Section 5.2. Figure 3 presents the obtained results for all methods.

First to mention is that SVAkADD competes consistently with Stratified SVARM for the best approx-
iamtion performance across most datasets. In some cases, especially, the Titanic, Adult, ImageNet,
IMDB, and Breast Cancer datasets, SVAkADD converges faster than its competitors. Although it
remains stable, or slightly diverges with more value function evaluations, Stratified SVARM in con-
trast further converges to the true Shapley values, thus returning estimates of superior precision for
large sample numbers. However, with the purpose of reducing the computational effort of approxi-
mating Shapley values, we argue that the performance of any approximation method within a range
of low sample numbers plays an important role. Therefore, we see this advantage in SVAkADD, as it
rapidly approximates the Shapley values with highest precision.

6 CONCLUSION

We proposed with SVAkADD a new algorithm to approximate Shapley values. It falls into the class of
approaches that fit a structured surrogate game to the observed value function instead of providing
mean estimates via Monte Carlo sampling. Despite restricting the surrogate game to be k-additive,
our developed method is model-agnostic and hence applicable to any cooperative game without pos-
ing further assumptions. We investigated empirically the trade-off that the choice of the parameter k
poses. Further, SVAkADD exhibits a considerable reduction in estimation error for low budget ranges
which indicates its suitability for use cases in which the number of players and the cost of evaluation
is relatively high in comparison to the available computational resources.

Limitations and Future Work. While the surrogate game’s flexibility increases with higher k-
additivity, it also requires more observations to begin with in order to obtain a unique solution
of the optimization problem, eventually posing a practical limit on k. The k-additive structure
inherently causes a bias within the approximation as shown by our experiments, while the reduced
variances of the estimates are beneficial to the approximation precision. Understanding at which
budget range the inflicted bias starts to outweigh the variance reduction, indicating the point of
best approximation performance, is crucial and a natural avenue for further research. We expect
future investigations of differently structured surrogate games to yield likewise fruitful results and
contribute to the advancement of this class of approximation algorithms.

Note that, besides the estimated Shapley values, our proposal also provides the interaction effects
when k ≥ 2. Although we did not address these parameters in this paper, future works can extract
the estimated interaction indices and use them in machine learning interpretability to investigate
redundant or complementary features. For instance, this could be of interest in practical applications
where interaction between features are relevant as for example in disease detection.
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A ANALYTICAL SOLUTION TO THE OPTIMIZATION PROBLEM

In order to solve the optimization problem presented in Equation (10), one may use a trick to remove
the constraints. One may include both ∅ and N , as well as ν(∅) and ν(N), into the objective and
assign them with large weights (e.g., w∅ = wN = 106). As a consequence, one ensures that
both constraints ν(∅) =

∑
B∈M

γ
|B|
|∅∩B|I

k(B) and ν(N) =
∑

B∈M
γ
|B|
|N∩B|I

k(B) are satisfied when

minimizing the objective.

With the aforementioned modifications, the optimization problem can be formulated as follows:

min
Ik

∑
A∈M

wA

(
ν(A)−

∑
B∈M

γ
|B|
|A∩B|I

k(B)

)2

. (12)

Clearly, (12) is a weighted least square problem. Indeed, assume W as a matrix whose diagonal
elements are the weights wA for all A ∈ M, νM as the associated vector of sampled coalitions,
and P as the transformation matrix from the generalized interaction indices to the game, i.e., νM =
PIk, where Ik = (Ik(∅), ϕk

1 , . . . , ϕ
k
n, I

k
1,2, . . . , I

k
n−1,n, . . . , I

k(A)), with |A| = k, is the vector of
generalized interactions in the lexicographic order for coalitions of players such that |A| ≤ k. In
matrix notation, (12) can be formulated as

min
Ik

(
νM −PIk

)T
W

(
νM −PIk

)
, (13)

whose well-known solution is given by

Ik =
(
PTWW

)−1
PTWνM . (14)

B COOPERATIVE GAMES DETAILS

The cooperative games used within our conducted experiments are based on explanation examples
for real world data. This section complete their brief description given in Section 5. Across all
cooperative games the players represent a fixed set of features given by a particular dataset.

B.1 GLOBAL FEATURE IMPORTANCE

Seeking to quantify each feature’s individual importance to a model’s predictive performance, the
value function is based on the model’s performance of a hold out test set. This necessitates to
split the dataset at hand into training and test set. Features outside of an inspected coalition S are
removed by retraining the model on the training set and measuring its performance on the test set.
For all games we a applied train-test split of 70% to 30% and a random forest consisting of 20 trees.
For classification the value function maps each coalition to the model’s resulting accuracy on the
test set minus the accuracy of the mode within the data such that the empty coalition has a value of
zero. For regression tasks the worth of a coalition is the reduction of the model’s mean squared error
compared to the empty set which is given by the mean prediction. Again, the empty coalition has a
value of zero.

B.2 LOCAL FEATURE ATTRIBUTION

Instead of assessing each feature’s contribution to the predictive performance, its influence on a
model’s prediction for a fixed datapoint can also be investigated. Hence, the value function is based
on the model’s predicted value.

B.2.1 ADULT CLASSIFICATION

A sklearn gradient-boosted tree classifies whether a person’s annual salary exceeds 50,000 in the
Adult tabular dataset containing 14 features. The predicted class probability of the true class is taken
as the worth of a coalition S. In order to render features outside of S absent, these are imputed by
their mean value such that the datapoint is compatible to the model’s expected feature number.
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B.2.2 IMAGE CLASSIFICATION

A ResNet18 model is used to classify images from ImageNet. Since the for error tracking necessary
exact computation of Shapley values is infeasible for the given number of pixels, 14 semantic seg-
ments are formed after applying SLIC. These super-pixels form the player set. Given that the model
predicts class c using the full image, the value function assigns to each coalition S the predicted
class probability of c resulting from only including those super-pixels in S. The other super-pixels
are removed by mean imputation, setting them grey.

B.2.3 IMDB SENTIMENT ANAYLSIS

A DistilBERT transformer fine-tuned on the IMDB dataset predicts the sentiment of a natural lan-
guage sentence between -1 and 1. The sentence is transformed into a sequence of tokens. The input
sentences are restricted to sentences that result in 14 tokens being represented by players of the co-
operative game. This allows to remove players in the tokenized representation of the transformer.
The predicted sentiment is taken as the worth of a coalition.

B.3 UNSUPERVISED FEATURE IMPORTANCE

In contrast to the previous settings, there is no available predictive model to investigate unlabeled
data. Still, each feature’s contribution to the shared information within the data can be quantified
and assigned as a score. (Balestra et al., 2022) proposed to view the features 1, . . . , n as random
variables X1, . . . , Xn such that the datapoints are realizations of their joint distribution. Next, the
worth of a coalition S is given by their total correlation

ν(S) =
∑
i∈S

H(Xi)−H(S)

where H(Xi) denotes the Shannon entropy of Xi and H(S) the contained random variables joint
Shannon entropy. The utilized datasets are reduced in the number of features and datapoints to ease
computation. The Breast cancer dataset contains 9 features and 286 datapoints. The class label
indicating the diagnosis is removed. From the Big five and FIFA 21 dataset 12 random features are
selected out of the first 50 and the datapoints are reduced to the first 10,000.
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