
On the Interplay between Social Welfare and
Tractability of Equilibria

Ioannis Anagnostides
Carnegie Mellon University
ianagnos@cs.cmu.edu

Tuomas Sandholm
Carnegie Mellon University

Strategic Machine, Inc.
Strategy Robot, Inc.

Optimized Markets, Inc.
sandholm@cs.cmu.edu

Abstract

Computational tractability and social welfare (aka. efficiency) of equilibria are two
fundamental but in general orthogonal considerations in algorithmic game theory.
Nevertheless, we show that when (approximate) full efficiency can be guaranteed
via a smoothness argument à la Roughgarden, Nash equilibria are approachable
under a family of no-regret learning algorithms, thereby enabling fast and decentral-
ized computation. We leverage this connection to obtain new convergence results in
large games—wherein the number of players n ≫ 1—under the well-documented
property of full efficiency via smoothness in the limit. Surprisingly, our framework
unifies equilibrium computation in disparate classes of problems including games
with vanishing strategic sensitivity and two-player zero-sum games, illuminating
en route an immediate but overlooked equivalence between smoothness and a
well-studied condition in the optimization literature known as the Minty property.
Finally, we establish that a family of no-regret dynamics attains a welfare bound
that improves over the smoothness framework while at the same time guaranteeing
convergence to the set of coarse correlated equilibria. We show this by employing
the clairvoyant mirror descent algortihm recently introduced by Piliouras et al.

1 Introduction

The Nash equilibrium (NE) [76] formalizes the notion of a stable outcome in a multiagent strategic
interaction, and has arguably served as the most influential solution concept in the development
of game theory. Indeed, algorithms designed to approximate Nash equilibria in two-player zero-
sum games have recently resolved major challenges in AI [7, 10, 81]. Its prescriptive power,
however, has been severely undermined in multi-player general-sum games by intrinsic computational
barriers [30, 20, 94, 35, 28, 44], limitations which also manifest in the inability of natural learning
algorithms to converge [73, 105, 60, 70]. Another well-established but orthogonal critique is the
equilibrium selection problem [52]: a general-sum game may have multiple Nash equilibria with
widely different welfare. As a result, a modern research agenda in computational game theory has been
to identify and characterize natural classes of games that circumvent those fundamental limitations.

In this paper, we uncover a new natural class of games for which the aforementioned caveats of
Nash equilibria can be effectively addressed. In particular, our investigation originates from a natural
question: when are efficient—in terms of social welfare—Nash equilibria easy to compute? The
answer to this question is, at first glance, unsatisfactory: even if Nash equilibria are fully efficient,
computational hardness still persists given that constant-sum multi-player games are hard. Indeed,
efficiency and computational tractability are, in general, two orthogonal considerations. We show,
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however, an interesting twist, an unexpected interplay between efficiency—when viewed from a
specific lens—and the behavior of a family of no-regret learning algorithms.

1.1 Our results

To elucidate the alluded connection that drives much of our results, we first have to recall that
the canonical paradigm for establishing the efficiency of equilibria is Roughgarden’s celebrated
smoothness framework [90] (exposed thoroughly in Section 2). In this context, we observe that if full
efficiency of equilibria can be guaranteed via a smoothness argument (with bounded parameters),
then Nash equilibria are approachable under a family of no-regret learning algorithms. In other
words, full efficiency via smoothness implies computational tractability of NE. This is surprising in
that Roughgarden’s smoothness framework was developed primarily in order to automatically extend
price of anarchy (PoA) bounds to more permissive equilibrium concepts, such as coarse correlated
equilibria (CCE); tractability of NE appears at first glance entirely unrelated. In fact, while applying
the smoothness framework to (multi-player) constant-sum games appears to make little sense, given
that PoA considerations are trivial in such games (all outcomes attain the same social welfare), it
turns out that a certain regime of smoothness in (multi-player) constant-sum games is equivalent to a
well-known condition in the optimization literature called the Minty property [36] (Observation 3.4).

The condition described above already captures—somewhat unexpectedly—well-studied settings,
such as games that admit a minimax theorem [13], but we have found that the most fertile and novel
ground to apply this theory revolves around large games, that is, games with a large number of players
n ≫ 1.1 The reason we focus on large games is a well-documented economic phenomenon: equilibria
in large games approach—under natural conditions—full efficiency as n → +∞, a property often es-
tablished via smoothness [39, 23]—a crucial ingredient in our framework. (One rough intuition for this
is that in large games each player’s influence on the outcome becomes negligible, making optimal be-
havior easier to characterize [39].) To state our first main result, we denote by (λ, µ) a pair of bounded
smoothness parameters of a game G; the ratio ρ(λ, µ) := λ

1+µ circumscribes the (in)efficiency of
equilibria of G, in that all equilibria will attain at least a ρ fraction of the optimal welfare.
Theorem 1.1 (Informal). Consider a sequence of n-player (λn, µn)-smooth games (Gn)n≥1 such
that ρn := λn

1+µn
→ 1 with a sufficiently fast rate. Then, there are decentralized and computationally

efficient no-regret dynamics approaching an (on(1), on(1))-weak Nash equilibrium.

A few remarks are in order. First, in Theorems 3.1 and A.2 we give a precise non-asymptotic character-
ization that quantifies the number of iterations as well as the approximation error. We also recall that
in an (on(1), on(1))-weak Nash equilibrium almost all players are almost best responding (Defini-
tion 2.2); this is a well-studied relaxation for which hardness results carry over in general [4, 2, 5, 94].
A limitation of a weak Nash equilibrium is that it can prescribe a strategy profile in which a large num-
bers of players—albeit of vanishing fraction—can significantly benefit from deviating; this limitation
is inherent in a certain regime of Theorem 1.1. Depending on the rate with which ρn approaches full
efficiency, Theorem 1.1 can also imply convergence to the usual notion of Nash equilibrium—wherein
all players are almost best responding (Corollary A.5). More generally, for a broad class of games
that includes graphical games with bounded degree, polymatrix games, and games exhibiting small
strategic sensitivity, the conclusion of Theorem 1.1 applies without imposing any restrictions on the
rate of convergence of ρn; those are the most commonly studied classes of games when n ≫ 1.

There are ample compelling aspects in connecting the convergence of no-regret learning algorithms
with Roughgarden’s smoothness framework. First, there has been a considerable interest in under-
standing smoothness, insights that can now be inherited to a seemingly entirely different but equally
fundamental problem. For example, smoothness naturally extends to Bayesian games [101, 91, 53]
(see also [97] for the related class of contextual games), a property that we leverage in Theorem 3.8
to expand our scope to mechanisms of incomplete information. Additional extensions based on local
smoothness [92, 78] and the refined primal-dual framework of Nadav and Roughgarden [75] are
also described in Appendices A.3 and A.4. Finally, our criterion has a clear and natural economic
interpretation, and is part of an ongoing research effort to identify tractable classes of variational
inequalities (VIs) beyond the Minty property [33].

1We use the terminology large games here—in accordance with much of the economics literature—to refer
to games with a large number of players; it should not be confused with another common usage referring to
games with a “large” action space.
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As a concrete example, our framework subsumes games wherein each player’s effect on the outcome
vanishes as n → ∞; this captures, for example, simple voting settings [57], as well as general
auction design problems where establishing that property turns out to be highly non-trivial and
quite delicate [39]. More concretely, for games with vanishing sensitivity ϵn → 0, in that unilateral
deviations can only affect a player’s utility by an additive ϵn (Definition 3.5), we show that the
conclusion of Theorem 1.1 applies as long as ϵn ≤ on(1/

√
n) (Theorem 3.6). At the same time, the

condition that ρn → 1 goes much deeper than games with vanishing sensitivity, and, as we explained
earlier, surprisingly applies to two-player zero-sum games as well. We find it conceptually appealing
that a unifying framework can establish tractability of Nash equilibria in two seemingly disparate
classes of problems such as two-player zero-sum games and games with vanishing strategic sensitivity.

Remaining on smooth games, but relaxing the assumption ρ ≈ 1, we next study conditions under
which the efficiency guaranteed by the smoothness framework can be improved, while at the same
time ensuring the no-regret property, thereby implying convergence to the set of CCE. The smoothness
bound is known to be applicable to any outcome of no-regret dynamics, but here we are instead
interested in more refined guarantees when specific learning algorithms are in place. Building on a
recent result [1], we show in Theorem 4.1 that the clairvoyant variant of gradient descent, introduced
by Piliouras et al. [85], enjoys an improved welfare bound and ensures fast convergence to the set of
CCE for the average correlated distribution of play. Crucially, compared to an earlier result [1], the
clairvoyant algorithm manages to satisfy an appealing notion of per-player incentive compatibility, in
the form of convergence to CCE. In other words, improving the welfare predicted by smoothness is
not at odds with incentive compatibility (Corollary 4.3).

2 Background

Notation We let N = {1, 2, . . . } be the set of natural numbers. For n ∈ N, we denote by
JnK := {1, 2, . . . , n}. For a vector x ∈ Rd, we denote by ∥x∥2 its (Euclidean) ℓ2 norm. For a convex,
compact and nonempty set X , we let PX (·) represent the Euclidean projection operator with respect
to X . We let DX be the ℓ2-diameter of X . To simplify the exposition, we often use the O(·) notation
in the main body to suppress the dependence on certain parameters; we also write On(·) to indicate
the asymptotic growth solely as a function of n, so as to lighten the exposition.

Multilinear games We consider n-player multilinear games. In a multilinear game G each player
i ∈ JnK has a convex, compact and nonempty set of feasible strategies Xi ⊆ Rdi , for some
dimension di ∈ N. Under a joint strategy profile x = (x1, . . . ,xn) ∈

∏n
i=1 Xi =: X , there

is a continuous utility function ui : (x1, . . . ,xn) 7→ R such that ui(x) = ⟨xi,ui(x−i)⟩, for
some function ui : x−i 7→ Rdi ; here, we used for convenience the standard notation x−i :=
(x1, . . . ,xi−1,xi+1, . . . ,xn). This setup readily captures normal- as well as extensive-form games.

Specifically, in a normal-form game every player i ∈ JnK selects as strategy a probability distribution
xi ∈ ∆(Ai) over a finite set of available actions Ai. There is an arbitrary utility function ui : A :=∏n

i=1 Ai → [−1, 1] that maps a joint action profile to a utility for Player i; we will be making the
standard assumption that the range of each player’s utilities is bounded by an absolute constant, which
is in particular independent of the number of players n. In this setting, the mixed extension of the
utility function indeed satisfies the multilinearity condition imposed above: for x ∈

∏n
i=1 ∆(Ai),

ui(x) := Ea∼x[ui(a)] = ⟨xi,∇xiui(x)⟩, where we overloaded the notation ui(·).
Returning to the general setting of multilinear games, we let FG :

∏n
i=1 Xi →

∏n
i=1 Xi denote the

underlying operator of the game G, defined as FG : (x1, . . . ,xn) 7→ (u1(x−1), . . . ,un(x−n)),
where function ui was introduced earlier. For notational simplicity, we will often omit the subscript
G when it is clear from the context. We will say that F is L-Lipschitz continuous (w.r.t. the ℓ2 norm)
if for any x,x′ ∈

∏n
i=1 Xi it holds that ∥F (x)− F (x′)∥2 ≤ L∥x− x′∥2.

Welfare and the price of anarchy For a joint strategy profile x ∈
∏n

i=1 Xi, we define the
social welfare attained under x as SW(x) :=

∑n
i=1 ui(x). The maximum possible social welfare

attainable in a game G will be denoted by OPTG . Without any essential loss of generality, it will
be assumed that OPTG > 0. We say that the game is constant-sum if SW(x) = V ∈ R>0 for any
x ∈

∏n
i=1 Xi. The price of anarchy (PoA) of a game G quantifies the loss in efficiency incurred on
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account of strategic players [61]. Formally, if NEG is the nonempty set of (mixed) Nash equilibria of
G (Definition 2.2) [88], we define PoAG := supx∈NEG

{
SW(x)
OPTG

}
.

Smooth games We are now ready to recall the seminal notion of a smooth game,2 conceived in the
pioneering work of Roughgarden [90] as a technique to (lower) bound the price of anarchy.
Definition 2.1 (Smooth game [90]). An n-player game G is called (λ, µ)-smooth, where λ > 0 and
µ > −1, if there exists x⋆ ∈

∏n
i=1 Xi with SW(x⋆) = OPTG such that for every x ∈

∏n
i=1 Xi,

n∑
i=1

ui(x
⋆
i ,x−i) ≥ λOPTG − µSW(x). (1)

(In the definition above, and throughout this paper, we slightly abuse notation by parsing ui(x
⋆
i ,x−i)

as ui(x1, . . . ,xi−1,x
⋆
i ,xi+1, . . . ,xn).) Roughgarden [90] observed that in a (λ, µ)-smooth game,

in the sense of Definition 2.1, every Nash equilibrium attains at least a ρ(λ, µ) := λ
1+µ fraction

of the optimal social welfare OPTG . Importantly, this efficiency guarantee immediately carries
over to outcomes of no-regret learning algorithms as well. The robust price of anarchy (rPoAG)
is the best (i.e., largest) price of anarchy bound provable via a smoothness argument, and can be
defined as the solution to the linear program induced by the smoothness constraints given in (1)
(see (24) in Appendix A.5). One delicate point here is that the value of rPoAG could be associated
with unbounded smoothness parameters, which is a pathological and rather trivial manifestation of
smoothness (Remark A.10 elaborates on this point). To be clear, when we say a game G attains a
certain value ρG , we mean that there exists a finite pair of legitimate smoothness parameters (λ, µ)
such that ρG = λ

1+µ . With this convention, it might be the case that ρG(λ, µ) ̸= rPoAG under any
finite pair of smoothness parameters (λ, µ) (Remark A.10). It is also easy to see that PoAG ≥ rPoAG .

Nash equilibrium We next recall the concept of a weak Nash equilibrium, a natural generalization
of the standard notion which is meaningful in multi-player games.
Definition 2.2 (Weak Nash equilibrium [5]). Let δ ∈ [0, 1) and ϵ ∈ R≥0. A joint strategy profile
x ∈

∏n
i=1 Xi is an (ϵ, δ)-weak Nash equilibrium if at least a 1− δ fraction of the players are ϵ-best

responding. An (ϵ, 0)-weak Nash equilibrium will be simply referred to as ϵ-Nash equilibrium.

In the definition above, we clarify that a player i ∈ JnK is said to be ϵ-best responding if
BRGAPi(x1, . . . ,xn) := maxx′

i∈Xi
⟨x′

i,ui(x−i)⟩ − ⟨xi,ui(x−i)⟩ ≤ ϵ. We also define the Nash
equilibrium gap as NEGAP(x) := max1≤i≤n BRGAPi(x). It has been shown that hardness results
in multi-player general-sum games persist under the weak Nash equilibrium concept introduced
above, even when ϵ and δ are absolute constants bounded away from 0 [4, 94].

Regret We are operating in the usual online learning setting. At every time t ∈ N a player i ∈ JnK
selects a strategy x

(t)
i ∈ Xi, and then receives as feedback the linear utility function xi 7→ ⟨xi,u

(t)
i ⟩,

where we overload notation so that u(t)
i := ui(x

(t)
−i). The regret of player i ∈ JnK under a time

horizon T ∈ N is defined as

Reg
(T )
i := max

x⋆
i ∈Xi

{
T∑

t=1

ui(x
⋆
i ,x

(t)
−i)

}
−

T∑
t=1

ui(x
(t)).

Optimistic gradient descent By now, there are many online algorithms known to guarantee
sublinear regret, Reg(T )

i = o(T ), even if the observed utilities are selected adversarially [18, 98].
The main no-regret learning algorithm we consider in this paper is optimistic gradient descent
(henceforth OGD) [86, 22], which is known to yield improved regret guarantees in the setting of
learning in games [103]. For each player i ∈ JnK, OGD is defined through the following update rule
for t ∈ N.

x
(t)
i := PXi

(
x̂
(t)
i + ηm

(t)
i

)
,

x̂
(t+1)
i := PXi

(
x̂
(t)
i + ηu

(t)
i

)
.

(OGD)

2Smoothness in the sense of Definition 2.1 should not be confused with the unrelated notion of smoothness
in the optimization nomenclature.
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Here, η > 0 is the learning rate; m
(t)
i ∈ Rdi is the prediction vector; and x̂

(1)
i ∈ Xi is the

initialization. It is assumed that the strategy set Xi is such that the Euclidean projection PXi
(·) can

be implemented efficiently. We will let m(t)
i := u

(t−1)
i for any t ∈ N, where u

(0)
i := ui(x̂

(1)
−i ).

3 Convergence to Nash equilibria via smoothness

In this section, we study the convergence of optimistic gradient descent (OGD) in large games, that is
to say, in the regime n ≫ 1. In our first main result, stated below as Theorem 3.1, we show that when
limn→+∞ ρn = 1 with a sufficiently fast rate, not only are Nash equilibria approaching the optimal
social welfare, but they can also be computed efficiently in a decentralized fashion via OGD.

In the sequel, when considering a sequence of games (Gn)n≥1, with each game Gn being parameter-
ized by the number of players n, we will use a subscript with variable n to index the nth game in the
sequence; that notation will also be used to refer to the other underlying parameters of the game that
depend on the number of players.
Theorem 3.1. Consider an n-player (λ, µ)-smooth game Gn such that the game operator Fn is
Ln-Lipschitz continuous and λ ≥ (1 − ϵn)(1 + µ), with ϵn ̸= 0. Suppose further that all players
follow OGD with learning rate ηn = 1/(4Ln). Then, for δ ∈ (0, 1) and a sufficiently large number
of iterations T = On(nL

2
n/γn), where γn := LnOPTGnϵn, there is time t⋆ ∈ JT K such that

x(t⋆) := (x
(t⋆)
1 , . . . ,x

(t⋆)
n ) is a(

1√
δ
On

(√
γn
n

)
, δ

)
− weak Nash equilibrium. (2)

In particular, if γn = On(n
1−α), for α ∈ (0, 1), OGD yields an (On(n

−α
3 ), On(n

−α
3 ))-weak NE.

We remark that if it further holds that γn = on(1), the above theorem establishes convergence
to the standard notion of Nash equilibrium—wherein all players are (almost) best responding
(Corollary A.5). Parameter γn, which is proportional to the error term ϵn, controls both the number
of iterations and the approximation guarantee in (2); we refer to Theorem A.2 (in Appendix A) for a
more precise non-asymptotic characterization, which bounds the players’ cumulative best response
gap as a function of the growth of γn. We also note that Theorem 3.1 can be strengthened so that (2)
holds for most iterates of OGD (say 99%), not just a single one (Remark A.4).

Now, to be more concrete regarding the preconditions of Theorem 3.1, we first observe that the growth
of the Lipschitz constant Ln depends on the normalization assumptions as well as the structure of
the underlying game Gn. In particular, let us assume—as is standard—that the range of the utility
functions is independent of n, in which case OPTGn

= On(n). We then show that Ln = On(1)
in each of the following cases: graphical games with bounded degree (Lemma A.7), games with
On(1/n) strategic sensitivity per Definition 3.5 (Lemma A.8), and polymatrix (general-sum) games
even with unbounded neighborhoods (Lemma A.9); the first two of the aforementioned classes are
the most commonly studied classes in the literature under the regime n ≫ 1. For all of those classes,
applying Theorem 3.1 yields an (on(1), on(1))-weak Nash equilibrium for any ϵn ≤ on(1). More
generally, the Lipschitz constant Ln can grow with n (Lemma A.6), in which case ϵn must vanish with
a faster rate for the conclusion of Theorem 3.1 to kick in. One important limitation of Theorem 3.1 is
that, at least in a certain regime, it prescribes a strategy in which many players—albeit a vanishing
fraction—may have a profitable deviation (in accordance with Definition 2.2); this is admittedly an
inherent feature of our framework.
Remark 3.2. In a decentralized environment, one question that arises from Theorem 3.1 concerns the
identification of a time index t⋆ ∈ JT K that satisfies (2), which can be viewed as the stopping condition
of the algorithm. We suggest two possible approaches. First, if we accept that players have access to
a common source of randomness, then all players can sample the same index t⋆ uniformly at random
from the set JT K. As we point out in Remark A.4, this suffices to provide a guarantee with high
probability with only a small degradation in the solution quality. The second approach, which does
not rest any having a common source of randomness, involves a coordinator who can communicate
with the players but possesses no information whatsoever about the underlying game. The coordinator
sets a target solution quality parameterized by (ϵ, δ) (per Definition 2.2), and after each iteration t
elicits from each player i ∈ JnK a single bit, encoding whether 1{BRGAPi(x

(t)) > ϵ}. (We note
that each player can indeed determine its best response gap with only its local information—namely,
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the utility feedback.) The coordinator can then evaluate whether the fraction of the players with at
most an ϵ best response gap matches the desired accuracy. While the second approach makes for a
less decentralized protocol, the communication overhead described above is arguably very limited.

The key precondition of Theorem 3.1 pertains the behavior of the smoothness parameters, to be
discussed next after we first sketch the proof of Theorem 3.1, which extends a recent technique [1].

Proof sketch of Theorem 3.1 The proof is based on the fact that the sum of the players’ regrets∑n
i=1 Reg

(T )
i cannot be too negative, which in turn follows from the assumption that ρn ≥ 1− ϵn.

The argument then proceeds by bounding the players’ cumulative best response gap across the T

iterations
∑T

t=1

∑n
i=1

(
BRGAPi(x

(t))
)2

as a function of γn and the time horizon T ∈ N, ultimately
leading to the conclusion of Theorem 3.1.

Connection with the Minty property While we have stated Theorem 3.1 in the regime n ≫ 1,
under the premise that ρn is sufficiently close to 1 (as a function of n), its conclusion is in fact
interesting beyond that regime. Indeed, an important observation is that any two-player constant-sum
game G := (A,B), with ⟨x1,Ax2⟩+ ⟨x1,Bx2⟩ = V for any (x1,x2) ∈ X1×X2, satisfies ρG = 1.
This is indeed a consequence of Von Neumann’s minimax theorem: ∃(x⋆

1,x
⋆
2) ∈ X1 ×X2 such that

u1(x
⋆
1,x2) + u2(x

⋆
2,x1)− V = ⟨x⋆

1,Ax2⟩ − ⟨x1,Ax⋆
2⟩ ≥ 0 for any (x1,x2) ∈ X1 ×X2, in turn

implying that u1(x
⋆
1,x2) + u2(x

⋆
2,x1) ≥ (1 + µ)OPTG − µSW(x) = V ; that is, any two-player

constant-sum game is (1+µ, µ)-smooth, thereby making the conclusion of Theorem 3.1 readily appli-
cable (by taking ρ ≥ 1− ϵ2 for any ϵ > 0; see the explicit statement of Theorem A.2). This captures
and unifies earlier iteration complexity bounds under OGD and the extra-gradient method [15, 48, 46].
Proposition 3.3. Any two-player constant-sum game G is (1 + µ, µ)-smooth for µ > −1, implying
that ρG = 1. Thus, O(1/ϵ2) iterations of OGD suffice to obtain an ϵ-Nash equilibrium, for any ϵ > 0.

More broadly, there is a surprisingly overlooked but immediate connection between smooth games
(per Definition 2.1) and the Minty property, a well-known condition in the literature on variational
inequalities (VIs) [36, 66, 71]. More precisely, the Minty property postulates the existence of a
strategy profile x⋆ ∈

∏n
i=1 Xi such that ⟨x⋆ − x, F (x)⟩ ≥ 0 for any x ∈

∏n
i=1 Xi, where we

recall that F is the operator of the game. (We caution that the last inequality is typically stated
with the opposite sign since the operator F is defined oppositely.) The following connection is
thus immediate from the fact that ⟨x⋆, F (x)⟩ =

∑n
i=1⟨x⋆

i ,ui(x−i)⟩ =
∑n

i=1 ui(x
⋆
i ,x−i) and

⟨x, F (x)⟩ =
∑n

i=1⟨xi,ui(x−i)⟩ = SW(x) (by multilinearity).
Observation 3.4. For any (multi-player) constant-sum game G, the Minty property is equivalent to G
being (1 + µ, µ)-smooth for some µ > −1.

Indeed, the Minty property implies that
∑n

i=1 ui(x
⋆
i ,x−i) ≥ V = (1 + µ)OPTG − µSW(x), and

the converse direction is also immediate. In fact, for (multi-player) zero-sum games, the Minty
property is equivalent to G satisfying (1) under some pair (λ, µ) ∈ R2. We stress that even if
ρG = 1, traditional no-regret learning algorithms such as online mirror descent do not generally
enjoy iterate convergence to Nash equilibria [70], which stands in stark contrast to the behavior of
OGD (Proposition 3.3). In light of Observation 3.4, Theorem 3.1 should also be viewed as part of
an ongoing effort to establish sufficient conditions of tractability that are more permissive than the
Minty property (e.g., [33, 12, 14, 84, 11]). The criterion we furnish herein, based on the smoothness
framework, has the important benefit of enjoying a natural economic interpretation, as well as having
being extensively studied in the literature. Indeed, we will leverage insights from prior work to
obtain several interesting extensions in the remainder of this section.

Games with vanishing sensitivity Returning to the regime n ≫ 1, why should we expect ρn → 1?
Indeed, if anything large games are more general than games with a small number of players since one
can always incorporate “dummy” players into the game. Yet, the point is that large games oftentimes
exhibit a structure that leads to more efficient outcomes. For example, one immediate implication of
our framework relates to games with a vanishing (strategic) sensitivity (see, e.g., [57, 3, 72, 31, 45]).
There are various ways of defining sensitivity; here, we adopt the following standard definition.
Definition 3.5. The strategic sensitivity ϵ ∈ R>0 of an n-player game in normal form is defined as

ϵ := max
1≤i≤n

max
a∈A

max
1≤i′≤n

max
a′
i′∈Ai′

|ui(a
′
i′ ,a−i)− ui(a)|.
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In words, a unilateral deviation can only impact a player’s utility by an additive ϵ. Now, as long
as the sensitivity decays fast enough, a proof analogous to that of Theorem 3.1 implies the following.

Theorem 3.6. Consider an n-player game Gn with sensitivity ϵn ∈ R>0. Then, T = On(n) iterations

of OGD suffice to obtain a
(

1√
δ
On (ϵn

√
n) , δ

)
-weak Nash equilibrium, for δ ∈ (0, 1).

In particular, Theorem 3.6 yields an (on(1), on(1))-weak Nash equilibrium as long as ϵn = on(
√
n).

Further, in the canonical regime where ϵn = On(1/n), Theorem 3.6 circumscribes the best response
gap for all but a constant number of players (by taking δ = On(1/n)). There are many natural
settings where we should expect results such as Theorem 3.6 to be applicable [57, 58, 69]. We find it
conceptually compelling that our framework can provide in a unifying way equilibrium guarantees
for two seemingly disparate classes of games, namely two-player zero-sum games and games with
vanishing strategic sensitivity.

In a similar vein, Feldman et al. [39] showed that ρn → 1 with a rate of 1/
√
n in a general auction

design problem (see also [23]) under the relatively mild assumption that each player participates in the
market with some constant probability (aka. probabilistic demand), thereby bypassing known barriers
regarding the inefficiency of equilibria in general combinatorial domains. Their proof is based on
the fact that each bidder’s impact on the prices—under a simultaneous uniform-price auction format—
becomes asymptotically negligible, in the spirit of Definition 3.5 introduced above. The difficulty that
arises in that setting is that the natural representation of the utility functions violates our multilinearity
assumption (postulated in Section 2). Instead, one would have to resort to some form of discretization
before attempting to apply Theorem 3.1, which could be computationally prohibitive; the other
prerequisite is that Ln = on(

√
n), for which our approach in Lemma A.8 in conjunction with the

insights of Feldman et al. [39] could be useful. Understanding whether our techniques can be applied
in the combinatorial auction setting of Feldman et al. [39] is left as a challenging open question.

Efficiency of equilibria does not suffice for tractability A natural question arising from Theo-
rem 3.1 is whether a similar statement applies under the assumption that PoA → 1, that is, assuming
that all Nash equilibria of G are (approximately) fully efficient. This is clearly a weaker assumption,
but it is unfortunately not sufficient to yield any non-trivial guarantees even in normal-form games:

Proposition 3.7. Even under the promise that PoAG = 1, computing a (1/poly(G))-Nash equilibrium
in normal-form games in polynomial time is impossible when n ≥ 3, unless PPAD ⊆ P.

This stands in contrast to the class of (1 + µ, µ)-smooth games, where a fully polynomial-time
approximation scheme (FPTAS) is implied by Theorem 3.1—assuming access to a utility and a
projection oracle, both of which are available in, for example, most succinct normal-form games.
Proposition 3.7 is a straightforward consequence of the fact that Nash equilibria are hard to compute
even in constant-sum 3-player games [20]. Furthermore, in Example A.11 we identify a specific
3-player game in which OGD fails (unconditionally) to converge to ϵ-Nash equilibria for a constant
value of ϵ > 0, even though PoA = 1. Our example is based on a variant of Shapley’s game [99].

Another notable advantage of smoothness as a criterion of convergence is that, at least when the game
is represented explicitly, it is easy to compute; this is in contrast to PoA, whose identification even in
two-player games is NP-hard (Proposition A.12).

Extensions It turns out that smoothness per Definition 2.1 can be further sharpened using a primal-
dual framework [75]. Such refined guarantees can also be translated into our setting (in the context of
Theorem 3.1), as we elaborate on in Appendix A.3. The upshot is that the modification of Nadav and
Roughgarden [75] necessitates analyzing the weighted sum of the players’ regrets

∑n
i=1 ziReg

(T )
i

under a dual set of variables {zi}ni=1. Another interesting extension worth noting relies on the local
smoothness framework [92, 78], as we explain in Appendix A.4; the key observation is that local
smoothness per Nguyen [78] can be associated with a linearized notion of regret, at which point
the analysis of Theorem 3.1 readily carries over. Finally, we also expand our scope to Bayesian
mechanisms, as we expound in the upcoming subsection.

Before we proceed, it is important to point out that, unsurprisingly, smoothness is not merely enough
to guarantee convergence of OGD; see Example A.13. It is instead crucial to additionally ensure that
ρ ≈ 1 in order to obtain interesting guarantees for the behavior of algorithms such as OGD.
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3.1 Bayesian mechanisms

Next, we leverage the connection between smoothness and convergence to Nash equilibria to extend
the scope of our framework to Bayesian mechanisms. In particular, analogously to Definition 2.1,
Syrgkanis and Tardos [102] have introduced the notion of a smooth mechanism (Definition A.14); de-
tailed background on Bayesian mechanisms and smoothness in that realm is provided in Appendix A.7.
In this context, we leverage a reduction of Hartline et al. [53] from an incomplete-information to a
complete-information mechanism to arrive at the following theorem. (The standard notion of a Bayes-
Nash equilibrium is analogous to Definition 2.2, and is recalled in Definition A.15 of Appendix A.7.)
Theorem 3.8. Consider a Bayesian mechanism M such that ρM = 1. Then, for any ϵ > 0,
T = O(1/ϵ2) iterations of OGD suffice to obtain an ϵ-Bayes-Nash equilibrium of M.

In particular, OGD above is executed on the so-called agent-form representation of M (Appendix A.7).
Analogously to Theorem 3.1, the above theorem can also be extended in the large n ≫ 1 under the
assumption that ρn → 1. It is worth noting that Theorem 3.1 already can be applied to certain games
of incomplete information (such as imperfect-information extensive-form games), but Theorem 3.8
additionally makes a connection with the literature on smoothness in mechanism design, which
facilitates characterizing the smoothness parameters.

4 Improved welfare for no-regret dynamics

Roughgarden’s seminal work [90] established that no-regret learning algorithms always attain asymp-
totically at least rPoA fraction of the optimal social welfare (on average). This guarantee is satisfactory
for many classes of games where rPoA is close to 1 (emphatically those studied earlier in Section 3),
but smoothness is certainly not a universal phenomenon: there are simple games in which the smooth-
ness framework only provides vacuous guarantees; one such example is Shapley’s game, discussed in
Appendix A.10. As a result, one important question arising is whether it is possible to improve the
efficiency bound predicted by smoothness when specific learning algorithms are in place, while at
the same time still guaranteeing convergence to the set of coarse correlated equilibria (CCE). We
stress that optimizing over the set of CCE is typically NP-hard in succinct games [79, 6], making this
question interesting also from a complexity-theoretic standpoint.

In this section, we show that it is indeed possible to obtain improved efficiency bounds un-
der a generic condition, while at the same time guaranteeing the no-regret property for each
player. A key ingredient in our improvement is the use of clairvoyant mirror descent, an algo-
rithm recently introduced by Piliouras et al. [85]. More precisely, we will instantiate that algo-
rithm with (squared) Euclidean regularization, which can be defined as follows. Let Πxi(ui) :=
argmaxx′

i∈Xi

{
⟨x′

i,ui⟩ − 1
2∥xi − x′

i∥22
}

be the induced prox operator, where xi ∈ Xi and
ui ∈ Rdi . Clairvoyant gradient descent (henceforth CGD) at time t ∈ N outputs x(t) =

Πx(t−1)(ηF (w(t))) := (Π
x

(t−1)
1

(ηu1(w
(t)
−1)), . . . ,Πx

(t−1)
n

(ηun(w
(t)
−n))), where w(t) is any ϵ(t)-

approximate fixed point of the map
∏n

i=1 Xi ∋ w 7→ Πx(t−1)(ηF (w)), and x(0) ∈ X is an arbitrary
initialization. It turns out that for η < 1/L, this map is a contraction [37, 85, 19], thereby making
approximate fixed points easy to compute. Furthermore, there is also an uncoupled implementation
of CGD [85], making the algorithm compelling from a decentralized standpoint as well, but we will
not dwell on this issue here. We are now ready to state the main result of this section.

Theorem 4.1. Suppose that all players are updating their strategies using CGD with ϵ(t) ≤ mini DXi

t2

and learning rate η = 1
2L in a (λ, µ)-smooth game G, where L is the Lipschtz-continuity parameter

of F . Then, for any ϵ0 > 0 and T ≥ 64L2D4
X

ϵ20
iterations,

1. the average correlated distribution of play is a 4LD2
X

T − CCE;

2. there is a time t⋆ ∈ JT K such that

SW(x(t⋆)) ≥ sup
ϵ≥ϵ0

min

{
ρG(λ, µ) · OPTG +

ϵ2

16(µ+ 1)LD2
X
,PoAϵ

G · OPTG

}
. (3)

This is the first result that establishes simultaneously these properties under a computationally
efficient algorithm, improving a recent work [1] (see also [42, 67] for related results) that failed to
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guarantee convergence to CCE. In particular, that earlier work was analyzing OGD, and as it turns out,
under a time-invariant learning rate η it is not even known whether OGD ensures sublinear per-player
regret, let alone constant (as in Corollary 4.3). The basic ingredient to this improvement is a new
property of CGD, which we explain below. Before we sketch the proof, we note that Item 2 above
can be readily strengthened so that the improvement holds for the average welfare of most of the
strategies, not just a single one (Remark A.22).

Proof sketch of Theorem 4.1 The key step in the proof is showing (in Corollary A.21) that
CGD satisfies the remarkable per-player regret bound Reg

(T )
i ≤ α − γ

∑T
t=1

(
BRGAPi(x

(t))
)2

,
where α > 0 depends on the approximation error of the fixed points of CGD—and can be made
time-invariant with only an O(log T ) per-iteration overhead—and γ > 0. To do this, we crucially
rely on a certain property of the Euclidean regularizer (Lemma A.20), which we use in conjunction
with the analysis of Farina et al. [37] who extended the original argument of Piliouras et al. [85]
beyond entropic regularization.

It is worth noting that the above per-player regret bound (Corollary A.21) implies that a player with
nonnegative regret will be almost always approximately best responding, a rather singular occurrence
in the context of learning in games; this has interesting implications and goes well-beyond what is
currently known for OGD. In particular, it is an open question whether Theorem 4.1 holds under OGD.

Next, we shall describe a concrete implication of Theorem 4.1 under a generic condition. To do so,
let us denote by PoAϵ

G the price of anarchy in G with respect to the worst-case ϵ-Nash equilibrium
(so that PoA0

G ≡ PoAG).
Condition 4.2. Consider a game G and some game-dependent parameter C = C(G) > 0. There
exists an ϵ0 > 0 such that PoAϵ0

G > rPoAG + ϵ20C.

Naturally, it is always the case that PoAG ≥ rPoAG . Further, rPoAG is in general strictly smaller since
it measures the worst-case welfare over a larger set than PoAG (even broader than outcomes of no-
regret learning); Figure 1 in Appendix A.8 further corroborates this premise in a sequence of random
normal-form games. Now assuming that PoAG > rPoAG , Condition 4.2 is met if limϵ→0 PoA

ϵ
G =

PoAG , a mild continuity condition (see, for example, the discussion by Roughgarden [89]).
Corollary 4.3. Consider a (λ, µ)-smooth game G that satisfies Condition 4.2 under some ϵ0 > 0.
Then, CGD after T ≥ 64L2D4

X
ϵ20

iterations and η = 1
2L satisfies the following:

1. the average correlated distribution of play is an O
(
1
T

)
-CCE;

2. there is a time t⋆ ∈ JT K and C ′(G) > 0 such that SW(x(t⋆)) ≥ (ρG(λ, µ)+ϵ20C
′(G))OPTG .

A fundamental question that arises from Theorem 4.1 is whether there exists a computationally
efficient algorithm that determines a CCE with social welfare at least a PoA fraction of the optimal
welfare.3 In games where PoA = rPoA this is clearly possible; in contrast, while Theorem 4.1
improves over the smoothness bound, it does not always guarantee welfare up to PoA. This is a
central question in light of the intractability of Nash equilibria [30, 20], which has indeed served as a
primary critique to the literature quantifying the price of anarchy of Nash equilibria [90].

Another promising avenue to improving the welfare predicted by the smoothness framework
revolves around eliminating certain strategy profiles by arguing that they are reached with negligible
probability. For example, in Appendix A.10 we identify an example where iteratively eliminating
strictly dominated actions can improve the predictive power of the smoothness framework.

5 Further related work

Large games The study of non-cooperative games with many players (i.e., large games) has been a
classical topic in economic theory [96, 41, 68, 95, 83, 38, 50], most recently revived in the context of
mean-field games (e.g., [64, 47, 74, 51, 16, 82, 100, 80, 29, 65]). Indeed, many traditional motivating
scenarios in algorithmic game theory, including markets and Internet routing, often feature a large
number of players in practice. In particular, it has emerged that, under certain conditions, equilibria

3We clarify that Theorem 4.1 could have also been stated as follows: CGD outputs an approximate CCE with
social welfare attaining the right-hand side of (3); this is evident from the proof in Appendix A.9.
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in large games exhibit certain remarkable robustness and stability properties; see, for example, the
recent survey of Gradwohl and Kalai [49], as well as the older treatment of Kalai [56] on the subject.
Furthermore, mechanism design in large games, along with privacy guarantees, is explored in the
work of Kearns et al. [58] (see also [57, 59]).

Efficiency in large games Of particular importance to our work, and specifically the precondition of
Theorem 3.1, is the line of work uncovering the by now well-documented phenomenon in economics
that large games exhibit, under certain relatively mild assumptions, fully efficient equilibria. Our
framework additionally requires that the efficiency of equilibria can be derived via a smoothness
argument, in the sense of Roughgarden [90]; we stress again that efficiency alone is of little use
when it comes to equilibrium computation (Proposition 3.7). Fortunately, smoothness has emerged
as the canonical paradigm for bounding the price of anarchy (e.g., see the survey of Roughgarden
et al. [93]), albeit with some notable exceptions [40, 55]. In particular, Feldman et al. [39] quantify
the price of anarchy in large games via the smoothness framework. They show that in a general
combinatorial domain with simultaneous uniform-price auctions, it holds that ρn → 1 with a rate
of 1/

√
n as long as there is probabilistic demand, meaning that every buyer abstains from the

auction with a constant probability. Several other papers have studied the price of anarchy in large
games [63, 23, 24, 26, 25, 17]. In particular, we highlight the work of Cole and Tao [23] which,
as Feldman et al. [39], relies on a smoothness argument to establish full efficiency in the limit
with a rate of 1/

√
n in a Walrasian auction, while asymptotic full efficiency is also shown for

Fisher markets under the gross substitutes condition. Further, Carmona et al. [17] provide sufficient
conditions under which equilibria are fully efficient in a class of mean-field games; understanding
thus whether our framework has new implications in such games is an interesting direction for the
future. We finally point out that many other papers have focused on learning in auctions and markets;
see [21, 43, 104, 8, 9, 32], and references therein.

6 Conclusions and future work

In conclusion, we have furnished a new sufficient condition under which a family of no-regret learning
algorithms, including optimistic gradient descent (OGD), approaches (weak) Nash equilibria. Our cri-
terion has a natural economic interpretation, being intricately connected with Roughgarden’s smooth-
ness framework, and captures other well-studied conditions such as the Minty property. We have also
shown that clairvoyant gradient descent attains an improved welfare bound compared to that predicted
by the smoothness framework, while ensuring at the same time fast convergence to the set of CCE.

There are many promising directions for future work. First, we have seen that under the condition
ρ = 1 there exists an algorithm that computes an ϵ-NE in time poly(1/ϵ), leading to a pseudo
polynomial-time algorithm (under natural game representations); is there an algorithm that instead
runs in time poly(log(1/ϵ))?

Convergence to Nash equilibria via computational hardness? Another promising approach
for showing convergence to Nash equilibria is by harnessing computational hardness results for the
underlying welfare maximization problem. To be specific, we consider the following condition.
Condition 6.1. Consider a multi-player (λ, µ)-smooth game G with ρC := λ

1+µ from a class of
games C with the polynomial expectation property [79]. For any G ∈ C, computing a joint strategy
profile x ∈

∏n
i=1 Xi such that SW(x) ≥ ρC · OPTG + 1/poly(G) is NP-hard, for any poly(G).

Indeed, smoothness often circumscribes the welfare of polynomial algorithms, such as combinatorial
auctions under XOS valuations—in fact, unconditionally under polynomial communication; see [34,
Theorem 1.4] and [102, Appendix A.7]. Now, the role of Condition 6.1 is that (unless P = NP) a
polynomially-bounded algorithm such as OGD—which is efficiently implementable (for games with
a polynomial number of actions) under the polynomial expectation property—will have the property
that 1

T

∑n
i=1 Reg

(T )
i ≥ −1/poly(G), for any G ∈ C and poly(G), which in turn leads to the following.

Theorem 6.2. Consider a class C satisfying Condition 6.1. For any G ∈ C and ϵ = 1/poly(G), there
is a polynomial-time algorithm for computing an ϵ-Nash equilibrium, unless P = NP.

By virtue of Corollary 4.3, the same conclusion applies even under the weaker condition that
computing a CCE with welfare improving over the smoothness bound is hard; this is related to the
hardness result of Barman and Ligett [6], discussed in the full version of this paper.
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A Omitted proofs

In this section, we provide the proofs and a number of results omitted from the main body.

A.1 Proof of Theorem 3.1

We commence with the proof of Theorem 3.1. Below, we give a more detailed version of the statement
provided earlier in the main body. We first state an auxiliary lemma which will be useful for the
proof, and can be extracted from earlier work [1]

Lemma A.1. Suppose that player i ∈ JnK updates its strategy using OGD with learning rate η > 0.
Then, for any time t ∈ N,

BRGAPi(x
(t)) ≤

(
DXi

η
+ ∥u(t)

i ∥2
)(

∥x(t)
i − x̂

(t)
i ∥2 + ∥x(t)

i − x̂
(t+1)
i ∥2

)
.

In the sequel, we denote by Bi ∈ R>0 any number such that ∥ui(x−i)∥2 ≤ Bi, for any x ∈
∏n

i=1 Xi.
In the asymptotic notation below, we make the standard assumption that the parameters Bi and DXi

do not depend on the number of players n.

Theorem A.2 (Precise version of Theorem 3.1). Consider an n-player (λ, µ)-smooth game Gn such
that the game operator Fn is Ln-Lipschitz continuous and λ ≥ (1 − ϵn)(1 + µ) (ρn ≥ 1 − ϵn).
Suppose further that all players follow OGD with learning rate ηn = 1

4Ln
and any initialization

(x̂
(1)
1 , . . . , x̂

(1)
n ) ∈

∏n
i=1 Xi. If ϵn > 0, then after T :=

D2
X

2ηnϵn(1+µ)OPTGn
iterations there is a time

t⋆ ∈ JT K such that

n∑
i=1

(
BRGAPi(x

(t⋆))
)2

≤ 32

(
max1≤i≤n D

2
Xi

(ηn)2
+ max

1≤i≤n
B2

i

)
ηnϵn(1 + µ)OPTGn

(4)

= On (LnOPTGnϵn) . (5)

In particular, for δ ∈ { 1
n ,

2
n , . . . , 1}, t⋆ constitutes a(

1√
δ
On

(√
LnOPTGn

ϵn
n

)
, δ

)
− weak Nash equilibrium.

On the other hand, if ϵn = 0, then for any T ∈ N there is a time t⋆ ∈ JT K such that

n∑
i=1

(
BRGAPi(x

(t⋆))
)2

≤ 8

T

(
max1≤i≤n D

2
Xi

(ηn)2
+ max

1≤i≤n
B2

i

)
D2

X .

Before we proceed with the proof, we note that the underlying assumption µ = On(1) in the
asymptotic notation above is consistent with known smoothness bounds in large games [39]; we also
refer to Remark A.10 for an important point regarding the range of the smoothness parameters.

Proof of Theorem A.2. We will first translate the assumed property ρn ≥ 1− ϵn to a lower bound on
the sum of the players’ regrets. In particular, we have that the sum of the players’ regrets

∑n
i=1 Reg

(T )
i

for any T ∈ N can be expressed as

n∑
i=1

max
x⋆

i ∈Xi

{
T∑

t=1

ui(x
⋆
i ,x

(t)
−i)

}
−

T∑
t=1

SW(x(t)) ≥ λOPTGnT − (1 + µ)

T∑
t=1

SW(x(t)), (6)

by Definition 2.1, where (λ, µ) are the assumed smoothness parameter of Gn. Now, using the
assumption that ρn ≥ 1− ϵn, it follows from (6) that

∑n
i=1 Reg

(T )
i is in turn lower bounded by

(1− ϵn)(1 + µ)OPTGnT − (1 + µ)

T∑
t=1

SW(x(t)) ≥ −ϵn(1 + µ)OPTGnT, (7)
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where we used the fact that OPTGn ≥ SW(x(t)) (by definition of the optimal welfare). We next
appropriately upper bound the sum of the players’ regrets

∑n
i=1 Reg

(T )
i . Using a slight refinement of

the RVU bound [103, 87], it follows that the regret Reg(T )
i can be upper bounded by

1

2ηn
D2

Xi
+ ηn

T∑
t=1

∥u(t)
i −m

(t)
i ∥22 −

1

2ηn

T∑
t=1

(
∥x(t)

i − x̂
(t)
i ∥22 + ∥x(t)

i − x̂
(t+1)
i ∥22

)
,

which in turn implies that the sum of the regrets
∑n

i=1 Reg
(T )
i is upper bounded by

1

2ηn

n∑
i=1

D2
Xi

+ ηn

T∑
t=1

∥u(t) −m(t)∥22 −
1

2ηn

T∑
t=1

(
∥x(t) − x̂(t)∥22 + ∥x(t) − x̂(t+1)∥22

)
, (8)

where we have defined u(t) := (u
(t)
1 , . . . ,u

(t)
n ) and m(t) := (m

(t)
1 , . . . ,m

(t)
n ). Moreover, by the

Ln-Lipschitz continuity of the game operator FGn
, it follows that ∥u(t) −m(t)∥2 = ∥FGn

(x(t))−
FGn

(x(t−1))∥2 ≤ Ln∥x(t) − x(t−1)∥2 for any t ∈ JT K, where we also used the fact that m(t) =
u(t−1) and x(0) := x̂(1). Combining with (8), it follows that for any ηn ≤ 1

4Ln
,

n∑
i=1

RegTi ≤ 1

2ηn

n∑
i=1

D2
Xi

− 1

4ηn

T∑
t=1

(
∥x(t) − x̂(t)∥22 + ∥x(t) − x̂(t+1)∥22

)
. (9)

As a result, combining (7) and (9) we have that

T∑
t=1

(
∥x(t) − x̂(t)∥22 + ∥x(t) − x̂(t+1)∥22

)
≤ 2

n∑
i=1

D2
Xi

+ 4ηnϵn(1 + µ)OPTGn
T. (10)

Next, applying Lemma A.1 yields that

T∑
t=1

n∑
i=1

(
BRGAPi(x

(t))
)2
≤ 4

(
maxi D

2
Xi

η2n
+max

i
B2

i

) T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t+1)∥2

)
≤ 4

(
maxi D

2
Xi

η2n
+max

i
B2

i

)(
2D2

X + 4ηnϵn(1 + µ)OPTGn
T
)
, (11)

where the first bound uses the inequality (α + β)2 ≤ 2α2 + 2β2, while the second bound follows
from (10) by noting that D2

X =
∑n

i=1 D
2
Xi

. As a result, we conclude that there exists t⋆ ∈ JT K,

namely t⋆ := argmin1≤t≤T

∑n
i=1

(
BRGAPi(x

(t))
)2

, such that

n∑
i=1

(
BRGAPi(x

(t⋆))
)2

≤ 4

(
max1≤i≤n D

2
Xi

η2n
+ max

1≤i≤n
B2

i

)(
2

T
D2

X + 4ηnϵn(1 + µ)OPTGn

)
.

(12)
Now, if ϵn ̸= 0, taking T :=

D2
X

2ηnϵn(1+µ)OPTGn
=

2L2
nD

2
X

(1+µ)γn
implies (4). The claimed approximation

guarantee in terms of weak Nash equilibria (per Definition 2.2) in (2) can be derived from (4) as
follows. We consider a parameter δ ∈ (0, 1) so that δn = ⌊δn⌋. Let also ϵ be the minimum among the
δn largest numbers from BRGAP1(x

(t⋆)), . . . , BRGAPn(x
(t⋆)). Then,

∑n
i=1

(
BRGAPi(x

(t⋆))
)2 ≥

δϵ2n, and by (12) it follows that

ϵ ≤ 1√
δ

√
32

(
max1≤i≤n D2

Xi

η2n
+ max

1≤i≤n
B2

i

)
ηnϵn(1 + µ)OPTGn

n
.

This implies (2) since x(t⋆) is by definition an (ϵ, δ)-weak Nash equilibrium. Finally, if ϵn = 0 the
claimed bound follows directly from (12).

We note that the asymptotic notation in (2) and (5) applies in the regime Ln ≥ Ωn(1); this can be
enforced by simply taking L′

n := max{1, Ln}.
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Remark A.3. One can also introduce a variant of weak Nash equilibria which is instead parameterized
by the average over the players’ best response gaps 1

n

∑n
i=1 BRGAPi(·). Inequality (4) implies that

the average best response gap of x(t⋆) can be bounded by On

(√
LnOPTGn ϵn

n

)
.

Remark A.4. While Theorem A.2 bounds the (weak) Nash equilibrium gap of a single iterate of
the dynamics, (11) implies that at least a 1− γ fraction of the iterates of the dynamics constitutes

a
(

1√
δγ
On

(√
LnOPTGn ϵn

n

)
, δ

)
-weak Nash equilibrium. So, by selecting a time index t⋆ ∈ JT K

uniformly at random we obtain the desired guarantee with high probability, incurring only a small
degradation in the solution quality.

In particular, if ϵn approaches to 0 with a sufficiently fast rate, Theorem A.2 also implies convergence
to the more standard notion of Nash equilibrium (i.e., Definition 2.2 with δ := 0), as we state below.
In particular, the following corollary can be derived directly from (4).
Corollary A.5. In the setting of Theorem A.2, if it additionally holds that LnϵnOPTGn

≤ on(1),
OGD yields an on(1)-Nash equilibrium after a sufficiently large number of iterations.

On the Lipschitz constant Next, we make some remarks regarding the dependence of the Lipschitz
constant Ln on the number of players in the context of general normal-form games. We first note that
the Lipschitz constant Ln of the underlying game operator can always be bounded as On(n).
Lemma A.6 (Lipschitz constant in normal-form games). For any n-player normal-form game G
with utilities bounded in [−1, 1], the Lipschitz constant Ln of the game operator satisfies Ln ≤
nmax1≤i≤n |Ai|.

Proof. For any player i ∈ JnK and any joint strategies x,x′ ∈
∏n

i=1 ∆(Ai), we have

∥ui(x−i)− ui(x
′
−i)∥2 ≤

√
|Ai|∥ui(x−i)− ui(x

′
−i)∥∞ (13)

≤
√

|Ai|

∥∥∥∥∥∥
∑

a−i∈A−i

ui(·,a−i)

∏
i′ ̸=i

xi′ [ai′ ]−
∏
i′ ̸=i

x′
i′ [ai′ ]

∥∥∥∥∥∥
1

(14)

≤
√
|Ai|
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∑

a−i∈A−i

∏
i′ ̸=i

xi′ [ai′ ]−
∏
i′ ̸=i

x′
i′ [ai′ ]

∥∥∥∥∥∥
1

(15)

≤
√
|Ai|

∑
i′ ̸=i

∥xi′ − x′
i′∥1 ≤ max

1≤i≤n
|Ai|

∑
i′ ̸=i

∥xi′ − x′
i′∥2, (16)

where (13) uses the equivalence between the ℓ2 and the ℓ∞ norm; (14) follows from the definition
of the (expected) utility: ui(ai,x−i) := Ea−i∼x−i

[ui(a)] =
∑

a−i∈A−i
ui(a)

∏
i′ ̸=i xi′ [ai′ ], for

any ai ∈ Ai; (15) uses the triangle inequality along with the assumption that |ui(a)| ≤ 1; and (16)
follows from the well-known fact that the total variation distance between two product distributions
can be upper bounded by the sum of the total variation distance of each individual component [54],
as well as the equivalence between the ℓ1 and the ℓ2 norm. As a result, continuing from (16), we have

∥F (x)− F (x′)∥22 =

n∑
i=1

∥ui(x−i)− ui(x
′
−i)∥22 ≤

(
max
1≤i≤n

|Ai|
)2 n∑

i=1

∑
i′ ̸=i

∥xi′ − x′
i′∥2

2

≤ n2

(
max
1≤i≤n

|Ai|
)2

∥x− x′∥22,

where the last inequality used that, by Jensen’s inequality,
(∑

i′ ̸=i ∥xi′ − x′
i′∥2
)2

≤ (n −
1)
∑

i′ ̸=i ∥xi′ − x′
i′∥22 ≤ n∥x− x′∥22. This concludes the proof.

Graphical games As a byproduct of the proof above, we next point out an important refinement
of Lemma A.6 concerning graphical games. In particular, here we assume that the utility of each
player i ∈ JnK only depends on the actions of players belonging to its neighborhood Ni ⊆ JnK \ {i}.
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We further assume that |Ni| ≤ ∆ for any player i ∈ JnK, where ∆ ∈ N will be referred to as the
degree of the graphical game. To conclude the definition, we also posit that each player i ∈ JnK can
only affect the utilities of at most ∆ other players: |i′ ∈ JnK : i ∈ Ni′ | ≤ ∆.

Lemma A.7 (Lipschitz constant in graphical games). For any n-player graphical game with degree
∆ ∈ N and utilities bounded in [−1, 1], the Lipschitz constant Ln of the game operator satisfies
Ln ≤ ∆max1≤i≤n |Ai|.

Proof. For any player i ∈ JnK and any joint strategies x,x′ ∈
∏n

i=1 ∆(Ai), we have

∥ui(x−i)− ui(x
′
−i)∥2 ≤

√
|Ai|∥ui(x−i)− ui(x

′
−i)∥∞

≤
√

|Ai|
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1

≤
√

|Ai|
∑
i′∈Ni

∥xi′ − x′
i′∥1 ≤ max

1≤i≤n
|Ai|

∑
i′∈Ni

∥xi′ − x′
i′∥2,

where the derivation above is similar to that in Lemma A.6. As a result,

∥F (x)− F (x′)∥22 =

n∑
i=1

∥ui(x−i)− ui(x
′
−i)∥22

≤
(

max
1≤i≤n

|Ai|
)2 n∑
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(∑
i′∈Ni

∥xi′ − x′
i′∥2

)2

≤ ∆

(
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)2 n∑
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∑
i′∈Ni

∥xi′ − x′
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)2

∥x− x′∥22.

Games with vanishing sensitivity We next focus on a different subclass of normal-form games;
namely, games with small sensitivity (per Definition 3.5). Taking a step back, in graphical games
every player can only be impacted by (and have an impact to) a small number of other players.
Instead, here we consider games where a player’s utility can be impacted by all other players, but
only by a small amount.

Lemma A.8 (Lipschitz constant in games with vanishing sensitivity). For any n-player normal-
form game with sensitivity ϵn ∈ R>0, the Lipschitz constant Ln of the game operator satisfies
Ln ≤ ϵnnmax1≤i≤n |Ai|.

Proof. Let i ∈ JnK. For x1,x
′
1 ∈ ∆(A1) and a−1 ∈ A−1 (restricting on Player 1 here is without

any loss, and only made for the sake of simplicity in the notation), it follows that

ui(x1,a−1)− ui(x
′
1,a−1) =

∑
a1∈A1

x1[a1]ui(a1,a−1)−
∑

a1∈A1

x′
1[a1]ui(a1,a−1)

=
∑

a1∈A1\{a′
1}

(x1[a1]− x′
1[a1])ui(a1, ·) + (x1[a

′
1]− x′

1[a
′
1])ui(a

′
1, ·)

=
∑

a1∈A1\{a′
1}

(x1[a1]− x′
1[a1])(ui(a1,a−1)− ui(a

′
1,a−1)), (17)
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for some a′1 ∈ A1, where we used that (x1[a
′
1]− x′

1[a
′
1]) =

∑
a1∈A1\{a′

1}
(x′

1[a1]− x1[a1]) since
x1,x

′
1 ∈ ∆(A1). Continuing from (17), we have

|ui(x1,a−1)− ui(x
′
1,a−1)| ≤

∑
a1∈A1\{a′

1}

|x1[a1]− x′
1[a1]||ui(a1,a−1)− ui(a

′
1,a−1)|

≤ ϵn
∑

a1∈A1\{a′
1}

|x1[a1]− x′
1[a1]| ≤ ϵn∥x1 − x′

1∥1,

where ϵn is the sensitivity of the game. Similar reasoning yields that |ui(x) − ui(x
′
1,x−1)| ≤

ϵn∥x1 − x′
1∥1, for any x−1 ∈

∏n
i=2 ∆(Ai). As a result, we have

∥u1(x−1)− u1(x
′
−1)∥∞ ≤ |u1(·,x2,x3, . . . ,xn)− u1(·,x′

2,x3, . . . ,xn)|
+ |u1(·,x′

2,x3, . . . ,xn)− u1(·,x′
2,x

′
3, . . . ,xn)|

+ . . .

+ |u1(·,x′
2,x

′
3, . . . ,x

′
n−1xn)− u1(·,x′

2,x
′
3, . . . ,x

′
n)|

≤ ϵn
∑
i ̸=1

∥xi − x′
i∥1.

By symmetry, we have shown that ∥ui(x−i)− ui(x
′
−i)∥∞ ≤ ϵn

∑
i′ ̸=i ∥xi′ − x′

i′∥1, and the rest
of the argument is identical to that of Lemma A.6.

Polymatrix games A careful examination of the proof of Lemma A.8 reveals that its conclusion in
fact applies under a more relaxed condition compared to what imposed by Definition 3.5; namely, we
can define

ϵ := max
1≤i≤n

max
a∈A

max
i′ ̸=i

max
a′
i′∈Ai′

|ui(a)− ui(a
′
i′ ,a−i′)|. (18)

In words, when considering the utility of a player i ∈ JnK, we only bound deviations by players
besides i. It is easy to see that Lemma A.8 in fact applies even if ϵ ∈ R>0 is defined as in (18). This
observation enables capturing other interesting classes of games under the premise that Ln = On(1),
such as polymatrix games. Specifically, a polymatrix game is defined with respect to an underlying
directed graph G = (JnK, E), so that each node of G is uniquely associated with the corresponding
player. For every edge (i, i′) ∈ E there is a matrix Ai,i′ ∈ RAi×Ai′ so that the utility of Player i is
defined as

ui(x) :=
1

n

∑
i′∈Ni

x⊤
i Ai,i′xi′ , (19)

where Ni := {i′ ∈ JnK : (i, i′) ∈ E}. Unlike the class of graphical games we saw earlier, here we do
not restrict the size of the neighborhoods. For this reason, we have normalized each player’s utility by
a 1/n factor in (19), for otherwise the utilities are not guaranteed to be bounded (independent of the
number of players n). It is then easy to see that polymatrix games are subject to Lemma A.8 under ϵ
defined in (18), which here satisfies ϵ = O(1/n). Below, we provide a simpler and sharper argument
compared to Lemma A.8.

Lemma A.9. For any n-player polymatrix game, the Lipschitz constant Ln of the game operator
satisfies Ln ≤ max(i,i′)∈E ∥Ai,i′∥2, where ∥ · ∥2 here denotes the spectral norm.
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Proof. By definition of the utility functions in (19), we have that for any player i ∈ JnK and
x,x′ ∈

∏n
i=1 ∆(Ai),

∥ui(x−i)− ui(x
′
−i)∥2 ≤ 1

n

∥∥∥∥∥ ∑
i′∈Ni

Ai,i′(xi′ − x′
i′)

∥∥∥∥∥
2

≤ 1

n

∑
i′∈Ni

∥Ai,i′(xi′ − x′
i′)∥2

≤ 1

n

∑
i′∈Ni

∥Ai,i′∥2∥xi′ − x′
i′∥2

≤
max(i,i′)∈E ∥Ai,i′∥2

n

∑
i′∈Ni

∥xi′ − x′
i′∥2,

and the claim follows.

A.2 Games with vanishing sensitivity

We next establish an important implication of our framework concerning the class of games with
vanishing strategic sensitivity (per Definition 3.5); the statement of the theorem is recalled below.
Theorem 3.6. Consider an n-player game Gn with sensitivity ϵn ∈ R>0. Then, T = On(n) iterations

of OGD suffice to obtain a
(

1√
δ
On (ϵn

√
n) , δ

)
-weak Nash equilibrium, for δ ∈ (0, 1).

Proof. Let i ∈ JnK. Following the proof of Lemma A.8, the definition of sensitivity implies that
|ui(x

′
i,x−i) − ui(x)| ≤ ϵn∥x′

i − xi∥1 ≤ 2ϵn, for any x ∈
∏n

i=1 ∆(Ai) and x′
i ∈ ∆(Ai). The

proof now follows that of Theorem A.2. In particular, we can lower bound the sum of the players’
regrets as follows.

n∑
i=1

Reg
(T )
i =

n∑
i=1

(
max

x⋆
i ∈∆(Ai)

{
T∑

t=1

ui(x
⋆
i ,x

(t)
−i)

}
−

T∑
t=1

ui(x
(t))

)

≥ −
n∑

i=1

T∑
t=1

|ui(x
′
i,x

(t)
−i)− ui(x

(t))| ≥ −2Tnϵn.

As a result, following the proof of Theorem A.2, we conclude that for learning rate ηn := 1
4Ln

there
exists a time t⋆ ∈ JT K such that

n∑
i=1

(
BRGAPi(x

(t⋆))
)2

≤ 4

(
max1≤i≤n D

2
Xi

η2n
+ max

1≤i≤n
B2

i

)(
2D2

X
T

+ 4ηnnϵn

)
,

Thus, setting

T :=
D2

X
2ηnnϵn

=
2D2

XLn

nϵn
≤ 2D2

X

(
max
1≤i≤n

|Ai|
)

= On(n),

by Lemma A.8, yields that
n∑

i=1

(
BRGAPi(x

(t⋆))
)2

≤ On(Lnnϵn) = On(n
2ϵ2n),

where the asymptotic notation above applies in the regime Ln ≥ Ωn(1). The statement thus
follows.

We note that the conclusion of Theorem 3.6 also applies under the weaker notion of sensitivity
defined in (18), if we additionally assume that there exists x⋆ ∈

∏n
i=1 ∆(Ai) such that for any

x ∈
∏n

i=1 ∆(Ai),
n∑

i=1

ui(x
⋆
i ,x−i)−

n∑
i=1

ui(x) ≥ −nϵn. (20)
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Condition (20) can be met even in games with large sensitivity (Observation 3.4), which is why we
chose to state Theorem 3.6 under a stronger but more interpretable condition.

Next, we point out two interesting extensions of our approach based on developments following the
original smoothness framework of Roughgarden [90].

A.3 Refined smoothness

Throughout this paper we have relied on the original smoothness framework [90] to derive much
of our results. Nevertheless, it is worth noting that there are certain extensions documented in the
literature that can make our predictions sharper. To be more precise, focusing on normal-form games,
Nadav and Roughgarden [75] noted that the original smoothness framework is in fact able to provide
efficiency bounds for a set of equilibria even more permissive than CCE, which they refer to as average
CCE with respect to a welfare-maximizing strategy x⋆ ∈

∏n
i=1 ∆(Ai) (ACCE∗). In particular, the

latter relaxation only requires a guarantee for the average regret over the players, 1
n

∑n
i=1 Reg

(T )
i (x⋆

i ),
while CCE instead requires a guarantee for the maximum regret max1≤i≤n Reg

(T )
i . Based on this

observation, Nadav and Roughgarden [75] developed a primal-dual framework in order to provide
refined guarantees (beyond the original smoothness framework) for CCE∗, which boils down to
solving the following linear program.

maximize ρ
subject to

∑n
i=1 zi (ui(a

⋆
i ,a−i)− ui(a)) ≥ ρSW(a⋆)− SW(a),a ∈

∏n
i=1 Ai,

zi ≥ 0.
(21)

Here, it is assumed that the underlying game is in normal form, with
∏n

i=1 Ai being the set of joint
action profiles, and a⋆ ∈

∏n
i=1 Ai a welfare-maximizing joint action. (The formulation of Nadav

and Roughgarden [75] is based on cost-minimization games, but of course their LP can be cast
directly for payoff-maximization games in the form of (21).) The above LP is a simple transformation
of the fractional-linear program corresponding to optimizing ρ := λ

1+µ subject to the smoothness
constraints of Definition 2.1, but with the additional flexibility of optimizing over a vector z ∈ Rn

≥0.
In particular, when restricting z1 = z2 = · · · = zn, this exactly recovers the LP for computing the
robust price of anarchy—given in (24). Nevertheless, Nadav and Roughgarden [75] pointed out that
the additional flexibility of (21) can have an arbitrarily large impact on the predicted efficiency [75,
Remark 1].

The sharper definition of smoothness introduced by Nadav and Roughgarden [75] can be leveraged
in our framework as follows. We can define a generalized robust price of anarchy as the solution
of the LP (21). If this quantity approaches to 1 with a sufficiently fast rate (in terms of the number
of players), we can extend Theorem A.2 by analyzing the weighted sum of the players’ regrets∑n

i=1 ziReg
(T )
i . It is easy to see that the argument of Theorem 3.1 readily carries over under the

condition that the ratio zi/zi′ is bounded for any i, i′ ∈ JnK, as well as the assumption that each zi
is bounded away from 0. In contrast, if there exists a pair i, i′ ∈ JnK for which the ratio zi/zi′ is
unbounded, our current techniques do not appear to be applicable; this is related to the well-known
difficulty of deriving so-called RVU bounds for the maximum of the players’ regret, instead of their
sum [103]. In other words, our current techniques can sharpen Theorem 3.1 by considering solutions
of (21) under the additional (linear) constraint that the variables {zi}ni=1 have bounded pairwise ratio.
Given that the more general framework of Nadav and Roughgarden [75] leads to improved bounds,
we expect that this modification should have applications in our setting as well. In particular, we
point out that the 2-player example of Nadav and Roughgarden [75] that separates ACCE∗ from
CCE∗ indeed satisfies z1/z2 ≈ 2.3 [75, Proposition 2], so the separation manifests itself even when
the pairwise ratio is bounded by an absolute constant.

We finally refer to the works of Nguyen [78] and Kulkarni and Mirrokni [62] for a different primal-
dual take on smoothness.

A.4 Local smoothness

Another interesting extension of our techniques can be obtained using the framework of local
smoothness, first introduced by Roughgarden and Schoppmann [92] and recently refined by Nguyen
[78] in the context of splittable congestion games. In what follows, we follow the treatment of Nguyen
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[78] as it fits our framework. In this context, Nguyen [78] introduced the notion of a (λ, µ)-dual-
smooth differentiable utility function u : R≥0 → R≥0 with the property that for every vectors
z = (z1, . . . , zn) ∈ Rn

≥0 and z′ = (z′1, . . . , z
′
n) ∈ Rn

≥0,

z′u(z) +

n∑
i=1

zi(z
′
i − zi)u

′(z) ≥ λz′u(z′)− µzu(z), (22)

where z :=
∑n

i=1 zi and z′ :=
∑n

i=1 z
′
i. We also note that u′ above denotes the derivative of u.

(Again, (22) has been translated to utility-maximization games compared to the original formulation
of Nguyen [78].) Furthermore, a splittable congestion game is called (λ, µ)-dual-smooth [78] if
for every resource e ∈ E the utility function ue : R≥0 → R≥0 is (λ, µ)-dual-smooth in the sense
of (22). The importance of Nguyen’s extension is that it can be applied to coarse correlated equilibria,
as opposed to the original definition of Roughgarden and Schoppmann [92] that was applicable to
correlated equilibria; this distinction is incidentally important for our framework.

We will connect this concept of local smoothness with the linearization of the players’ regrets.
In particular, the utility of a player i ∈ JnK under a joint strategy x is defined as ui(x) :=∑

e∈E xi[e]ue(
∑n

i=1 xi[e]). Then,

∂ui(x)

∂xi[e]
= ue

(
n∑

i=1

xi[e]

)
+ xi[e]u

′
e

(
n∑

i=1

xi[e]

)
.

As a result, for any t ∈ N,
n∑

i=1

⟨x⋆
i − x

(t)
i ,∇xiui(x

(t))⟩ =
∑
e∈E

ue(x[e])x
⋆[e]−

∑
e∈E

ue(x[e])x[e]

+
∑
e∈E

n∑
i=1

xi[e](x
⋆
i [e]− xi[e])u

′
e(x[e]),

with the understanding that x[e] :=
∑n

i=1 xi[e] and x⋆[e] :=
∑n

i=1 x
⋆
i [e] for any e ∈ E. Now let

us define Reg
(T )
L,i (x

⋆
i ) :=

∑T
t=1⟨x⋆

i − x
(t)
i ,∇xiui(x)⟩. Combining the last displayed equality with

local smoothness (22), we get that
n∑

i=1

Reg
(T )
L,i (x

⋆
i ) ≥ λ

∑
e∈E

x⋆[e]ue(x
⋆[e])− (µ+ 1)

∑
e∈E

x[e]ue(x[e])

= λSW(x⋆)− (µ+ 1)SW(x). (23)

Consequently, if we define a local smoothness bound, ρL := λ
1+µ with (λ, µ) being subject to (22),

Theorem 3.1 can be readily extended in the regime ρL → 1 based on (23).

A.5 Considerations based on PoA

It is natural to ask if the conclusion of Theorem 3.1 can be relaxed to PoA → 1. Here, we point
out that such an assumption does not suffice to obtain interesting guarantees. In particular, we next
note Proposition 3.7, stated earlier in the main body, which is an immediate byproduct of the hardness
of computing Nash equilibria in constant-sum games.

Proposition 3.7. Even under the promise that PoAG = 1, computing a (1/poly(G))-Nash equilibrium
in normal-form games in polynomial time is impossible when n ≥ 3, unless PPAD ⊆ P.

Proof. Chen et al. [20] showed that computing a (1/poly(maxi |Ai|))-Nash equilibrium in a general-
sum two-player game in normal form is PPAD-hard. As a result, the same applies in constant-sum
3-player games by suitably incorporating an additional player who has no strategic impact on the
game. Further, in any constant-sum game G it clearly holds that PoAG = 1, concluding the proof.

Remark A.10. The positive result established in Theorem A.2 requires that ρ ≈ 1 under a bounded
pair of smoothness parameters (λ, µ). One may wonder whether similar conclusions apply even

24



when the smoothness parameters are unbounded. In particular, the robust price of anarchy (rPoA)
can be defined as the solution to the following linear program.

maximize ρ
subject to z

∑n
i=1 (ui(a

⋆
i ,a−i)− ui(a)) ≥ ρSW(a⋆)− SW(a),a ∈

∏n
i=1 Ai,

z ≥ 0.
(24)

Above a⋆ = (a⋆1, . . . , a
⋆
n) ∈

∏n
i=1 Ai is a welfare-maximizing action profile, which can be assumed

to be unique for the purposes of our discussion here. In this context, can we extend the conclusion
of Theorem A.2 under the assumption that rPoAGn

→ 1? In general, that is not possible. Indeed,
in any constant-sum game one can make the LP (24) feasible by taking z = 0 and ρ = 1; that is,
rPoAGn

= 1 for any constant-sum game G. Thus, assuming merely that rPoAG → 1 is not enough to
obtain interesting guarantees for computing Nash equilibria (in accordance with Proposition 3.7). In
other words, our underlying assumption that the smoothness parameters are bounded is necessary.
To further explain this discrepancy, we note that a constant-sum game is generally not (1 + µ, µ)-
smooth (for a finite µ > −1), for otherwise any constant-sum game would satisfy the Minty property
(Proposition 3.3), which would in turn contradict Proposition 3.7. The case where z = 0 in any
optimal solution of (24) essentially corresponds to a pathological manifestation of smoothness in
which the underlying parameters are unbounded. We stress again that throughout this paper, when
we say that a game is (λ, µ)-smooth we, of course, posit that those smoothness parameters are finite.
Further, when we say that ρG = 1 in a game G, we accept that there are finite smoothness parameters
associated with ρG . With this convention, we reiterate that there are games in which rPoAG ̸= ρG .

Next, we provide a concrete example based on Shapley’s game [99] in which OGD (unconditionally)
fails to converge to an ϵ-Nash equilibrium, for a constant ϵ > 0.
Example A.11. We consider a 3-player game G defined as follows. We let

A :=

[
1 1 2
2 1 1
1 2 1

]
,B :=

[
1 2 1
1 1 2
2 1 1

]
. (25)

Then, we set u1(x1,x2,x3) := x⊤
1 Ax2, u2(x1,x2,x3) := x⊤

1 Bx2, and u3(x1,x2,x3) := 3 −
x⊤
1 Ax2 − x⊤

1 Bx2. Thus, for any joint strategy (x1,x2,x3) it holds that SW(x1,x2,x3) = 3,
implying that PoAG = 1. Further, G is in normal form. Now, through a numerical simulation we
draw the following conclusion: Although PoAG = 1, for T ≫ 1 OGD with learning rate η := 0.01

and initialization (x̂
(1)
1 , x̂

(1)
2 , ·) := ((0.5, 0.25, 0.25), (0.25, 0.5, 0.25), ·) satisfies NEGAP(x(t)) ≥

0.1875 for any t ∈ JT K, where (x(t))t≥1 is the sequence of iterates produced by OGD. We note that
here we do not consider the initialization from the uniform distribution simply because that happens
to be the unique Nash equilibrium in Shapley’s game; the conclusion above readily applies for any
initialization by suitably modifying the underlying game. We also note that the specific value for the
learning rate specified above is used for concreteness, and the conclusion is not tied to that specific
value.

We next note another separation between the bound predicted by smoothness and PoA, which gives
an additional reason why the smoothness framework is more suited as a criterion for determining
tractability. Below, we make for simplicity the assumption that the game has a unique welfare-
maximizing action profile, which can always be enforced by incorporating an arbitrarily small noise
in the players’ utilities.
Proposition A.12. Determining whether a game is (λ, µ)-smooth can be done in polynomial time in
explicitly represented normal-form games. In contrast, even in two-player games, determining PoA
is NP-hard.

Proof. First of all, the welfare-maximizing action profile a⋆ ∈
∏n

i=1 Ai can be trivially computed in
polynomial time (in the size of the input) since the game is explicitly represented. For a legitimate
(λ, µ) pair, determining whether the game is (λ, µ)-smooth can be phrased as a feasibility linear
program, with a number of constraints equal to the number of possible joint action profiles, each
corresponding to a separate constraint in (1); namely,

∑n
i=1 ui(a

⋆
i ,a−i) ≥ λOPT − µ

∑n
i=1 ui(a).

As a result, the number of constraints is polynomial in the description of the game (since it is
assumed that the game is explicitly represented). Furthermore, one can optimize over the smoothness
parameters by considering the LP (of polynomial size) given in (24), which determines the robust price
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of anarchy (rPoA). In accordance with Theorem A.2 (see Remark A.10), one can also incorporate
the constraint z ≥ 1/poly(G). Regarding the second claim, hardness of determining PoA even in
two-player games follows directly from the reduction of Conitzer and Sandholm [27, Theorem 1].
In particular, an algorithm computing PoA would enable determining the satisfiability of a SAT
formula.

One important question is whether smoothness can be identified in polynomial time even in succinctly
represented games [79]. Indeed, the obvious algorithm for identifying smoothness described above
requires a number of constraints that scales exponentially with the number of players, which is
especially problematic in the regime of large games we focus on in Section 3.

We need to clarify, however, that knowing the smoothness parameters is certainly not a prerequisite for
applying our approach. In detail, one can first of all apply Theorem 3.1 in classes of games where there
are available analytical bounds for ρn as a function of n, obviating the need to determine whether ρn is
close to 1. Besides this point, and more importantly, one can always execute the algorithm prescribed
by Theorem 3.1—which does not require any knowledge regarding the smoothness parameters—and
then efficiently evaluate the solution quality (per Definition 2.2). If the desired accuracy has been
reached, then this is precisely the initial goal; otherwise, we can safely assume that the preconditons
of Theorem 3.1 are not met.

A.6 Smoothness does not suffice for convergence

Next, we provide for completeness an example of a smooth game where OGD fails to converge to
Nash equilibria. This shows that, as expected, it is not merely enough to know that ρ ̸= 0 to obtain
interesting guarantees.
Example A.13. This example is based on a bimatrix game in normal form described with the payoff
matrices

A =

0.2 0.8 0.9 0.3
0.2 0.8 0.2 0.3
0.9 0.2 0.4 0.4
0.6 0.9 0.3 0.1

 ,B =

0.4 0.2 0 0.1
0.5 0 0.2 0.8
0.7 0.8 0 0.4
0 0 0.1 0.4

 . (26)

We first claim that this bimatrix game G satisfies ρG ≥ 0.125. Indeed, we first see that the welfare-
maximizing profile of (26) reads (x⋆

1,x
⋆
2) = ((0, 0, 1, 0), (1, 0, 0, 0)). We also claim that for any pair

of actions a1 ∈ A1 and a2 ∈ A2 it holds that
2∑

i=1

ui(x
⋆
i , a−i) ≥ 0.125 · OPTG ,

where OPTG = 1.6. As a result, it follows that for any x1 ∈ ∆(A1) and x2 ∈ ∆(A2) it holds
that Ea1∼x1,a2∼x2 [

∑2
i=1 ui(x

⋆
i , a−i)] ≥ 0.125 · OPTG , in turn implying that

∑2
i=1 ui(x

⋆
i ,x−i) ≥

0.125 · OPTG . This means that G is (0.125, 0)-smooth. Furthermore, through a numerical simu-
lation we draw the following conclusion: for T ≫ 1, OGD with learning rate η := 0.01 satisfies
NEGAP(x

(t)
1 ,x

(t)
2 ) ≥ 0.046 for any t ∈ JT K, where (x

(t)
1 ,x

(t)
2 )t≥1 is the sequence of iterates pro-

duced by OGD. Once again, it is worth noting that this conclusion is not tied to the specific choice of
learning rate we chose above, which is only used for concreteness.

A.7 Bayesian mechanisms

In this subsection, we consider the standard independent private value model of Bayesian mechanisms.
In particular, each player i ∈ JnK has a type vi drawn from a distribution Fi over a finite set of types
Vi; without any loss, we may assume that Fi is the uniform distribution over Vi. It is further assumed
that players’ types are pairwise independent. After each player i ∈ JnK draws a type vi ∼ Fi, i
selects an action ai(vi) ∈ Ai, which is a function of its type vi. Now consider a fixed profile of types
v ∈ V := V1 × V2 . . .Vn. The (expected) utility of Player i under a joint strategy profile x(v) is
denoted by ui(x; vi) := Ea∼x[ui(a; vi)]. There is also a principal agent who does not take an action
in the game, and whose utility under x is given by R(x) := Ea∼x[R(a)]. Accordingly, the social
welfare is defined as SW(x,v) :=

∑n
i=1 ui(x; vi) +R(x), while OPTM(v) represents the optimal

social welfare of mechanism M as a function of the joint type v ∈ V . We will make the assumption
that the utility functions assign solely nonnegative values.
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Smooth mechanisms Analogously to the notion of a smooth game (Definition 2.1), Syrgkanis and
Tardos [102] introduced the notion of a smooth mechanism, formally recalled below.
Definition A.14 (Smooth mechanism [102]). A mechanism M is (λ, µ)-smooth, where λ, µ ≥ 0, if
there exists an strategy profile x⋆(v) ∈

∏n
i=1 ∆(Ai), for every type profile v ∈ V , such that for any

action profile a ∈ A and type profile v = (v1, . . . , vn) ∈ V ,
n∑

i=1

ui(x
⋆
i (v),a−i; vi) ≥ λOPTM(v)− µR(a). (27)

As it turns out, many important mechanisms satisfy the above definition under various parameters
(λ, µ) [102]. For a (λ, µ)-smooth mechanism M, we define ρM := λ

max{1,µ} .

Definition A.15. Let xi : Vi → ∆(Ai) be the strategy of each player i ∈ JnK. A joint strategy
profile x is a Bayes-Nash equilibrium (BNE) if for any player i ∈ JnK, any type vi ∈ Vi and deviation
a′i ∈ Ai,

Ev−i∼F−i
[ui(x(v); vi)] ≥ Ev−i∼F−i

[ui(a
′
i,x−i(v−i); vi)]. (28)

This definition coincides with the standard notion of Nash equilibrium we saw in Definition 2.2 when
each distribution Fi is a point mass. We also note that an ϵ-BNE incorporates an ϵ ≥ 0 additive
slackness in (28).

Population interpretation of Bayesian games In the agent-form representation of a Bayesian
game [53], it is assumed that there are n finite subpopulations of players, each corresponding to a
player i ∈ JnK. Each player belonging to population i corresponds to a type vi ∈ Vi, which is distinct
in each population and across populations. In this induced population game, nature first draws one
player from each population, and then each player vi selects an action ai(vi); the game is then played
under those selected actions. In symbols, the utility of Player vi from population i reads

uAG
i,vi(a) := Ev∼F [ui(a(v); vi)1{vi}], (29)

where by {vi} above we denote the event that type vi is selected by nature among the population
corresponding to Player i. The importance of the population interpretation of the Bayesian game is
that it induces a mechanism of complete information, which will be denoted by MAG = MAG(M).
The following characterization highlights an important connection between MAG and M.
Theorem A.16 ([53]). If a mechanism M is (λ, µ)-smooth, then the complete information mechanism
MAG = MAG(M) is also (λ, µ)-smooth.

We now proceed with the proof of Theorem 3.8. To keep the exposition self-contained, we will not
make explicit use of Theorem A.16.
Theorem 3.8. Consider a Bayesian mechanism M such that ρM = 1. Then, for any ϵ > 0,
T = O(1/ϵ2) iterations of OGD suffice to obtain an ϵ-Bayes-Nash equilibrium of M.

Proof. Under the assumption that ρM = 1, it follows that there exists a pair (λ, µ) ∈ R2
≥0 such

that M is (λ, µ)-smooth with λ = max{1, µ}. Further, by definition it holds that OPTM(v) ≥∑n
i=1 ui(a; vi)+R(a), for any action profile a ∈ A. Combining with (27), we have that there exists

a strategy profile x⋆(v) ∈
∏n

i=1 ∆(Ai) such that for every type profile v ∈ V and action profile
a ∈ A,

n∑
i=1

ui(x
⋆
i (v),a−i; vi) ≥ λ

n∑
i=1

ui(a; vi) + λR(a)− µR(a) ≥
n∑

i=1

ui(a; vi),

since λ = max{1, µ} and utilities are nonnegative. As a result, for any x(v) ∈
∏n

i=1 ∆(Ai),
n∑

i=1

Ev∼F [ui(x
⋆
i (v),x−i(v−i); vi)] ≥

n∑
i=1

Ev∼F [ui(x(v); vi)]. (30)

Further, by definition of the agent-form utilities (29) and the law of total expectation, (30) can be
equivalently cast as

n∑
i=1

∑
vi∈Vi

uAG
i,vi(x

⋆
i,vi ,x−(i,vi)) ≥

n∑
i=1

∑
vi∈Vi

uAG
i,vi(x),
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where we used the notation xi,vi := xi(vi). This implies that the sum of the players’ regrets in
the agent-form representation is nonnegative. The proof of Theorem 3.8 then follows from the
correspondence between Nash equilibria in the agent-form representation of M and Bayes-Nash
equilibria in the original incomplete-information mechanism M.

A.8 PoA vs robust PoA

In this subsection, we provide some additional justification for the condition rPoA ̸= PoA required
in Corollary 4.3. In particular, we conduct experiments on a set of random normal-form games.
Some illustrative results for 10 random games are demonstrated in Figure 1. Overall, we observe that
not only rPoA ̸= PoA, but in fact the gap between the two quantities is typically substantial. This
discrepancy is expected since, as we have already stressed, rPoA quantifies the worst-case welfare
over a (typically) much broader set of equilibria.
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Figure 1: PoA versus rPoA in random normal-form games.

A.9 Proof of Theorem 4.1

In this subsection, we provide the proof of Theorem 4.1. For completeness, we also include the
proofs of certain results known from prior work [37, 85, 77].

To this end, we first recall that the prox operator associated with the (squared) Euclidean regularizer
1
2∥ · ∥

2
2 is defined as

Πxi(ui) := arg max
x′

i∈Xi

{
⟨x′

i,ui⟩ −
1

2
∥xi − x′

i∥22
}
, (31)

under some utility vector ui ∈ Rdi . Accordingly, we let Πx(u) := (Πx1(u1), . . . ,Πxn(un)), where
u := (u1, . . . ,un). With this definition in mind, we note the following property of the prox operator.

Lemma A.17 ([37, 77]). The prox operator Πx(·) is 1-Lipschitz continuous with respect to ∥ · ∥2 for
any x ∈

∏n
i=1 Xi.

Proof. Let i ∈ JnK. For any ui,u
′
i ∈ Rdi and xi ∈ Xi,

∥Πxi
(ui)−Πxi

(u′
i)∥2 = ∥PXi

(xi + ui)− PXi
(xi + u′

i)∥2 ≤ ∥ui − u′
i∥2,

where we used the fact that the projection operator is non-expansive with respect to ∥ · ∥2, and that

Πxi
(ui) = arg max

x′
i∈Xi

{
⟨x′

i,ui⟩ −
1

2
∥xi − x′

i∥22
}

= arg max
x′

i∈Xi

{
−1

2
∥x′

i∥22 + ⟨x′
i,ui + xi⟩

}
= arg min

x′
i∈Xi

{
∥x′

i − (ui + xi)∥22
}

= PXi
(xi + ui).

This implies that ∥Πx(u)−Πx(u
′)∥2 ≤ ∥u−u′∥, where u = (u1, . . . ,un) and u′ = (u′

1, . . . ,u
′
n).
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Using this lemma, a key observation for the analysis of clairvoyant mirror descent is the following
contraction property [85, 37].

Proposition A.18 ([85, 37]). Suppose that F is L-Lipschitz continuous. For any x′ ∈
∏n

i=1 Xi the
function

n∏
i=1

Xi ∋ w 7→ Πx′(ηF (w)) (32)

is (ηL)-Lipschitz continuous. As a result, function (32) is a contraction mapping as long as η < 1
L .

This follows directly from Lemma A.17: ∥Πx′(ηF (w))−Πx′(ηF (w′))∥2 ≤ η∥F (w)−F (w′)∥2 ≤
ηL∥w −w′∥2.

Proposition A.18 reassures us that fixed points of the contraction mapping (32) not only exist, but
ϵ-approximate fixed points can also be computed in a time proportional to log(1/ϵ) [85]. In this
context, if x(0) ∈

∏n
i=1 Xi is an arbitrary point, we consider the update rule defined for t ∈ N via

x(t) = Πx(t−1)(ηF (w(t))), (33)

where w(t) ∈
∏n

i=1 Xi is any point such that ∥w(t) −Πx(t−1)(ηF (w(t)))∥2 ≤ ϵ(t). It is important
to note that this sequence (x(t))t≥1 is not uniquely defined, but with a slight abuse we refer to any
sequence satisfying (33) as clairvoyant gradient descent (CGD). CGD satisfies the following remarkable
regret bound.

Theorem A.19 ([85, 37]). For any T ∈ N, the regret of player i ∈ JnK under CGD satisfies

Reg
(T )
i ≤

D2
Xi

2η
− 1

2η

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥22 +DXi

Li

T∑
t=1

ϵ(t), (34)

where Li ∈ R>0 is the Lipschitz constant of ui with respect to ∥ · ∥2.

Proof. Given that x(t)
i := Π

x
(t−1)
i

(ηui(w
(t)
−i)), the first-order optimality condition implies that for

any x⋆
i ∈ Xi and t ∈ JT K,〈

x
(t)
i − x⋆

i , ηui(w
(t)
−i)− (x

(t)
i − x

(t−1)
i )

〉
≥ 0. (35)

We further have that

⟨x⋆
i − x

(t)
i ,x

(t)
i − x

(t−1)
i ⟩ = −1

2
∥x⋆

i − x
(t)
i ∥22 +

1

2
∥x⋆

i − x
(t−1)
i ∥22 −

1

2
∥x(t)

i − x
(t−1)
i ∥22,

thereby implying through a telescopic summation that

T∑
t=1

⟨x⋆
i − x

(t)
i ,x

(t)
i − x

(t−1)
i ⟩ ≤ 1

2
D2

Xi
− 1

2

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥22.

Combining with (35),

T∑
t=1

⟨x⋆
i − x

(t)
i ,ui(w

(t)
−i)⟩ ≤

1

2η
D2

Xi
− 1

2η

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥22.

The claim thus follows from the fact that
T∑

t=1

⟨x⋆
i − x

(t)
i ,ui(w

(t)
−i)− ui(x

(t)
−i)⟩ ≥ −

T∑
t=1

∥x⋆
i − x

(t)
i ∥2∥ui(w

(t)
−i)− ui(x

(t)
−i)∥2

≥ −DXiLi

T∑
t=1

ϵ(t).
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Unlike prior work, here we will make crucial use of the negative term in (34). The important lemma
below will enable us to express the regret bound (34) in terms of i’s best response gap; it is analogous
to Lemma A.1 we stated earlier for OGD.
Lemma A.20. Fix any t ∈ N and let x(t) = Πx(t−1)(ηF (w(t))), where w(t) ∈

∏n
i=1 Xi is any

point such that ∥w(t) −Πx(t−1)(ηF (w(t)))∥2 ≤ ϵ(t). Then,

BRGAPi(x
(t)) ≤ DXi

∥ui(w
(t)
−i)− ui(x

(t)
−i)∥2 +

DXi

η
∥x(t)

i − x
(t−1)
i ∥2.

Proof. By the first-order optimality condition, it follows that for any x⋆
i ∈ Xi,〈

x
(t)
i − x⋆

i , ηui(w
(t)
−i)− (x

(t)
i − x

(t−1)
i )

〉
≥ 0,

in turn implying that

⟨x(t)
i − x⋆

i ,ui(w
(t)
−i)⟩ ≥ −1

η
⟨x⋆

i − x
(t)
i ,x

(t)
i − x

(t−1)
i ⟩. (36)

Furthermore,

⟨x(t)
i − x⋆

i ,ui(w
(t)
−i)⟩ = ⟨x(t)

i − x⋆
i ,ui(x

(t)
−i)⟩+ ⟨x(t)

i − x⋆
i ,ui(w

(t)
−i)− ui(x

(t)
−i)⟩

≤ ⟨x(t)
i − x⋆

i ,ui(x
(t)
−i)⟩+ ∥x(t)

i − x⋆
i ∥2∥ui(w

(t)
−i)− ui(x

(t)
−i)∥2

≤ ⟨x(t)
i − x⋆

i ,ui(x
(t)
−i)⟩+DXi

∥ui(w
(t)
−i)− ui(x

(t)
−i)∥2. (37)

Combining (36) and (37) yields that

⟨x(t)
i ,ui(x

(t)
−i)⟩ − max

x⋆
i ∈Xi

⟨x⋆
i ,ui(x

(t)
−i)⟩ ≥ −DXi

∥ui(w
(t)
−i)− ui(x

(t)
−i)∥2 −

DXi

η
∥x(t)

i − x
(t−1)
i ∥2,

concluding the proof.

Corollary A.21. For any T ∈ N, the regret of player i ∈ JnK under CGD can be bounded as

Reg
(T )
i ≤

D2
Xi

2η
− η

4D2
Xi

T∑
t=1

(
BRGAPi(x

(t))
)2

+LiDXi

T∑
t=1

ϵ(t)+
1

2
η

T∑
t=1

∥ui(w
(t)
−i)−ui(x

(t)
−i)∥

2
2.

In particular, if η := 1
2L and ϵ(t) ≤ DXi

t2 for any t ∈ JT K,

Reg
(T )
i ≤ 3LD2

Xi
− 1

8LD2
Xi

T∑
t=1

(
BRGAPi(x

(t))
)2

+
1

2
η

T∑
t=1

∥ui(w
(t)
−i)− ui(x

(t)
−i)∥

2
2.

Proof. By Lemma A.20, it follows that for any t ∈ JT K,

1

2η
∥x(t)

i − x
(t−1)
i ∥22 ≥ η

4D2
Xi

(
BRGAPi(x

(t))
)2

− 1

2
η∥ui(w

(t)
−i)− ui(x

(t)
−i)∥

2
2.

Summing over all t ∈ JT K and combining with Theorem A.19 implies the statement since
LiDXi

∑T
t=1 ϵ

(t) ≤ LiD
2
Xi

∑T
t=1

1
t2 ≤ 2LD2

Xi
.

We are now ready to prove Theorem 4.1, which is recalled below.

Theorem 4.1. Suppose that all players are updating their strategies using CGD with ϵ(t) ≤ mini DXi

t2

and learning rate η = 1
2L in a (λ, µ)-smooth game G, where L is the Lipschtz-continuity parameter

of F . Then, for any ϵ0 > 0 and T ≥ 64L2D4
X

ϵ20
iterations,

1. the average correlated distribution of play is a 4LD2
X

T − CCE;

2. there is a time t⋆ ∈ JT K such that

SW(x(t⋆)) ≥ sup
ϵ≥ϵ0

min

{
ρG(λ, µ) · OPTG +

ϵ2

16(µ+ 1)LD2
X
,PoAϵ

G · OPTG

}
. (3)
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Proof. First, by Corollary A.21,

n∑
i=1

Reg
(T )
i ≤ 3L

n∑
i=1

D2
Xi

− 1

8LD2
X

n∑
i=1

T∑
t=1

(
BRGAPi(x

(t))
)2

+
1

2
η

T∑
t=1

n∑
i=1

∥ui(w
(t)
−i)− ui(x

(t)
−i)∥

2
2

= 3LD2
X − 1

8LD2
X

n∑
i=1

T∑
t=1

(
BRGAPi(x

(t))
)2

+
1

2
η

T∑
t=1

∥F (w(t))− F (x(t))∥22

≤ 3LD2
X − 1

8LD2
X

n∑
i=1

T∑
t=1

(
BRGAPi(x

(t))
)2

+
1

2
ηL2

T∑
t=1

∥w(t) − x(t)∥22

≤ 3LD2
X − 1

8LD2
X

n∑
i=1

T∑
t=1

(
BRGAPi(x

(t))
)2

+
1

2
ηL2

T∑
t=1

(ϵ(t))2

≤ 4LD2
X − 1

8LD2
X

n∑
i=1

T∑
t=1

(
BRGAPi(x

(t))
)2

, (38)

where we used the fact that
∑T

t=1(ϵ
(t))2 ≤ D2

X
∑T

t=1
1
t4 ≤ 2D2

X and η = 1
2L . As a result,

Item 1 follows directly from (38) by invoking the well-known fact that the CCE gap is bounded by
max1≤i≤n Reg

(T )
i .

For Item 2, let us fix any ϵ ≥ ϵ0. Suppose that at every time t ∈ JT K it holds that BRGAPi(x
(t)) > ϵ

for some player i ∈ JnK. Then, by (38) we conclude that
n∑

i=1

Reg
(T )
i ≤ 4LD2

X − 1

8LD2
X
ϵ2T ≤ − 1

16LD2
X
ϵ2T,

since T ≥ 64L2D4
X

ϵ20
≥ 64L2D4

X
ϵ2 . As a result, by (λ, µ)-smoothness, it follows that

n∑
i=1

Reg
(T )
i ≥ λOPTGT − (1 + µ)

T∑
t=1

SW(x(t)),

in turn implying that

1

T

T∑
t=1

SW(x(t)) ≥ ρG(λ, µ) · OPTG − 1

T

n∑
i=1

Reg
(T )
i ≥ ρG(λ, µ) · OPTG +

ϵ2

16(µ+ 1)LD2
X
.

As a result, there is a time t⋆ ∈ JT K such that SW(x(t⋆)) ≥ ρG(λ, µ) · OPTG + ϵ2

16(µ+1)LD2
X

. In the

contrary case, if there is a time t⋆ ∈ JT K such that BRGAPi(x
(t⋆)) ≤ ϵ for any player i ∈ JnK, it

follows that SW(x(t⋆)) ≥ PoAϵ
G · OPTG (by definition). This concludes the proof.

In particular, we note that Corollary 4.3 stated earlier in the main body is an immediate consequence
of Theorem 4.1 under Condition 4.2 since rPoAG ≥ ρG . It is also worth noting that for the special
case of normal-form games, one can state Theorem 4.1 so that the first term in the right-hand side
of (3) reads ρG(λ, µ) · OPTG + ϵ2

32(µ+1)L ; thus, for a broad class of games (see Lemmas A.7 to A.9),
the improvement over the smoothness bound is an absolute constant when ϵ and µ are also bounded
by absolute constants. Relatedly, we should note that Theorem 6.2 applies in the regime where µ is
polynomially bounded (we are not aware of any application of smoothness where this is not the case).
Remark A.22. It is direct to see that Item 2 of Theorem 4.1 can be refined so that there is a set
S ⊆ JT K, with |S| ≥ (1− γ)T , so that

1

|S|
∑
t∈S

SW(x(t)) ≥ sup
ϵ≥ϵ0

min

{
ρG · OPTG +

γϵ2

16(µ+ 1)LD2
X
,PoAϵ

G · OPTG

}
.

Remark A.23. Theorem 4.1 can also be refined using the primal-dual framework of Nadav and
Roughgarden [75] discussed in Appendix A.3, with the caveat that the variables {zi}ni=1 need to
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again have a bounded pairwise ratio. It is interesting to note, however, that using CGD enables
making non-trivial conclusions even when a subset of the variables {zi}ni=1 are zero in an optimal
solution. In particular, when the quantity

∑n
i=1 ziReg

(T )
i is nonnegative, we can readily draw the

non-trivial conclusion that all players in the set {i ∈ JnK : zi ̸= 0} are eventually best responding
(by virtue of Corollary A.21). It is not at all clear if such conclusions apply to OGD as well. In other
words, using CGD one can essentially replace PoAϵ

G in Theorem 4.1 by the price of anarchy with
respect to a solution concept in which a particular subset of players are best responding. Shedding
light to this type of guarantee necessitates understanding the implications of having some of the
variables {zi}ni=1 being zero in an optimal solution of the LP (21). Relatedly, even if we constraint
z1 = z2 = · · · = zn = z, can we characterize the games for which z ≈ 0? We explained earlier
in Remark A.10 that such pathologies (typically) occur in constant-sum games, for which questions
concerning social welfare are trivial.

A.10 Beyond smoothness

In this subsection, we discuss an example in which the welfare predicted by the smoothness framework
is far from the welfare obtained by learning algorithms such as OGD. We then suggest a natural
direction that enables obtaining sharper predictions; we have already seen refined guarantees beyond
the standard smoothness framework in Appendices A.3 and A.4, but here we explore a different
direction.

Our example is again based on Shapley’s game, a bimatrix game in normal form defined with the
matrices

A =

[
0 0 1
1 0 0
0 1 0

]
,B =

[
0 1 0
0 0 1
1 0 0

]
. (39)

Claim A.24. Let G be the bimatrix game defined in (39). Then, rPoAG = 0.

Proof. Let (x⋆
1,x

⋆
2) := ((1, 0, 0), (0, 1, 0)) be a welfare-maximizing joint action. By symmetry,

the following argument will apply to any welfare-maximizing joint action. Consider (x1,x2) =
((0, 1, 0), (0, 1, 0)). Then, we have that u1(x

⋆
1,x2) + u2(x

⋆
2,x1) = (x⋆

1)
⊤Ax2 + x⊤

1 Bx⋆
2 = 0+ 0.

As a result, the smoothness constraint corresponding to (x1,x2) necessitates that 0 ≥ λ, which is
incompatible with the constraint that λ > 0 (Definition 2.1).

In spite of the fact that rPoAG = 0, we see in Figure 2 (left) that OGD approaches close to the
optimal social welfare 1. This can be explained by the fact that certain joint actions—in particular,
those in the diagonal—are played with small probability under OGD (right-side of Figure 2). This
motivates introducing a more refined notion of smoothness in which the smoothness constraints are
only enforced on the joint actions that are visited with a non-negligible probability.

0 500 1000 1500 2000
Iteration

0.7

0.8

0.9

A
ve

ra
ge

so
ci

al
w

el
fa

re

0 500 1000 1500 2000
Iteration

0.0

0.1

0.2

0.3

P
ro

b
ab

il
it

y
of

b
ad

st
at

e

Figure 2: The behavior of OGD in the bimatix game (39) with η := 0.01. On the left, we plot the
average social welfare of the dynamics. On the right, we plot the probability of playing a joint action
in the diagonal.
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One class of games in which one can easily make such refinements concerns games solvable under
iterated elimination of strictly dominated actions. As a concrete example, let

A =

[
0 0
1 1

]
,B =

[
1 0
0 1

]
. (40)

Observation A.25. Let G be the game defined in (40). Then, rPoAG = 1
2 . Furthermore, if G′ is the

game4 resulting from iterative removal of strictly dominated actions, then rPoAG′ = 1.

4Under elimination of strictly dominated actions, this is always uniquely defined.
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