
Under review as a conference paper at ICLR 2024

BCN: BATCH CHANNEL NORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Normalization techniques enable higher learning rates and are less careful in ini-
tialization. Unlike the standard Batch Normalization (BN) and Layer Normal-
ization (LN), where BN computes the mean and variance along the (N,H,W )
axes (N is the batch axes, H and W are the spatial height and width axes) and
LN computes the mean and variance along the (C,H,W ) axes (C is the channel
axes), this paper presents a simple normalization technique called Batch Channel
Normalization (BCN). BCN separately normalizes inputs along the (N,H,W )
and (C,H,W ) axes, then combine the normalized outputs based on adaptive pa-
rameters. BCN exploits both the channel and batch dependence and adaptively
combines the advantages of BN and LN . As a basic block, BCN can be easily
integrated into existing models for various applications in the field of computer
vision. Empirical results show that the proposed (BCN) technique improves the
generalization performance of various models.

1 INTRODUCTION

In the past decades, machine learning (ML) has become the most widely used technique in the
field of artificial intelligence, and more recently, deep learning (DL) has become a prevalent topic.
Deep Neural Networks (DNNs) find extensive applications in various domains, including natu-
ral language processing, computer vision, and graph mining. Typically, DNNs comprise stacked
layers with learnable parameters and non-linear activation functions. While the deep and complex
structure enables them to learn intricate features, it also poses challenges during training due to the
randomness in parameter initialization and changes in input data, known as internal covariate shift
(Ioffe & Szegedy, 2015). This problem becomes more pronounced in deeper networks, where slight
modifications in deeper hidden layers are amplified as they propagate through the network, resulting
in significant shifts in these layers.

To address the above issue, several normalization methods have been introduced. However, these
methods have both benefits and drawbacks beyond reducing internal covariate shifts. The disad-
vantages include increased training time and limited impact on hyper-parameter optimization. Con-
versely, the advantages encompass the ability to use higher learning rates without encountering
vanishing or exploding gradients, regularization that improves generalization properties, accelerated
training, and the creation of more reliable models.

Specifically, Batch Normalization (BN ) (Ioffe & Szegedy, 2015), Layer Normalization (LN ) (Ba
et al., 2016), Group Normalization (GN ) (Wu & He, 2018) and Instance Normalization
(IN ) (Ulyanov et al., 2016) have achieved remarkable success on deep learning models. Among
them, BN is widely used for deep neural networks. Despite their great success in many applica-
tions, there are still some problems. For example, BN requires large batch sizes (Wu & He, 2018),
can not be used for online learning tasks, and can not be used for large distributed models because
the mini-batches have to be small. To address these issues, GN and LN are proposed to avoid ex-
ploiting batch dimension. Unlike BN , GN and LN do not impose any restriction on the size of
each mini-batch (Ba et al., 2016). For LN , it does not work as well as BN with convolutional lay-
ers. This motivates us to develop a new normalization technique to overcome the limitations of BN
and LN as well as to fully embody the advantages of the two techniques.

In this study, we begin by conducting a comprehensive analysis on commonly employed normal-
ization methods - batch normalization and layer normalization. Our objective is to have a thorough
understanding of the strengths and weaknesses associated with each method. Subsequently, we pro-
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Figure 1: Visualization on several normalization techniques. Each subplot shows a feature map ten-
sor with N the batch axes, C the channel axes, and (H,W ) the spatial height and width axes.

pose a novel approach called Batch Channel Normalization (BCN ), which combines the benefits
of both methods while mitigating their respective deficiency.

In contrast to previous techniques, this paper aims to normalize along the (C,N,H,W ) axes. How-
ever, computing the average and variance along (N,C,H,W ) directly ignores the different impor-
tance between batch dimension and channel dimension. Consequently, we propose a simple tech-
nique termed Batch Channel Normalization. First, BCN computes the µ1 and σ2

1 of the layer inputs
along the (C,H,W ) axes. Then, it computes the µ2 and σ2

2 along the (L,H,W ) axes. Then the
normalized outputs are combined based on adaptive parameters.

To check the effectiveness of the proposed method, we apply BCN to image classification us-
ing Residual network (ResNet) (He et al., 2016), Densely Connected Convolutional Networks
(DenseNet) (Huang et al., 2018), and Bootstrap Your Own Latent (BY OL) (Grill et al., 2020).
Our findings demonstrate that BCN yields promising results, leading to improved training speed
and enhanced generalization performance.

Our main contributions are summarized as follows:

• We introduce a new normalization technique termed Batch Channel normalization (BCN )
as a simple alternative to BN and LN techniques (Figure 1).

• BCN exploits the channels dependence and the batch sizes and adaptively combines the
information of channel dimension and batch dimension, which embodies the advantages of
both BN and LN .

• Empirically, we show that our BCN normalization technique can substantially improve
the generalization performance of the neural networks compared to existing normalization
techniques.

2 RELATED WORK

Normalization methods for deep neural networks can be categorized into three groups (Gitman &
Ginsburg, 2017).

The first group involves normalizing different dimensions of the output. Examples include Layer
Normalization (Ba et al., 2016), which normalizes inputs across features; Instance Normalization
(Ulyanov et al., 2016), which normalizes over spatial locations in the output; and Group Normal-
ization (Wu & He, 2018), which independently normalizes along spatial dimensions and feature
groups.

The second group modifies the original batch normalization method (Ioffe & Szegedy, 2015). This
group includes methods like Ghost BN (Hoffer et al., 2017), which normalizes independently across
different splits of batches, and Batch Re-normalization (Ioffe, 2017) or Streaming Normalization
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(Liao et al., 2016), both of which make changes to utilize global averaged statistics instead of batch
statistics.

The third group consists of methods that normalize weights rather than activations. This group com-
prises Weight Normalization (Salimans & Kingma, 2016) and Normalization Propagation (Arpit
et al., 2016), both of which divide weights by their ℓ2 norm, differing only in minor details. De-
spite the success of the three groups of normalization techniques, there is a trend in proposing new
normalization techniques to combine to gain further improvement.

Our method belongs to the first group. The proposed method aims to normalize along to
(C,N,H,W ) axes. To do this, BCN first computes the µ1 and σ2

1 of the layer inputs along the
(N,H,W ) axes. Next, it computes the µ2 and σ2

2 along the (C,H,W ) axes. BCN combines the
benefits of both methods while mitigating their respective deficiency.

We apply BCN normalization to image classification using Residual network (ResNet)(He et al.,
2016), Densely Connected Convolutional Networks (DenseNet) (Huang et al., 2018), Bootstrap
Your Own Latent (BY OL) (Grill et al., 2020) , and show that BCN can outperform the existing
techniques and exceed their accuracies.

3 PRELIMINARIES

In this section, we provide details of the methods that are most related to our work, the Batch
Normalization (BN ) and Layer Normalization (LN ).

3.1 BATCH NORMALIZATION

Batch Normalization (BN ) allows faster convergence and stabilizes the learning. During the training
set, BN computes the mean µB and variance σ2

B of the layer inputs as follows:

µB =
1

n

n∑
i=1

xi, σ2
B =

1

n

n∑
i=1

(xi − µB)
2, x̄B = γ

(xi − µB)√
(σ2

B + ϵ)
+ β. (1)

We can see that BN computes the µB and σ2
B along the (N,H,W ) axes (Ioffe & Szegedy, 2015).

During the testing, BN computes the µB and σ2
B by exponential moving average during the training

set:

µ = αµ+ (1− α)µB , σ2 = ασ2 + (1− α)σ2
B , x̄ = γ

(xi − µ)√
(σ2 + ϵ)

+ β, (2)

where n is batch size, γ and β are learnable parameters. Here α is usually set to 0.9 and ϵ is a small
constant.

3.2 LAYER NORMALIZATION

Layer Normalization (LN ) computes the µL and σ2
L along the (C,H,W ) as follows:

µL =
1

n

n∑
i=1

xi, σ2
L =

1

n

n∑
i=1

(xi − µ)2, x̄L = γ
(xi − µL)√
(σ2

L + ϵ)
+ β. (3)

Unlike BN , LN performs the same computation at training and inference times. Moreover, LN is
very useful at stabilizing the dynamics of hidden state in recurrent neural networks.

4 METHODOLOGY

The motivation behind the success of the normalization techniques has been an important research
topic. In this section, we investigate the motivation for developing the new normalization technique.
Our research has revealed that the normalization goals for all normalization techniques are to im-
prove the model’s robustness. BN has several deficiencies, including the inconsistency between the
training set and test set, can not be used for online learning tasks, and can not be used for large
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distributed models because the size of mini-batches has to be small. On the other hand, LN does not
work as well as BN with convolutional layers.

In order to address the above limitations of BN and LN , we propose to fully embody the advantages
of both BN and LN . In a similar fashion to the way that BN and LN normalize the input layer,
BCN normalizes along (N,C,H,W ), which improves the training stability. On the other hand,
there is no need to compute the µ and the σ at the inference time comparing to existing normalization
techniques. More importantly, since the µ and the σ are pre-computed and fixed at the inference time,
the normalization can be fused into the convolution operation. This is very useful to speed up the
inference time. Generally, BCN has faster convergence than BN and LN in different deep learning
models, such as Residual Network (ResNet), Very Deep Convolutional Networks (V GGNet), and
Bootstrap Your Own Latent (BY OL). Alternatively, our research reveals that, fundamentally, BCN
(i.e., Batch Channel Normalization) may be more appropriate to be integrated into existing models
for various applications in the field of computer vision. This section presents the methodology of
our paper, including the method formulation and pseudo code of implementation.

4.1 METHOD FORMULATION

The idea of normalizing the (N,H,W ) axes and (C,H,W ) axes has been proposed before (Ioffe
& Szegedy, 2015; Ba et al., 2016; Ulyanov et al., 2016; Wu & He, 2018). However, earlier works
typically perform normalization along (N,H,W ) axes or (C,H,W ) axes independently. We aim
to perform normalization along (N,C,H,W ). However, computing the average and variance along
(N,C,H,W ) directly ignores the different importance between batch dimension and channel di-
mension. Consequently, we propose to separately normalize along the (N,H,W ) and (C,H,W )
axes, then combine the normalized outputs based on adaptive parameters ι. Doing so could improve
the training, validation, and test accuracy, as we show experimentally in the next section.

In a similar fashion to how BN normalizes the layer inputs, during the training, BCN first computes
the average µ1 and the variance σ2

1 of the layer inputs along (N,H,W ) axes as follows:

µ1 =
1

n

n∑
i=1

xi, σ2
1 =

1

n

n∑
i=1

(xi − µ1)
2. (4)

Second, BNC computes the average µ2 and variance σ2
2 along (C,H,W ) as follows:

µ2 =
1

n

n∑
i=1

xi, σ2
2 =

1

n

n∑
i=1

(xi − µ2)
2. (5)

Next, x̄1 and x̄2 are normalized using µ1, σ2
1 and µ2, σ2

2 , respectively:

x̄1 =
(xi − µ1)√
(σ2

1 + ϵ)
, x̄2 =

(xi − µ2)√
(σ2

2 + ϵ)
. (6)

BCN introduces additional learnable parameter ι to adaptively balance the normalized outputs
along the axes of (N,H,W ) and (C,H,W ).

ȳ = ιx̄1 + (1− ι)x̄2, (7)
Then, the output of BCN normalization can be formulated as follows:

Y = γȳ + β, (8)
where γ and β are learnable parameters and ι is a small constant for numerically stability.

At the inference stage, following previous works (Cai et al., 2021; Luo et al., 2020), BCN nor-
malizes along the (N,H,W ) axes by exponential moving average (Mukhoti et al., 2020) during the
training as follows:

µ = αµ+ (1− α)µ1, σ2 = ασ2 + (1− α)σ2
1 , x̄ =

(xi − µ)√
(σ2 + ϵ)

, (9)

where α is set to 0.9 in our experiments.

The key difference between BCN normalization and existing normalization techniques is that under
BCN , all the channels in a layer share the same normalization terms µ and σ2.
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Algorithm 1: Batch Channel Normalization (BCN)

Require:
Input x = {x1, x2, ..., xn}, Parameters to be learned: ι, β and γ

Ensure:
Y = BCNγ,β,ι(xi)

1: Calculate µ1 and σ2
1 based on Eq. 4

2: Calculate µ2 and σ2
2 based on Eq. 5

3: Calculate the normalized output x̄1 along (N,H,W ) and x̄2 along (C,H,W ) axes by Eq. 6
4: Adaptively combine x̄1 and x̄2 based on Eq. 7
5: Calculate the final output Y based on Eq. 8
6: return Y

def BatchChannelNorm(x, gamma, beta, momentum=0.9, num channels, eps=1e−5):
self.num channels = num channels
self.epsilon = epsilon
self.x1 = BCN 1(self.num channels, epsilon=self.epsilon) # normalized along (N, H, W) axes.
self.x2 = BCN 2(self.num channels, epsilon=self.epsilon) # normalized along (C, H, W) axes.
# x: input features with shape [N,C,H,W]
# gamma, beta: scale and offset
self.gamma = nn.Parameter(torch.ones(num channels))
self.beta = nn.Parameter(torch.zeros(num channels))
# iota the BCN variable to be learnt to adaptively balance the normalized outputs along (N, H, W

) axes and (C, H, W) axes.
self.iota = nn.Parameter(torch.ones(self.num channels))
X = self.x1(x)
Y = self.x2(x)
Result = self.iota.view([1, self.num channels, 1, 1]) ∗ X + ( 1 − self.iota.view([1, self.

num channels, 1, 1])) ∗ Y
Result = self.gamma.view([1, self.num channels, 1, 1]) ∗ Result + self.beta.view([1, self.

num channels, 1, 1])
return Result

Figure 2: Python code of Batch Channel normalization (BCN) based on PyTorch.

4.2 IMPLEMENTATION

BCN can be implemented by a few lines of python code in TensorFlow (Abadi et al., 2016) and
PyTorch (Paszke et al., 2017) where computing x̄1 along (N,H,W ) and x̄2 along (C,H,W ) is
implemented. The overall BCN process is presented in Algorithm 1 and Figure 2.

5 EXPERIMENTS AND DISCUSSION

5.1 DATASETS

We evaluate the effectiveness of our technique through four representative datasets: CIFAR-
10/100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and ImageNet (Russakovsky et al.,
2015). The CIFAR-10/100 datasets, developed by the Canadian Institute for Advanced Research,
are widely employed in various experiments. CIFAR-10 consists of 60,000 32x32 color images di-
vided into 10 object classes, with 50,000 training images and 10,000 test images. On the other hand,
CIFAR-100 comprises 100 classes with 600 images per class (Krizhevsky et al., 2009). The Street
View House Numbers (SVHN) dataset (Netzer et al., 2011) contains 600,000 32×32 RGB images
of printed digits (from 0 to 9) cropped from pictures of house number plates. ImageNet dataset (Rus-
sakovsky et al., 2015) has 1.28M training images and 50,000 validation images with 1000 classes.

5.2 EXPERIMENTAL SETUP

To investigate how BCN and the existing normalization techniques work, we conduct a series of
experiments. Five normalization techniques (i.e., BN (Ioffe & Szegedy, 2015), LN (Ba et al., 2016),
IN (Ulyanov et al., 2016), GN (Wu & He, 2018), and our BCN ) implemented from scratch in
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Figure 3: Training accuracy of different normalization techniques on (a) CIFAR-10, (b) CIFAR-100,
(c) SVHN.
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Figure 4: Validation accuracy of different normalization techniques on (a) CIFAR-10, (b) CIFAR-
100, (c) SVHN.

Pytorch (Paszke et al., 2017). The experimental details are the same in the five techniques (i.e., loss
function, batch size, etc). On ImageNet, we evaluate ResNet18, VGG16, SqueezeNet and Alexnet
with BN , LN and BCN , respectively. For the batch size of 8, the initial learning rate is set to 0.1.
We use accuracy on different datasets to investigate the effectiveness of the BCN normalization
technique.

5.3 COMPARISON WITH NORMALIZATION TECHNIQUES

In this subsection, we do comparison of our method with typical normalization techniques using typ-
ical datasets and neural networks. Specifically, we consider image classification task on ResNet us-
ing CIFAR-10/100 and SVHN datasets and DenseNet using ImageNet dataset, and self-supervised
learning on BY OL using CIFAR-10 dataset.

5.3.1 ON RESIDUAL NETWORK (ResNet)

We perform experiments on ResNet (He et al., 2016) for the image classification task. The model is
trained by stochastic gradient descent (SGD) starting with a learning rate of 0.1 and then reduced
by a factor of 10 at the 35th and 45th epochs, respectively. A batch size of 8 and a momentum of 0.9
are used.

We show results of BCN , BN , and LN during training and validation on the three datasets in
Figure 3 and Figure 4. As we can see, BCN learns most rapidly. On CIFAR-10, in about 20 epochs,
it has achieved about 86.12% training accuracy and 84.16% validation accuracy, whereas in the same
number of epochs, the BN and LN show 86.04% and 79.74% training accuracy and 12.87% and
78.58% validation accuracy, respectively.

In addition, Table 1 shows the results of BCN normalization and the representative normalization
techniques (BN , LN , IN , and GN ) on the CIFAR-10, CIFAR-100, and SVHN datasets. All ex-
periments are conducted under the same learning rate, loss function, batch size, etc. The results
show that BCN is generally applicable, gaining the best or the second best results. Note that BCN
achieves significant improvement over the state-of-the-art techniques on CIFAR-100.
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Method CIFAR-10 CIFAR-100 SVHN
BN 96.11 74.50 98.22

LN 95.76 68.61 97.62

IN 96.68 73.42 98.93
GN 95.91 70.15 98.49

BCN 96.97 79.09 98.63

Table 1: Comparison of the test accuracy on three datasets. The best results appear in bold, and the
second best are underlined.
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Figure 5: The accuracy curve for ImageNet dataset.
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Figure 6: Training and validation accuracy curve of different normalization techniques for BYOL
on the CIFAR-10 dataset.

5.3.2 ON DENSELY CONNECTED CONVOLUTIONAL NETWORKS (DenseNet)

DenseNet is a typical Dense Convolutional Network (Huang et al., 2018). Our baseline model is
DenseNet − 201 trained with BN . To compare with the state-of-the-art techniques, we replace
BN with the BCN and LN . Figure 5 shows that the state-of-the-art techniques with the proposed
BCN can produce better performance than BN and LN .

5.3.3 ON BOOTSTRAP YOUR OWN LATENT (BY OL)

We have applied BCN to recent state-of-the-art method for self-supervised learning (BYOL (Grill
et al., 2020)). We implemented BYOL in PyTorch, using hyperparameter settings as in the original
paper (Grill et al., 2020). Applying BCN to this method is simple, requiring a few lines of code
change. BCN is applied in both online and target models. The experimental results show that ap-
plying BCN in both online and target models have improved the performances, as shown in Figure
6. Our results show that the proposed technique is very useful.
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Figure 7: The accuracy curve for different batch size on the CIFAR-10 dataset.

5.4 ABLATION STUDY

In this subsection, we experiment with the impact of batch size. We evaluate batch sizes of 128, 16
and 8. Our findings are shown in Figure 7, indicating that the BCN yields favorable results with
different batch sizes.

6 LIMITATIONS

This paper aims to explore the generalization of BCN among the existing normalization techniques.
However, there is a need for further investigation into the dynamic learning of cross-channels in the
BCN . Furthermore, the specific connection between BCN , LN , GN , BN and IN as well as
their transformation with each other, requires further investigation (e.g., new models like Vision
Transformers).

7 CONCLUSION

In this paper, we proposed a new normalization technique termed Batch Channel normalization
(BCN ). It exploits the channel dependence and batch sizes simultaneously, then adaptively com-
bines the normalized outputs. Our experiments on typical models and datasets show that BCN can
consistently outperform the state-of-the-art normalization techniques, demonstrating that BCN is a
general normalization technique. Based on our technique, we have a number of possible directions
for future work. We will investigate the BCN technique across a wider variety of applications and
evaluate the usefulness of BCN across a wider range of CNN architectures (e.g., new models like
Vision Transformers).
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