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Abstract

Devising deep latent variable models for multi-modal data has been a long-standing theme in
machine learning research. Multi-modal Variational Autoencoders (VAEs) have been a pop-
ular generative model class that learns latent representations that jointly explain multiple
modalities. Various objective functions for such models have been suggested, often moti-
vated as lower bounds on the multi-modal data log-likelihood or from information-theoretic
considerations. To encode latent variables from different modality subsets, Product-of-
Experts (PoE) or Mixture-of-Experts (MoE) aggregation schemes have been routinely used
and shown to yield different trade-offs, for instance, regarding their generative quality or
consistency across multiple modalities. In this work, we consider a variational objective
that can tightly approximate the data log-likelihood. We develop more flexible aggregation
schemes that avoid the inductive biases in PoE or MoE approaches by combining encoded
features from different modalities based on permutation-invariant neural networks. Our nu-
merical experiments illustrate trade-offs for multi-modal variational objectives and various
aggregation schemes. We show that our variational objective and more flexible aggregation
models can become beneficial when one wants to approximate the true joint distribution
over observed modalities and latent variables in identifiable models.

1 Introduction

Multi-modal data sets where each sample has features from distinct sources have grown in recent years. For
example, multi-omics data such as genomics, epigenomics, transcriptomics, and metabolomics can provide a
more comprehensive understanding of biological systems if multiple modalities are analyzed in an integrative
framework (Argelaguet et al., 2018; Lee and van der Schaar, 2021; Minoura et al., 2021). In neuroscience,
multi-modal integration of neural activity and behavioral data can help to learn latent neural dynamics
(Zhou and Wei, 2020; Schneider et al., 2023). However, annotations or labels in such data sets are often rare,
making unsupervised or semi-supervised generative approaches particularly attractive as such methods can be
used in these settings to (i) generate data, such as missing modalities, and (ii) learn latent representations
that are useful for down-stream analyzes or that are of scientific interest themselves. The availability of
heterogeneous data for different modalities promises to learn generalizable representations that can capture
shared content across multiple modalities in addition to modality-specific information. A promising class
of weakly-supervised generative models is multi-modal VAEs (Suzuki et al., 2016; Wu and Goodman, 2019;
Shi et al., 2019; Sutter et al., 2021) that combine information across modalities in an often-shared low-
dimensional latent representation. A common route for learning the parameters of latent variable models is
via maximization of the marginal data likelihood with various lower bounds thereof, as suggested in previous
work.

Setup. We consider a set of M random variables {X1, . . . , XM } with empirical density pd, where each
random variable Xs, s ∈ M = {1, . . . , M}, can be used to model a different data modality taking values
in Xs. With some abuse of notation, we write X = {X1, . . . , XM } and for any subset S ⊂ M, we set
X = (XS , X\S) for two partitions of the random variables into XS = {Xs}s∈S and X\S = {Xs}s∈M\S .
We pursue a latent variable model setup, analogous to uni-modal VAEs (Kingma and Ba, 2014; Rezende
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et al., 2014). For a latent variable Z ∈ Z with prior density pθ(z), we posit a joint generative model1
pθ(z, x) = pθ(z)

∏M
s=1 pθ(xs|z), where pθ(xs|z) is commonly referred to as the decoding distribution for

modality s. Observe that all modalities are independent given the latent variable z shared across all modal-
ities. However, one can introduce modality-specific latent variables by making sparsity assumptions for the
decoding distribution. Intuitively, this conditional independence assumption means that the latent variable
Z captures all unobserved factors shared by the modalities.

Multi-modal variational bounds and mutual information. Popular approaches to train multi-modal
models are based on a mixture-based variational bound (Daunhawer et al., 2022; Shi et al., 2019) given by
LMix(θ, ϕ, β) =

∫
ρ(S)LMix

S (x, θ, ϕ, β)dS, where

LMix
S (x, θ, ϕ, β) =

∫
qϕ(z|xS) [log pθ(x|z)] dz − βKL(qϕ(z|xS)|pθ(z)) (1)

and ρ is some distribution on the power set P(M) of M and β > 0. For β = 1, one obtains the bound
LMix

S (x, θ, ϕ, β) ≤ log pθ(x). However, as shown in Daunhawer et al. (2022), there is a gap between the
variational bound and the log-likelihood given by the conditional entropies that cannot be reduced even for
flexible encoding distributions. More precisely, it holds that∫

pd(x) log pθ(x)dx ≥
∫

pd(x)LMix(x, θ, ϕ, 1)dx +
∫

ρ(S)H(pd(X\S |XS))dS,

where H(pd(X\S |XS)) is the entropy of the conditional data distributions. Intuitively, in (1), one tries to
reconstruct or predict all modalities from incomplete information using only the modalities S, which leads
to learning an inexact, average prediction (Daunhawer et al., 2022). In particular, it cannot reliably predict
modality-specific information that is not shared with other modality subsets, as measured by the conditional
entropies H(pd(X\S |XS)).

We will illustrate that maximizing LMix
S can be interpreted as the information-theoretic objective of

maximizing
{

Îlb
qϕ

(X, ZS) − βÎub
qϕ

(XS , ZS)
}

, (2)

where Îub
q and Îlb

q are variational upper, respectively, lower bounds of the corresponding mutual information
Iq(X, Y ) =

∫
q(x, y) log q(x,y)

q(x)q(y) dxdy of random variables X and Y having marginal and joint densities q. We
occasionally write ZS instead of Z to emphasize that Z is conditional on XS under the encoding density qϕ.
Variations of (1) have been suggested (Sutter et al., 2020), such as by replacing the prior density pθ in the KL-
term by a weighted product of the prior density pθ and the uni-modal encoding distributions qϕ(z|xs), for all
s ∈ M. Likewise, the multi-view variational information bottleneck approach developed in Lee and van der
Schaar (2021) for predicting X\S given XS can be interpreted as maximizing Îlb

qϕ
(X\S , ZS) − βÎub

qϕ
(XS , ZS).

Hwang et al. (2021) suggested a related bound that aims to maximize the reduction of total correlation of
X when conditioned on a latent variable. Similar bounds have been suggested in Sutter et al. (2020) and
Suzuki et al. (2016) by considering different KL-regularisation terms; see also Suzuki and Matsuo (2022).
Shi et al. (2020) add a contrastive estimate Îpθ

of the point-wise mutual information to the maximum
likelihood objective and minimize − log pθ(x) − βÎpθ

(xS , x\S). Optimizing variational bounds of different
mutual information terms such as (2) yield latent representations that have different trade-offs in terms of
either (i) reconstruction or (ii) cross-prediction of multi-modal data from a rate-distortion viewpoint (Alemi
et al., 2018).

Multi-modal aggregation schemes. To optimize the variational bounds above or to allow for flexible
conditioning at test time, we need to learn encoding distributions qϕ(z|xS) for any S ∈ P(M). The typical
aggregation schemes that are scalable to a large number of modalities are based on a choice of uni-modal
encoding distributions qϕs

(z|xs) for any s ∈ M, which are then used to define the multi-modal encoding
distributions as follows:

1We usually denote random variables using upper-case letters, and their realizations by the corresponding lower-case letter.
We assume throughout that Z = RD, and that pθ(z) is a Lebesgue density, although the results can be extended to more general
settings such as discrete random variables Z with appropriate adjustments, for instance, regarding the gradient estimators.
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• Mixture of Experts (MoE), see Shi et al. (2019),

qMoE
ϕ (z|xS) = 1

|S|
∑
s∈S

qϕs(z|xs).

• Product of Experts (PoE), see Wu and Goodman (2018),

qPoE
ϕ (z|xS) ∝ pθ(z)

∏
s∈S

qϕs
(z|xs).

Contributions. This paper contributes (i) a new variational objective as an approximation of a lower
bound on the multi-modal log-likelihood (LLH). We avoid a limitation of mixture-based bounds (1), which
may not provide tight lower bounds on the joint LLH if there is considerable modality-specific variation
(Daunhawer et al., 2022), even for flexible encoding distributions. The novel variational objective contains
a lower bound of the marginal LLH log pθ(xS) and a term approximating the conditional log pθ(x\S |xS) for
any choice of S ∈ P(M), provided that we can learn a flexible multi-modal encoding distribution. This
paper then contributes (ii) new multi-modal aggregation schemes that yield more expressive multi-modal
encoding distributions when compared to MoEs or PoEs. These schemes are motivated by the flexibility of
permutation-invariant (PI) architectures such as DeepSets (Zaheer et al., 2017) or attention models (Vaswani
et al., 2017; Lee et al., 2019). We illustrate that these innovations (iii) are beneficial when learning identifiable
models, aided by using flexible prior and encoding distributions consisting of mixtures and (iv) yield higher
LLH in experiments.

Further related work. Canonical Correlation Analysis (Hotelling, 1936; Bach and Jordan, 2005) is a clas-
sical approach for multi-modal data that aims to find projections of two modalities by maximally correlating
and has been extended to include more than two modalities (Archambeau and Bach, 2008; Tenenhaus and
Tenenhaus, 2011) or to allow for non-linear transformations (Akaho, 2001; Hardoon et al., 2004; Wang et al.,
2015; Karami and Schuurmans, 2021). Probabilistic CCA can also be seen as multi-battery factor analysis
(MBFA) (Browne, 1980; Klami et al., 2013), wherein a shared latent variable models the variation common to
all modalities with modality-specific latent variables capturing the remaining variation. Likewise, latent fac-
tor regression or classification models (Stock and Watson, 2002) assume that observed features and response
are driven jointly by a latent variable. Vedantam et al. (2018) considered a tiple-ELBO for two modalities,
while Sutter et al. (2021) introduced a generalized variational bound that involves a summation over all
modality subsets. A series of work has developed multi-modal VAEs based on shared and private latent
variables (Wang et al., 2016; Lee and Pavlovic, 2021; Lyu and Fu, 2022; Lyu et al., 2021; Vasco et al., 2022;
Palumbo et al., 2023). Tsai et al. (2019a) proposed a hybrid generative-discriminative objective and mini-
mized an approximation of the Wasserstein distance between the generated and observed multi-modal data.
Joy et al. (2021) consider a semi-supervised setup of two modalities that requires no explicit multi-modal
aggregation function. Extending the Info-Max principle (Linsker, 1988), maximizing mutual information
Iq(g1(X1), g(X2)) ≤ Iq((X1, X2), (Z1, Z2)) based on representations Zs = gs(Xs) for modality-specific en-
coders gs from two modalities has been a motivation for approaches based on (symmetrized) contrastive
objectives (Tian et al., 2020; Zhang et al., 2022c; Daunhawer et al., 2023) such as InfoNCE (Oord et al.,
2018; Poole et al., 2019; Wang and Isola, 2020) as a variational lower bound on the mutual information
between Z1 and Z2. Recent work (Bounoua et al., 2023; Bao et al., 2023) considered score-based diffusion
models on auto-encoded private latent variables.

2 A tighter variational objective with arbitrary modality masking

For S ⊂ M and β > 0, we define

LS(xS , θ, ϕ, β) =
∫

qϕ(z|xS) [log pθ(xS |z)] dz − βKL(qϕ(z|xS)|pθ(z)). (3)

This is simply a standard variational lower bound (Jordan et al., 1999; Blei et al., 2017) restricted to the
subset S for β = 1, and therefore LS(xS , θ, ϕ, 1) ≤ log pθ(xS). One can express the variational bound in
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information-theoretic (Alemi et al., 2018) terms as∫
pd(xS)L(xS)dxS = −DS − βRS

for the rate
RS =

∫
pd(xS)KL(qϕ(z|xS)|pθ(z))dxS

measuring the information content that is encoded from the observed modalities in S by qϕ into the latent
representation, and the distortion

DS = −
∫

pd(xS)qϕ(z|xS) log pθ(xS |z)dzdxS

given as the negative reconstruction log-likelihood of the modalities in S. While the latent variable ZS
that is encoded via qϕ(z|xS) from XS can be tuned via the choice of β > 0 to tradeoff compression and
reconstruction of all modalities in S jointly, it does not explicitly optimize for cross-modal prediction of
modalities not in S. Indeed, the mixture-based variational bound differs from the above decomposition
exactly by an additional cross-modal prediction or cross-distortion term

Dc
\S = −

∫
pd(x)qϕ(zS |xS) log pθ(x\S |zS)dzSdx,

thereby explicitly optimizing for both self-reconstruction of a modality subset and cross-modal prediction
within a single objective: ∫

pd(dx)LMix
S (x) = −DS − Dc

\S − βRS . (4)

Instead of adding an explicit cross-modal prediction term, we consider an additional variational objective
with a second latent variable ZM that encodes all observed modalities X = XM and tries to reconstruct a
modality subset. Unlike the latent variable ZS in (1) and (3) that can only encode incomplete information
using the modalities S, this second latent variable ZM can encode modality-specific information from all
observed modalities, thereby avoiding the averaging prediction in the mixture-based bound.

Ideally, we may like to consider an additional variational objective that lower bounds the conditional log-
likelihood log pθ(x\S |xS) so that maximizing the sum of both bounds maximizes a lower bound of the
multi-modal log-likelihood log pθ(xS , x\S) = log pθ(xS) + log pθ(x\S |xS). To motivate such a conditional
variational objective, note that maximizing the variational bound (3) with infinite capacity encoders yields
qϕ(z|xS) = pθ(z|xS). This suggests replacing the intractable posterior pθ(z|xS) with the encoder qϕ(z|xS)
for the probabilistic model when conditioned on xS . A variational objective under this replacement then
becomes

L\S(x, θ, ϕ, β) =
∫

qϕ(z|x)
[
log pθ(x\S |z)

]
dz − βKL(qϕ(z|x)|qϕ(z|xS)). (5)

However, the above only approximates a lower bound on the conditional log-likelihood log pθ(x\S |xS), and
L\S is a lower bound only under idealised conditions. We will make these approximations more precise
in Section 2.1, where we illustrate how these bounds yield to a matching of different distributions in the
latent or data space, while Section 2.2 provides an information-theoretic interpretation of these variational
objectives.

In summary, for some fixed density ρ on P(M), we suggest to maximize the overall bound

L(x, θ, ϕ, β) =
∫

ρ(S)
[
LS(xS , θ, ϕ, β) + L\S(x, θ, ϕ, β)

]
dS,

with respect to θ and ϕ, which is a generalization of the bound suggested in Wu and Goodman (2019) to an
arbitrary number of modalities. This bound can be optimized using standard Monte Carlo techniques, for
example, by computing unbiased pathwise gradients (Kingma and Ba, 2014; Rezende et al., 2014; Titsias
and Lázaro-Gredilla, 2014) using the reparameterization trick. For variational families such as Gaussian
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mixtures2, one can employ implicit reparameterization (Figurnov et al., 2018). It is straightforward to adapt
variance reduction techniques such as ignoring the scoring term of the multi-modal encoding densities for
pathwise gradients (Roeder et al., 2017), see Algorithm 1 in Appendix H for pseudo-code. Nevertheless, a
scalable approach requires an encoding technique that allows to condition on any masked modalities with a
computational complexity that does not increase exponentially in M .

2.1 Multi-modal distribution matching

Likelihood-based learning approaches aim to match the model distribution pθ(x) to the true data distribution
pd(x). Variational approaches achieve this by matching in the latent space the encoding distribution to the
true posterior as well as maximizing a tight lower bound on log pθ(x), see Rosca et al. (2018). These types of
analyses have proved useful for uni-modal VAEs as they can provide some insights as to why VAEs may lead
to worse generative sample quality compared to other generative models such as GANs (Goodfellow et al.,
2014) or may fail to learn useful latent representations (Zhao et al., 2019; Dieng et al., 2019). We show similar
results for the multi-modal variational objectives. This suggests that limitations from uni-modal VAEs also
affect multi-modal VAEs, but also that previous attempts to address these shortcomings in uni-modal VAEs
may benefit multi-modal VAEs. In particular, mismatches between the prior and the aggregated prior for
uni-modal VAEs that result in poor unconditional generation have a natural counterpart for cross-modal
generations with multi-modal VAEs that may potentially be reduced using more flexible conditional prior
distributions, see Remark 3, or via adding additional mutual information regularising terms (Zhao et al.,
2019), see Remark 4. In view of these results, it is neither surprising that multi-modal diffusion models
such as Bounoua et al. (2023); Bao et al. (2023) yield improved sample quality, nor that sample quality can
be improved by augmenting multi-modal VAEs with diffusion models (Pandey et al., 2022; Palumbo et al.,
2024).

We consider the densities
pθ(z, x) = pθ(z)pθ(xS |z)pθ(x\S |z)

and
qϕ(zS , x) = pd(xS)qϕ(zS |xS).

The latter is the encoding path comprising the encoding density qϕ conditioned on xS and the empirical
density pd. We write

qagg
ϕ,S(z) =

∫
pd(xS)qϕ(z|xS)dxS

for the aggregated prior (Makhzani et al., 2016; Hoffman and Johnson, 2016; Tomczak and Welling, 2017)
restricted on modalities from S and q⋆(xS |z) = qϕ(xS , z)/qagg

ϕ (z) and likewise consider its conditional version,

qagg
ϕ,\S(z|xS) =

∫
pd(x\S |xS)qϕ(z|x)dx\S

for an aggregated encoder conditioned on xS . We provide a multi-modal ELBO surgery, summarized in
Proposition 1 below. It implies that maximizing

∫
pd(xS)LS(xS , θ, ϕ)dxS drives

1. the joint inference distribution qϕ(z, xS) = pd(xS)qϕ(z|xS) of the S submodalities to the joint
generative distribution pθ(z, xS) = pθ(z)pθ(xS |z) and

2. the generative marginal pθ(xS) to its empirical counterpart pd(xS).

Analogously, maximizing
∫

pd(x\S |xS)L\S(x, θ, ϕ)dx\S drives, for fixed xS ,

1. the distribution pd(x\S |xS)qϕ(z|x) to the distribution pθ(x\S |z)qϕ(z|xS) and
2. the conditional pθ(x\S |xS) to its empirical counterpart pd(x\S |xS).

Furthermore, it shows that maximizing L\S(x, θ, ϕ) minimizes a Bayes-consistency matching term
KL(qagg

ϕ,\S(z|xS)|qϕ(z|xS)) for the multi-modal encoders where a mismatch can yield poor cross-generation,
2For MoE aggregation schemes, Shi et al. (2019) considered a stratified ELBO estimator as well as a tighter bound based

on importance sampling, see also Morningstar et al. (2021), that we do not pursue here for consistency with other aggregation
schemes that can likewise be optimized based on importance sampling ideas.
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as an analog of the prior not matching the aggregated posterior leading to poor unconditional generation,
see Remark 4.

Proposition 1 (Marginal and conditional distribution matching) For any S ∈ P(M), we have∫
pd(xS)LS(xS , θ, ϕ)dxS + H(pd(xS))

= − KL(qϕ(z, xS)|pθ(z, xS)) (ZXmarginal)

= − KL(pd(xS)|pθ(xS)) −
∫

pd(xS)KL(qϕ(z|xS)|pθ(z|xS))dxS (Xmarginal)

= − KL(qagg
ϕ,S(z)|pθ(z)) −

∫
qagg

ϕ,S(z)KL(q⋆(xS |z)|pθ(xS |z))dxS , (Zmarginal)

where q⋆(xS |z) = qϕ(xS , z)/qagg
ϕ (z). Moreover, for fixed xS ,∫

pd(x\S |xS)L\S(x, θ, ϕ)dx\S + H(pd(x\S |xS))

= − KL
(
qϕ(z|x)pd(x\S |xS)

∣∣pθ(x\S |z)qϕ(z|xS)
)

(ZXconditional)
= − KL(pd(x\S |xS)|pθ(x\S |xS)) (Xconditional)

−
∫

pd(x\S |xS)
(

KL(qϕ(z|x)|pθ(z|x)) −
∫

qϕ(z|x) log qϕ(z|xS)
pθ(z|xS)dz

)
dx\S

= − KL(qagg
ϕ,\S(z|xS)|qϕ(z|xS)) −

∫
qagg

ϕ,\S(z|xS)
(
KL(q⋆(x\S |z, xS)|pθ(x\S |z))

)
dz, (Zconditional)

where q⋆(x\S |z, xS) = qϕ(z, x\S |xS)/qagg
ϕ,\S(z|xS) = pd(x\S |xS)qϕ(z|x)/qagg

ϕ,\S(z|xS).

If qϕ(z|xS) approximates pθ(z|xS) exactly, Proposition 1 implies that L\S(x, θ, ϕ) is a lower bound of
log pθ(x\S |xS). More precisely, we obtain the following log-likelihood approximation.

Corollary 2 (Multi-modal log-likelihood approximation) For any modality mask S, we have∫
pd(x)

[
LS(xS , θ, ϕ, 1) + L\S(x, θ, ϕ, 1)

]
dx −

∫
pd(x) [log pθ(x)] dx

= −
∫

pd(xS) [KL(qϕ(z|xS)|pθ(z|xS))] dx −
∫

pd(x) [KL(qϕ(z|x)|pθ(z|x))] dx

+
∫

pd(x)qϕ(z|x)
[
log qϕ(z|xS)

pθ(z|xS)

]
dzdx.

Proof This follows from (Xmarginal) and (Xconditional).

Our approach recovers meta-learning with (latent) Neural processes (Garnelo et al., 2018b) when one op-
timizes only L\S with S determined by context-target splits, cf. Appendix B. Our analysis implies that
LS + L\S is an approximation of a lower bound on the multi-modal log-likelihood that becomes tight for
infinite-capacity encoders so that qϕ(z|xS) = pθ(z|xS) and qϕ(z|x) = pθ(z|x), see Remarks 3 and 5 for details.

Remark 3 (Log-Likelihood approximation and Empirical Bayes) The term∫
pd(x)qϕ(z|x)

[
log qϕ(z|xS)

pθ(z|xS)

]
dzdx

arising in Corollary 2 and in (Xconditional) is not necessarily negative. Analogous to other variational ap-
proaches for learning conditional distributions such as latent Neural processes, our bound becomes an ap-
proximation of a lower bound. Note that LS is maximized when qϕ(z|xS) = pθ(z|xS), see (Xmarginal), which
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implies a lower bound in Corollary 2 of∫
pd(x)

[
LS(xS , θ, ϕ, 1) + L\S(x, θ, ϕ, 1)

]
dx =

∫
pd(x) [log pθ(x) − KL(qϕ(z|x)|pθ(z|x))] dx.

We can re-write the conditional expectation of L\S for any fixed xS as∫
pd(x\S |xS)L\S(x, θ, ϕ, 1)dx\S =

∫
pd(x\S |xS)qϕ(z|x) log pθ(x\S |z)dzdx\S + pd(x\S |xS)H(qϕ(z|x))dx\S

+
∫

qagg
ϕ,\S(z|xS) log qϕ(z|xS)dz.

Whenever qϕ(z|xS) can be learned independently from qϕ(z|x), the above is maximized for

qϕ(z|xS) =
∫

pd(x\S |xS)qϕ(z|x)dx\S = qagg
ϕ,\S(z|xS).

From a different perspective, we can consider an Empirical Bayes viewpoint (Robbins, 1992; Wang et al.,
2019b) wherein one chooses the hyperparameters of the (conditional) prior so that it maximizes an approxi-
mation of the conditional log-likelihood log pθ(x\S |xS). The conditional prior p⋆

ϑ(z|xS) in the corresponding
conditional ELBO term

L⋆
\S(x, θ, ϕ, ϑ, β) =

∫
qϕ(z|x)

[
log pθ(x\S |z)

]
dz − βKL(qϕ(z|x)|p⋆

ϑ(z|xS)). (6)

can thus be seen as a learned prior having the parameter ϑ = ϑ(D) that is learned by maximizing the
above variational approximation of log pθ(x\S |xS) over x ∼ pd for β = 1, and as such depends on the
empirical multi-modal dataset D. While the aggregated prior qagg

ϕ,\S(z|xS) is the optimal learned prior when
maximizing L\S , this choice can lead to overfitting. Moreover, computation of the aggregated prior, or
sparse approximations thereof, such as variational mixture of posteriors prior (VampPrior) in Tomczak and
Welling (2017), are challenging in the conditional setup. Previous constructions in this direction (Joy et al.,
2021) for learning priors for bi-modal data only considered unconditional versions, wherein pseudo-samples
are not dependent on some condition xS . While our permutation-invariant architectures introduced below
may be used for flexibly parameterizing conditional prior distributions p⋆

ϑ(z|xS) as a function of xS with
a model that is different from the encoding distributions qϕ(z|xS), we contend ourselves with choosing the
same model for both the conditional prior and the encoding distribution, p⋆

ϑ(z|xS) = qϕ(z|xS). Note that
the encoding distribution then features both bounds, which encourages learning encoding distributions that
perform well as conditional priors, and as encoding distributions. In the ideal scenario where both the
generative and inference models have the flexibility to satisfy pd(x\S |xS) = pθ(x\S |xS), qϕ(z|xS) = pθ(z|xS)
and qϕ(z|xS) = pθ(z|xS), then the optimal conditional prior distribution is

qagg
ϕ,\S(z|xS) =

∫
pθ(x\S |xS)pθ(z|x)dx\S =

∫
pθ(x\S |xS)

pθ(z|xS)pθ(x\S |xS)
pθ(x\S |xS) dx\S = pθ(z|xS) = qϕ(z|xS).

Remark 4 (Prior-hole problem and Bayes or conditional consistency) In the uni-modal setting,
the mismatch between the prior and the aggregated prior can be large and can lead to poor uncondi-
tional generative performance because this would lead to high-probability regions under the prior that have
not been trained due to their small mass under the aggregated prior (Hoffman and Johnson, 2016; Rosca
et al., 2018). Equation (Zmarginal) extends this to the multi-modal case, and we expect that unconditional
generation can be poor if this mismatch is large. Moreover, (Zconditional) extends this conditioned on some
modality subset, and we expect that cross-generation for x\S conditional on xS can be poor if the mismatch
between qagg

ϕ,\S(z|xS) and qϕ(z|xS) is large for xS ∼ pd, because high-probability regions under qϕ(z|xS) will
not have been trained - via optimizing L\S(x) - to model x\S conditional on xS , due to their small mass
under qagg

ϕ,\S(z|xS). The mismatch will vanish when the encoders are consistent and correspond to a single
Bayesian model where they approximate the true posterior distributions. A potential approach to reduce
this mismatch may be to include as a regulariser the divergence between them that can be optimized by
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likelihood-free techniques, such as the Maximum-Mean Discrepancy (Gretton et al., 2006), as in Zhao et al.
(2019) for uni-modal or unconditional models. For the mixture-based bound, the same distribution mismatch
affects unconditional generation, while both the training and generative sampling distribution is qϕ(z|xS)
for cross-generation.

Remark 5 (Variational gap for mixture-based bounds) Corollary 2 shows that the variational objec-
tive can become a tight bound in the limiting case where the encoding distributions approximate the true
posterior distributions. A similar result does not hold for the mixture-based multi-modal bound. More-
over, our bound can be tight for an arbitrary number of modalities in the limiting case of infinite-capacity
encoders. In contrast, Daunhawer et al. (2022) show that for mixture-based bounds, this variational gap
increases with each additional modality if the new modality is ’sufficiently diverse’, even for infinite-capacity
encoders.

Remark 6 (Optimization, multi-task learning and the choice of ρ) For simplicity, we have chosen
to sample S ∼ ρ in our experiments via the hierarchical construction γ ∼ U(0, 1), mj ∼ Bern(γ) iid for
all j ∈ [M ] and setting S = {s ∈ [M ] : mj = 1}. The distribution ρ for masking the modalities can be
adjusted to accommodate various weights for different modality subsets. Indeed, (2) can be seen as a linear
scalarization of a multi-task learning problem (Fliege and Svaiter, 2000; Sener and Koltun, 2018). We aim to
optimize a loss vector (LS +L\S)S⊂M, where the gradients for each S ⊂ M can point in different directions,
making it challenging to minimize the loss for all modalities simultaneously. Consequently, Javaloy et al.
(2022) used multi-task learning techniques (e.g., as suggested in Chen et al. (2018); Yu et al. (2020)) for
adjusting the gradients in mixture-based VAEs. Such improved optimization routines are orthogonal to our
approach. Similarly, we do not analyze optimization issues such as initializations and training dynamics that
have been found challenging for multi-modal learning (Wang et al., 2020; Huang et al., 2022).

2.2 Information-theoretic perspective

Beyond generative modeling, β-VAEs (Higgins et al., 2017) have been popular for representation learning
and data reconstruction. Alemi et al. (2018) suggest learning a latent representation that achieves certain
mutual information with the data based on upper and lower variational bounds of the mutual information.
A Legendre transformation thereof recovers the β-VAE objective and allows a trade-off between information
content or rate versus reconstruction quality or distortion. We show that the proposed variational objective
gives rise to an analogous perspective for multiple modalities. Recall that the mutual information on the
inference path3 is given by

Iqϕ
(XS , ZS) =

∫
qϕ(xS , zS) log qϕ(xS , zS)

pd(xS)qagg
ϕ,S(zS)dzSdxS ,

can be bounded by standard (Barber and Agakov, 2004; Alemi et al., 2016; 2018) lower and upper bounds:

HS − DS ≤ HS − DS + ∆1 = Iqϕ
(XS , ZS) = RS − ∆2 ≤ RS , (7)

with ∆1, ∆2 ≥ 0 and HS ≤ RS + DS . For details, see Appendix C. Consequently, by tuning β, we can vary
upper and lower bounds of Iqϕ

(XS , ZS) to tradeoff between compressing and reconstructing XS .

To arrive at a similar interpretation for the conditional bound L\S that involves the conditional mutual
information

Iqϕ
(X\S , ZM|XS) =

∫
pd(xS)KL(pd(x\S , zM|xS))|pd(x\S |xS)qagg

ϕ,\S(zM|xS))dxS

recalling that qagg
ϕ,\S(zM|xS) =

∫
pd(x\S |xS)qϕ(zM|x)dx\S , we set

R\S =
∫

pd(x)KL(qϕ(z|x)|qϕ(z|xS))dx

3We include the conditioning modalities as an index for the latent variable Z when the conditioning set is unclear.
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for a conditional or cross rate. Similarly, set

D\S = −
∫

pd(x)qϕ(z|x) log pθ(x\S |z)dzdx.

One obtains the following bounds, see Appendix C.

Lemma 7 (Variational bounds on the conditional mutual information) It holds that

−
∫

L\S(x, θ, ϕ, β)pd(dx) = D\S + βR\S

and for ∆\S,1, ∆\S,2 ≥ 0,

H\S − D\S + ∆\S,1 = Iqϕ
(X\S , ZM|XS) = R\S − ∆\S,2.

Consequently, by tuning β, we can vary upper and lower bounds of Iqϕ
(X\S , ZM|XS) to tradeoff between

compressing relative to qϕ(·|xS) and reconstructing X\S . Using the chain rules for entropy, we obtain that
the suggested bound can be seen as a relaxation of bounds on marginal and conditional mutual information.

Corollary 8 (Lagrangian relaxation) It holds that

H − DS − D\S ≤ Iqϕ
(XS , ZS) + Iqϕ

(X\S , ZM|XS) ≤ RS + R\S

and maximizing L for fixed β = ∂(DS+D\S )
∂(RS+R\S ) minimizes the rates RS + R\S and distortions DS + D\S .

Remark 9 (Mixture-based variational bound) We show in Appendix C, see also Daunhawer et al.
(2022), that

HM − DS − Dc
S ≤ HM − DS − Dc

S + ∆′
1 = Iqϕ

(XM, ZS),
where ∆′

1 =
∫

qagg
ϕ (z)KL(q⋆(x|z)|pθ(x|z))dz > 0. Consequently, HM −DS −Dc

S is a variational lower bound,
while RS is a variational upper bound on Iqϕ

(XM, ZS), which establishes (2). Maximizing the mixture-
based bound thus corresponds to encoding a single latent variable ZS that maximizes the reconstruction of
all modalities while at the same time being maximally compressive relative to the prior.

Remark 10 (Optimal variational distributions) Consider the annealed likelihood p̃β,θ(xS |z) ∝
pθ(xS |z)1/β as well as the adjusted posterior p̃β,θ(z|xS) ∝ p̃β,θ(xS |z)pθ(z). The minimum of the bound∫

pd(dx)LS(x) is attained at any xS for the variational density

q⋆(z|xS) ∝ exp
(

1
β

[log pθ(xS |z) + β log pθ(z)]
)

∝ p̃β,θ(z|xS), (8)

see also Huang et al. (2020) and Remark 20. Similarly, if (8) holds, then it is readily seen that the minimum
of the bound

∫
pd(dx)L\S(x) is attained at any x for the variational density q⋆(z|x) = p̃β,θ(z|x). In contrast,

as shown in Appendix 21, the optimal variational density for the mixture-based (1) multi-modal bound is
attained at

q⋆(z|xS) ∝ p̃β,θ(z|xS) exp
(∫

pd(x\S |xS) log p̃β,θ(x\S |z)dx\S

)
.

The optimal variational density for the mixture-based bound thus tilts the posterior distribution to points
that achieve higher cross-modal predictions.

3 Permutation-invariant modality encoding

Optimizing the above multi-modal bounds requires learning variational densities with different conditioning
sets. We write hs,φ : Xs 7→ RDE for some modality-specific feature function. We recall the following multi-
modal encoding functions suggested in previous work where usually hs,φ(xs) =

[
µs,φ(xs)⊤, vec(Σs,φ(xs))⊤]⊤

with µs,φ and Σs,φ being the mean, respectively the (often diagonal) covariance, of a uni-modal encoder of
modality s. Accommodating more complex variational families, such as mixture distributions for the uni-
modal encoding distributions, can be more challenging for these approaches.

9
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• MoE: qMoE
φ (z|xS) = 1

|S|
∑

s∈S qN (z|µs,φ(xs), Σs,φ(xs)), where qN (z|µ, Σ) is a Gaussian density with
mean µ and covariance Σ.

• PoE: qPoE
φ (z|xS) = 1

Z pθ(z)
∏

s∈S qN (z|µs,φ(xs), Σs,φ(xs)), for some Z ∈ R. For Gaussian priors
pθ(z) = qN (z|µθ, Σθ) with mean µθ and covariance Σθ, the multi-modal distribution qPoE

φ (z|xS) is
Gaussian with mean

(µθΣθ +
∑
s∈S

µs,φ(xs)Σs,φ(xs))(Σ−1
1,θ +

∑
s∈S

Σs,φ(xs)−1)−1

and covariance
(Σ−1

1,θ +
∑
s∈S

Σs,φ(xs)−1)−1.

• Mixture of Product of Experts (MoPoE), see Sutter et al. (2021),

qMoPoE
ϕ (z|xM) = 1

2M

∑
xS ∈P(xM)

qPoE
ϕ (z|xS).

3.1 Learnable permutation-invariant aggregation schemes

We aim to learn a more flexible aggregation scheme under the constraint that the encoding distribution is
invariant (Bloem-Reddy and Teh, 2020) with respect to the ordering of encoded features of each modality.
Put differently, for all (Hs)s∈S ∈ R|S|×DE and all permutations π ∈ SS of S, we assume that the conditional
distribution is SS -invariant, i.e. q′

ϑ(z|h) = q′
ϑ(z|π ·h) for all z ∈ RD, where π acts on H = (Hs)s∈S via π ·H =

(Hπ(s))s∈S . We set qϕ(z|xS) = q′
ϑ(z|hs,φ(xs)s∈S), ϕ = (φ, ϑ) and remark that the encoding distribution is

not invariant with respect to the modalities, but becomes only invariant after applying modality-specific
encoder functions hs,φ. Observe that such a constraint is satisfied by the aggregation schemes above for hs,φ

being the uni-modal encoders.

A variety of invariant (or equivariant) functions along with their approximation properties have been consid-
ered previously, see for instance Santoro et al. (2017); Zaheer et al. (2017); Qi et al. (2017); Lee et al. (2019);
Segol and Lipman (2019); Murphy et al. (2019); Maron et al. (2019); Sannai et al. (2019); Yun et al. (2019);
Bruno et al. (2021); Wagstaff et al. (2022); Zhang et al. (2022b); Li et al. (2022); Bartunov et al. (2022), and
applied in different contexts such as meta-learning (Edwards and Storkey, 2016; Garnelo et al., 2018b; Kim
et al., 2018; Hewitt et al., 2018; Giannone and Winther, 2022), reinforcement learning (Tang and Ha, 2021;
Zhang et al., 2022a) or generative modeling of (uni-modal) sets (Li et al., 2018; 2020; Kim et al., 2021; Biloš
and Günnemann, 2021; Li and Oliva, 2021). We can use such constructions to parameterize more flexible
encoding distributions. Indeed, the results from Bloem-Reddy and Teh (2020) imply that for an exchangable
sequence HS = (Hs)s∈S ∈ R|S|×DE and random variable Z, the distribution q′(z|hS) is SS -invariant if and
only if there is a measurable function4 f⋆ : [0, 1] × M(RDE ) → RD such that

(HS , Z) a.s.= (HS , f⋆(Ξ,MHS )), where Ξ ∼ U [0, 1] and Ξ ⊥⊥ HS

with MHS (·) =
∑

s∈S δHs(·) being the empirical measure of hS , which retains the values of hS , but discards
their order. For variational densities from a location-scale family such as a Gaussian or Laplace distribution,
we find it more practical to consider a different reparameterization in the form Z = µ(hS) + σ(hS) ⊙ Ξ,
where Ξ is a sample from a parameter-free density p such as a standard Gaussian and Laplace distribution,
while

[
µ(hS), log σ(hS)

]
= f(hS) for a PI function f : R|S|×DE → R2D. Likewise, for mixture distributions

thereof, assume that for a PI function f ,[
µ1(hS), log σ1(hS), . . . , µK(hS), log σK(hS), log ω(hS)

]
= f(hS) ∈ R2DK+K

4The function f⋆ generally depends on the cardinality of S. Finite-length exchangeable sequences imply a de Finetti latent
variable representation only up to approximation errors (Diaconis and Freedman, 1980).
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and Z = µL(hS) + σL(hS) ⊙ Ξ with L ∼ Cat(ω(hS)) denoting the sampled mixture component out of K
mixtures. For simplicity, we consider here only two examples of PI functions f that have representations
with parameter ϑ in the form

fϑ(hS) = ρϑ

(∑
s∈S

gϑ(hS)s

)
for a function ρϑ : RDP → RDO and permutation-equivariant function gϑ : RN×DE → RN×DP .

Example 1 (Sum Pooling Encoders) The Deep Set (Zaheer et al., 2017) construction fϑ(hS) =
ρϑ

(∑
s∈S χϑ(hs)

)
applies the same neural network χϑ : RDE → RDP to each encoded feature hs. We

assume that χϑ is a feed-forward neural network and remark that pre-activation ResNets (He et al., 2016)
have been advocated for deeper χϑ. For exponential family models, the optimal natural parameters of
the posterior solve an optimization problem where the dependence on the generative parameters from the
different modalities decomposes as a sum, see Appendix F.

Example 2 (Set Transformer Encoders) Let MTBϑ be a multi-head pre-layer-norm transformer block
(Wang et al., 2019a; Xiong et al., 2020), see Appendix D for precise definitions. For some neural network
χϑ : RDE → RDP , set g0

S = χϑ(hS) and for k ∈ {1, . . . , L}, set gk
S = MTBϑ(gk−1

S ). We then consider
fϑ(hS) = ρϑ

(∑
s∈S gL

s

)
. This can be seen as a Set Transformer (Lee et al., 2019; Zhang et al., 2022a) model

without any inducing points as for most applications, a computational complexity that scales quadratically
in the number of modalities can be acceptable. In our experiments, we use layer normalization (Ba et al.,
2016) within the transformer model, although, for example, set normalization (Zhang et al., 2022a) could be
used alternatively.

Note that the PoE’s aggregation mechanism involves taking inverses, which can only be approximated by
the learned aggregation models. The considered permutation-invariant models can thus only recover a PoE
scheme under universal approximation assumptions.

Remark 11 (Context-aware pooling) Assuming a single head for the transformer encoder in Example
2 with head size D and projection matrices WQ, WK , WV ∈ RDP ×D, the attention scores for the initial input
sequence gS = g0

S = χϑ(hS) ∈ R|S|×DP are a(gs, gt) = ⟨W ⊤
Q gs, W ⊤

K gt⟩/
√

D. The attention outputs os ∈ RD

for s ∈ S can then be written as
os = 1

Z

∑
t∈S

κ(gs, gt)v(gt),

where Z =
∑

t∈S κ(gs, gt) > 0, v(gt) = W ⊤
V gt and

κ(gs, gt) = exp(a(gs, gt)) = exp
(

⟨W ⊤
Q gs, W ⊤

K gt⟩/
√

D
)

can be seen as a learnable non-symmetric kernel (Wright and Gonzalez, 2021; Cao, 2021). Conceptually, the
attention encoder pools a learnable D-dimensional function v using a learnable context-dependent weighting
function. While such attention models directly account for the interaction between the different encodings,
a DeepSet aggregation approach may require a sufficiently high-dimensional latent space DP to achieve
universal approximation properties (Wagstaff et al., 2022).

Remark 12 (Mixture-of-Product-of-Experts or MoPoEs) Sutter et al. (2021) introduced a MoPoE
aggregation scheme that extends MoE or PoE schemes by considering a mixture distribution of all 2M

modality subsets, where each mixture component consists of a PoE model, i.e.,

qMoPoE
ϕ (z|xM) = 1

2M

∑
xS ∈P(xM)

qPoE
ϕ (z|xS).

This can also be seen as another PI model. While it does not require learning separate encoding models for
all modality subsets, it, however, becomes computationally expensive to evaluate for large M . Our mixture
models using components with a SumPooling or SelfAttention aggregation can be seen as an alternative
that allows one to choose the number of mixture components K to be smaller than 2M , with non-uniform
weights, while the individual mixture components are not constrained to have a PoE form.
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Remark 13 (Pooling expert opinions) Combining expert distributions has a long tradition in decision
theory and Bayesian inference; see Genest and Zidek (1986) for early works, with popular schemes being linear
pooling (i.e., MoE) or log-linear pooling (i.e., PoE with tempered densities). These are optimal schemes for
minimizing different objectives, namely a weighted (forward or reverse) KL-divergence between the pooled
distribution and the individual experts (Abbas, 2009). Log-linear pooling operators are externally Bayesian,
allowing for consistent Bayesian belief updates when each expert updates her belief with the same likelihood
function (Genest et al., 1986).

3.2 Permutation-equivariance and private latent variables

In principle, the general permutation invariant aggregation schemes that have been introduced could also be
used for learning multi-modal models with private latent variables. For example, suppose that the generative
model factorizes as

pθ(z, x) = p(z)
∏

s∈M
pθ(xs|z′, z̃s) (9)

for z = (z′, z̃1, . . . , z̃M ) ∈ Z, for shared latent variables Z ′ and private latent variable Z̃s for each s ∈ M.
Note that for s ̸= t ∈ [M ],

Xs ⊥⊥ Z̃t | Z ′, Z̃s. (10)

Consequently,

pθ(z′, z̃S , z̃\S |xS) = pθ(z′, z̃S , |xS)pθ(z̃\S |z′, z̃S , xS) = pθ(z′, z̃S , |xS)pθ(z̃\S |z′, z̃S). (11)

An encoding distribution qϕ(z|xS) that approximates pθ(z|xS) should thus be unaffected by the inputs xS
when encoding z̃s for s /∈ S, provided that, a priori, all private and shared latent variables are independent.
Observe that for fϑ with the representation (3.1) where ρϑ has aggregated inputs y, and that parameterizes
the encoding distribution of z = (z′, z̃S , z̃\S), the gradients of its i-th dimension with respect to the modality
values xs is

∂

∂xs
[fϑ(hS(xS))i] = ∂ρϑ,i

∂y

(∑
t∈S

gϑ(hS(xS)t)
)

∂

∂xs

(∑
t∈S

gϑ(hS(xS))t

)
.

In the case of a SumPooling aggregation, the gradient simplifies to

∂ρϑ,i

∂y

(∑
t∈S

χϑ(ht(xt))
)

∂χϑ

∂h
(hs(xs)) ∂hs(xs)

∂xs
.

Suppose that the i-th component of ρϑ maps to the mean or log-standard deviation of some component of
Z̃s for some s ∈ M\S. Notice that only the first factor depends on i so that for this gradient to be zero, ρϑ,i

has to be locally constant around y =
∑

s∈S χϑ(hs(xs)) if some other components have a non-zero gradient
with respect to Xs. It it thus very likely that inputs Xs for s ∈ S can impact the distribution of the private
latent variables z̃\S .

However, the specific generative model also lends itself to an alternative parameterization that guarantees
that cross-modal likelihoods from X\S do not affect the encoding distribution of Z̃S under our new variational
objective. The assumption of private latent variables suggests an additional permutation-equivariance into
the encoding distribution that approximates the posterior in (11), in the sense that for any permutation
π ∈ SS , it holds that

q′
ϕ(z̃S |π · hφ(xS), z′) = q′

ϕ(π · z̃S |hφ(xS), z′),

assuming that all private latent variables are of the same dimension D.5 Indeed, suppose we have modality-
specific feature functions hφ,s such that {Hs = hφ,s(Xs)}s∈S is exchangeable. Clearly, (10) implies for any
s ̸= t that

hφ,s(Xs) ⊥⊥ Z̃t | Z ′, Z̃s.

5The effective dimension can vary across modalities in practice if the decoders are set to mask redundant latent dimensions.
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The results from Bloem-Reddy and Teh (2020) then imply, for fixed |S|, the existence of a function f⋆ such
that for all s ∈ S, almost surely,

(HS , Z̃s) = (HS , f⋆(Ξs, Z ′, Hs,MHS )), where Ξs ∼ U [0, 1] iid and Ξs ⊥⊥ HS . (12)

This fact suggests an alternative route to approximate the posterior distribution in (11): First, pθ(z̃\S |z′, z̃S)
can often be computed analytically based on the learned or fixed prior distribution. Second, a permutation-
invariant scheme can be used to approximate pθ(z′|xS). Finally, a permutation-equivariant scheme can
be employed to approximate pθ(z̃S |xS , z′) with a reparameterization in the form of (12). The variational
objective that explicitly uses private latent variables is detailed in Appendix E. Three examples of such
permutation-equivariant schemes are given below with pseudocode for optimizing the variational objective
given in Algorithm 2. Note that the assumption qϕ(z̃S |z′, z̃\S , xS) = qϕ(z̃S |z′, xS) is an inductive bias that
generally decreases the variational objective as it imposes a restriction on the encoding distribution that
only approximates the posterior where this independence assumption holds. However, this independence
assumption allows us to respect the modality-specific nature of the private latent variables during encod-
ing. In particular, for some permutation-invariant encoder qϕ(z′|xS) for the private latent variables and
permutation-equivariant encoder qϕ(z̃S |z′, xS) for the private latent variables of the observed modalities, we
can encode via

qϕ(z′, z̃M|xS) = qϕ(z′|xS)pθ(z̃\S |z′)qϕ(z̃S |z′, xS)

so that the modality-specific information of xS as encoded via z̃S is not impacted by the realisation Z̃\S of
modality-specific variation from the other modalities.

Example 3 (Permutation-equivariant PoE) Similar to previous work Wang et al. (2016); Lee and
Pavlovic (2021); Sutter et al. (2020), we consider an encoding density of the form

qϕ(z′, z̃M|xS) = qPoE
φ (z′|xS)

∏
s∈S

qN (z̃s|µ̃s,φ(xs), Σ̃s,φ(xs))
∏

s∈M\S

pθ(z̃s),

where
qPoE

φ (z′|xS) = 1
Z

pθ(z′)
∏
s∈S

qN (z′|µ′
s,φ(xs), Σ′

s,φ(xs))

is a (permutation-invariant) PoE aggregation, and we assumed that the prior density factorizes over the
shared and different private variables. For each modality s, we encode different features h′

s,φ = (µ′
s,φ, Σ′

s,φ)
and h̃s,φ = (µ̃s,φ, Σ̃s,φ) for the shared, respectively, private, latent variables. We followed previous works
(Tsai et al., 2019b; Lee and Pavlovic, 2021; Sutter et al., 2020) in that the encodings and prior distributions
for the modality-specific latent variables are independent from the shared latent variables. However, this
assumption can be relaxed, as long as the distributions remain Gaussian.

Example 4 (Permutation-equivariant Sum-Pooling) We consider an encoding density that is written
as

qϕ(z′, z̃M|xS) = qSumP
ϕ (z′|xS)qEquiv-SumP

ϕ (z̃S |z′, xS)
∏

s∈M\S

pθ(z̃s|z′).

Here, we use a (permutation-invariant) Sum-Pooling aggregation scheme for constructing the shared latent
variable Z ′ = µ′(hS)+σ′(hS)⊙Ξ′ ∼ qSumP

ϕ (z′|xS), where Ξ′ ∼ p and fϑ : R|S|×DE → RD given as in Example
(1) with

[
µ′(h), log σ′(h)

]
= fϑ(h). To sample Z̃S ∼ qEquiv-SumP

ϕ (z̃S |z′, xS), consider functions χj,ϑ : RDE →
RDP , j ∈ [3], and ρϑ : RDP → RDO , e.g., fully-connected neural networks. We define fEquiv-SumP

ϑ : Z ×
R|S|×DE → R|S|×DO via

fEquiv-SumP
ϑ (z′, hS)s = ρϑ

([∑
t∈S

χ0,ϑ(ht)
]

+ χ1,ϑ(z′) + χ2,ϑ(hs)
)

.

With
[
µ̃(hS)⊤, log σ̃(hS)⊤]⊤ = fEquiv-SumP

ϑ (z′, hS), we then set Z̃s = µ̃(hS)s + σ̃(hS)s ⊙ Ξ̃s for Ξ̃s ∼ p iid,
hs = hφ,s(xs) for modality-specific feature functions hφ,s : Xs → RDE .
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Example 5 (Permutation-equivariant Self-Attention) Similar to a Sum-Pooling approach, we con-
sider an encoding density that is written as

qϕ(z′, z̃M|xS) = q SA
ϕ (z′|xS)qEquiv-SA

ϕ (z̃S |z′, xS)
∏

s∈M\S

pθ(z̃s|z′).

Here, the shared latent variable Z ′ is sampled via the permutation-invariant aggregation above by summing
the elements of a permutation-equivariant transformer model of depth L′. For encoding the private latent
variables, we follow the example above but set[

µ̃(hS)⊤, log σ̃(hS)⊤]⊤ = fEquiv-SA
ϑ (z′, hS)s = gL

S ,

with gk
S = MTBϑ(gk−1

S ) an g0 = (χ1,ϑ(hs) + χ2,ϑ(z′))s∈S .

Remark 14 (Cross-modal context variables and permutation-equivariant models) In contrast to
the PoE model, where the private encodings are independent, the private encodings are dependent in the Sum-
Pooling model by conditioning on a sample from the shared latent space. The shared latent variable Z ′ can be
seen as a shared cross-modal context variable, and similar probabilistic constructions to encode such context
variables via permutation-invariant models have been suggested in few-shot learning algorithms (Edwards
and Storkey, 2016; Giannone and Winther, 2022) or, particularly, for neural process models (Garnelo et al.,
2018b;a; Kim et al., 2018). Permutation-equivariant models have been studied for stochastic processes where
invariant priors correspond to equivariant posteriors (Holderrieth et al., 2021), such as Gaussian processes
or Neural processes with private latent variables, wherein dependencies in the private latent variables can
be constructed hierarchically (Wang and Van Hoof, 2020; Xu et al., 2023).

4 Identifiability and model extensions

4.1 Identifiability

Identifiability of parameters and latent variables in latent structure models is a classic problem (Koopmans
and Reiersol, 1950; Kruskal, 1976; Allman et al., 2009), that has been studied increasingly for non-linear
latent variable models, e.g., for ICA (Hyvarinen and Morioka, 2016; Hälvä and Hyvarinen, 2020; Hälvä et al.,
2021), VAEs (Khemakhem et al., 2020a; Zhou and Wei, 2020; Wang et al., 2021; Moran et al., 2021; Lu et al.,
2022; Kim et al., 2023), EBMs (Khemakhem et al., 2020b), flow-based (Sorrenson et al., 2020) or mixture
models (Kivva et al., 2022).

Non-linear generative models are generally unidentifiable without imposing some structure (Hyvärinen and
Pajunen, 1999; Xi and Bloem-Reddy, 2022). Yet, identifiability up to some ambiguity can be achieved in
some conditional models based on observed auxiliary variables and injective decoder functions wherein the
prior density is conditional on auxiliary variables. Observations from different modalities can act as auxiliary
variables to obtain identifiability of conditional distributions given some modality subset under analogous
assumptions.

Example 6 (Auxiliary variable as a modality) In the iVAE model (Khemakhem et al., 2020a), the
latent variable distribution pθ(z|x1) is independently modulated via an auxiliary variable X1 = U . Instead
of interpreting this distribution as a (conditional) prior density, we view it as a posterior density given
the first modality X1. Khemakhem et al. (2020a) estimate a model for another modality X2 by lower
bounding log pθ(x2|x1) via L\{1} under the assumption that qϕ(z|x1) is given by the prior density pθ(z|x1).
Similarly, Mita et al. (2021) optimize log pθ(x1, x2) by a double VAE bound that reduces to L for a masking
distribution ρ(s1, s2) = (δ1 ⊗ δ0)(s1, s2) that always masks the modality X2 and choosing to parameterize
separate encoding functions for different conditioning sets. Our bound thus generalizes these procedures to
multiple modalities in a scalable way.

We are interested in identifiability, conditional on having observed some non-empty modality subset S ⊂ M.
For illustration, we translate an identifiability result from the uni-modal iVAE setting in Lu et al. (2022),
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which does not require the conditional independence assumption from Khemakhem et al. (2020a). We assume
that the encoding distribution qϕ(z|xS) approximates the true posterior pθ(z|xS) and belongs to a strongly
exponential family, i.e.,

pθ(z|xS) = qϕ(z|xS) = pEF
Vϕ,S ,λϕ,S

(z|xS), (13)
with

pEF
VS ,λS

(z|xS) = µ(z) exp [⟨VS(z), λ(xS)⟩ − log ΓS(λS(xS))] ,

where µ is a base measure, VS : Z → Rk is the sufficient statistics, λS(xS) ∈ Rk the natural parameters and
ΓS a normalizing term. Furthermore, one can only reduce the exponential component to the base measure
on sets having measure zero. In this section, we assume that

pθ(xs|z) = ps,ϵ(xs − fθ,s(z)) (14)

for some fixed noise distribution ps,ϵ with a Lebesgue density, which excludes observation models for discrete
modalities. Let ΘS be the domain of the parameters θS = (f\S , VS , λS) with f\S : Z ∋ z 7→ (fs(z))s∈M\S ∈
×s∈M\SXs = X\S . Assuming (13), note that

pθS (x\S |xS) =
∫

pVS ,λS (z|xS)p\S,ϵ(x\S − f\S(z))dz,

with p\S,ϵ = ⊗s∈M\Sps,ϵ. We define an equivalence relation on ΘS by (f\S , VS , λS) ∼AS (f̃\S , ṼS , λ̃S) iff
there exist invertible AS ∈ Rk×k and cS ∈ Rk such that

VS(f−1
\S (x\S)) = AS ṼS(f̃−1

\S (x\S)) + cS

for all x\S ∈ X\S .

Proposition 15 (Weak identifiability) Consider the data generation mechanism pθ(z, x) =
pθ(z)

∏
s∈M pθ(xs|z) where the observation model satisfies (14) for an injective f\S . Suppose further

that pθ(z|xS) is strongly exponential and (13) holds. Assume that the set {x\S ∈ X\S |φ\S,ϵ(x\S) = 0} has
measure zero, where φ\S,ϵ is the characteristic function of the density p\S,ϵ. Furthermore, suppose that
there exist k + 1 points x0

S , . . . , xk
S ∈ XS such that

L =
[
λS(x1

S) − λS(x0
S), . . . , λS(xk

S) − λS(x0
S)
]

∈ Rk×k

is invertible. Then pθS (x\S |xS) = pθ̃S
(x\S |xS) for all x ∈ X implies θ ∼AS θ̃.

This result follows from Theorem 4 in Lu et al. (2022). Note that pθS (x\S |xS) = pθ̃S
(x\S |xS) for all

x ∈ X implies with the regularity assumption on φ\S,ϵ that the transformed variables Z = f−1
\S (X\S) and

Z̃ = f̃−1
\S (X\S) have the same density function conditional on XS .

Remark 16 (Conditional identifiability) The identifiability result above is about conditional models
and does not contradict the un-identifiability of VAEs: When S = ∅ and we view x = xM as one modality,
then the parameters of pθ∅(x) characterized by the parameters V∅ and λ∅ of the prior pθ∅(z|x∅) and the
encoders fM will not be identifiable as the invertibility condition will not be satisfied.

Remark 17 (Private latent variables) For models with private latent variables, we might not expect
that conditioning on XS helps to identify Z̃\S as

pθ(z′, z̃S , z̃\S |xS) = pθ(z′, z̃S |xS)pθ(z̃\S |z′, z̃\S).

Indeed, Proposition 15 will not apply in such models as f\S will not be injective.

Remark 18 (Data supported on low-dimensional manifolds) Note that (14) and (13) imply that
each modality has a Lebesgue density under the generative model. This assumption may not hold for some
modalities, such as imaging data that can be supported (closely) on a lower-dimensional manifold (Roweis
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and Saul, 2000), causing issues in likelihood-based methods such as VAEs (Dai and Wipf, 2018; Loaiza-
Ganem et al., 2022). Moreover, different conditioning sets or modalities may result in different dimensions
of the underlying manifold for conditional data (Zheng et al., 2022). Some two-step approaches (Dai and
Wipf, 2018; Zheng et al., 2022) first estimate the dimension r of the ground-truth manifold as a function
of the encoder variance relative to the variance under the (conditional) prior for each latent dimension i,
i ∈ [D], with r ≤ D. It would, therefore, be interesting to analyze in future work if more flexible aggregation
schemes that do not impose strong biases on the variance components of the encoder can better learn the
manifold dimensions in conditional or multi-modal models following an analogous two-step approach.

Recall that the identifiability considered here concerns parameters of the multi-modal posterior distribution
and the conditional generative distribution. It is thus preliminary to estimation and only concerns the gen-
erative model and not the inference approach. However, both the multi-modal posterior distribution and
the conditional generative distribution are intractable. In practice, we thus replace them with approxima-
tions. We believe that our inference approach is beneficial for this type of identifiability when making these
variational approximations because (a) unlike some other variational bounds, the posterior is the optimal
variational distribution with L\S(x) being an approximation of a lower bound on log pθ(x\S |xS), see Remark
10, and (b) the trainable aggregation schemes can be more flexible for approximating the optimal encoding
distribution.

4.2 Mixture models

An alternative to the choice of uni-modal prior densities pθ has been to use Gaussian mixture priors (Johnson
et al., 2016; Jiang et al., 2017; Dilokthanakul et al., 2016) or more flexible mixture models (Falck et al.,
2021). Following previous work, we include a latent cluster indicator variable c ∈ [K] that indicates the
mixture component out of K possible mixtures with augmented prior pθ(c, z) = pθ(c)pθ(z|c). The classic
example is pθ(c) being a categorical distribution and pθ(z|c) a Gaussian with mean µc and covariance matrix
Σc. Similar to Falck et al. (2021) that use an optimal variational factor in a mean-field model, we use an
optimal factor of the cluster indicator in a structured variational density qϕ(c, z|xS) = qϕ(z|xS)qϕ(c|z, xS)
with qϕ(c|z, xS) = pθ(c|z). Appendix G details how one can optimize an augmented multi-modal bound.
Concurrent work (Palumbo et al., 2024) considered a similar optimal variational factor for a discrete mixture
model under a MoE aggregation.

4.3 Missing modalities

In practical applications, modalities can be missing for different data points. We describe this missing-
ness pattern by missingness mask variables ms ∈ {0, 1} where ms = 1 indicates that observe modal-
ity s, while ms = 0 means it is missing. The joint generative model with missing modalities will be of
the form pθ(z, x, m) = pθ(z)

∏
s∈M pθ(xs|z)pθ(m|x) for some distribution pθ(m|x) over the mask variables

m = (ms)s∈M. For S ⊂ M, we denote by xo
S = {xs : ms = 1, s ∈ S} and xm

S = {xs : ms = 0, s ∈ S} the set of
observed, respectively missing, modalities. The full likelihood of the observed and missingness masks becomes
then pθ(xo

S , m) =
∫

pθ(z)
∏

s∈S pθ(xs|z)pθ(m|x)dxm
s dz. If pθ(m|x) does not depend on the observations, that

is, observations are missing completely at random (Rubin, 1976), then the missingness mechanisms pθ(m|x)
for inference approaches maximizing pθ(xo, m) can be ignored. Consequently, one can instead concentrate
on maximizing log pθ(xo) only, based on the joint generative model pθ(z, xo) = pθ(z)

∏
{s∈M : ms=1} pθ(xs|z).

In particular, one can employ the variational objectives above by considering only the observed modalities.
Since masking operations are readily supported for the considered permutation-invariant models, appropri-
ate imputation strategies (Nazabal et al., 2020; Ma et al., 2019) for the encoded features of the missing
modalities are not necessarily required. Settings allowing for not (completely) at random missingness have
been considered in the uni-modal case, for instance, in Ipsen et al. (2021); Ghalebikesabi et al. (2021); Gong
et al. (2021), and we leave multi-modal extensions thereof for future work for a given aggregation approach.
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5 Experiments

We conduct a series of numerical experiments to illustrate the effects of different variational objectives and
aggregation schemes. Recall that the full reconstruction log-likelihood is the negative full distortion −DM
based on all modalities, while the full rate RM is the averaged KL between the encoding distribution of all
modalities and the prior. Note that mixture-based bounds maximize directly the cross-modal log-likelihood
−Dc

\S , see (4), and do not contain a cross-rate term R\S , i.e. the KL between the encoding distribution for all
modalities relative to a modality subset, as a regulariser, in contrast to our bound (Lemma 7 and Corollary
8). The log-likelihood should be higher if a generative model is able to capture modality-specific information
for models trained with β = 1. For arbitrary β, we can take a rate-distortion perspective and look at how
different models self-reconstruct all modalities, i.e., the full reconstruction term −DM, relative to the KL-
divergence between the multi-modal encoding distribution and the prior, i.e. RM. This corresponds to a
rate-distortion analysis of a VAE that merges all modalities into a single modality. A high full-reconstruction
term is thus indicative of the encoder and decoder being able to reconstruct all modalities precisely so that
they do not produce an average prediction. Note that neither our objective nor the mixture-based bound
optimize for the full-reconstruction term directly.

5.1 Linear multi-modal VAEs

The relationship between uni-modal VAEs and probabilistic PCA (Tipping and Bishop, 1999) has been
studied in previous work (Dai et al., 2018; Lucas et al., 2019; Rolinek et al., 2019; Huang et al., 2020;
Mathieu et al., 2019). We analyze how different multi-modal fusion schemes and multi-modal variational
objectives affect (a) the learned generative model in terms of its true marginal log-likelihood (LLH) and (b)
the latent representations in terms of information-theoretic quantities and identifiability. To evaluate the
(weak) identifiability of the method, we follow Khemakhem et al. (2020a;b) to compute the mean correlation
coefficient (MCC) between the true latent variables Z and samples from the variational distribution qϕ(·|xM)
after an affine transformation using CCA.

Generative model. Suppose that a latent variable Z taking values in RD is sampled from a standard
Gaussian prior pθ(z) = N (0, I) generates M data modalities Xs ∈ RDs , D ≤ Ds, based on a linear decoding
model pθ(xs|z) = N (Wsz + bs, σ2 I) for a factor loading matrix Ws ∈ RDs×D, bias bs ∈ RDs and observation
scale σ > 0. Note that the annealed likelihood function p̃β,θ(xs|z) = N (Wsz + bs, βσ2 I) corresponds to a
scaling of the observation noise, so that we consider only the choice σ = 1, set σβ = σβ1/2 and vary β > 0.
It is obvious that for any S ⊂ M, it holds that p̃β,θ(xS |z) = N (WSz + bS , σ2

β IS), where WS and bS are
given by concatenating row-wise the emission or bias matrices for modalities in S, while σ2

β IS is the diagonal
matrix of the variances of the corresponding observations. By standard properties of Gaussian distributions,
it follows that p̃β,θ(xS) = N (bS , CS) where CS = WSW ⊤

S +σ2
β IS is the data covariance matrix. Furthermore,

with KS = W ⊤
S WS + σ2

β Id, the adjusted posterior is p̃β,θ(z|xS) = N (K−1
S W ⊤

S (xS − bS), σ2
β Id K−1

S ). If we
sample orthogonal rows of W , the posterior covariance becomes diagonal so that it can - in principle - be
well approximated by an encoding distribution with a diagonal covariance matrix. Indeed, the inverse of
the posterior covariance matrix is only a function of the generative parameters of the modalities within S
and can be written as the sum σ2

β I +W ⊤
S WS = σ2

β I +
∑

s∈S W ⊤
s Ws, while the posterior mean function is

xS 7→ (σ2
β I +

∑
s∈S W ⊤

s Ws)−1∑
s∈S Ws(xs − bs).

Illustrative example. We consider a bi-modal setup comprising a less noisy and more noisy modality.
Concretely, for a latent variable Z = (Z1, Z2, Z3) ∈ R3, assume that the observed modalities can be repre-
sented as

X1 =Z0 + Z1 + U1

X2 =Z0 + 10Z2 + U2,

for a standard Gaussian prior Z ∼ N (0, I) and independent noise variables U1, U2 ∼ N (0, 1). Note that the
second modality is more noisy compared to the first one. The results in Table 1 for the obtained log-likelihood
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Table 1: Gaussian model with a noisy and less noisy modality. Relative difference of the true MLE vs
the (analytical) LLH from the learned model in the first two columns, followed by multi-modal information
theoretic quantities.

Relative LLH gap Full Reconstruction Full Rates Cross Prediction Cross Rates
Aggregation our obj. mixture bound our obj. mixture bound our obj. mixture bound our ob. mixture bound our obj. mixture bound
PoE 1.29 7.11 −2.30 · 1035 −2.2 · 1035 2.1 · 1035 2.0 · 1035 −2.4 · 1034 −1.9 · 1035 1.4 · 1035 1.7 · 1035

MoE 0.11 0.6 -32.07 -30.09 1.02 2.84 -33.27 -28.52 2.37 19.33
SumPooling 3.6 · 10−5 0.06 -2.84 -3.23 2.88 2.82 -52.58 -27.26 1.42 27.35
SelfAttention 3.4 · 10−5 0.06 -2.85 -3.23 2.87 2.82 -52.59 -27.25 1.42 27.41

Table 2: Gaussian model with five modalities: Relative difference of true LLH to the learned LLH. MCC to
true latent. The generative model for the invariant aggregation schemes uses dense decoders, whereas the
ground truth model for the permutation-equivariant encoders uses sparse decoders to account for private
latent variables. We report mean values with standard deviations in parentheses over five independent runs.

Invariant aggregation Equivariant aggregation
Proposed objective Mixture bound Proposed objective Mixture bound

Aggregation LLH Gap MCC LLH Gap MCC
PoE 0.03 (0.058) 0.75 (0.20) 0.04 (0.074) 0.77 (0.21) 0.00 (0.000) 0.91 (0.016) 0.01 (0.001) 0.88 (0.011)
MoE 0.01 (0.005) 0.82 (0.04) 0.02 (0.006) 0.67 (0.03)
SumPooling 0.00 (0.000) 0.84 (0.00) 0.00 (0.002) 0.84 (0.02) 0.00 (0.000) 0.85 (0.004) 0.00 (0.000) 0.82 (0.003)
SelfAttention 0.00 (0.003) 0.84 (0.00) 0.02 (0.007) 0.83 (0.00) 0.00 (0.000) 0.83 (0.006) 0.00 (0.000) 0.83 (0.003)

values show first that learnable aggregation models yield higher log-likelihoods6, and second that our bound
yields higher log-likelihood values compared to mixture-based bounds for any given fixed aggregation model.
We also compute various information theoretic quantities, confirming that our bound leads to higher full
reconstructions at higher full rates and lower cross predictions at lower cross rates compared to mixture-
based bounds. More flexible aggregation schemes increase the full and cross predictions for any given bound
while not necessarily increasing the full or cross rates, i.e., they can result in an improved point within a
rate-distortion curve for some configurations.

Simulation study. We consider M = 5 modalities following multi-variate Gaussian laws. We consider
generative models, where all latent variables are shared across all modalities, as well as generative models,
where only parts of the latent variables are shared across all modalities, while the remaining latent vari-
ables are modality-specific. The setting of private latent variables can be incorporated by imposing sparsity
structures on the decoding matrices and allows us to analyze scenarios with considerable modality-specific
variation described through private latent variables. We provide more details about the data generation
mechanisms in Appendix J. For illustration, we use multi-modal encoders with shared latent variables using
invariant aggregations in the first case and multi-modal encoders that utilize additional equivariant aggre-
gations for the private latent variables in the second case. Results in Table 2 suggest that more flexible
aggregation schemes improve the LLH and the identifiability for both variational objectives. Furthermore,
our new bound yields higher LLH for a given aggregation scheme.

5.2 Non-linear identifiable models

Auxiliary labels as modalities. We construct artificial data following Khemakhem et al. (2020a), with
the latent variables Z ∈ RD being conditionally Gaussian having means and variances that depend on
an observed index value X2 ∈ [K]. More precisely, pθ(z|x2) = N (µx2 , Σx2), where µc ∼ ⊗ U(−5, 5) and
Σc = diag(Λc), Λc ∼ ⊗ U(0.5, 3) iid for c ∈ [K]. The marginal distribution over the labels is uniform
U([K]) so that the prior density pθ(z) =

∫
[K] pθ(z|x2)pθ(x2)dx2 becomes a Gaussian mixture. We choose

an injective decoding function f1 : RD → RD1 , D ≤ D1, as a composition of MLPs with LeakyReLUs and
full rank weight matrices having monotonically increasing row dimensions (Khemakhem et al., 2020b), with
iid randomly sampled entries. We assume X1|Z ∼ N (f1(Z), σ2 I) and set σ = 0.1, D = D1 = 2. f1 has a

6We found that a PoE model can have numerical issues here.
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(a) Data X (b) Proposed objec-
tive +SumPool

(c) Proposed objec-
tive +PoE

(d) Mixture bound
+SumPool

(e) Mixture bound
+PoE

(f) True Z (g) Proposed objec-
tive +SumPool

(h) Proposed objec-
tive +PoE

(i) Mixture bound
+SumPool

(j) Mixture bound
+PoE

Figure 1: Continuous data modality in (a) and reconstructions using different bounds and fusion models in
(b)-(e). The true latent variables are shown in (f), with the inferred latent variables in (g)-(j) with a linear
transformation indeterminacy. Labels are color-coded.

single hidden layer of size D1 = 2. One realization of bi-modal data X, the true latent variable Z, as well as
inferred latent variables and reconstructed data for a selection of different bounds and aggregation schemes,
are shown in Figure 1, with more examples given in Figures 4 and 5. We find that learning the aggregation
model through a SumPooling model improves the data reconstruction and better recovers the ground truth
latents, up to rotations, in contrast to a PoE model. Simulating five different such datasets, the results
in Table 3 indicate first that our bound obtains better log-likelihood estimates for different fusion schemes.
Second, it demonstrates the advantages of our new fusion schemes that achieve better log-likelihoods for both
bounds. Third, it shows the benefit of using aggregation schemes that have the capacity to accommodate
prior distributions different from a single Gaussian. Also, MoE schemes lead to low MCC values, while PoE
schemes have high MCC values.

Table 3: Non-linear identifiable model with one real-valued modality and an auxiliary label acting as a second
modality: The first four rows use a fixed standard Gaussian prior, while the last four rows use a Gaussian
mixture prior with 5 components. Mean and standard deviation over 4 repetitions. Log-likelihoods are
estimated using importance sampling with 64 particles.

Proposed objective Mixture bound
Aggregation LLH (β = 1) MCC (β = 1) MCC (β = 0.1) LLH (β = 1) MCC (β = 1) MCC (β = 0.1)
PoE -43.4 (10.74) 0.98 (0.006) 0.99 (0.003) -318 (361.2) 0.97 (0.012) 0.98 (0.007)
MoE -20.5 (6.18) 0.94 (0.013) 0.93 (0.022) -57.9 (6.23) 0.93 (0.017) 0.93 (0.025)
SumPooling -17.9 (3.92) 0.99 (0.004) 0.99 (0.002) -18.9 (4.09) 0.99 (0.005) 0.99 (0.008)
SelfAttention -18.2 (4.17) 0.99 (0.004) 0.99 (0.003) -18.6 (3.73) 0.99 (0.004) 0.99 (0.007)
SumPooling -15.4 (2.12) 1.00 (0.001) 0.99 (0.004) -18.6 (2.36) 0.98 (0.008) 0.99 (0.006)
SelfAttention -15.2 (2.05) 1.00 (0.001) 1.00 (0.004) -18.6 (2.27) 0.98 (0.014) 0.98 (0.006)
SumPoolingMixture -15.1 (2.15) 1.00 (0.001) 0.99 (0.012) -18.2 (2.80) 0.98 (0.010) 0.99 (0.005)
SelfAttentionMixture -15.3 (2.35) 0.99 (0.005) 0.99 (0.004) -18.4 (2.63) 0.99 (0.007) 0.99 (0.007)

Multiple modalities. Considering the same generative model for Z with a Gaussian mixture prior,
suppose now that instead of observing the auxiliary label, we observe multiple modalities Xs ∈ RDs ,
Xs|Z ∼ N (fs(Z), σ2 I), for injective MLPs fs constructed as above, with D = 10, Ds = 25, σ = 0.5
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Table 4: Partially observed (η = 0.5) and fully observed (η = 0) non-linear identifiable model with 5
modalities: The first four rows use a fixed standard Gaussian prior, while the last four rows use a Gaussian
mixture prior.

Partially observed Fully observed
Proposed objective Mixture bound Proposed objective Mixture bound

Aggregation LLH MCC LLH MCC LLH MCC LLH MCC
PoE -250.9 (5.19) 0.94 (0.015) -288.4 (8.53) 0.93 (0.018) -473.6 (9.04) 0.98 (0.005) -497.7 (11.26) 0.97 (0.008)
MoE -250.1 (4.77) 0.92 (0.022) -286.2 (7.63) 0.90 (0.019) -477.9 (8.50) 0.91 (0.014) -494.6 (9.20) 0.92 (0.004)
SumPooling -249.6 (4.85) 0.95 (0.016) -275.6 (7.35) 0.92 (0.031) -471.4 (8.29) 0.99 (0.004) -480.5 (8.84) 0.98 (0.005)
SelfAttention -249.7 (4.83) 0.95 (0.014) -275.5 (7.45) 0.93 (0.022) -471.4 (8.97) 0.99 (0.002) -482.8 (10.51) 0.98 (0.004)
SumPooling -247.3 (4.23) 0.95 (0.009) -269.6 (7.42) 0.94 (0.018) -465.4 (8.16) 0.98 (0.002) -475.1 (7.54) 0.98 (0.003)
SelfAttention -247.5 (4.22) 0.95 (0.013) -269.9 (6.06) 0.93 (0.022) -469.3 (4.76) 0.98 (0.003) -474.7 (8.20) 0.98 (0.002)
SumPoolingMixture -244.8 (4.44) 0.95 (0.011) -271.9 (6.54) 0.93 (0.021) -464.5 (8.16) 0.99 (0.003) -474.2 (7.61) 0.98 (0.004)
SelfAttentionMixture -245.4 (4.55) 0.96 (0.010) -270.3 (5.96) 0.94 (0.016) -464.4 (8.50) 0.99 (0.003) -473.6 (8.24) 0.98 (0.002)

Table 5: Test LLH estimates for the joint data (M+S+T) and marginal data (importance sampling with
512 particles). The first part of the table is based on the same generative model with shared latent variable
Z ∈ R40, while the second part of the table is based on a restrictive generative model with a shared latent
variable Z ′ ∈ R10 and modality-specific latent variables Z̃s ∈ R10.

Proposed objective Mixture bound
Aggregation M+S+T M S T M+S+T M S T
PoE+ 6872 (9.62) 2599 (5.6) 4317 (1.1) -9 (0.2) 5900 (10) 2449 (10.4) 3443 (11.7) -19 (0.4)
PoE 6775 (54.9) 2585 (18.7) 4250 (8.1) -10 (2.2) 5813 (1.2) 2432 (11.6) 3390 (17.5) -19 (0.1)
MoE+ 5428 (73.5) 2391 (104) 3378 (92.9) -74 (88.7) 5420 (60.1) 2364 (33.5) 3350 (58.1) -112 (133.4)
MoE 5597 (26.7) 2449 (7.6) 3557 (26.4) -11 (0.1) 5485 (4.6) 2343 (1.8) 3415 (5.0) -17 (0.4)
SumPooling 7056 (124) 2478 (9.3) 4640 (114) -6 (0.0) 6130 (4.4) 2470 (10.3) 3660 (1.5) -16 (1.6)
SelfAttention 7011 (57.9) 2508 (18.2) 4555 (38.1) -7 (0.5) 6127 (26.1) 2510 (12.7) 3621 (8.5) -13 (0.2)
PoE+ 6549 (33.2) 2509 (7.8) 4095 (37.2) -7 (0.2) 5869 (29.6) 2465 (4.3) 3431 (8.3) -19 (1.7)
SumPooling 6337 (24.0) 2483 (9.8) 3965 (16.9) -6 (0.2) 5930 (23.8) 2468 (16.8) 3491 (18.3) -7 (0.1)
SelfAttention 6662 (20.0) 2516 (8.8) 4247 (31.2) -6 (0.4) 6716 (21.8) 2430 (26.9) 4282 (49.7) -27 (1.1)

and K = M = 5. We consider a semi-supervised setting where modalities are missing completely at random,
as in Zhang et al. (2019), with a missing rate η as the sample average of 1

|M|
∑

s∈M(1 − Ms). Table 4 shows
that using the new variational objective improves the LLH and the identifiability of the latent representation.
Furthermore, using learnable aggregation schemes benefits both variational objectives.

5.3 MNIST-SVHN-Text

Following previous work (Sutter et al., 2020; 2021; Javaloy et al., 2022), we consider a tri-modal dataset based
on augmenting the MNIST-SVHN dataset (Shi et al., 2019) with a text-based modality. Herein, SVHN con-
sists of relatively noisy images, whilst MNIST and text are clearer modalities. Multi-modal VAEs have
been shown to exhibit differing performances relative to their multi-modal coherence, latent classification
accuracy or test LLH, see Appendix I for definitions. Previous works often differ in their hyperparameters,
from neural network architectures, latent space dimensions, priors and likelihood families, likelihood weight-
ings, decoder variances, etc. We have chosen the same hyperparameters for all models, thereby providing
a clearer disentanglement of how either the variational objective or the aggregation scheme affects different
multi-modal evaluation measures. In particular, we consider multi-modal generative models with (i) shared
latent variables and (ii) private and shared latent variables. We also consider PoE or MoE schemes (denoted
PoE+, resp., MoE+) with additional neural network layers in their modality-specific encoding functions so
that the number of parameters matches or exceeds those of the introduced PI models, see Appendix M.5 for
details. For models without private latent variables, estimates of the test LLHs in Table 5 suggest that our
bound improves the LLH across different aggregation schemes for all modalities and different βs (Table 7),
with similar results for PE schemes, except for a Self-Attention model. More flexible fusion schemes yield
higher LLHs for both bounds. Qualitative results for the reconstructed modalities are given in Figures 2 with
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shared latent variables, in Figure 8 for different β-hyperparameters and in Figure 9 for models with private
latent variables. Cross-generation of the SVHN modality is challenging for the mixture-based bound with
all aggregation schemes. In contrast, our bound, particularly when combined with learnable aggregation
schemes, leads to more realistic samples of the cross-generated SVHN modality. No variational objective or
aggregation scheme performs best across all modalities by the generative coherence measures (see Table 6
for uni-modal inputs, Table 8 for bi-modal ones and Tables 9- 12 for models with private latent variables
and different βs), along with reported results from external baselines (MVAE, MMVAE, MoPoE, MMJSD,
MVTCAE). Overall, our objective is slightly more coherent for cross-generating SVHN or Text, but less
coherent for MNIST. The mixture-based bound tends to improve the unsupervised latent classification ac-
curacy across different fusion approaches and modalities, see Table 13. To provide complementary insights
into the trade-offs for the different objectives and fusion schemes, we consider a multi-modal rate-distortion
evaluation in Figure 3. Ignoring MoE where reconstructions are similar, our bound improves the full recon-
struction with higher full rates and across various fusion schemes. The mixture-based bound yields improved
cross-predictions for all aggregation models, with increased cross-rate terms. Flexible PI architectures for
our bound improve the full reconstruction, even at lower full rates.

(a) Proposed objective (b) Mixture-based bound

Figure 2: Conditional generation for different aggregation schemes and bounds and shared latent variables.
The first column is the conditioned modality. The next three columns are the generated modalities using a
SumPooling aggregation, followed by the three columns for a SelfAttention aggregation, followed by PoE+,
and lastly MoE+.

5.4 Summary of experimental results

We presented a series of numerical experiments that illustrate the benefits of learning more flexible aggre-
gation models and that optimizing our variational objective leads to higher log-likelihood values. Overall,
we find that for a given choice of aggregation scheme, our objective achieves a higher log-likelihood across
the different experiments. Likewise, fixing the variational objective, we observe that Sum-Pooling or Self-
Attention encoders achieve higher multi-modal log-likelihoods compared to MoE or PoE schemes. Moreover,
we demonstrate that our variational objective results in models that differ in their information theoretic
quantities compared to those models trained with a mixture-based bound. In particular, our variational ob-
jective achieves higher full-reconstruction terms with higher full rates across different data sets, aggregation
schemes, and beta values. Conversely, the mixture-based bound improves the cross-prediction while having
higher cross-rate terms.
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Table 6: Conditional coherence with shared latent variables and uni-modal inputs. The letters on the second
line represent the generated modality based on the input modalities on the line below it.

Proposed objective Mixture bound
M S T M S T

Aggregation M S T M S T M S T M S T M S T M S T
PoE 0.97 0.22 0.56 0.29 0.60 0.36 0.78 0.43 1.00 0.96 0.83 0.99 0.11 0.57 0.10 0.44 0.39 1.00
PoE+ 0.97 0.15 0.63 0.24 0.63 0.42 0.79 0.35 1.00 0.96 0.83 0.99 0.11 0.59 0.11 0.45 0.39 1.00
MoE 0.96 0.80 0.99 0.11 0.59 0.11 0.44 0.37 1.00 0.94 0.81 0.97 0.10 0.54 0.10 0.45 0.39 1.00
MoE+ 0.93 0.77 0.95 0.11 0.54 0.10 0.44 0.37 0.98 0.94 0.80 0.98 0.10 0.53 0.10 0.45 0.39 1.00
SumPooling 0.97 0.48 0.87 0.25 0.72 0.36 0.73 0.48 1.00 0.97 0.86 0.99 0.10 0.63 0.10 0.45 0.40 1.00
SelfAttention 0.97 0.44 0.79 0.20 0.71 0.36 0.61 0.43 1.00 0.97 0.86 0.99 0.10 0.63 0.11 0.45 0.40 1.00

Results from Sutter et al. (2021), Sutter et al. (2020) and Hwang et al. (2021)
MVAE NA 0.24 0.20 0.43 NA 0.30 0.28 0.17 NA
MMVAE NA 0.75 0.99 0.31 NA 0.30 0.96 0.76 NA
MoPoE NA 0.74 0.99 0.36 NA 0.34 0.96 0.76 NA
MMJSD NA 0.82 0.99 0.37 NA 0.36 0.97 0.83 NA
MVTCAE (w/o T) NA 0.60 NA 0.82 NA NA NA NA NA

(a) Full Reconstruction −DM (b) Cross Prediction −Dc
\S

(c) Full Rates RM (d) Cross Rates R\S

Figure 3: Rate and distortion terms for MNIST-SVHN-Text with shared latent variables (β = 1) for our
proposed objective (’Masked’) and the ’Mixture’ based bound.

6 Conclusion

Limitations. A drawback of our bound is that computing a gradient step is more expensive as it requires
drawing samples from two encoding distributions. Similarly, learning aggregation functions are more compu-
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tationally expensive compared to fixed schemes. Mixture-based bounds might be preferred if one is interested
primarily in cross-modal reconstructions.

Outlook. Using modality-specific encoders to learn features and aggregating them with a PI function is
clearly not the only choice for building multi-modal encoding distributions. However, it allows us to utilize
modality-specific architectures for the encoding functions. Alternatively, our bounds could also be used, e.g.,
when multi-modal transformer architectures (Xu et al., 2022) encode a distribution on a shared latent space.
Our approach applies to general prior densities if we can compute its cross-entropy relative to the multi-
modal encoding distributions. An example would be to apply it with more flexible prior distributions, e.g., as
specified via score-based diffusion models (Vahdat et al., 2021). Likewise, diffusion models could be utilized
to specify PI conditional prior distribution in the conditional bound by utilizing permutation-equivariant
score models (Dutordoir et al., 2023; Yim et al., 2023; Mathieu et al., 2023).
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A Multi-modal distribution matching

Proof [Proof of Proposition 1] The equations for LS(xS) are well known for uni-modal VAEs, see for example
Zhao et al. (2019). To derive similar representations for the conditional bound, note that the first equation
(ZXconditional) for matching the joint distribution of the latent and the missing modalities conditional on a
modality subset follows from the definition of L\S ,∫

pd(x\S |xS)L\S(x, θ, ϕ)dx\S

=
∫

pd(x\S |xS)
∫

qϕ(z|x)
[
log pθ(x\S |z) − log qϕ(z|x) + log qϕ(z|xS))

]
dzdx\S

=
∫

pd(x\S |xS) log pd(x\S |xS)dx\S +
∫

pd(x\S |xS)
∫

qϕ(z|x)
[
log

pθ(x\S |z)qϕ(z|xS))
qϕ(z|x)pd(x\S |xS)

]
dzdx\S

= − H(pd(x\S |xS)) − KL
(
qϕ(z|x)pd(x\S |xS)

∣∣pθ(x\S |z)qϕ(z|xS)
)

.

To obtain the second representation (Xconditional) for matching the conditional distributions in the data space,
observe that pθ(x\S |xS , z) = pθ(x\S |z) and consequently,
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−
∫

pd(x\S |xS)L\S(x, θ, ϕ)dx\S − H(pd(x\S |xS))

=
∫

pd(x\S |xS)qϕ(z|x) log
pd(x\S |xS)qϕ(z|x)
pθ(x\S |z)qϕ(z|xS) dzdx\S

=
∫

pd(x\S |xS)qϕ(z|x) log
pd(x\S |xS)qϕ(z|x)pθ(z|xS)
pθ(x\S |z)pθ(z|xS)qϕ(z|xS) dzdx\S

=
∫

pd(x\S |xS)qϕ(z|x) log
pd(x\S |xS)qϕ(z|x)pθ(z|xS)

pθ(x\S |z, xS)pθ(z|xS)qϕ(z|xS)dzdx\S

=
∫

pd(x\S |xS)qϕ(z|x) log
pd(x\S |xS)qϕ(z|x)pθ(z|xS)

pθ(x\S |xS)pθ(z|xS , x\S)qϕ(z|xS)dzdx\S

=KL(pd(x\S |xS)|pθ(x\S |xS)) +
∫

pd(x\S |xS)
∫

qϕ(z|x)
[
log qϕ(z|x)

pθ(z|x) + log pθ(z|xS)
qϕ(z|xS)

]
dzdx\S .

Lastly, the representation (Zconditional) for matching the distributions in the latent space given a modality
subset follows by recalling that

pd(x\S |xS)qϕ(z|x) = qagg
ϕ,\S(z|xS)q⋆(x\S |z, xS)

and consequently,

−
∫

pd(x\S |xS)L\S(x, θ, ϕ)dx\S − H(pd(x\S |xS))

=
∫

pd(x\S |xS)qϕ(z|x) log
pd(x\S |xS)qϕ(z|x)
pθ(x\S |z)qϕ(z|xS) dzdx\S

=
∫

qagg
ϕ,\S(z|xS)q⋆(x\S |z, xS) log

qagg
ϕ,\S(z|xS)q⋆(x\S |z, xS)

pθ(x\S |z)qϕ(z|xS) dzdx\S

=KL(qagg
ϕ,\S(z|xS)|qϕ(z|xS)) −

∫
qagg

ϕ,\S(z|xS)
(
KL(q⋆(x\S |z, xS)|pθ(x\S |z))

)
dz.

B Meta-learning and Neural processes

Meta-learning. We consider a standard meta-learning setup but use slightly non-standard notations to
remain consistent with notations used in other parts of this work. We consider a compact input or covariate
space A and output space X . Let D = ∪∞

M=1(A × X )M be the collection of all input-output pairs. In
meta-learning, we are given a meta-dataset, i.e., a collection of elements from D. Each individual data
set D = (a, x) = Dc ∪ Dt ∈ D is called a task and split into a context set Dc = (ac, xc), and target set
Dt = (at, xt). We aim to predict the target set from the context set. Consider, therefore, the prediction map

π : Dc = (ac, xc) 7→ p(xt|at, Dc) = p(xt, xc|at, ac)/p(xc|ac),

mapping each context data set to the predictive stochastic process conditioned on Dc.

Variational lower bounds for Neural processes. Latent Neural processes (Garnelo et al., 2018b; Foong
et al., 2020) approximate this prediction map by using a latent variable model with parameters θ in the form
of

z ∼ pθ, pθ(xt|at, z) =
∏

(a,x)∈Dt

pϵ(x − fθ(a, z))
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for a prior pθ, decoder fθ and a parameter free density pϵ. The model is then trained by (approximately)
maximizing a lower bound on log pθ(xt|at, ac, xc). Note that for an encoding density qϕ, we have that

log pθ(xt|at, ac, xx) =
∫

qϕ(z|x, a) log pθ(xt|at, z)dz − KL(qϕ(z|a, x)|pθ(z|ac, xc)).

Since the posterior distribution pθ(z|ac, xc) is generally intractable, one instead replaces it with a variational
approximation or learned conditional prior qϕ(z|ac, xc), and optimizes the following objective

LLNP
\C (x, a) =

∫
qϕ(z|x, a) log pθ(xt|at, z)dz − KL(qϕ(z|a, x)|qϕ(z|ac, xc)).

Note that this objective coincides with L\C conditioned on the covariate values a and where C comprises
the indices of the data points that are part of the context set. Using the variational lower bound LLNP

\C can
yield subpar performance compared to another biased log-likelihood objective (Kim et al., 2018; Foong et al.,
2020),

log p̂θ(xt|at, ac, xc) = log

 1
L

L∑
l=1

exp

 ∑
(xt,at)∈Dt

log pθ(xt|at, zl
c)


for L importance samples zl

c ∼ qϕ(zc|xc, ac) drawn from the conditional prior as the proposal distribution.
The required number of importance samples L for accurate estimation scales exponentially in the forward
KL(qϕ(z|x, a)|qϕ(z|xc, ac)), see Chatterjee et al. (2018). Unlike a variational approach, such an estimator
does not enforce a Bayes-consistency term for the encoders and may be beneficial in the setting of finite
data and model capacity. Note that the Bayes consistency term for including the target set (xt, at) into the
context set (xc, ac) writes as

KL(qagg
ϕ,\C(z|xc, ac)|qϕ(z|xc, ac)) = KL

(∫
pd(xt|at, xc, ac)qϕ(z|x, a)dxt

∣∣∣∣∣qϕ(z|xc, ac)
)

.

Moreover, if one wants to optimize not only the conditional but also the marginal distributions, one may
additionally optimize the variational objective corresponding to LC , i.e.,

LLNP
C (xc, ac) =

∫
qϕ(z|xc, ac) log pθ(xc|ac, z)dz − KL(qϕ(z|ac, xc)|pθ(z)),

as we do in this work for multi-modal generative models. Note that the objective LLNP
C alone can be seen

as a form of a Neural Statistician model (Edwards and Storkey, 2016) where C coincides with the indices of
the target set, while a form of the mixture-based bound corresponds to a Neural process bound similar to
variational Homoencoders (Hewitt et al., 2018), see also the discussion in Le et al. (2018). The multi-view
variational information bottleneck approach developed in Lee and van der Schaar (2021) for predicting X\S
given XS involves the joint variational objective

LIB
S (x, θ, ϕ, β) =

∫
qϕ(z|xS) log pθ(x\S |z)dz − βKL(qϕ(z|xS)|pθ(z))

which can be interpreted as maximizing Îlb
qϕ

(X\S , ZS) − βÎub
qϕ

(XS , ZS) and corresponds to the variational
information bottleneck for meta-learning in Titsias et al. (2021).

C Information-theoretic perspective

We recall first that the mutual information is given by

Iqϕ
(XS , ZS) =

∫
qϕ(xS , zS) log qϕ(xS , zS)

pd(xS)qagg
ϕ,S(zS)dzSdxS ,
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where qagg
ϕ,S(z) =

∫
pd(xS)qϕ(z|xS)dxS is the aggregated prior (Makhzani et al., 2016). It can be bounded by

standard (Barber and Agakov, 2004; Alemi et al., 2016; 2018) lower and upper bounds using the rate and
distortion:

HS − DS ≤ HS − DS + ∆1 = Iqϕ
(XS , ZS) = RS − ∆2 ≤ RS , (15)

with ∆1 =
∫

qagg
ϕ (z)KL(q⋆(xS |z)|pθ(xS |z))dz > 0, ∆2 = KL(qagg

ϕ,S(z)|pθ(z)) > 0 and q⋆(xS |z) =
qϕ(xS , z)/qagg

ϕ (z).

Moreover, if the bounds in (7) become tight with ∆1 = ∆2 = 0 in the hypothetical scenario of infinite-
capacity decoders and encoders, one obtains

∫
pdLS = (1 − β) Iqϕ

(XS , ZS) + HS . For β > 1, maximizing LS
yields an auto-decoding limit that minimizes Iqϕ

(xS , z) for which the latent representations do not encode
any information about the data, whilst β < 1 yields an auto-encoding limit that maximizes Iqϕ

(XS , ZS) and
for which the data is perfectly encoded and decoded.

The mixture-based bound can be interpreted as the maximization of a variational lower bound of Iqϕ
(XM, ZS)

and the minimization of a variational upper bound of Iqϕ
(XS , ZS). Indeed, see also Daunhawer et al. (2022),

HM − DS − Dc
S ≤ HM − DS − Dc

S + ∆′
1 = Iqϕ

(XM, ZS),

where ∆′
1 =

∫
qagg

ϕ (z)KL(q⋆(x|z)|pθ(x|z))dz > 0, due to

Iqϕ
(XM, ZS) = HM − Hqϕ

(X|ZS) = HM +
∫

pd(x)qϕ(z|xS) [log q⋆(x|z)] dzdx

= HM +
∫

pd(x)qϕ(z|xS)
[
log pθ(xS |z) + log pθ(x\S |z) + log q⋆(x|z)

pθ(x|z)

]
dzdx.

Recalling that ∫
pd(dx)LMix

S (x) = −DS − Dc
\S − βRS ,

one can see that maximizing the first part of the mixture-based variational bound corresponds to maximizing
−DS −Dc

\S as a variational lower bound of Iqϕ
(XM, ZS), when ignoring the fixed entropy of the multi-modal

data. Maximizing the second part of the mixture-based variational bound corresponds to minimizing RS as
a variational upper bound of Iqϕ

(XS , ZS), see (15).

Proof [Proof of Lemma 7] The proof follows by adapting the arguments in Alemi et al. (2018). The law of
X\S and Z conditional on XS on the encoder path can be written as

qϕ(z, x\S |xS) = pd(x\S |xS)qϕ(z|x) = qagg
ϕ,\S(z|xS)q⋆(x\S |z, xS)

with q⋆(x\S |z, xS) = qϕ(z, x\S |xS)/qagg
ϕ,\S(z|xS). To prove a lower bound on the conditional mutual informa-

tion, note that

Iqϕ
(X\S , ZM|XS)

=
∫

pd(xS)
∫

qagg
ϕ,\S(z|xS)

∫
q⋆(x\S |z, xS) log

qagg
ϕ,\S(z|xS)q⋆(x\S |z, xS)
qagg

ϕ,\S(z|xS)pd(x\S |x\S) dzdx\SdxS

=
∫

pd(xS)
∫

qagg
ϕ,\S(z|xS)

[∫
q⋆(x\S |z, xS) log pθ(x\S |z))dx\S + KL(q⋆(x\S |z, xS)|pθ(x\S |z))

]
dzdxS

−
∫

pd(xS)
∫

pd(x\S |xS) log pd(x\S |xS)dx

=
∫

pd(x)
∫

qϕ(z|x) log pθ(x\S |z)dzdx −
∫

pd(xS)
∫

pd(x\S |xS) log pd(x\S |xS)dx︸ ︷︷ ︸
=−H\S =−H(X\S |XS )

+
∫

pd(xS)
∫

qagg
ϕ,\S(z|xS)KL(q⋆(x\S |z, xS)|pθ(x\S |z))dxS︸ ︷︷ ︸

=∆\S,1≥0

=∆\S,1 + D\S + H\S .
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The upper bound follows by observing that

Iqϕ
(X\S , ZM|XS)

=
∫

pd(xS)
∫

pd(x\S |xS)qϕ(z|x) log
qϕ(z|x)pd(x\S |xS)

qagg
ϕ,\S(z|xS)pd(x\S |xS)dzdx

=
∫

pd(x)KL(qϕ(z|x)|qϕ(z|xS))dx −
∫

pd(xS)KL(qagg
ϕ,\S(z|xS)|qϕ(z|xS))dxS︸ ︷︷ ︸
=∆\S,2≥0

=R\S − ∆\S,2.

Remark 19 (Total correlation based objectives) The objective suggested in Hwang et al. (2021) is
motivated by a conditional variational bottleneck perspective that aims to maximize the reduction of total
correlation of X when conditioned on Z, as measured by the conditional total correlation, see Watanabe
(1960); Ver Steeg and Galstyan (2015); Gao et al. (2019), i.e.,

minimizing
{

TC(X|Z) = TC(X) − TC(X, Z) = TC(X) + Iqϕ
(X, Z) −

M∑
s=1

Iqϕ
(Xs, Z)

}
, (16)

where TC(X) = KL(p(x)|
∏d

i=1 p(xi)) for d-dimensional X. Resorting to variational lower bounds and using
a constant β > 0 that weights the contributions of the mutual information terms, approximations of (16)
can be optimized by maximizing

LTC(θ, ϕ, β) =
∫

ρ(S)
∫

{qϕ(z|x) [log pθ(x|z)] dz − βKL(qϕ(z|x)|qϕ(z|xS))} dS,

where ρ is concentrated on the uni-modal subsets of M.

Remark 20 (Entropy regularised optimization) Let q be a density over C, exp(g) be integrable with
respect to q and τ > 0. The maximum of

f(q) =
∫

C
q(c) [g(c) − τ log q(c)] dc

that is attained at q⋆(c) = 1
Z eg(c)/τ with normalizing constant Z =

∫
C eg(c)/τ dc is

f⋆ = f(q⋆) = τ log
∫

C
eg(c)/τ dc.

Remark 21 (Optimal variational distribution) The optimal variational density for the mixture-based
(1) multi-modal objective,∫

pd(dx)LMix
S (x) =

∫
pd(xS)

∫
qϕ(z|xS)

∫
pd(x\S |xS)[

log pθ(xS |z) + log pθ(x\S |z) + β log pθ(z) − β log qϕ(z|xS)
]

dx\SdzdxS ,

using Remark 20, is attained at

q⋆(z|xS) ∝ exp
(

1
β

∫
pd(x\S |xS)

[
log pθ(xS |z) + log pθ(x\S |z) + β log pθ(z)

]
dx\S

)
∝ p̃β,θ(z|xS) exp

(∫
pd(x\S |xS) log p̃β,θ(x\S |z)dx\S

)
.
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D Permutation-invariant architectures

Multi-head attention and masking. We introduce here a standard multi-head attention (Bahdanau
et al., 2014; Vaswani et al., 2017) mapping MHAϑ : RI×DX × RS×DY → RI×DY given by

MHAϑ(X, Y ) = W O
[
Head1(X, Y, Y ), . . . , HeadH(X, Y, Y )

]
, ϑ = (WQ, WK , WV , WO),

with output matrix WO ∈ RDA×DY , projection matrices WQ ∈ RDX ×DA WK , WV ∈ RDY ×DA and

Headh(Q, K, V ) = Att(QW h
Q, KW h

K , V W h
V ) ∈ RI×D (17)

where we assume that D = DA/H ∈ N is the head size. Here, the dot-product attention function is

Att(Q, K, V ) = σ(QK⊤)V,

where σ is the softmax function applied to each column of QK⊤.

Masked multi-head attention. In practice, it is convenient to consider masked multi-head attention
models MMHAϑ,M : RI×DX × RT ×DY → RI×DY for mask matrix M ∈ {0, 1}I×T that operate on key or
value sequences of fixed length T where the h-th head (17) is given by

Headh(Q, K, V ) =
[
M ⊙ σ(QW h

Q(KW h
K)⊤)

]
Vt′W h

V ∈ RT ×D.

Using the softmax kernel function SMD(q, k) = exp(q⊤k/
√

D), we set

MMHAϑ,M (X, Y )i =
T∑

t=1

H∑
h=1

MitSMD(W Q
h Xi, W K

h Yt)∑T
t′=1 Mit′SMD(XiW

Q
h , Yt′W K

h )
YtW

V
h W O

h (18)

which does not depend on Yt if M·t = 0.

Masked self-attention. For mask matrix M = mm⊤ with m = (1{s∈S})s∈M, we write

MHAϑ(YS , YS) = MMHAϑ,M (i(YS), i(YS))S .

where MMHAϑ,M operates on sequences with fixed length and i(YS))t = Yt if t ∈ S and 0 otherwise.

LayerNorm and SetNorm. Let h ∈ RT ×D and consider the normalization

N(h) = h − µ(h)
σ(h) ⊙ γ + β

where µ and σ standardize the input h by computing the mean, and the variance, respectively, over some
axis of h, whilst γ and β define a transformation. LayerNorm (Ba et al., 2016) standardises inputs over the
last axis, e.g., µ(h) = 1

D

∑D
d=1 µ·,d, i.e., separately for each element. In contrast, SetNorm (Zhang et al.,

2022b) standardises inputs over both axes, e.g., µ(h) = 1
T D

∑T
t=1
∑D

d=1 µt,d, thereby losing the global mean
and variance only. In both cases, γ and β share their values across the first axis. Both normalizations are
permutation-equivariant.

Transformer. We consider a masked pre-layer-norm (Wang et al., 2019a; Xiong et al., 2020) multi-head
transformer block

(MMTBϑ,M (iS(YS)))S = (Z + σReLU(LN(Z)))S

with σReLU being a ReLU non-linearity and

Z = iS(YS) + MMHAϑ,M (LN(iS(YS)), LN(iS(YS)))

where M = mm⊤ for m = (1{s∈S})s∈M.
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Set-Attention Encoders. Set g0 = iS(χϑ(hS)) and for k ∈ {1, . . . , L}, let

gk = MMTBϑ,M (gk−1
S ).

Then, we can express the self-attention multi-modal aggregation mapping via fϑ(hS) = ρϑ

(∑
s∈S gL

s

)
.

Remark 22 (Multi-modal time series models) We have introduced a multi-modal generative model
in a general form that also applies to the time-series setup, such as when a latent Markov process
drives multiple time series. For example, consider a latent Markov process Z = (Zt)t∈N with prior dy-
namics pθ(z1, . . . , zT ) = pθ(z1)

∏T
t=2 pθ(zt|zt−1) for an initial density pθ(z1) and homogeneous Markov

kernels pθ(zt|zt−1). Conditional on Z, suppose that the time-series (Xs,t)t∈N follows the dynamics
pθ(xs,1, . . . , xs,T |z1, . . . , zT ) =

∏T
t=2 pθ(xs,t|zt) for decoding densities pθ(xs,t|zt). A common choice (Chung

et al., 2015) for modeling the encoding distribution for such sequential (uni-modal) VAEs is to assume the
factorization qϕ(z1, . . . zT |x1, . . . xT ) = qϕ(z1|x1)

∏T
t=2 qϕ(zt|zt−1, xt) for xt = (xs,t)s∈M, with initial encod-

ing densities qϕ(z1|x1) and encoding Markov kernels qϕ(zt|zt−1, xt). One can again consider modality-specific
encodings hs = (hs,1, . . . , hs,T ), hs,t = hs,φ(xs,t), now applied separately at each time step that are then
used to construct Markov kernels that are permutation-invariant in the form of q′

ϕ(zt|zt−1, πhφ(xt,S)) =
q′

ϕ(zt|zt−1, hφ(xt,S)) for permutations π ∈ SS . Alternatively, in the absence of the auto-regressive encoding
structure with Markov kernels, one could also use transformer models that use absolute or relative positional
embeddings across the last temporal axis but no positional embeddings across the first modality axis, fol-
lowed by a sum-pooling operation across the modality axis. Note that previous works using multi-modal
time series such as Kramer et al. (2022) use a non-amortized encoding distribution for the full multi-modal
posterior only. A numerical evaluation of permutation-invariant schemes for time series models is, however,
outside the scope of this work.

E Permutation-equivariance and private latent variables

Remark 23 (Variational bounds with private latent variables) To compute the multi-modal varia-
tional bounds, notice that the required KL divergences can be written as follows:

KL(qϕ(z′, z̃|xS)|pθ(z′, z̃)) = KL(qϕ(z′|xS)|pθ(z′)) +
∫

qϕ(z′|xS)KL(qϕ(z̃S |z′, xS)|pθ(z̃S |z′))dz′

and

KL(qϕ(z′, z̃|xM)|qϕ(z′, z̃|xS))

=KL(qϕ(z′|xM)|(qϕ(z′|xS)) +
∫

qϕ(z′|xM)KL(qϕ(PS z̃|z′, xM)|qϕ(PS z̃|z′, xS))dz′

+
∫

qϕ(z′|xM)KL(qϕ(P\S z̃|z′, xS)|pθ(P\S z̃|z′))dz′

where PS : (z̃1, . . . z̃M ) 7→ (z̃s)s∈S projects all private latent variables to those contained in S.

These expressions can be used to compute our overall variational bound LS + L\S via∫
qϕ(z′|xS)qϕ(z̃S |z′, xS)] log pθ(xS |z′, z̃S)dz′dz̃S

− KL
(

qϕ(z′|xS)qϕ(z̃S |z′, xS)
∣∣∣pθ(z′)pθ(z̃S |z′)

)
+
∫

qϕ(z′|xM)qϕ(z̃\S |z′, xM)] log pθ(xS |z′, z̃\S)dz′dz̃S

− KL
(

qϕ(z′, z̃S , z̃\S |xM)
∣∣∣qϕ(z′, z̃S , z̃\S |xS)

)
.

Remark 24 (Comparison with MMVAE+ variational bound) It is instructive to compare our
bound with the MMVAE+ approach suggested in Palumbo et al. (2023). Assuming a uniform masking
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distribution restricted to uni-modal sets so that S = {s} for some s ∈ M, we can write the bound from
Palumbo et al. (2023) as 1

M

∑M
s=1 LMMVAE+

{s} (x) with

LMMVAE+
{s} (x) =

∫
qϕ(z′|x{s})qϕ(z̃{s}|x{s})

[
log pθ(x{s}|z′, z̃{s})

]
dz′dz̃{s}

+
∫

qϕ(z′|x{s})rϕ(z̃\{s})
[

log pθ(x\{s}|z′, z̃\{s})
]
dz′dz̃\{s}

− KL
(

qMoE
ϕ (z′, z̃M|xM)

∣∣∣pθ(z′)pθ(z̃M)
)

.

Here, it is assumed that the multi-modal encoding distribution for computing the KL-divergence is of the
form

qMoE
ϕ (z′, z̃M|xM) = 1

M

∑
s∈M

(qϕ(z′|xs)qϕ(z̃s|xs))

and rϕ(z̃A) =
∏

s∈A rϕ(z̃s) are additional trainable prior distributions.

F Multi-modal posterior in exponential family models

Consider the setting where the decoding and encoding distributions are of the exponential family form, that
is

pθ(xs|z) = µs(xs) exp [⟨Ts(xs), fs,θ(z)⟩ − log Zs(fs,θ(z))]

for all s ∈ M, while for all S ⊂ M,

qϕ(z|xS) = µ(z) exp [⟨V (z), λϕ,S(xS)⟩ − log ΓS(λϕ,S(xS))]

where µs and µ are base measures, Ts(xs) and V (z) are sufficient statistics, while the natural parameters
λϕ,S(xS) and fs,θ(z) are parameterized by the decoder or encoder networks, respectively, with Zs and ΓS
being normalizing functions. Note that we made a standard assumption that the multi-modal encoding
distribution has a fixed base measure and sufficient statistics for any modality subset. For fixed generative
parameters θ, we want to learn a multi-modal encoding distribution that minimizes over xS ∼ pd,

KL(qϕ(z|xS)|pθ(z|xS))

=
∫

qϕ(z|xS)
[

log qϕ(z|xS) − log pθ(z) −
∑
s∈S

log pθ(xs|z)
]
dz − log pθ(xS)

=
∫

qϕ(z|xS)
[
⟨V (z), λϕ,S(xS)⟩ − log ΓS(λϕ,S(xS)) −

∑
s∈S

log µs(xs)

−
{∑

s∈S
⟨Ts,θ(xs), fs,θ(z)⟩ + log pθ(z) −

∑
s∈S

Zs(fs,θ(z))
}]

dz − log pθ(xS)

=
∫

qϕ,ϑ(z|xS)
[〈 [V (z)

1

]
,

[
λϕ,ϑ,S(xS)

− log ΓS(λϕ,ϑ,S(xS))

]〉
−
∑
s∈S

〈[Ts(xs)
1

]
,

[
fθ,s(z)
bθ,s(z)

]〉]
dz,

with bθ,s(z) = 1
|S| pθ(z) − log Zs(fs,θ(z)).

G Mixture model extensions for different variational bounds

We consider the optimization of an augmented variational bound

L(x, θ, ϕ) =
∫

ρ(S)
[ ∫

qϕ(c, z|xS) [log pθ(c, xS |z)] dzdc − KL(qϕ(c, z|xS)|pθ(c, z))

+
∫

qϕ(c, z|xS)
[
log pθ(x\S |z)

]
dzdc − KL(qϕ(c, z|x)|qϕ(c, z|xS))

]
dS.
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We will pursue here an encoding approach that does not require modeling the encoding distribution over
the discrete latent variables explicitly, thus avoiding large variances in score-based Monte Carlo estimators
(Ranganath et al., 2014) or resorting to advanced variance reduction techniques (Kool et al., 2019) or
alternatives such as continuous relaxation approaches (Jang et al., 2016; Maddison et al., 2016).

Assuming a structured variational density of the form

qϕ(c, z|xS) = qϕ(z|xS)qϕ(c|z, xS),

we can express the augmented version of (3) via

LS(xS , θ, ϕ) =
∫

qϕ(c, z|xS) [log pθ(c, xS |z)] dz − βKL(qϕ(c, z|xS)|pθ(c, z))

=
∫

qϕ(z|xS) [fx(z, xS) + fc(z, xS)] dz,

where fx(z, xS) = log pθ(xS |z) − β log qϕ(z|xS)) and

fc(z, xS) =
∫

qϕ(c|z, xS) [−β log qϕ(c|z, xS) + β log pθ(c, z)] dc. (19)

We can also write the augmented version of (5) in the form of

L\S(x, θ, ϕ) =
∫

qϕ(c, z|xS)
[
log pθ(x\S |z)

]
dz − βKL(qϕ(c, z|x)|qϕ(c, z|xS))

=
∫

qϕ(z|x)gx(z, x)dz

where

gx(z, x) = log pθ(x\S |z) − β log qϕ(z|x) + β log qϕ(z|xS)

which does not depend on the encoding density of the cluster variable. To optimize the variational bound
with respect to the cluster density, we can thus optimize (19), which attains its maximum value of

f⋆
c (z, xS) = β log

∫
pθ(c)pθ(z|c)dc = β log pθ(z)

at qϕ(c|z, xS) = pθ(c|z) due to Remark 20 below with g(c) = β log pθ(c, z).

We can derive an analogous optimal structured variational density for the mixture-based and total-
correlation-based variational bounds. First, we can write the mixture-based bound (1) as

LMix
S (x, θ, ϕ) =

∫
qϕ(z|xS) [log pθ(c, x|z)] dz − βKL(qϕ(c, z|xS)|pθ(c, z))

=
∫

qϕ(z|xS)
[
fMix

x (z, x) + fc(z, x)
]

dz,

where fMix
x (z, x) = log pθ(x|z) − β log qϕ(z|xS) and fc(z, x) has a maximum value of f⋆

c (z, x) = β log pθ(z).
Second, we can express the corresponding terms from the total-correlation-based bound as

LTC
S (θ, ϕ) =

∫
qϕ(z|x) [log pθ(x|z)] dz − βKL(qϕ(c, z|x)|qϕ(c, z|xS))

=
∫

qϕ(z|x)
[
fTC

x (z, x)
]

dz,

where fTC
x (z, x) = log pθ(x|z) − β log qϕ(z|x) + β log qϕ(z|xS).

40



Under review as submission to TMLR

H Algorithm and STL-gradient estimators

We consider a multi-modal extension of the sticking-the-landing (STL) gradient estimator (Roeder et al.,
2017) that has also been used in previous multi-modal bounds (Shi et al., 2019). The gradient estima-
tor ignores the score function terms when sampling qϕ(z|xS) for variance reduction purposes because it
has a zero expectation. For the bounds (2) that involves sampling from qϕ(z|xS) and qϕ(z|xM), we
thus ignore the score terms for both integrals. Consider the reparameterization with noise variables ϵS ,
ϵM ∼ p and transformations zS = tS(ϕ, ϵS , xS) = finvariant-agg(ϑ, ϵS , S, hS), for hS = hφ,s(xs)s∈S and
zM = tM(ϕ, ϵM, xM) = finvariant-agg(ϑ, ϵM, M, hM), for hM = hφ,s(xs)s∈M . We need to learn only a
single aggregation function that applies and masks the modalities appropriately. Pseudo-code for computing
the gradients are given in Algorithm 1. If the encoding distribution is a mixture distribution, we apply
the stop-gradient operation also to the mixture weights. Notice that in the case of a mixture prior and an
encoding distribution that includes the mixture component, the optimal encoding density over the mixture
variable has no variational parameters and is given as the posterior density of the mixture component under
the generative parameters of the prior.

Algorithm 1 Single training step for computing unbiased gradients of L(x).
Input: Multi-modal data point x, generative parameter θ, variational parameters ϕ = (φ, ϑ).
Sample S ∼ ρ.
Sample ϵS , ϵM ∼ p.
Set zS = tS(ϕ, ϵS , xM) and zM = tM(ϕ, ϵM, xM).
Stop gradients of variational parameters ϕ′ = stop_grad(ϕ).
Set L̂S(θ, ϕ) = log pθ(xS |zS) + β log pθ(zS) − β log qϕ′(zS |xS).
Set L̂\S(θ, ϕ) = log pθ(x\S |zM) + β log qϕ(zM|xS) − β log qϕ′(zM|xM).
Output: ∇θ,ϕ

[
L̂S(θ, ϕ) + L̂\S(θ, ϕ)

]

In the case of private latent variables, we proceed analogously and rely on reparameterizations z′
S =

t′
S(ϕ, ϵ′

S , xS) for the shared latent variable z′
S ∼ qϕ(z′|xS) as above and z̃S = t̃S(ϕ, z′, ϵS , xS) =

fequivariant-agg(ϑ, ϵ̃S , z′, S, hS) for the private latent variables z̃S ∼ qϕ(z̃S |z′, xS). Moreover, we write PS
for a projection on the S-coordinates. Pseudo-code for computing unbiased gradient estimates for our bound
is given in Algorithm 2.

Algorithm 2 Single training step for computing unbiased gradients of L(x) with private latent variables.
Input: Multi-modal data point x, generative parameter θ, variational parameters ϕ = (φ, ϑ).
Sample S ∼ ρ.
Sample ϵ′

S , ϵS , ϵ\S , ϵ′
M, ϵM, ϵ\M ∼ p.

Set z′
S = t′

S(ϕ, ϵ′
S , xS), z̃S = t̃S(ϕ, z′

S , ϵS , xS).
Set z′

M = t′
M(ϕ, ϵ′

M, xM), z̃M = t̃M(ϕ, z′
M, ϵM, xM).

Stop gradients of variational parameters ϕ′ = stop_grad(ϕ).
Set L̂S(θ, ϕ) = log pθ(xS |z′

S , z̃S) + β log pθ(z′
S) − β log qϕ′(z′

S |xS) + β log pθ(z̃S |z′
S) − β log qϕ′(z̃S |z′

S , xS).
Set L̂\S(θ, ϕ) = log pθ(x\S |z′

M) + β log qϕ(z′
M|xS) − β log qϕ′(z̃M|z′

M, xM) + β log qϕ(PS(z̃M)|z′
M, xS) +

β log pθ(P\S(z̃M)|z′
M, z̃M) − β log qϕ′(z̃M|z′

M, xM).
Output: ∇θ,ϕ

[
L̂S(θ, ϕ) + L̂\S(θ, ϕ)

]

I Evaluation of multi-modal generative models

We evaluate models using different metrics suggested previously for multi-modal learning, see for example
Shi et al. (2019); Wu and Goodman (2019); Sutter et al. (2021).
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Marginal, conditional and joint log-likelihoods. We can estimate the marginal log-likelihood using
classic importance sampling

log pθ(xS) ≈ log 1
K

K∑
k=1

pθ(zk, xS)
qϕ(zk|xS)

for zk ∼ qϕ(·|xS). This also allows to approximate the joint log-likelihood log pθ(x), and consequently also
the conditional log pθ(x\S |xS) = log pθ(x) − log pθ(xS).

Generative coherence with joint auxiliary labels. Following previous work (Shi et al., 2019; Sutter
et al., 2021; Daunhawer et al., 2022; Javaloy et al., 2022), we assess whether the generated data share the
same information in the form of the class labels across different modalities. To do so, we use pre-trained
classifiers clfs : Xs → [K] that classify values from modality s to K possible classes. More precisely, for
S ⊂ M and m ∈ M, we compute the self- (m ∈ S) or cross- (m /∈ S) coherence CS→m as the empirical
average of

1{clfm(x̂m)=y},

over test samples x with label y where ẑS ∼ qϕ(z|xS) and x̂m ∼ pθ(xm|ẑS). The case S = M \ {m}
corresponds to a leave-one-out conditional coherence.

Linear classification accuracy of latent representations. To evaluate how the latent representation
can be used to predict the shared information contained in the modality subset S based on a linear model,
we consider the accuracy AccS of a linear classifier clfz : Z → [K] that is trained to predict the label
based on latent samples zS ∼ qϕ(zS |xtrain

S ) from the training values xtrain
S and evaluated on latent samples

zS ∼ qϕ(z|xtest
S ) from the test values xtest

S .

J Linear models

Data generation. We generate 5 data sets of N = 5000 samples, each with M = 5 modalities. We set
the latent dimension to D = 30, while the dimension Ds of modality s is drawn from U(30, 60). We set the
observation noise to σ = 1, shared across all modalities, as is standard for a PCA model. We sample the
components of bs independently from N (0, 1). For the setting without modality-specific latent variables, Ws

is the orthonormal matrix from a QR algorithm applied to a matrix with elements sampled iid from U(−1, 1).
The bias coefficients Wb are sampled independently from N (0, 1/d). Conversely, the setting with private
latent variables in the ground truth model allows us to describe modality-specific variation by considering
the sparse loading matrix

WM =


W ′

1 W̃1 0 . . . 0
W ′

2 0 W̃2 . . . 0
...

... . . . . . . ...
W ′

M 0 . . . 0 W̃M

 .

Here, W ′
s, W̃s ∈ RDs×D′ with D′ = D/(M + 1) = 5, Furthermore, the latent variable Z can be written as

Z = (Z ′, Z̃1, . . . , Z̃M ) for private and shared latent variables Z̃s, resp. Z ′. We similarly generate orthonormal[
W ′

s, W̃s

]
from a QR decomposition. Observe that the general generative model with latent variable Z

corresponds to the generative model (9) with shared Z ′ and private latent variables Z̃ with straightforward
adjustments for the decoding functions. Similar models have been considered previously, particularly from
a Bayesian standpoint with different sparsity assumptions on the generative parameters (Archambeau and
Bach, 2008; Virtanen et al., 2012; Zhao et al., 2016).

Maximum likelihood estimation. Assume now that we observe N data points {xn}n∈[N ], consisting of
stacking the views xn = (xs,n)s∈S for each modality in S and let S = 1

N

∑N
n=1(xn − b)(xn − b)⊤ ∈ RDx×Dx ,

Dx =
∑M

s=1 Ds, be the sample covariance matrix across all modalities. Let Ud ∈ RDx×D be the matrix of the
first D eigenvectors of S with corresponding eigenvalues λ1, . . . λD stored in the diagonal matrix ΛD ∈ RD×D.
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The maximum likelihood estimates are then given by bML = 1
N

∑N
n=1 xn, σ2

ML = 1
N−D

∑N
j=D+1 λj and

WML = UD(ΛD − σ2
ML I)1/2 with the loading matrix identifiable up to rotations.

Model architectures. We estimate the observation noise scale σ based on the maximum likelihood esti-
mate σML. We assume linear decoder functions pθ(xs|z) = N (W θ

s z +bθ, σ2
ML), fixed standard Gaussian prior

p(z) = N (0, I) and generative parameters θ = (W θ
1 , bθ

1, . . . , W θ
M , bθ

M ). Details about the various encoding
architectures are given in Table 15. The modality-specific encoding functions for the PoE and MoE schemes
have a hidden size of 512, whilst they are of size 256 for the learnable aggregation schemes having additional
aggregation parameters φ.

K Non-linear identifiable models

We also show in Figure 4 the reconstructed modality values and inferred latent variables for one realization
with our bound, with the corresponding results for a mixture-based bound in Figure 5.

(a) Observed data x (b) True latents z (c) PoE (x) (d) PoE (z)

(e) MoE (x) (f) MoE (z) (g) SumP, K = 1 (x) (h) SumP, K = 1 (z)

(i) SumP, K = 5 (x) (j) SumP, K = 5 (z) (k) SumPM, K = 5 (z) (l) SumPM, K = 5 (z)

Figure 4: Bi-modal non-linear model with label and continuous modality based on our proposed objective.
SumP: SumPooling, SumPM: SumPoolingMixture.
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(a) Observed data x (b) True latents z (c) PoE (x) (d) PoE (z)

(e) MoE (x) (f) MoE (z) (g) SumP, K = 1 (x) (h) SumP, K = 1 (z)

(i) SumP, K = 5 (x) (j) SumP, K = 5 (z) (k) SumPM, K = 5 (z) (l) SumPM, K = 5 (z)

Figure 5: Bi-modal non-linear model with label and continuous modality based on mixture bound. SumP:
SumPooling, SumPM: SumPoolingMixture.
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L MNIST-SVHN-Text

L.1 Training hyperparamters

The MNIST-SVHN-Text data set is taken from the code accompanying Sutter et al. (2021) with around 1.1
million train and 200k test samples. All models are trained for 100 epochs with a batch size of 250 using
Adam (Kingma and Ba, 2014) and a cosine decay schedule from 0.0005 to 0.0001.

L.2 Multi-modal rates and distortions

(a) Full Reconstruction −DM (b) Cross Prediction −Dc
\S

(c) Full Rates RM (d) Cross Rates R\S

Figure 6: Rate and distortion terms for MNIST-SVHN-Text with shared and private latent variables.
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(a) Full Reconstruction −DM (b) Cross Prediction −Dc
\S

(c) Full Rates RM (d) Cross Rates R\S

Figure 7: Rate and distortion terms for MNIST-SVHN-Text with shared latent variables and different β.
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L.3 Log-likelihood estimates

Table 7: Test log-likelihood estimates for varying β choices for the joint data (M+S+T) as well as for
the marginal data of each modality based on importance sampling (512 particles). Multi-modal generative
model with a 40-dimensional shared latent variable. The second part of the Table contains reported log-
likelihood values from baseline methods that, however, impose more restrictive assumptions on the decoder
variances, which likely contributes to much lower log-likelihood values reported in previous works, irrespective
of variational objectives and aggregation schemes.

Proposed objective Mixture bound
(β, Aggregation) M+S+T M S T M+S+T M S T
(0.1, PoE+) 5433 (24.5) 1786 (41.6) 3578 (63.5) -29 (2.4) 5481 (18.4) 2207 (19.8) 3180 (33.7) -39 (1.0)
(0.1, SumPooling) 7067 (78.0) 2455 (3.3) 4701 (83.5) -9 (0.4) 6061 (15.7) 2398 (9.3) 3552 (7.4) -50 (1.9)
(1.0, PoE+) 6872 (9.6) 2599 (5.6) 4317 (1.1) -9 (0.2) 5900 (10.0) 2449 (10.4) 3443 (11.7) -19 (0.4)
(1.0, SumPooling) 7056 (124.4) 2478 (9.3) 4640 (113.9) -6 (0.0) 6130 (4.4) 2470 (10.3) 3660 (1.5) -16 (1.6)
(4.0, PoE+) 7021 (13.3) 2673 (13.2) 4413 (30.5) -5 (0.1) 5895 (6.2) 2484 (5.5) 3434 (2.2) -13 (0.4)
(4.0, SumPooling) 6690 (113.4) 2483 (9.9) 4259 (117.2) -5 (0.0) 5659 (48.3) 2448 (10.5) 3233 (27.7) -10 (0.2)

Results from Sutter et al. (2021) and Sutter et al. (2020)
MVAE -1790 (3.3) NA NA NA
MMVAE -1941 (5.7) NA NA NA
MoPoE -1819 (5.7) NA NA NA
MMJSD -1961 (NA) NA NA NA

L.4 Generated modalities

(a) Proposed objective, β =
0.1

(b) Proposed objective, β =
4

(c) Mixture-based bound,
β = 0.1

(d) Mixture-based bound,
β = 4

Figure 8: Conditional generation for different β parameters. The first column is the conditioned modality.
The next three columns are the generated modalities using a SumPooling aggregation, followed by the three
columns for a PoE+ scheme.
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(a) Our bound (b) Mixture-based bound

Figure 9: Conditional generation for permutation-equivariant schemes and private latent variable constraints.
The first column is the conditioned modality. The next three columns are the generated modalities using a
SumPooling aggregation, followed by the three columns for a SelfAttention scheme and a PoE model.

L.5 Conditional coherence

Table 8: Conditional coherence for models with shared latent variables and bi-modal conditionals. The
letters on the second line represent the modality which is generated based on the sets of modalities on the
line below it.

Proposed objective Mixture bound
M S T M S T

Aggregation M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T
PoE 0.98 0.98 0.60 0.75 0.58 0.77 0.82 1.00 1.00 0.96 0.97 0.95 0.61 0.11 0.61 0.45 0.99 0.98
PoE+ 0.97 0.98 0.55 0.73 0.52 0.75 0.83 1.00 0.99 0.97 0.97 0.96 0.64 0.11 0.63 0.45 0.99 0.97
MoE 0.88 0.97 0.90 0.35 0.11 0.35 0.41 0.72 0.69 0.88 0.96 0.89 0.32 0.10 0.33 0.42 0.72 0.69
MoE+ 0.85 0.94 0.86 0.32 0.10 0.32 0.40 0.71 0.67 0.87 0.96 0.89 0.32 0.10 0.32 0.42 0.72 0.69
SumPooling 0.97 0.97 0.86 0.78 0.30 0.80 0.76 0.99 1.00 0.97 0.97 0.95 0.65 0.10 0.65 0.45 0.99 0.97
SelfAttention 0.97 0.97 0.82 0.76 0.30 0.78 0.69 1.00 1.00 0.97 0.97 0.99 0.66 0.10 0.65 0.45 0.99 1.00

Results from Sutter et al. (2021), Sutter et al. (2020) and Hwang et al. (2021)
MVAE NA NA 0.32 NA 0.43 NA 0.29 NA NA
MMVAE NA NA 0.87 NA 0.31 NA 0.84 NA NA
MoPoE NA NA 0.94 NA 0.36 NA 0.93 NA NA
MMJSD NA NA 0.95 NA 0.48 NA 0.92 NA NA
MVTCAE (w/o T) NA NA NA NA NA NA NA NA NA

Table 9: Conditional coherence for models with private latent variables and uni-modal conditionals. The
letters on the second line represent the modality which is generated based on the sets of modalities on the
line below it.

Proposed objective Mixture bound
M S T M S T

Aggregation M S T M S T M S T M S T M S T M S T
PoE+ 0.97 0.12 0.13 0.20 0.62 0.24 0.16 0.15 1.00 0.96 0.83 0.99 0.11 0.58 0.11 0.44 0.39 1.00
SumPooling 0.97 0.42 0.59 0.44 0.67 0.40 0.65 0.45 1.00 0.97 0.86 0.99 0.11 0.62 0.11 0.45 0.40 1.00
SelfAttention 0.97 0.12 0.12 0.27 0.71 0.28 0.46 0.40 1.00 0.96 0.09 0.08 0.12 0.67 0.12 0.15 0.17 1.00
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Table 10: Conditional coherence for models with private latent variables and bi-modal conditionals. The
letters on the second line represent the modality, which is generated based on the sets of modalities on the
line below it.

Proposed objective Mixture bound
M S T M S T

Aggregation M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T
PoE+ 0.97 0.97 0.14 0.66 0.33 0.67 0.18 1.00 1.00 0.97 0.97 0.94 0.63 0.11 0.63 0.45 0.99 0.96
SumPooling 0.97 0.97 0.54 0.79 0.43 0.80 0.57 1.00 1.00 0.97 0.97 0.93 0.64 0.11 0.63 0.45 0.99 0.97
SelfAttention 0.97 0.97 0.12 0.80 0.29 0.81 0.49 1.00 1.00 0.96 0.96 0.08 0.70 0.12 0.70 0.15 1.00 1.00

Table 11: Conditional coherence for models with shared latent variables for different βs and uni-modal
conditionals. The letters on the second line represent the modality which is generated based on the sets of
modalities on the line below it.

Proposed objective Mixture bound
M S T M S T

(β, Aggregation) M S T M S T M S T M S T M S T M S T
(0.1, PoE+) 0.98 0.11 0.12 0.12 0.62 0.14 0.61 0.25 1.00 0.96 0.83 0.99 0.11 0.58 0.11 0.45 0.39 1.00
(0.1, SumPooling) 0.97 0.48 0.81 0.30 0.72 0.33 0.86 0.55 1.00 0.97 0.86 0.99 0.11 0.64 0.11 0.45 0.40 1.00
(1.0, PoE+) 0.97 0.15 0.63 0.24 0.63 0.42 0.79 0.35 1.00 0.96 0.83 0.99 0.11 0.59 0.11 0.45 0.39 1.00
(1.0, SumPooling) 0.97 0.48 0.87 0.25 0.72 0.36 0.73 0.48 1.00 0.97 0.86 0.99 0.10 0.63 0.10 0.45 0.40 1.00
(4.0, PoE+) 0.97 0.29 0.83 0.41 0.60 0.58 0.76 0.38 1.00 0.96 0.82 0.99 0.10 0.57 0.10 0.44 0.38 1.00
(4.0, SumPooling) 0.97 0.48 0.88 0.35 0.66 0.44 0.83 0.53 1.00 0.96 0.85 0.99 0.11 0.57 0.10 0.45 0.39 1.00

Table 12: Conditional coherence for models with shared latent variables for different βs and bi-modal con-
ditionals. The letters on the second line represent the modality, which is generated based on the sets of
modalities on the line below it.

Proposed objective Mixture bound
M S T M S T

(β, Aggregation) M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T
(0.1, PoE+) 0.98 0.98 0.15 0.70 0.14 0.72 0.66 1.00 1.00 0.96 0.96 0.93 0.62 0.11 0.62 0.45 0.99 0.95
(0.1, SumPooling) 0.97 0.97 0.86 0.83 0.31 0.84 0.85 0.99 1.00 0.97 0.97 0.94 0.66 0.11 0.65 0.45 0.99 0.96
(1.0, PoE+) 0.97 0.98 0.55 0.73 0.52 0.75 0.83 1.00 0.99 0.97 0.97 0.96 0.64 0.11 0.63 0.45 0.99 0.97
(1.0, SumPooling) 0.97 0.97 0.86 0.78 0.30 0.80 0.76 0.99 1.00 0.97 0.97 0.95 0.65 0.10 0.65 0.45 0.99 0.97
(4.0, PoE+) 0.97 0.98 0.84 0.76 0.66 0.78 0.82 1.00 1.00 0.97 0.97 0.96 0.62 0.10 0.62 0.45 0.99 0.98
(4.0, SumPooling) 0.97 0.97 0.89 0.77 0.40 0.78 0.86 0.99 1.00 0.97 0.97 0.96 0.61 0.10 0.60 0.45 0.99 0.97

L.6 Latent classification accuracy
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Table 13: Unsupervised latent classification for β = 1 and models with shared latent variables only (top
half) and shared plus private latent variables (bottom half). Accuracy is computed with a linear classifier
(logistic regression) trained on multi-modal inputs (M+S+T) or uni-modal inputs (M, S or T).

Proposed objective Mixture bound
Aggregation M+S+T M S T M+S+T M S T
PoE 0.988 (0.000) 0.940 (0.009) 0.649 (0.039) 0.998 (0.001) 0.991 (0.004) 0.977 (0.002) 0.845 (0.000) 1.000 (0.000)
PoE+ 0.978 (0.002) 0.934 (0.001) 0.624 (0.040) 0.999 (0.001) 0.998 (0.000) 0.981 (0.000) 0.851 (0.000) 1.000 (0.000)
MoE 0.841 (0.008) 0.974 (0.000) 0.609 (0.032) 1.000 (0.000) 0.940 (0.001) 0.980 (0.001) 0.843 (0.001) 1.000 (0.000)
MoE+ 0.850 (0.039) 0.967 (0.014) 0.708 (0.167) 0.983 (0.023) 0.928 (0.017) 0.983 (0.002) 0.846 (0.001) 1.000 (0.000)
SelfAttention 0.985 (0.001) 0.954 (0.002) 0.693 (0.037) 0.986 (0.006) 0.991 (0.000) 0.981 (0.001) 0.864 (0.003) 1.000 (0.000)
SumPooling 0.981 (0.000) 0.962 (0.000) 0.704 (0.014) 0.992 (0.008) 0.994 (0.000) 0.983 (0.000) 0.866 (0.002) 1.000 (0.000)
PoE+ 0.979 (0.009) 0.944 (0.000) 0.538 (0.032) 0.887 (0.07) 0.995 (0.002) 0.980 (0.002) 0.848 (0.006) 1.000 (0.000)
SumPooling 0.987 (0.004) 0.966 (0.004) 0.370 (0.348) 0.992 (0.002) 0.994 (0.001) 0.982 (0.000) 0.870 (0.001) 1.000 (0.000)
SelfAttention 0.990 (0.003) 0.968 (0.002) 0.744 (0.008) 0.985 (0.000) 0.997 (0.001) 0.974 (0.000) 0.681 (0.031) 1.000 (0.000)

Results from Sutter et al. (2021), Sutter et al. (2020) and Hwang et al. (2021)
MVAE 0.96 (0.02) 0.90 (0.01) 0.44 (0.01) 0.85 (0.10)
MMVAE 0.86 (0.03) 0.95 (0.01) 0.79 (0.05) 0.99 (0.01)
MoPoE 0.98 (0.01) 0.95 (0.01) 0.80 (0.03) 0.99 (0.01)
MMJSD 0.98 (NA) 0.97 (NA) 0.82 (NA) 0.99 (NA)
MVTCAE (w/o T) NA 0.93 (NA) 0.78 (NA) NA

Table 14: Unsupervised latent classification for different βs and models with shared latent variables only.
Accuracy is computed with a linear classifier (logistic regression) trained on multi-modal inputs (M+S+T)
or uni-modal inputs (M, S or T).

Proposed objective Mixture bound
(β, Aggregation) M+S+T M S T M+S+T M S T
(0.1, PoE+) 0.983 (0.006) 0.919 (0.001) 0.561 (0.048) 0.988 (0.014) 0.992 (0.002) 0.979 (0.002) 0.846 (0.004) 1.000 (0.000)
(0.1, SumPooling) 0.982 (0.004) 0.965 (0.002) 0.692 (0.047) 0.999 (0.001) 0.994 (0.000) 0.981 (0.002) 0.863 (0.005) 1.000 (0.000)
(1.0, PoE+) 0.978 (0.002) 0.934 (0.001) 0.624 (0.040) 0.999 (0.001) 0.998 (0.000) 0.981 (0.000) 0.851 (0.000) 1.000 (0.000)
(1.0, SumPooling) 0.981 (0.000) 0.962 (0.000) 0.704 (0.014) 0.992 (0.008) 0.994 (0.000) 0.983 (0.000) 0.866 (0.002) 1.000 (0.000)
(4.0, PoE+) 0.981 (0.006) 0.943 (0.007) 0.630 (0.008) 0.993 (0.001) 0.998 (0.000) 0.981 (0.000) 0.846 (0.001) 1.000 (0.000)
(4.0, SumPooling) 0.984 (0.004) 0.963 (0.001) 0.681 (0.009) 0.995 (0.000) 0.992 (0.002) 0.980 (0.001) 0.856 (0.001) 1.000 (0.000)
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M Encoder Model architectures

M.1 Linear models

Table 15: Encoder architectures for Gaussian models.

(a) Modality-specific encoding functions hs(xs). Latent dimen-
sion D = 30, modality dimension Ds ∼ U(30, 60).

MoE/PoE SumPooling/SelfAttention
Input: Ds Input: Ds

Dense Ds × 512, ReLU Dense Ds × 256, ReLU
Dense 512 × 512, ReLU Dense 256 × 256, ReLU
Dense 512 × 60 Dense 256 × 60

(b) Model for outer aggregation function ρϑ for
SumPooling and SelfAttention schemes.

Outer Aggregation
Input: 256
Dense 256 × 256, ReLU
Dense 256 × 256, ReLU
Dense 256 × 60

(c) Inner aggregation function χϑ.

SumPooling SelfAttention
Input: 256 Input: 256
Dense 256 × 256, ReLU Dense 256 × 256, ReLU
Dense 256 × 256, ReLU Dense 256 × 256
Dense 256 × 256

(d) Transformer parameters.

SelfAttention (1 Layer)
Input: 256
Heads: 4
Attention size: 256
Hidden size FFN: 256

M.2 Linear models with private latent variables

Table 16: Encoder architectures for Gaussian models with private latent variables.

(a) Modality-specific encoding functions hs(xs). All private and
shared latent variables are of dimension 10. Modality dimension
Ds ∼ U(30, 60).

PoE (hshared
s and hprivate

s ) SumPooling/SelfAttention
Input: Ds Input: Ds

Dense Ds × 512, ReLU Dense Ds × 128, ReLU
Dense 512 × 512, ReLU Dense 128 × 128, ReLU
Dense 512 × 10 Dense 128 × 10

(b) Model for outer aggregation function
ρϑ for SumPooling scheme.

Outer Aggregation (ρϑ)
Input: 128
Dense 128 × 128, ReLU
Dense 128 × 128, ReLU
Dense 128 × 10

(c) Inner aggregation functions.

SumPooling (χ0,ϑ, χ1,ϑ, χ2,ϑ) SelfAttention (χ1,ϑ, χ2,ϑ)
Input: 128 Input: 128
Dense 128 × 128, ReLU Dense 128 × 128, ReLU
Dense 128 × 128, ReLU Dense 128 × 128
Dense 128 × 128

(d) Transformer parameters.

SelfAttention (1 Layer)
Input: 128
Heads: 4
Attention size: 128
Hidden size FFN: 128

M.3 Nonlinear model with auxiliary label

M.4 Nonlinear model with five modalities

M.5 MNIST-SVHN-Text

For SVHN and Text, we use 2d- or 1d-convolutional layers, respectively, denoted as Conv(f, k, s) for feature
dimension f , kernel-size k, and stride s. We denote transposed convolutions as tConv. We use the neural
network architectures as implemented in Flax Heek et al. (2023).
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Table 17: Encoder architectures for nonlinear model with auxiliary label.

(a) Modality-specific encoding functions hs(xs). Modality di-
mension D1 = 2 (continuous modality) and D2 = 5 (label).
Embedding dimension DE = 4 for PoE and MoE and DE = 128
otherwise.

Modality-specific encoders
Input: Ds

Dense Ds × 128, ReLU
Dense 128 × 128, ReLU
Dense 128 × DE

(b) Model for outer aggregation function ρϑ

for SumPooling and SelfAttention schemes and
mixtures thereof. Output dimension is D0 =
25 for mixture densities and DO = 4 otherwise.

Outer Aggregation
Input: 128
Dense 128 × 128, ReLU
Dense 128 × 128, ReLU
Dense 128 × DO

(c) Inner aggregation function χϑ.

SumPooling SelfAttention
Input: 128 Input: 128
Dense 128 × 128, ReLU Dense 128 × 128, ReLU
Dense 128 × 128, ReLU Dense 128 × 128
Dense 128 × 128

(d) Transformer parameters.

SelfAttention
Input: 128
Heads: 4
Attention size: 128
Hidden size FFN: 128

Table 18: Encoder architectures for a nonlinear model with five modalities.

(a) Modality-specific encoding functions hs(xs). Modality di-
mensions Ds = 25. Latent dimension D = 25

MoE/PoE SumPooling/SelfAttention
Input: Ds Input: Ds

Dense Ds × 512, ReLU Dense Ds × 256, ReLU
Dense 512 × 512, ReLU Dense 256 × 256, ReLU
Dense 512 × 50 Dense 256 × 256

(b) Model for outer aggregation function ρϑ

for SumPooling and SelfAttention schemes and
mixtures thereof. Output dimension is D0 =
50 for mixture densities and DO = 25 other-
wise.

Outer Aggregation
Input: 256
Dense 256 × 256, ReLU
Dense 256 × 256, ReLU
Dense 256 × DO

(c) Inner aggregation function χϑ.

SumPooling SelfAttention
Input: 256 Input: 256
Dense 256 × 256, ReLU Dense 256 × 256, ReLU
Dense 256 × 256, ReLU Dense ×256
Dense 256 × 256

(d) Transformer parameters.

SelfAttention
Input: 256
Heads: 4
Attention size: 256
Hidden size FFN: 256

M.6 MNIST-SVHN-Text with private latent variables

N MNIST-SVHN-Text Decoder Model architectures

For models with private latent variables, we concatenate the shared and private latent variables. We use a
Laplace likelihood as the decoding distribution for MNIST and SVHN, where the decoder function learns
both its mean as a function of the latent and a constant log-standard-deviation at each pixel. Following
previous works (Shi et al., 2019; Sutter et al., 2021), we re-weight the log-likelihoods for different modalities
relative to their dimensions.
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Table 19: Encoder architectures for MNIST-SVHN-Text.

(a) MNIST-specific encoding functions hs(xs).
Modality dimensions Ds = 28 × 28. The embedding
dimension is DE = 2D for PoE/MoE and DE = 256
for SumPooling/SelfAttention. For PoE+/MoE+,
we add four times a Dense layer of size 256 with ReLU
layer before the last linear layer.

MoE/PoE/SumPooling/SelfAttention
Input: Ds,
Dense Ds × 400, ReLU
Dense 400 × 400, ReLU
Dense 400 × DE

(b) SVHN-specific encoding functions hs(xs).
Modality dimensions Ds = 3 × 32 × 32. Embedding
dimension is DE = 2D for PoE/MoE and DE = 256
for SumPooling/SelfAttention. For PoE+/MoE+,
we add four times a Dense layer of size 256 with
ReLU layer before the last linear layer.

MoE/PoE/SumPooling/SelfAttention
Input: Ds

Conv(32, 4, 2), ReLU
Conv(64, 4, 2), ReLU
Conv(64, 4, 2), ReLU
Conv(128, 4, 2), ReLU, Flatten
Dense 2048 × DE

(c) Text-specific encoding functions hs(xs). Modal-
ity dimensions Ds = 8 × 71. Embedding di-
mension is DE = 2D for PoE/MoE and DE =
256 for permutation-invariant models (SumPool-
ing/SelfAttention) and DE = 128 for permutation-
equivariant models (SumPooling/SelfAttention). For
PoE+/MoE+, we add four times a Dense layer of size
256 with ReLU layer before the last linear layer.

MoE/PoE/SumPooling/SelfAttention
Input: Ds

Conv(128, 1, 1), ReLU
Conv(128, 4, 2), ReLU
Conv(128, 4, 2), ReLU, Flatten
Dense 128 × DE

(d) Model for outer aggregation function ρϑ for
SumPooling and SelfAttention schemes. Output di-
mension is D0 = 2D = 80 for models with shared
latent variables only and D0 = 10 + 10 for mod-
els with private and shared latent variables. DE =
256 for permutation-invariant and DI = 128 for
permutation-invariant models.

Outer Aggregation
Input: DE

Dense DE × DE , LReLU
Dense DE × DE , LReLU
Dense DE × DO

(e) Inner aggregation function χϑ for permutation-
invariant models (DE = 256) and permutaion-
equivariant models (DE = 128).

SumPooling SelfAttention
Input: DE Input: DE

Dense DE × DE , LReLU Dense DE × DE , LReLU
Dense DE × DE , LReLU Dense ×DE

Dense DE × DE

(f) Transformer parameters for permutation-
invariant models. DE = 256 for permutation-
invariant and DI = 128 for permutation-invariant
models.

SelfAttention (2 Layers)
Input: DE

Heads: 4
Attention size: DE

Hidden size FFN: DE

O Compute resources and existing assets

Our computations were performed on shared HPC systems. All experiments except Section 5.3 were run on
a CPU server using one or two CPU cores. The experiments in Section 5.3 were run on a GPU server using
one NVIDIA A100.

Our implementation is based on JAX (Bradbury et al., 2018) and Flax (Heek et al., 2023). We com-
pute the mean correlation coefficient (MCC) between true and inferred latent variables following Khe-
makhem et al. (2020b), as in https://github.com/ilkhem/icebeem and follow the data and model
generation from Khemakhem et al. (2020a), https://github.com/ilkhem/iVAE in Section 5.2, as well
as https://github.com/hanmenghan/CPM_Nets from Zhang et al. (2019) for generating the missingness
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Table 20: Decoder architectures for MNIST-SVHN-Text.

(a) MNIST decoder. DI = 40 for models with shared
latent variables only, and DI = 10 + 10 otherwise.

MNIST
Input: DI

Dense 40 × 400, ReLU
Dense 400 × 400, ReLU
Dense 400 × Ds, Sigmoid

(b) SVHN decoder. DI = 40 for models with shared
latent variables only, and DI = 10 + 10 otherwise.

SVHN
Input: DI

Dense DI × 128, ReLU
tConv(64, 4, 3), ReLU
tConv(64, 4, 2), ReLU
tConv(32, 4, 2), ReLU
tConv(3, 4, 2)

(c) Text decoder. DI = 40 for models with shared
latent variables only, and DI = 10 + 10 otherwise.

Text
Input: DI

Dense DI × 128, ReLU
tConv(128, 4, 3), ReLU
tConv(128, 4, 2), ReLU
tConv(71, 1, 1)

mechanism. In our MNIST-SVHN-Text experiments, we use code from Sutter et al. (2021), https:
//github.com/thomassutter/MoPoE.
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