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Abstract—Recent advances in imitation learning and vi-
sion—language models highlight the need for high-fidelity tactile
perception, with 6-DoF tactile object pose estimation providing
a crucial foundation for precise robotic manipulation. We intro-
duce InvariantCloud, a 6-DoF pose estimation framework that
leverages the global invariance of surface marker constellations
on vision-based tactile sensors. In contrast to recent approaches,
our one-shot globally invariant point cloud registration sup-
presses cumulative drift and overcomes long-standing limitations
in accurately estimating yaw (Z-axis) rotation. Experimental
verifications show that InvariantCloud achieves sub-2° yaw
tracking error and sub-1.5° yaw re-localization repeatability,
demonstrating its superior precision and robustness.

Index Terms—Globally Invariant Point, 6-DoF Pose Estima-
tion, Tactile Sensing

I. INTRODUCTION

Vision-based tactile sensors are essential for high-precision
manipulation [1], [2], yet accurate 6-DoF pose tracking re-
mains challenging due to cumulative drift and weak Z-axis
rotation observability. Existing methods rely on frame-to-
frame registration (Lucas-Kanade optical flow, ICP) or normal-
field optimization [3], both prone to drift accumulation and
failure on locally planar or quasi-isotropic surfaces where yaw
becomes unobservable.

We present InvariantCloud (Fig. 1), a globally invariant
point cloud framework that assigns unique IDs to dense surface
markers. This enables direct correspondence matching across
frames without nearest-neighbor search, eliminating registra-
tion ambiguity. Combined with Kabsch SVD for XY rotation
and PCA principal-axis extraction for Z rotation, our method
achieves sub-2° yaw tracking error, sub-1.5° repeatability,
and robust long-horizon tracking. Our contributions are: (1)
a globally invariant, uniquely indexed point cloud for drift-
free 6-DoF pose estimation; (2) a PCA-based Z-axis solver
that exploits global marker layout stability for reliable yaw
recovery.

II. METHOD

To enable precise tracking of object poses without requiring
prior 3D models, a globally invariant point cloud is leveraged
on the surface of a vision-based tactile sensor. A flat, dense
reference point cloud is first acquired under a no-contact
condition, with a unique identifier (ID) assigned to each point.
This spatially stable and uniquely indexable global reference
allows direct establishment of inter-frame correspondences

Interpolation Marker

Global Invariant Points with Indices

InvariantCloud

XYZ

XY rotation N - Zrotation -~ . translation

Index Contour Contour
Matching Point Pos Extraction

¢ l ! !
X Kabsch Principal Axis Centroid
Object 6D Pose SVD Solver Extraction Tracking
\

Fig. 1: A schematic overview of the proposed 6D pose tracking framework,
illustrating global invariant point generation, index matching, Kabsch SVD
solving for XY rotation, principal axis extraction for Z-axis rotation, and
centroid tracking for XYZ translation.

via point IDs, effectively eliminating errors in point cloud
registration.

A. Dense Reference Cloud Construction and XY Rotation

A globally referenced point cloud with unique identifiers is
constructed by first reconstructing a high-accuracy height map
from sphere calibration contacts. An MLP predicts surface
normal tilt angles from RGB values and pixel coordinates,
incorporating information from N,,q kers intrinsic fiducial
markers [1], [4]. We establish bidirectional pixel-to-3D map-
ping [S] where each pixel location is uniquely mapped into the
global 3D coordinate system. The N,,qkers fiducial markers
arranged in an R, X Corig grid are densified via bilinear
interpolation to generate a high-density point cloud (typically
several hundred points), with each interpolated point receiving
a globally unique identifier.

For each frame, we apply dual thresholds on color dif-
ference and height depression, followed by morphological
operations to produce a stable contact mask C. Since each
3D point carries a unique global identifier, one-to-one corre-
spondences are established directly via IDs. The paired point
sets are passed to the Kabsch algorithm [6] for closed-form
SVD solution. After centering both point clouds, the optimal
rotation R* € SO(3) is obtained via:
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where H = UXV' T is the SVD decomposition.
B. PCA Principal Axis Solver for Z Rotation

To address Z-axis rotation estimation difficulty, an inno-
vative PCA principal axis solver is proposed. The method
exploits: (i) high stability of invariant points under repeated
contacts, and (ii) sensitivity of contact silhouette to yaw.
Except for ideal spheres, yaw rotation alters the contact outline
and thus the subset of enclosed global points. At each frame,
invariant points within the current silhouette are extracted and
their principal axis is computed via PCA [7], [8]. The contact
subset Sy = {p; € P | Ci(p;) = 1} is extracted, covariance
matrix M; is computed via eigen decomposition, and the prin-
cipal axis a, yields Z-axis rotation angle 6, = atan2(a; y, at o).

C. Contact Centroid-Based Translation

To track 3D translation, we use the geometric centroid of
the current contact subset [9]. We apply morphological closing
to obtain a stable dominant contour, compute its area-moment
centroid, and lift it to 3D. Frame-to-frame centroid differences
yield XY translation, while the Z component is estimated from
contact region height.

IIT. EXPERIMENTS AND RESULTS

This section evaluates the performance of InvariantCloud
for 6-DoF pose tracking on common household objects
(Fig. 1). All experiments used the GelSight Mini visual-tactile
sensor [1] (resolution: 320x240, frame rate: ~25 Hz), with the
reference point cloud upsampled to a 19x25 grid (475 points).
Two baselines are compared: (1) Lucas-Kanade optical flow
[10] with nearest-neighbor ICP [11], [12], and (2) NormalFlow
[3] using Gauss-Newton optimization on surface normals.

We define three metrics: (1) Static cumulative drift: accu-
mulated pose deviation while the object remains stationary; (2)
Repeatability error: deviation when returning to initial pose
after rotation/translation; (3) Tracking accuracy: deviation
between estimated and ground-truth motion across a known
range.

A. Static Cumulative Drift and Repeatability

Table I shows cumulative error over one minute of sta-
tionary contact. Both NormalFlow and InvariantCloud exhibit
excellent static performance, while ICP gradually accumulates
drift. For repeatability, objects were rotated or translated along
single axes and returned to near-initial poses. Five trials
per object were averaged. ICP shows significant errors even
in static conditions. NormalFlow maintains reasonable X/Y-
axis accuracy but exhibits up to 20° error in Z-axis rotation
for elliptical contacts (e.g., eggs). InvariantCloud consistently
achieves repeatability errors below 1.5° across all objects.

B. Z-Axis Rotation Tracking Accuracy

ICP fails for Z-axis tracking due to surface slip during
rotation. We compare NormalFlow and InvariantCloud for
90° counterclockwise Z-axis rotation across four objects, with

TABLE I: Static Cumulative MAE During One-Minute Sta-
tionary Contact

Method x(mm) y(mm) z(mm) 60,(°)  60,°) 0.(°)
InvariantCloud 0.22 0.14 0.11 0.62 0.69 0.84
NormalFlow 0.41 0.38 0.28 1.42 0.97 0.78
ICp 2.52 3.14 2.29 10.89 8.15 7.19

motion capture providing ground truth (Fig. 2). NormalFlow
performs well on objects with distinct contours (scissors,
sensor box) but fails on less distinctive surfaces (egg, utility
knife elliptical end), where estimated angles remain nearly
static. InvariantCloud achieves robust tracking across all ob-
jects, with tracking error consistently below 2°, even for
challenging quasi-isotropic surfaces [13], [14]. This demon-
strates the effectiveness of our PCA principal-axis method in
exploiting global marker layout stability for reliable object
pose estimation [15].
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Fig. 2: Z-axis rotation tracking comparison. Blue: NormalFlow; Yellow:
InvariantCloud. Objects rotated counterclockwise from 0° to -90°.

IV. CONCLUSION

We present InvariantCloud, a 6D pose tracking frame-
work based on globally invariant point clouds with unique
IDs. By enabling direct inter-frame correspondence via ID
matching and combining Kabsch SVD with PCA principal-
axis extraction, our method achieves sub-2° yaw tracking error
and sub-1.5° repeatability, outperforming existing baselines. A
limitation remains for perfectly spherical objects where Z-axis
rotation is unobservable.
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