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Abstract. Interactive segmentation plays a pivotal role in medical im-
age analysis for several reasons. It enables clinicians to precisely delineate
regions of interest for accurate diagnosis and treatment planning while
also allowing for real-time interaction with rapid annotations without
workflow interruptions. While the emergence of MedSAM in 2023 pre-
sented a promising solution with its modality-agnostic model, its effi-
ciency is hindered by its large size, resulting in long inference times. In
response, we revisited simpler models such as thresholding, k-means clus-
tering, and shape-based slice interpolation for efficient interactive seg-
mentation tailored to specific modalities. Surprisingly, these rudimentary
expert models outperformed MedSAM in terms of both segmentation
performance and computational efficiency on multiple imaging modal-
ities reaching a Dice score of 85.65 and a Normalized Surface Dice of
86.68 on the validation set. Our findings show the need to compare to
older, simpler approaches to unveil the limitations of emerging founda-
tion models. By examining these approaches, we aim to discover why
MedSAM fails on certain modalities and enhance its robustness and ef-
ficiency leading to a more reliable general model for the segmentation of
medical images.

1 Introduction

Background. Advancements in deep learning have propelled the segmentation
of anatomical structures and lesions in medical images. However, they often rely
on manually annotated datasets [7,33,3,19,44,12]. Additionally, the volumetric
nature of some imaging modalities such as CT, MRI, or PET, poses a significant
challenge, as annotating each voxel demands extensive time and expertise. To
circumvent this hurdle, interactive segmentation methodologies have emerged,
utilizing less labor-intensive annotations such as clicks or bounding boxes, rather
than dense voxelwise labels [31,48,9,10,4,43,26,42,32]. These interactive models
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integrate user interactions with the image input to generate predictions, guided
by these interactions. Once validated by medical experts, these predictions can
serve as new labels [31].

Related work. Recently, MedSAM [28] released a fine-tuned Segment Any-
thing Model (SAM) [24] on 11 imaging modalities and over 1.5 million image-
mask pairs. MedSAM demonstrates great generalizability across various imag-
ing modalities and segmentation tasks [28,31]. However, its large size hinders
the real-time interaction between the annotator and the model. There have
been multiple light-weight versions of MedSAM such as MobileSam [46] and
EfficientViT-SAM [47] that optimize the efficiency of MedSAM while retaining
most of its generalization to multiple modalities. To explore this further, Ma et
al. [28] hosted the Segment Anything In Medical Images On Laptop Challenge5

to gather insights on how to design efficient bounding-box-based methods for
interactive segmentation. This paper describes our submission to this challenge.

Motivation. We aim to revisit classical methods as they offer a simple and
efficient solution to most segmentation tasks. By comparing them to current
generalist models such as MedSAM, we aim to gain insights into how such sim-
ple models can outperform large pre-trained vision models and delve into the
discussion of how to improve MedSAM in future iterations. Our work presents
the following contributions:

1. We investigate classical approaches for 11 imaging modalities and investigate
if they can outperform MedSAM’s lightweight implementation (LiteMed-
SAM6) in terms of segmentation accuracy and efficiency

2. We examine the failure cases and discuss why MedSAM silently fails on cer-
tain modalities and propose how to tackle this in future fine-tuning iterations

3. We make all our code and trained models publicly available to the community

2 Method

We go over each of the 11 imaging modalities one-by-one and examine which
classical approaches are able to outperform MedSAM and propose techniques
to make MedSAM more efficient on modalities on which we could not outper-
form it. The 11 modalities are: (1) Computed Tomography (CT); (2) Magnetic
Resonance Imaging (MRI); (3) Positron Emission Tomography (PET); (4) Ul-
trasound (US); (5) Dermoscopy; (6) Microscopy; (7) Mammography; (8) X-Ray;
(9) Endoscopy; (10) Fundus; and (11) Optical Coherence Tomography (OCT).

Note: We only focus on the segmentation tasks seen in the MedSAM train-
ing dataset, e.g., only FDG-PET lesions segmentation and only optic disc seg-
mentation on fundus images. We also always use LiteMedSAM as a lightweight
MedSAM implementation and refer to it as MedSAM for brevity.

5 https://www.codabench.org/competitions/1847/
6 https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM
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Fig. 1: Overview of our pipeline. We apply a different model for the various
imaging modalities. For CT and MRI, we apply MedSAM [28] on a subset of all
slices and interpolate the rest with shape-based interpolation [38]. For PET and
OCT, we use the generalized histogram threshold (GHT) [5]. For microscopy,
we check the number of channels and apply: (1) MedSAM [28] for n = 3; (2)
a threshold, set to the mean image intensity for n = 2; (3) k-means clustering
[30] for n = 1 if less than 35% of the bounding boxes contain circular objects,
otherwise MedSAM. For mammography and dermoscopy, we train a lightweight
MobileUNet [20], and for US, XRay, fundus, and endoscopy, we use MedSAM.

2.1 CT and MRI

Tasks: The main CT tasks seen in the MedSAM training dataset are extremely
diverse as they focus on organs from all regions in the body as well as different
diseases such as COVID-19 infections, various tumors, pleural effusion, etc. The
same applies to the MRI targets consisting of brain tumors, abdominal organs,
prostate cancer, and many other anatomical and pathological targets.

Challenges: The segmentation tasks are highly diverse, making it challeng-
ing and time-intensive to manually incorporate expert knowledge for all possible
structures. Additionally, both CT and MRI images are 3-dimensional, requiring
MedSAM to perform a forward pass for each slice, which results in significant
computational overhead. Furthermore, the slice-wise predictions are computed
independently, lacking a mechanism to ensure spatial consistency and smooth-
ness across slices.

Classical Approaches: The diversity of potential targets in CT and MRI
images necessitates a general model. Therefore, we did not replace MedSAM with
a classical segmentation model. Instead, we reduced the number of predictions by
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applying MedSAM to only a subset of the slices from the volume. The remaining
slices are interpolated using shape-based interpolation as proposed in [38]. This
interpolation is performed at the prediction level. Specifically, given two binary
slice predictions obtained from MedSAM pi and pj , with j > i, the intermediate
slices k ∈ {i+ 1, ..., j − 1} are interpolated as follows:

pk = interp(pi, pj ,
k − i

j − i
)

where interp(·) is defined in [38] and k−i
j−i ∈ [0, 1] is the step size for the in-

terpolation. To decide which slices to predict with MedSAM, we subsample the
indices uniformly with a subsampling factor s. For example, s = 2 means we
predict with MedSAM every second axial slice and interpolate the rest, s = 3
means we predict only every 3rd slice, etc. We always predict the first and last
axial slice of the bounding box to avoid edge cases.

2.2 PET and OCT

Tasks: The PET data released in the challenge contains samples only from the
AutoPET dataset [7] which focuses on the segmentation of whole-body active
tumor lesions using Fludeoxyglucose (FDG) as a radioactive tracer. The OCT
data also stems from only one dataset [1] and focuses on the segmentation of
intraretinal cystoid fluid.

Challenges: There are very few public PET datasets for tumor segmentation
[7,36,8] which makes it impossible to train large-scale foundation models on
this modality. PET lesions in AutoPET are also with very small contrast to
surrounding tissues and there are other healthy anatomical structures that also
exhibit a large physiological uptake (heart, brain, bladder, etc.). Additionally,
the best results from AutoPET 20237 are quite low (Dice Score of 0.36 in the first
place) indicating that this task is far from trivial. Regarding OCT, the modality
presents images with a high resolution and a very small target size of the retinal
fluid voids, leading to a strong class imbalance.

Classical Approaches: Thresholding methods are popular in tumor seg-
mentation from PET scans [22,17,34] and lead to promising results as they are
quite simple and intuitive to use. Bounding-box approaches are particularly ad-
vantageous because thresholds can be applied within the local context of the box,
effectively excluding healthy tissues like the heart and brain that lie outside the
defined boundaries, in contrast to previous methods that explicitly remove the
brain and bladder from the global context of the whole body [35,7,11]. The
bounding box also alleviates the class imbalance in OCT images as it constrains
the input to only the local context around the object instead of the global high-
resolution image.

We compute the Generalized Histogram Threshold (GHT) [5] using the com-
bined PET or OCT values from all bounding boxes. This threshold is then

7 https://autopet-ii.grand-challenge.org/leaderboard/
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applied to the entire volume to generate a single prediction, with instance in-
dices assigned according to their respective bounding box indices. Additionally,
we observe that 99% of the PET tumors occupy between 20% and 88% of their
bounding box volume in the training set. To ensure consistency, we apply dila-
tion and erosion to all predictions falling outside this interval until they conform
to it. If thresholding results in an empty prediction, we place a foreground voxel
within the bounding box and dilate it until it reaches at least 20% of the box
volume. For OCT images, we perform the same procedure but do not enforce a
target volume between 20% and 88%. For PET images we keep all values above
the threshold as tumors are characterized by a high FDG uptake, whereas for
OCT we keep all values below the threshold as the cystoid fluids are darker.

2.3 Ultrasound

Tasks: The ultrasound tasks in MedSAM’s training data include: (1) breast
cancer segmentation; and (2) fetal head segmentation.

Challenges: The ultrasound domain presents several challenges due to weak
boundaries and the diversity of tasks (e.g., thyroid, kidney, cardiac structures, fe-
tal head, breast cancer). This necessitates a general model capable of performing
well on unseen data, even when the specific task is unknown. MedSAM struggles
with fetal head segmentation because the labels are always perfect ellipses, while
MedSAM attempts to fit the exact contour present in the image. This label bias
can be mitigated by introducing a "prediction bias," where the prediction is also
a perfect ellipse. However, this approach requires prior knowledge that the task
is fetal head segmentation, which is not available during test time.

Classical Approaches: Although we experimented with ellipse-based tem-
plate matching, this was not included in the final submission. Additionally, we
trained a MobileUNet [20] on ultrasound images from the hc18 [13] and Breast-
US [2] datasets. However, the results were suboptimal, as shown in Table 7 so
we resorted to using MedSAM in our final submission.

2.4 Dermoscopy

Tasks: The dermoscopy tasks in MedSAM’s training data are limited to a single
dataset, ISIC 2018 [6], which focuses on skin lesion segmentation.

Challenges: This domain is relatively simpler than others, as skin lesions
typically have "blobby" shapes and prominent features. However, the dataset
exhibits high variability in annotation styles, as shown in Fig. 2. Some lesions
are annotated with detailed boundaries, while others are marked with only a few
lines to indicate the lesion boundary.

Classical Approaches: Although we did not employ any classical non-deep
learning methods, we trained a MobileUNet [20] specifically on the ISIC 2018
dataset [6]. The training details are provided in Section 3.2.
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Fig. 2: Difference in annotation styles for skin lesions. Row 1: very coarse anno-
tation with straight lines as boundaries. Row 2: fine-grained annotations with
detailed lesion boundaries.

2.5 Microscopy

Tasks: MedSAM’s microscopy training data is sourced solely from the NeurIPS
2022 CellSeg dataset [29]. However, this dataset presents a wide array of chal-
lenges, featuring diverse images captured using different microscope types, in-
cluding brightfield, fluorescent, phase-contrast (PC), and differential interference
contrast (DIC). Moreover, the dataset encompasses various cell types as segmen-
tation targets, adding further complexity to the task.

Challenges: The microscopy imaging modality presents several significant
challenges: (1) The number of instances per image can be exceptionally high,
exceeding 1000 in some cases, resulting in computational overhead when per-
forming a forward pass for each bounding box. (2) The diversity of microscope
types necessitates either a robust generalist model or multiple specialist models
to accommodate various imaging characteristics. (3) The high-resolution nature
of the images poses a challenge, as details may be lost when resizing to smaller
resolutions, as is the case with MedSAM’s resizing to 256× 256.

Classical Approaches: We adopt different classical methods depending on
the number of channels present in the image.

Grayscale: When dealing with grayscale images, we utilize a k-means clus-
tering approach [30] with k = 2. To determine which class corresponds to the
foreground, we compute the frequency of pixels belonging to each class within
a 10 × 10 window at the center of the bounding box. We then select the class
with the higher pixel count within this window. As depicted in Fig. 7, MedSAM
encounters challenges with grayscale images where the target is dark and the
bounding boxes are relatively small compared to the entire image. In contrast,
k-means clustering achieves more plausible segmentations for such cases. How-
ever, we did not observe this problem with circular cells, so we opted to continue
using MedSAM for cases where more than 35% of the bounding boxes contain
a circular object. To detect circles, we employed the Hough circle transform [23]
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with various radii to check for the presence of circle-like objects within each
bounding box.

Two-channel: In the case of images containing only two channels (typically 3
channels in practice, with one filled with zeros, such as in fluorescent microscopy),
we simply utilize the mean image intensity as a threshold. This approach is
straightforward yet quite effective.

RGB: For RGB images, we opt to use MedSAM directly, as it demonstrates
robust performance in such cases.

2.6 Mammography

Tasks: The training set comprises only one publicly available dataset: CDD-
CESM [21], which addresses breast abnormalities such as calcifications and be-
nign and malignant tumors.

Challenges: The target structures exhibit considerable variability in size,
and the masks are annotated at a coarse level, similar to some labels observed
in the ISIC 2018 dataset [6], as illustrated in Fig. 3.

Fig. 3: Examples of images and their ground-truth masks from the training set.
The labels are coarse and the targets vary strongly in size.

Classical Approaches: We did not employ any non-deep learning approaches
for mammography but we did train a MobileUNet [20] to improve the inference
speed.

2.7 X-Ray, Endoscopy, and Fundus

Tasks: The X-Ray, Endoscopy, and Fundus modalities encompass a range of
tasks. X-Ray imaging primarily targets anatomical structures like lungs [15] and
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specific pathologies such as COVID-19 lesions [41]. Endoscopy images are focused
on detecting polyps [18] or surgical instruments [14]. In contrast, Fundus images
in the training set concentrate solely on optic discs and cups [37]. However,
for more intricate structures like vessels in fundus images, the bounding-box
interaction signal proves inadequate for highlighting relevant context, and thus
was not considered for this challenge.

Challenges: X-Ray images exhibit a strong diversity, featuring various struc-
tures. The validation set even includes dental X-Rays requiring teeth segmenta-
tion, which requires a model capable of generalizing to such unseen structures.
Hence, we employed MedSAM for this modality. In contrast, Fundus and En-
doscopy images offer a simpler and less diverse setting than X-Ray. Despite our
efforts, we were unable to surpass MedSAM’s performance in either of these
domains, leading us to utilize it for our final submission for all three modalities.

Classical Approaches: We did not apply any classical approaches to these
domains due to time constraints and utilize MedSAM for our submission.

Table 1: Summary of our used models for the final submission.
Modality Used Model
CT and MRI LiteMedSAM [28] with slice interpolation s = 3 [39]
PET and OCT Generalized Histrogram Threshold [5]
US, X-Ray, Fundus, Endoscopy LiteMedSAM [28]
Mammography and Dermoscopy MobileUNet [20]
Microscopy k-means, thresholding, and LiteMedSAM [28]

2.8 Preprocessing

We re-used the code provided by LiteMedSAM8 for loading the data and infer-
ring predictions and added more functions to the script for our methods. We
avoid loading LiteMedSAM’s weights for tasks which do not need it and im-
port modules only immediately before they are used. The image loading and
preprocessing is done as follows:

LiteMedSAM: The image is resized to a common size of 256 × 256 and
padded to the shorter side to keep the original aspect ratio. Then, the image is
min-max normalized and fed to the model. The model performs a forward pass
for each bounding box.

MobileUNet: We iterate over each bounding box separately. We first crop
the image according to the bounding box and then resize the crop to a common
size of 256×256 and pad the shorter side to keep the original aspect ratio. Then,
the crop is min-max normalized and fed to the model. The prediction is then
resized to the original crop resolution and inserted in the final prediction.
8 https://github.com/bowang-lab/MedSAM/blob/LiteMedSAM/CVPR24_LiteMedSAM_
infer.py

https://github.com/bowang-lab/MedSAM/blob/LiteMedSAM/CVPR24_LiteMedSAM_infer.py
https://github.com/bowang-lab/MedSAM/blob/LiteMedSAM/CVPR24_LiteMedSAM_infer.py
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k-means: When applying k-means clustering, we use the unnormalized val-
ues within each bounding box and apply k-means for each bounding box.

Thresholding: Thresholds are always computed using the combination of all
image values in the bounding boxes and then applied to the whole unnormalized
image. Instance indices are then assigned according to the bounding box indices.

2.9 Post-processing

After each forward pass, we perform two post-processing transformations. For all
2D images, except the ones predicted by MedSAM, we keep the largest connected
component and fill all the holes within it. The second transform, which we apply
to all images, regardless of the imaging modality or used model, is to filter all
the instance predictions that are outside of the bounding box.

3 Experiments

3.1 Dataset and evaluation measures

We used only the challenge dataset for model development and validation. The
evaluation metrics include two accuracy measures—Dice Similarity Coefficient
(DSC) and Normalized Surface Dice (NSD), alongside one efficiency measure:
running time. These metrics collectively contribute to the ranking computation.

3.2 Implementation details

Environment settings The development environments and requirements for
all our methods (except the training of MobileUNet) are presented in Table 2.

Table 2: Development environments and requirements for all our methods except
MobileUNet training.

System Ubuntu 22.04.4 LTS
CPU9 Intel(R) Core(TM) i7-13700H CPU@5.00GHz
RAM 8×4GB; 5200MT/s
GPU (number and type) None
CUDA version 11.8
Programming language Python 3.10.14
Deep learning framework torch 2.2.1
Specific dependencies None
Code https://github.com/Zrrr1997/medsam_cvhci

The development environments and requirements for the training of Mobile-
UNet are presented in Table 2.
9 https://ark.intel.com/content/www/us/en/ark/products/232128/
intel-core-i7-13700h-processor-24m-cache-up-to-5-00-ghz.html

https://github.com/Zrrr1997/medsam_cvhci
https://ark.intel.com/content/www/us/en/ark/products/232128/intel-core-i7-13700h-processor-24m-cache-up-to-5-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/232128/intel-core-i7-13700h-processor-24m-cache-up-to-5-00-ghz.html
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Table 3: Development environments and requirements for MobileUNet training.
System Red Hat Enterprise Linux release 8.8 (Ootpa)
CPU Intel(R) Xeon(R) Platinum 8368 CPU @ 2.40GHz
RAM 502GB
GPU NVIDIA A100-SXM4 40GB
CUDA version 11.8
Programming language Python 3.10.14
Deep learning framework torch 2.2.2
Specific dependencies None
Code https://github.com/Zrrr1997/medsam_cvhci/

Training protocols For MedSAM, we use the provided pre-trained LiteMed-
SAM model whose training is described in [28]. For MobileUNet, we trained a
model for the dermoscopy and mammography modalities using the ISIC 2018
dataset [6] and the CDD-CESM dataset [21] respectively. In both cases we apply
the same training protocol: We train for 500 epochs with a learning rate of 5e-5,
and a batch size of 4. We use the Adam optimizer with β1 = 0.9, β2 = 0.999 and
reduce the learning rate by 10% if the loss has not decreased in the last 5 epochs.
As a loss function we use the summation between Dice loss and cross-entropy
loss because compound loss functions have been proven to be robust in various
medical image segmentation tasks [27]. In each iteration, we sample one random
bounding box from each image in the batch and resize it to 256 × 256 so that
all inputs have a uniform resolution. The crops then form the input batch to the
model. We do not use any data augmentation and select the checkpoint from
the last epoch for both the mammography and dermoscopy models.

Table 4: Training protocol for Dermoscopy and Mammography MobileUNet.

Pre-trained Model None
Batch size 4
Patch size 256×256×3
Total epochs 500
Optimizer Adam (β1 = 0.9, β2 = 0.999)

Initial learning rate (lr) 5e-5
Lr decay schedule ReduceLROnPlateau10 (factor=0.9, patience=5)
Training time 8.4 hours (Dermoscopy), 6.8 hours (Mammography)
Loss function Dice Loss + Binary Cross-Entropy Loss (equal weights)
Number of model parameters 41.22M11

Number of flops 1.45G12

CO2eq 2.6KG (Dermoscopy), 1.5KG (Mammography) rKg13

https://github.com/Zrrr1997/medsam_cvhci/
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4 Results and discussion

We discuss the results of the individual modalities one-by-one as we propose
different models for the 11 imaging modalities.

4.1 CT and MRI

Efficiency Strategies: The slice interpolation improves the efficiency as it is
faster than MedSAM’s forward pass. A higher subsampling factor s leads to a
better efficiency but it also leads to a drop in performance as high-frequency
details are smoothened out and interpolation artifacts may occur (see Fig. 5).

Table 5: Results on the validation stage of the challenge for CT and MR images.
Our final submission in indicated in bold.

Model Dice NSD Time per Image
LiteMedSAM (CT, no subsampling) 92.35 95.09 47.3s
LiteMedSAM (CT, s=2) 91.88 94.35 28.1s
LiteMedSAM (CT, s=3) 91.59 94.18 21.3s
LiteMedSAM (CT, s=6) 90.54 93.14 15.0s
LiteMedSAM (CT, s=8) 89.81 92.42 13.0s
LiteMedSAM (MR, no subsampling) 89.93 94.02 29.8s
LiteMedSAM (MR, s=2) 88.96 92.90 18.1s
LiteMedSAM (MR, s=3) 88.34 92.57 13.9s
LiteMedSAM (MR, s=6) 86.43 90.88 10.2s
LiteMedSAM (MR, s=8) 84.99 89.58 9.0s

Table 5 shows that for a smaller subsampling factor s ≤ 3, the performance
loss is quite small (≈ 1% Dice and NSD) but the efficiency boost is quite high
(>19s per sample). However, for larger factors s > 3 the performance declines
further and this is clearly illustrated by the rough patterns and artifacts in Fig.
5. To balance the performance and efficiency, we opted for s = 3 for our final
submission.

How to improve MedSAM on CT and MRI? MedSAM shows a remark-
able robustness in these two imaging modalities but exhibits a slow inference as
it processes the volumes slice-by-slice. As MedSAM is intended as a foundation
model, we believe it should remain in the 2D domain so that it can process
other imaging modalities such as OCT, dermoscopy, etc. However, a slice inter-
polation strategy proves to be quite reliable, especially for smaller subsampling
rates, without decreasing MedSAM’s performance dramatically. We believe that
10 https://pytorch.org/docs/stable/optim.html
11 https://github.com/sksq96/pytorch-summary
12 https://github.com/facebookresearch/fvcore
13 https://github.com/lfwa/carbontracker/
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exploring such strategies in more detail can be beneficial for MedSAM’s efficiency
on the CT and MRI domains as well as to impose a smoothness constraint among
adjacent slices since its slicewise predictions are independent of each other.

4.2 PET and OCT

Efficiency Strategies: Thresholding eliminates the need for slice-wise forward
passes as the threshold is applied directly on the whole volume in a single oper-
ation. Table 6 shows that the thresholding outperforms MedSAM on all metrics
and is 30x faster on the validation set. For OCT, this effect is less pronounced
but still leads to both a better performance and a much higher efficiency on the
training dataset as there are no image samples in the validation set.

Table 6: Results on the validation stage of the challenge for PET and on the
training dataset for OCT

Model Dice NSD Time per Image
LiteMedSAM (PET) 55.23 29.29 3.33s
Thresholding (PET) 66.80 49.42 0.14s
LiteMedSAM (OCT) 79.02 82.33 0.86s
Thresholding (OCT) 86.34 88.64 0.38s

How to improve MedSAM on PET and OCT? The results are concern-
ing as a simple threshold and morphological operators can outperform MedSAM
on the PET task. We suppose that the reason is the lack of available data to im-
prove MedSAM so that it can generalize better and extract meaningful features.
PET data can also be enhanced with anatomical labels derived from paired CT
scans [16,35] which was the winning approach of AutoPET 2023 as it injects
expert knowledge regarding the affected anatomical regions as additional infor-
mation to the model. The OCT domain can also be improved by incorporating
additional anatomical labels, e.g., corresponding to the various retinal layers.

4.3 Ultrasound

Efficiency Strategies: We did not improve the efficiency on this task as we
use MedSAM in our final submission as our experiments with MobileUNet were
unsuccessful as seen in Table 7.

How to improve MedSAM on Ultrasound? We observed that the fe-
tal head labels in the training data can be effectively approximated by simple
ellipses, as illustrated in Fig. 4, resulting in improved Dice scores and efficiency
compared to MedSAM. However, ultrasound imaging is used for various other
tasks, such as cardiac structure analysis [25], thyroid cancer detection [49], breast
cancer assessment [2], and kidney imaging [40]. Therefore, relying solely on sim-
ple ellipses is not viable for all cases. One potential solution is to train a classifier
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Table 7: Results on the validation stage of the challenge for Ultrasound images
Model Dice NSD Time per Image
LiteMedSAM 94.78 96.81 0.66s
MobileUNet 79.12 84.55 0.22s

to identify when the ultrasound task involves fetal head segmentation. However,
we were unsuccessful in achieving satisfactory results with this approach.

Fig. 4: Prediction for the hc18 dataset [13] with MedSAM and with an ellipse.

4.4 Dermoscopy

Efficiency Strategies: MobileUNet’s forward pass is twice as fast as Med-
SAM’s, yet it maintains comparable performance on the validation set, as demon-
strated in Table 8.

Table 8: Results on the validation stage of the challenge for Dermoscopy images
Model Dice NSD Time per Image
LiteMedSAM 92.47 93.85 0.71s
MobileUNet 92.63 94.22 0.31s

How to improve MedSAM on Dermoscopy? We cannot make a state-
ment on how to improve MedSAM in this domain as we have not been able to
outperform it by a large margin.

4.5 Microscopy

Efficiency Strategies: The k-means clustering and the mean threshold are
more than x10 faster than the MedSAM forward pass.

How to improve MedSAM on Microscopy? It seems that MedSAM
struggles with miniature bounding boxes, especially since they are resized to
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Table 9: Results on the validation stage of the challenge for Microscopy images
Model Dice NSD Time per Image
LiteMedSAM 61.70 65.47 13.7s
k-means OR threshold OR LiteMedSAM 69.96 77.98 2.4s

256× 256 to fit its input size. We believe that a crop-then-infer approach would
be beneficial for MedSAM as it would only resize the crop instead of the whole
image. This way, the bounding box would not be miniature and MedSAM can
focus on the detail of the cropped local instance. However, we would need to
perform a study regarding this in future work to confirm our hypothesis.

4.6 Mammography

Efficiency Strategies: Similarly to dermoscopy, MobileUNet achieves a 2x
faster prediction than MedSAM.

Table 10: Results on MedSAM’s training dataset for Mammography
Model Dice NSD Time per Image
LiteMedSAM 79.15 82.09 0.86s
MobileUNet 86.55 88.92 0.38s

How to improve MedSAM on Mammography? We cannot make a
statement on how to improve MedSAM in this domain as we only evaluate it
on the training data. However, it seems that this domain is underrepresented in
MedSAM’s training data, which leads to a mammography-specialized Mobile-
UNet outperforming MedSAM.

4.7 X-Ray, Endoscopy, and Fundus

Efficiency Strategies: We did not improve the efficiency on this task as we
used MedSAM in our final submission.

How to improve MedSAM on X-Ray, Endoscopy, and Fundus? We
have limited expertise in these domains and cannot offer any hypotheses on how
to improve MedSAM.

4.8 Quantitative results on validation set

Table 11 shows that our approach outperforms (on average) the baseline (LiteMed-
SAM). However, we also show in Tables 5-10 that we are able to significantly
improve the efficiency of the baseline while sacrificing a negligible amount of
performance.
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Table 11: Quantitative evaluation results. Baseline: LiteMedSAM. Ablations
were done on the subsampling factors for CT and MRI volumes.

Target Baseline Ablation s = 2 Ablation s = 8 Proposed s = 3
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%) DSC(%) NSD (%)

CT 92.35 95.09 91.88 94.35 89.81 92.42 91.59 94.18
MR 89.93 94.02 88.99 92.93 84.99 89.58 88.34 92.57
PET 55.23 29.29 66.80 49.42 66.80 49.42 66.80 49.42
US 94.78 96.81 94.78 96.82 94.78 96.82 94.78 96.82
X-Ray 75.83 80.39 75.87 80.44 75.87 80.44 75.87 80.44
Dermoscopy 92.47 93.85 92.63 94.22 92.63 94.22 92.63 94.22
Endoscopy 96.04 98.11 96.04 98.11 96.04 98.11 96.04 98.11
Fundus 94.81 96.41 94.82 96.42 94.82 96.42 94.82 96.42
Microscopy 61.70 65.47 69.96 77.98 69.96 77.98 69.96 77.98
Average 83.68 83.27 85.75 86.74 81.05 83.16 85.65 86.68

4.9 Segmentation efficiency results on validation set

The efficiency on a few samples from the validation set are listed in Table 12.
Our optimization on the CT, MR, PET, microscopy, and dermoscopy modalities
contributes to a much more efficient prediction time.

Table 12: Quantitative evaluation of segmentation efficiency in terms of running
time (s) on the hardware specified in Table 2. Abl.: Ablation, ∗ Grayscale image
Case ID Size #Objects Baseline Abl. s = 8 Ours s = 3

3DBox_CT_0566 (287, 512, 512) 6 376.4 62.1 109.7
3DBox_CT_0888 (237, 512, 512) 6 100.5 19.0 29.4
3DBox_CT_0860 (246, 512, 512) 1 17.7 4.6 5.8
3DBox_MR_0621 (115, 400, 400) 6 157.1 22.6 42.4
3DBox_MR_0121 (64, 290, 320) 6 99.9 13.6 27.3
3DBox_MR_0179 (84, 512, 512) 1 17.1 4.2 5.6
3DBox_PET_0001 (264, 200, 200) 1 12.1 0.19 0.19
2DBox_US_0525 (256, 256, 3) 1 2.0 2.0 2.0
2DBox_X-Ray_0053 (320, 640, 3) 34 2.9 2.9 2.9
2DBox_Dermoscopy_0003 (3024, 4032, 3) 1 2.2 1.3 1.3
2DBox_Endoscopy_0086 (480, 560, 3) 1 2.0 2.0 2.0
2DBox_Fundus_0003 (2048, 2048, 3) 1 2.0 2.0 2.0
2DBox_Microscope_0008 (1536, 2040, 3) 19 2.6 2.6 2.6
2DBox_Microscope_0016 (1920, 2560, 3) 241 12.9 12.9 12.9
∗2DBox_Microscope_0030 (2304, 2304, 3) 137 7.4 1.6 1.6
∗2DBox_Microscope_0040 (944, 1266, 3) 56 3.4 0.3 0.3
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4.10 Qualitative results on validation set

We show some qualitative image examples for the predictions of our models on
various modalities.

3D slice-wise inference. Fig. 5 demonstrates the effect of various subsam-
pling rates s on a CT prediction. While the prediction is much more efficient
with a higher rate, it also reduces the level of details and even introduces inter-
polation artifacts. This is one of the reasons that led us to set s = 3 to a lower
value.

Fig. 5: Example of various subsampling factors s for a kidney from the CT valida-
tion set. Higher factors introduce artifacts during the interpolation and smoothen
out high-frequency details but improve the efficiency.

Microscopy classical approaches. Fig. 6 and Fig. 7 demonstrate failure
cases of MedSAM in the microscopy domain. It seems that MedSAM struggles
with small structures with ambiguous boundaries. In contrast, k-means cluster-
ing and mean thresholding perform quite well on these domains, landing a spot
into our methodology for our final submission to the challenge.

Fig. 6: Examples of predictions for two-channel microscopy images from the
training set.
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Fig. 7: Examples for grayscale microscopy images from the validation set.

Fig. 8: Examples for failure cases of our microscopy predictions.

Microscopy - Failure Cases. Fig. 8 depicts examples of predictions on
microscopy images. It can be seen that in some instances the k-means clustering
and the mean threshold fill up the whole bounding box as the intensity within
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the local instance is higher than the mean intensity in the global image or the
pixels are homogenous. This is an inherent challenge in the microscopy domain.

Dermoscopy, Endoscopy, Fundus, Mammography. Fig. 9 shows exam-
ples for predictions on four imaging modalities. The labels are often quite coarse,
which may lead to a low reported Dice and NSD although the segmentation mask
on its own might be plausible.

Fig. 9: Examples for Dermoscopy, Endoscopy, Fundus, and Mammography pre-
dictions

PET and OCT threshold-based methods. Fig. 10 shows examples of
predictions on OCT and PET images. As confirmed in the quantitative results,
thresholds produce plausible predictions for both modalities.
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Fig. 10: Examples for OCT and PET predictions.

4.11 Results on final testing set

This is a placeholder. We will announce the testing results during CVPR (6.17-
18)

4.12 Limitation and future work

Our methodology has two main limitations: (1) it focuses on individual imaging
modalities rather than proposing a unified framework like MedSAM; (2) classical
non-deep learning approaches often depend on expert knowledge for optimal
performance (e.g., for PET data, we assume that lesions are avid and bright in
the image). However, we intentionally adopt this fragmented approach to identify
the weaknesses in MedSAM and understand their underlying causes, aiming to
improve it in future iterations. Our findings suggest that incorporating explicit
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assumptions about imaging modalities can serve as a robust signal, sometimes
outperforming MedSAM in specific cases.

A promising future direction involves appending a "task adapter" to Med-
SAM. This would function as a model capable of recognizing the task from
the image, such as "fetal head segmentation in ultrasound," and providing this
contextual information to MedSAM. This addition would enable MedSAM to
produce more accurate and context-specific outputs, such as coarse and ellipsoid-
shaped masks. In other words, informing the model about the specific segmen-
tation task should enhance its adaptability and performance. This approach
allows the integration of domain knowledge directly into the model, potentially
adapting it to specific domains and tasks.

5 Conclusion

Our results indicate that classical approaches can outperform MedSAM on cer-
tain imaging modalities, both in segmentation accuracy and efficiency. Several
factors contribute to this outcome, including the presence of coarse ground-truth
labels in dermoscopy, the scarcity of large public datasets for mammography
and PET, and the loss of detail during image resizing in microscopy images.
Moreover, our findings highlight that integrating explicit task knowledge is cru-
cial for surpassing MedSAM’s performance. We propose that a task adapter,
which provides information about the target structure and imaging modality,
could enhance MedSAM’s effectiveness in these challenging domains. Addition-
ally, our slice interpolation experiments demonstrated that it is possible to im-
prove MedSAM’s efficiency without significantly compromising its segmentation
performance.
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