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Figure 1: For a pruning criterion, we use a metanetwork to change a hard to prune network into
another easy to prune network for better pruning.

ABSTRACT

We propose an entirely new meta-learning framework for network pruning. It
is a general framework that can be theoretically applied to almost all types of
networks with all kinds of pruning and has great generality and transferability.
Experiments have shown that it can achieve outstanding results on many popular
and representative pruning tasks (including both CNNs and Transformers). Unlike
all prior works that either rely on fixed, hand-crafted criteria to prune in a coarse
manner, or employ learning to prune ways that require special training during
each pruning and lack generality. Our framework can learn complex pruning
rules automatically via a neural network (metanetwork) and has great generality
that can prune without any special training. More specifically, we introduce
the newly developed idea of metanetwork from meta-learning into pruning. A
metanetwork is a network that takes another network as input and produces a
modified network as output. In this paper, we first establish a bijective mapping
between neural networks and graphs, and then employ a graph neural network
as our metanetwork. We train a metanetwork that learns the pruning strategy
automatically and can transform a network that is hard to prune into another
network that is much easier to prune. Once the metanetwork is trained, our
pruning needs nothing more than a feedforward through the metanetwork and
some standard finetuning to prune at state-of-the-art. Our code is available at
https://anonymous.4open.science/r/MetaPruning.

1 INTRODUCTION

With the rapid advancement of deep learning (LeCun et al., 2015; Schmidhuber, 2015), neural
networks have become increasingly powerful. However, this improved performance often comes
with a significant increase in the number of parameters and computational cost (FLOPs). As a result,
there is growing interest in methods to simplify these networks while preserving their performance.
Pruning, which involves selectively removing certain parts of a neural network, has proven to be an
effective approach (Cheng et al., 2024; He & Xiao, 2024; Reed, 1993).

A key idea of a large number of previous pruning works is to remove the unimportant components of
a neural network. To achieve this goal, various criteria that measure the importance of components of
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a neural network have been invented. Some criteria are based on norm or magnitude scores (Han
et al., 2016; Li et al., 2017b; Sun et al., 2024; He et al., 2018a). Some are based on how much the
performance changes when certain parts of the network are removed or preserved (You et al., 2019b;
Ma et al., 2023; Frankle & Carbin, 2019; Ye et al., 2020). Some others defined more complex criteria
such as saliency and sensitivity (LeCun et al., 1989; Lee et al., 2019; Zhao et al., 2019).

Once a pruning criterion is established, we can assess whether a model is easy or hard to prune based
on that criterion. Technically, we consider a model easy to prune if we can prune a relatively large
part of it with only little loss in accuracy. Otherwise, we consider it hard to prune.

Prior researchers have generally approached pruning improvement in two ways: either by refining the
pruning criteria or by transforming the model to be easier to prune according to a given criterion. The
first approach is more straightforward and has been extensively studied in prior work. In contrast, the
second approach has received comparatively less attention. However, several studies adopting this
latter perspective have achieved promising results. Notably, sparsity regularization methods (Wen
et al., 2016; Fang et al., 2023; Wang et al., 2021) exemplify this approach by encouraging models to
become sparser, thereby facilitating more effective pruning.

Our framework inherits the idea of the second way. A metanetwork is a network that takes another
network as input and produces a modefied network as output. For any given pruning criterion, our
framework aims at training a metanetwork that can transform a hard to prune network into another
easier to prune network like figure 1.

Our contributions can be summarized as follows:

(1) Introduce the idea of metanetwork from meta-learning into pruning for the first time.
(2) Propose an entirely new universal pruning framework that is theoretically applicable

to almost all types of networks with all kinds of pruning.
(3) Present concrete implementations for our theoretical framework and achieve state-of-

the-art performance on various practical pruning tasks.
(4) Conduct further research on the flexibility and generality of our framework.

Our method is entirely new and fundamentally different from all prior works, see Appendix A for a
comparison with prior works to better understand our novel contributions and advantages.

2 RELATED WORK

2.1 METANETWORKS

Using neural networks to process other neural networks has emerged as an intriguing research
direction. Early studies demonstrated that neural networks can extract useful information directly
from the weights of other networks (Unterthiner et al., 2020). We define a metanetwork as a neural
network that takes another neural network as input and outputs either information about it or a
modified network. Initial metanetworks were simple multilayer perceptrons (MLPs), while more
recent designs incorporate stronger inductive biases by preserving symmetries (Godfrey et al., 2022)
inherent in the input networks. Broadly, metanetwork architectures can be categorized into two
perspectives. The weight space view applies specially designed MLPs directly on the model’s
weights (Zaheer et al., 2017; Navon et al., 2023; Zhou et al., 2023a; Tran et al., 2024b; Zhou et al.,
2023b; 2024; Tran et al., 2024a). And the graph view transforms the input network into a graph and
applies graph neural networks (GNNs) to it (Lim et al., 2024; Kofinas et al., 2024; Kalogeropoulos
et al., 2024). In this work, we adopt the graph view to build our metanetwork, leveraging the natural
correspondence between graph nodes and neurons in a network layer, as well as the symmetries they
exhibit (Maron et al., 2019). Given the maturity and effectiveness of GNNs, the graph metanetwork
approach offers both elegance and practicality.

2.2 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) are a class of neural networks specifically designed to operate on
graph-structured data, where graphs consist of nodes and edges with associated features (Wu et al.,
2021; Scarselli et al., 2009; Kipf & Welling, 2017). GNNs have gained significant attention in recent
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years, with frameworks such as the message passing neural network (MPNN) (Gilmer et al., 2017)
proving to be highly effective. In this paper, we employ the message passing framework, specifically
using Principal Neighborhood Aggregation (PNA) (Corso et al., 2020) as the backbone architecture
for our metanetwork.

2.3 SPARSITY REGULARIZATION BASED PRUNING

Networks that are inherently sparse tend to be easier to prune effectively. Prior research has explored
various regularization techniques to encourage sparsity in neural networks to facilitate pruning. This
idea of sparsity regularization has been widely adopted across many works (Wen et al., 2016; Gordon
et al., 2018; Huang & Wang, 2018; Lin et al., 2020c; He et al., 2017; Lin et al., 2019; Xia et al., 2022;
2024; Fang et al., 2023; Wang et al., 2021). Our method inherits this principle to some extent, as our
metanetwork can be viewed as transforming the original network into a sparser version for better
pruning.

2.4 LEARNING TO PRUNE & META PRUNING

Given the complexity of pruning, several previous works have leveraged neural networks (Dery et al.,
2024; He et al., 2017; Wu et al., 2024; Chen et al., 2023), reinforcement learning (Rao et al., 2019;
Yu et al., 2022; He et al., 2018b), and other techniques to automatically learn pruning strategies.
Viewing pruning as a learning problem naturally leads to the idea of meta-learning, which learns
“how to learn” (Hospedales et al., 2022). Some prior works have specifically applied meta-learning to
pruning (Liu et al., 2019; Li et al., 2020). Our work also draws idea from meta-learning, but it learns
in a way entirely different from all prior works.

3 A UNIVERSAL META-LEARNING FRAMEWORK

Our framework can be summarized in one single sentence (Figure 1):

For a pruning criterion, we use a metanetwork to change a hard to prune
network into another easy to prune network for better pruning.

Pruning criterion: A pruning criterion measures the importance of specific components of a neural
network. Typical examples include the ℓ1 norm and ℓ2 norm of weight vectors. During pruning, we
compute an importance score for each prunable component according to the criterion, and remove
components in ascending order of their scores.

Easy or hard to prune: For a fixed pruning criterion, if we gradually prune the network and the
accuracy drops quickly, we refer to it as hard to prune. Conversely, if the accuracy decreases slowly
with progressive pruning, we call it easy to prune.

Metanetwork: A metanetwork is a special type of neural network whose inputs and outputs are
both neural networks. In contrast, standard neural networks typically take structured data such as
images (CNNs), sentences (Transformers), or graphs (GNNs) as input. A metanetwork, however,
takes an existing network as input and outputs another network, hence the term meta—indicating that
it operates on neural networks themselves.

4 A SPECIFIC IMPLEMENTATION BASED ON GRAPH METANETWORKS

The proposed framework is conceptually simple and straightforward. However, its practical imple-
mentation requires addressing several technical challenges:

(1) How to build the metanetwork ?
(2) How to train the metanetwork ?
(3) How to design the pruning criterion ?

We present our implementations step by step, dedicating one subsection to each challenge. The final
subsection offers an overall summary of our method and a deeper understanding of it from a more
holistic perspective.
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4.1 METANETWORK DESIGN

Drawing ideas from recent researches (section 2.1), we use a graph neural network (GNN) as our
metanetwork. Please make sure you are familiar with the basic concepts of GNN before continuing.
Our design does not cover any complex GNN theory, you only need to know what is a graph and the
basic message passing algorithm.

Figure 2: Conversion between networks and
graphs: We visualize a two layer toy CNN as
example. Our graph contains 6 nodes correspond-
ing with 6 neurons in the network. For neurons
connected via convolutional channel like (1,3) and
connected by residual connection like (1,5), we
add an edge between their corresponding nodes.
Then we generate node and edge features as shown
in the figure. For some special cases, we use de-
fault values to replace non-existent values. For
example, for node 3 who doesn’t have a residual
connection, we set the last 4 number of its node
feature as [1, 0, 0, 1]. This means we treat it as
with previous residual batchnorm of weight 1, bias
0, running mean 0, running var 1, performing the
same as with no batchnorm.

Conversion between networks and graphs: To
apply a metanetwork (GNN) on networks, we
first need to establish a conversion between net-
works and graphs. Prior works such as Kofinas
et al. (2024); Lim et al. (2024) have managed
to change networks of almost all architectures
(CNN, Transformer, RNN, etc.) into graphs.

Here we show how we establish conversion be-
tween a ResNet (He et al., 2016) and a graph in
our experiments as an example. This inherits the
idea of Kofinas et al. (2024); Lim et al. (2024)
but is quite different in implementation details.
To convert a network into a graph, we establish
the correspondence between the components of
a neural network and elements of a graph as
follows:

(1) Node: Each neuron in fully connected layers
or channel in convolutional layers in the network
is represented as a node in the graph. (2) Edge:
An edge exists between two nodes if there is a
direct connection between them in the original
network. This includes fully connected layers,
convolutional layers, and residual connections.
(3) Node Features: Node features comprise
parameters associated with neurons, here we
use the weight, bias, running mean, running var
of batchnorm (Ioffe & Szegedy, 2015), including both batchnorms from previous adjacent layers and
previous skip connection layers (if exist). (4) Edge Features: Edge features encode the weights of
connections between nodes. We treat linear connections and residual connections as special cases of
convolutional connections with a kernel size of 1. For a k × k convolution between two channels, we
flatten it into a k2-dim edge feature vector.

Since graph neural networks here require all edge features to have the same dimension, we adopt
one of two strategies to standardize them: (1) Pad all convolutional kernels to the same size (e.g., the
maximum kernel size in the network) (2) Flatten convolutional kernels of varying sizes, then apply
learned linear transformations to project them into the same size.

During conversion, we simply ignored other components such as pooling layers. Although we have
methods to explicitly convert all of them, our experiments show that omitting them already yields
outstanding results. Therefore, it is acceptable to ignore them in practice. We also didn’t use any
other techniques like positional embedding.

By following these rules, we can generate a graph that corresponds to a given neural network.
Conversely, the inverse transformation can be applied to convert a graph back into an equivalent
network. In essence, we establish an equivalent conversion between networks and graphs. For a more
intuitive understanding, see Figure 2.

Metanetwork architecture: After establishing the conversion between networks and graphs, we can
convert the input network into a graph, use metanetwork(GNN) to transform the graph, and finally
convert the output graph back into a new network. Our metanetwork must be powerful enough to
learn the transforming rules for better pruning. We build our metanetwork based on the message
passing framework (Gilmer et al., 2017) and PNA (Corso et al., 2020) architecture. A brief overview
of our architecture is provided below, the full description is available in Appendix B.1.
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We use vi to represent node i’s feature vector, and eij to represent feature vector of the edge between
i and j. We consider undirected edges, i.e., eij is the same as eji. Our metanetwork is as follows.

First, all input node and edge features are encoded into the same hidden dimension.

v ← MLPNodeEnc(vin), (1)
e← MLPEdgeEnc(ein). (2)

Then they will pass through several message passing layers. In each layer, we update node and edge
features using information from adjacent nodes and edges.

vi ← fv(vi, vj((i, j) ∈ E), eij((i, j) ∈ E)) (3)
eij ← fe(vi, vj , eij) (4)

Here fv and fe are fixed calculating processes.

Finally, we use a decoder to recover node and edge features to their original dimensions:

vpred ← MLPNodeDec(v), (5)
epred ← MLPEdgeDec(e). (6)

We multiply predictions by a residual coefficient and add them to the original inputs as final outputs:

vout = α · vpred + vin, (7)
eout = β · epred + ein, (8)

where α and β in practice are set to a small real numbers like 0.01. This design enables the
metanetwork to learn only the delta weights on top of the original weights, instead of a complete
reweighting.

4.2 META-TRAINING

Meta-training is the process we train our metanetwork (Figure 3).

Figure 3: Meta-Training Pipeline: During each
iteration, the origin network is converted into the
origin graph, fed through the metanetwork to get
a new graph and finally converted back into a new
network. We calculate accuracy loss and sparsitly
loss on the new network, then backpropagated the
gradients to update the metanetwork.

Data preparation: Meta-training data is com-
prised of two parts. The first is a set of neural
networks to prune, which serve as the origin
network in meta-training. We call them data
models. The number of data models can be ar-
bitrary small numbers like 1, 2, or 8, because
our implementations aren’t sensitive to it (See
more explanations in Section 4.4).The second is
the traditional training datasets, CIFAR-10 for
example, used to calculate the accuracy loss.

One training iteration: We select one model
from data models as the origin network. It is
converted into its graph representation, passed
through the metanetwork to get a new graph
and converted back into a new network. We
calculate accuracy loss and sparsity loss on this
new network, and backpropagated the gradients
to update the metanetwork.

Two types of losses are used during meta-training.(1) Accuracy Loss: We feed the training data (e.g.,
Train set of CIFAR-10. Note that test set is not used here) into the new network and compute the
cross-entropy loss based on the output predictions, ensuring the metanetwork doesn’t excessively
disturbing the effective parts of the origin network. (2) Sparsity Loss: We calculate a regularization
term on the new network to encourage it to be sparse, making it easier to prune. It is related to the
design of pruning criterion (section 4.3)
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4.3 PRUNING CRITERION

A valid pruning criterion consists of two components:(1) An importance score function: During
pruning, we calculate the scores of all prunable components of a network, and prune them in ascending
order of their scores.(2) A sparsity loss: It is a kind of loss that is calculated on the parameters of the
network. Optimizing the network using this loss can make it easier to prune.

We perform most of our experiments by default using structural pruning, but also include a small
number of experiments with unstructured and N:M sparsity pruning to demonstrate that our method
can be applied to all kinds of pruning. In unstructured pruning and N:M sparisity pruning, we simply
use the naive l1 norm as both our importance score function and sparsity loss.

In structural pruning, we draw ideas from prior sparsity regularization based pruning methods(section
2.3), and design our pruning criterion based on them (especially Fang et al. (2023)). We will give
a brief introduction below. For a rigorous mathematical definition and more details, please refer to
appendix B.2.

A variant of the classical ℓ2 norm, the group norm is used as our importance score function. It
inherits the idea of using ℓ2 norm to calculate a score, but calculate it on a pruning group level. Since
structural pruning is performed on groups, traditional l2 norm that treats nodes and edges in isolation
is no longer viable. Group l2 norm that takes a whole group into consideration has shown to be more
effective. We calculate the sparisty loss by multiply our group norm scores with some coefficients.

The choice of pruning criteria is highly flexible (see in our later experiments, section 6.1), which
further demonstrates the generality of our framework. We perform most of our experiments by default
using structural pruning, but also include a small number of experiments with unstructured and N:M
sparsity pruning to demonstrate that our method can be applied to all kinds of pruning.

4.4 A HOLISTIC PERSPECTIVE

Figure 4: Feed forward through metanetwork: when a network is fed forward through the
metanetwork, every parameter in it gathers information from neighbour parameters and architectures.

Intuitively, when a network is fed forward through the metanetwork, every parameter in it gathers
information from neighbour parameters and architectures (Figure 4). The metanetwork automatically
learns how to process the information from neighbours and change the weights of the network based
on that for better pruning. And this has several important properties:

Generality: Our metanetwork is a really small GNN compared to the origin network, which means
each parameter can only see information from a limited local region. Due to the nature of GNN,
parameters at any position in the network—whether at the beginning, middle, or end—must process
information from neighbours in the same way. As a result, the metanetwork must learn a general
strategy to adjust parameters based on neighbour information for better pruning. This explains why,
in all our experiments, the pruning models and meta-training data models are completely different,
but the performance is as good as the same. This also explains why our implementations are not
sensitive to the number of data models. Even a single data model can be viewed as a collection of
numerous data points sufficient to train the metanetwork. So there is no overfitting at all, and whether
we are using 1, 2 or 8 data models during meta-training, the results remain the same.

Natural transferability: Just as a GNN can be applied to graphs of varying sizes without mod-
ification, our metanetwork can be directly applied to networks of different scales. This property
gives it natural transferability, as demonstrated in our experiments (section 6.3) where it successfully
transfers across related datasets and network architectures.
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Universally applicability: Theoretically, our implementations can be applied to almost all types
of networks with all kinds of pruning. Almost all types of networks can be converted into graphs
(Kofinas et al., 2024; Lim et al., 2024), and the designs of the GNN and the pruning criteria are also
broadly compatible. This makes our framework a universally applicable solution for network pruning.

5 EXPERIMENTS ON CLASSICAL CNN PRUNING TASKS

5.1 PRELIMINARIES

Initial Pruning (Finetuning)︸ ︷︷ ︸
Optional

→ Metanetwork (Finetuning)→ Pruning (Finetuning)︸ ︷︷ ︸
Necessary

(9)

Definitions of the terms Speed Up and Acc vs. Speed Up Curve are in Appendix C.1. The pruning
pipeline is described as equation 9, and full details are provided in Appendix C.2.

Unlike prior learning to prune methods that require special training during each pruning, our pruning
pipeline only requires a feed forward through metanetwork and standard finetuning, which is simple,
general and effective. Once we have a metanetwork, we can prune as many networks as we want.
All pruning models are completely different from meta-training data models. This demonstrates our
metanetwork naturally has great transferability and no prior work has done something like this before.
See Appendix A for more comparisons between our work and prior ones (ideas, costs etc.).

5.2 CLASSICAL CNN PRUNING TASKS

We carry out our experiments on three most classical, popular, and representative image recognition
tasks, including pruning ResNet56 (He et al., 2016) on CIFAR10 (Krizhevsky & Hinton, 2009),
VGG19 (Simonyan & Zisserman, 2015) on CIFAR100 (Krizhevsky & Hinton, 2009) and ResNet50
(He et al., 2016) on ImageNet (Deng et al., 2009). See appendix D.1 for more general setups.

Our method achieves outstanding results on all 3 tasks and is better than almost all prior works
(Table 1). See full results compared with prior works in Table 8(ResNet56 on CIFAR10), Ta-
ble 11(VGG19 on CIFAR100), Table 14(ResNet50 on ImageNet). See Appendix D.2 D.3 D.4 for
implementation details on each tasks.

Table 1: Results for 3 classical CNN pruning tasks including pruning (1) ResNet56 on CIFAR10,
(2) VGG19 on CIFAR100 (3) ResNet50 on ImageNet. For full results compared with prior works,
see (1) Table 8, (2) Table 11, (3) Table 14.

Task Base Top-1(Top-5) Pruned Top-1(∆) Pruned Top-5(∆) Pruned FLOPs

(1) 93.51% 93.64%(+0.13%) — 65.6%
(2) 73.65% 69.75%(-3.90%) — 88.83%
(3) 76.14%(93.11%) 76.13%(-0.01%) 92.78%(-0.33%) 57.2%

5.3 ABLATION STUDY OF GENERAL BEHAVIORAL TENDENCIES

How metanetwork works: We visualized the "Acc vs. Speed Up" curve of both origin network
and network after feedforward through metanetwork and finetuning (Figure 5). They show that as
the pruning speed up increases, the accuracy drops at a significantly slower rate after applying the
metanetwork and finetuning.

Trade-off between accuracy and speed up: During meta-training: as the number of training epochs
increases, the metanetwork’s ability to make the network easier to prune becomes stronger. However,
its ability to maintain the accuracy becomes weaker. As shown in Figure 6a, with more training
epochs, the "Acc VS. Speed Up" curve shifts downward, and the flat portion of the curve becomes
longer. This characteristic allows us to adaptively meet different pruning requirements. If a
higher level of pruning is desired and a moderate drop in accuracy is acceptable, a metanetwork
trained for more epochs would be preferable. Conversely, if preserving accuracy is more important, a
metanetwork trained for fewer epochs would be a better choice (Figure 6b).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) ResNet56 on CIFAR10 (b) VGG19 on CIFAR100 (c) ResNet50 on ImageNet (d) ViT on ImageNet

Figure 5: Metanetwork changes hard to prune network into easy to prune network.

(a) Acc VS. Speed Up
curves of metanetworks
from different meta-training
epochs

(b) Feed network through metanetworks from different meta-training epochs,
finetuning, then prune it progressively to find the maximum speed up that can
maintain the accuracy above a certain threshold.

Figure 6: Trends in meta-training. (ResNet56 on CIFAR10 as example)

Finetuning after Metanetwork. See appendix E.1 for how number of finetuning epochs after
metanetwork influence the pruning results.

5.4 ABLATION STUDY OF STATISTICS

We compare the statistics between the origin network and the network after metanetwork(finetuning)
to find out how metanetwork transforms the network to make it easier to prune. We mainly visualize
the l2 norm and taylor sensitivity distribution of each layer in Figure 7. Taylor sensitivity here is
defined as w ·∆L, it estimates how much the loss will increase if we mask this weight to zero. The
larger taylor sensitivity, the more important the weight is and we are unlikely to prune it. More
visualization of other statistics are in Appendix H

6 EXPERIMENTS ON TRANSFERABILITY AND FLEXIBILITY

6.1 FLEXIBLE PRUNING CRITERION

Pruning criterion of our method is highly flexible. We build a series of reasonable pruning criterion
(Appendix B.2). At first, we directly use MEAN REDUCE, MAX NORMALIZE, α = 4 as default,
because this is the same as group norm in Fang et al. (2023). Later, we keep everything else the same,
and try many different criteria, and find they all works well (Table 2). This demonstrates that our
framework is robust and has many flexibilities.

6.2 UNSTRUCTURED PRUNING & N:M SPARSITY PRUNING

Most of our experiments are conducted using structured pruning as default. Here we conduct
unstructured pruning and N:M sparsity pruning to demonstrate that our methods can be use in all
kinds of pruning. We don’t use FLOPs to measure the pruning results because unstructured pruning
reduces no FLOPs and needs specialized algorithm to accelerate, so we measure the number of
parameters instead. See results in Table 3

8
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Figure 7: Statistics: We compare the statistics of the origin network (orange) and the network after
metanetwork and finetuning (blue) when pruning ResNet56 on CIFAR10. The first row is layerwise
mean l2 norm and taylor sensitivity. Then we randomly select several layers and visualize their l2
norm distribution in row 2 and taylor sensitivity distribution in row 3. Observation: Row 1 shows
both norm and sensitivity drops on average, especially in the latter part of network where contains a
large amount of redundancy and can be substantially pruned. Row 2 shows l2 norm distribution has
been greatly changed. Large norms still exist but more norms tend to be very small. Row 3 shows
more parameters become less important under taylor sensitivity.

Table 2: Flexible pruning criterion: Pruning ResNet56 on CIFAR10, all experiments use the same
origin network wtih Test Acc 93.51%, all criteria use MEAN REDUCE. We tried different values of
Alpha and different ways of NORMALIZE, they all work well. Even in the Naive situation, where
we use no NORMALIZE and no shrinkage strength (Alpha is 0), the results remain robust.

NORMALIZE alpha Pruned Acc Pruned FLOPs Speed Up

Default MAX 4 93.64% 65.64% 2.91

Alpha MAX 0 93.37% 65.75% 2.92
MAX 2 92.87% 68.15% 3.14
MAX 6 93.36% 65.75% 2.92

NORMALIZE MEAN 4 93.42% 65.52% 2.90
NONE 4 93.08% 65.64% 2.91

Naive NONE 0 93.04% 65.75% 2.92

Table 3: Unstructured & N:M sparsity pruning: Pruning ResNet56 on CIFAR10, meta-train and
prune directly with the classical l1 norm. From the results we can see (1) our framework also works
great on unstructured pruning. (2) Unstructured pruning outperforms structured pruning because it is
more flexible.

Methods Pruned Acc Left Params Methods Pruned Acc Left Params
Unstructured 93.95% 50.25% Structured(2.9x) 93.49% 42,96%

94.14% 20.40% 3:4 94.02% 75.14%
93.43% 15.42% 2:4 93.97% 50.27%
92.96% 10.45% 1:4 93.13% 25.41%

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6.3 TRANSFER BETWEEN DATASETS AND ARCHITECTURES

Section 4.4 mentioned that our metanetwork has natural transferability. Following experiments
demonstrate that our metanetwork can transfer between similar datasets and network architectures.
More relative experiments are in Appendix F.3 F.4

Transfer between datasets: 3 datasets, CIFAR10 (Krizhevsky & Hinton, 2009), CI-
FAR100 (Krizhevsky & Hinton, 2009) and SVHN (Goodfellow et al., 2014) are used. We train
metanetwork and the to be pruned network on each of them, traverse through every possible combina-
tion, and use the metanetwork to prune the network. Results (Table 4) show that out metanetwork can
transfer between similar datasets. See Appendix F.1 for full details Transfer between architectures:

Table 4: Transfer between datasets: All networks’ architecture is ResNet56. Columns represent the
training datasets for the metanetwork, and rows represent the training datasets for the to be pruned
network. “None” indicates using no metanetwork. Results with metanetwork is obviously better than
no metanetwork (The only exception is when training datasets for the to be pruned network is SVHN,
and we guess this is because the dataset SVHN itself is too easy).

Dataset\Metanetwork CIFAR10 CIFAR100 SVHN None
CIFAR10 93.35 92.47 92.87 91.28

CIFAR100 69.97 70.16 69.25 68.91

SVHN 96.79 96.50 96.86 96.78

2 architectures, ResNet56 and ResNet110 (He et al., 2016) are used. We train metanetwork and the
to be pruned network on each of them, traverse through every possible combination, and use the
metanetwork to prune the network. Results (Table 5) show that our metanetwork can transfer between
similar datasets. See Appendix F.2 for full details Possible Future Use: For large-scale networks,

Table 5: Transfer between architectures. All training dataset is CIFAR10. Columns represent the
architectures used for training the metanetwork, and rows represent the architecures of the to be
pruned network. “None” indicates using no metanetwork. All results with metanetwork is obviously
better than no metanetwork.

Architecture\Metanetwork ResNet56 ResNet110 None
ResNet56 93.40 92.81 92.08

ResNet110 93.04 93.38 92.40

the metanetwork can be pretrained on smaller architectures of similar design. And when the original
training dataset is unavailable or excessively large, a related dataset may be used for pretraining. This
transferability substantially enhances the practicality of the framework.

7 EXPERIMENTS ON TRANSFORMERS

As mentioned in section 4.4, our framework is theoretically applicable to almost all types of networks
with all kinds of pruning. Here we expand our implementations to another widely used arthitecture–
transformer (Vaswani et al., 2017). More specifically, we pruned the vision transformer (ViT) from
Dosovitskiy et al. (2021) that is trained on ImageNet. See Appendix G for full experiments, including
how we convert transformer into graph and conduct further meta-training and pruning.

8 CONCLUSION

We propose an entirely new meta-learning framework for network pruning. For a pruning criterion,
we use a metanetwork to change a hard to prune network into another easy to prune network for
better pruning. This is a general framework that can be theoretically applied to almost all types of
networks with all kinds of pruning. We present practical implementations of our framework and
achieve outstanding results. Further analysis and experiments show that our framework has natural
generality, flexibility, and transferability.
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9 REPRODUCIBILITY STATEMENT

Our code is available at https://anonymous.4open.science/r/MetaPruning together
with all the guides to reproduce our experiments.
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A COMPARISON WITH PRIOR WORKS

Our framework is entirely new and fundamentally different from all prior works. In this section, we
will compare our method with earlier ones to help you better understand the relationship between our
method and prior ones, and realize our unique innovations and advantages.

A.1 GENERAL COMPARISON

Previous pruning approaches can be broadly categorized into fixed pruning methods and learning
to prune methods. Our approach falls into the learning to prune category but learns in a completely
different way. For clarity, we provide a detailed comparison in Table 6 to help you better understand
how our work relates to previous studies.

Table 6: Our framework is entirely new and has many advantages over previous works

Fixed pruning Learning to prune Ours

Definition Pruning with fixed hand-
crafted algorithms.

Using neural network
learning techniques to
learn how to prune.

Also learning to prune,
but learning in a com-
pletely different way.

Performance Bad. Networks are com-
plex and hand-crafted al-
gorithms are quite lim-
ited

Good. Good (almost best ac-
cording to our experi-
ments).

Cost Low. No special extra
training needed.

High. Need special extra
training during each prun-
ing.

Need special extra train-
ing before pruning. But
once the training is done,
can prune as many net-
works as we want without
any special extra training.

Potential Has already been well-
studied and commonly
used.

The pruning process is
too tricky and costly.
Can only be used in
a very specific situation
and lack of generality.

The pruning process is
relatively more efficient.
Can theoretically be used
in almost all situations
and has great generality.

A.2 COMPUTATIONAL AND MEMORY COSTS

One important question for almost all previous meta-learning approaches is the computational and
memory costs are too large. We provide some estimate of memory and computational costs for
scaling our methods to larger models and compare with two classic pruning methods–pruning at
initalization methods (cheap pruning, hard to training and low accuracy like Lee et al. (2019); Wang
et al. (2022)) and iterative magnitude pruning (costly, pruning during training and high performance
like Frankle & Carbin (2019); Molchanov et al. (2019)). The results show that our method achieves
outstanding results while uses relatively low costs.

For convenience in expression, we refer to pruning at initialization as “init pruning”, iterative
magnitude pruning as “iter pruning” and our method as “meta pruning”.

For all usual networks which satisfy Edge Number » Neuron Number , the memory and
computational cost are all O(E) (E = Edge Number). This is obvious for init and iter pruning. For
meta pruning, our metanetwork doesn’t scale with the network. So all computation and memory cost
is it still O(E).

PS: The reason why our metanetwork doesn’t scale with the network is that it only learns how to
change weights based on local architectures and weights (the range of “local” is fixed for network of
different sizes). In all our experiments, it is a small network compared to the to be pruned network,
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and it works well. So we have the confidence that it shouldn’t and doesn’t need to scale with the
networks.

While all methods share the same asymptotic cost, their constant factors differ significantly.

Computational cost breaks down as:

Compu Cost = Training cost + Pruning cost + Other cost

• Init pruning: Low training and pruning costs, negligible other cost.
• Iter pruning: High training cost (initial training + multiple finetuning steps) and high

pruning cost (multiple pruning rounds), no extra cost.
• Meta pruning: Moderate training cost (initial training + 3 finetuning steps), moderate

pruning cost (2 pruning steps), plus a small other cost consisting of metanetwork feedforward
and amortized meta-training cost per network.

We estimate the relative magnitude in the following table:

Computation Training cost Pruning cost Other cost
Init 1T 1P 0
Iter > 10T > 5P 0

Meta 2–5T 2P ϵT + AT/N

Where:
T: Unit training cost
P: Unit pruning cost
ϵT: Metanetwork feedforward cost (almost zero compared to training cost)
N: Number of networks pruned; meta-training cost is amortized over N (Once we get a metanetwork
by meta-training, we can use it to prune as many networks as we want)
A: Meta-training cost. A is estimated 5–20.

Memory cost depends on both the amount of memory used and the duration of usage:

Method Amount Duration All
Init Small Short Low
Iter Medium Long Large

Meta Large for a very short time, Medium Medium but requires
Small rest of the time high memory capacity

• Init pruning: Low memory usage for a short time.
• Iter pruning: Medium memory usage for a very long time.
• Meta pruning: The “feed forward through metanetwork” process requires large memory

usage but takes a very short time. For the rest of the time it uses little memory. It is faster
than iter pruning but slower than init pruning. While the average memory cost is moderate,
peak usage demands high memory capacity.

Meta-training requires large memory usage for a long time. But its cost can be amortized into
each pruning like we mentioned before. Take pruning resnet50 or ViT on ImageNet as example
(which is already quite large model and dataset), NVIDIA A100 with 80GiB VRAM is enough for
meta-training and feedforward through metanetwork and the rest training and finetuning can be done
on NVIDIA RTX 4090 with 24 GiB VRAM. When we don’t have enough memory capacity, we can
also change the batch size and use more time to make up for the lack of our memory capacity.

In summary, our method achieves outstanding results while uses relatively low costs.

A.3 GENERALITY

Almost all previous meta-learning based pruning approaches, such as Liu et al. (2019); Li et al.
(2020); Wu et al. (2024), are tailored to a specific network and thus lack generality. Because of this
they require specialized training for each pruning instance.
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Unlike prior methods, our metanetwork learns a universal rule for adapting weights based on local
information, thereby enabling more effective pruning without relying on layer-specific or architecture-
specific heuristics. We need no special training during each pruning. Once our metanetwork is
trained, it can be used to prune as many networks as we want, and even transfer between datasets and
architectures.

We divided the generality of learning to prune methods into 4 stages.

(1) Learning once prune one specific network.

(2) Learning once prune one type of networks(same architecture and dataset) as many as
we want.

(3) Learning once prune one group of networks(similar architectures and datasets) as
many as we want.

(4) Learning once prune any networks.

Here learning refers to learn with extra trainings like gradient descent, reinforcement learning, etc.
Finetuning or other fixed rules processes are not included. As far as we know, all prior learning to
prune methods only reach stage (1). Our method reaches stage (3) and shows great improvement in
generality over prior works. Follow our ideas and pretrain the metanetwork on various networks and
datasets may provide a possible way to state (4), whether this will work requires further exploration
in the future.

In summary, our method shows great improvement in generality over prior learning to prune methods.

A.4 A CONCRETE EXAMPLE

We provide a concrete example compared with prior works and report everything-time, hardware,
gpu memory, results, etc. to give readers a more intuitive understanding of our method.

We compare our work with Fang et al. (2023) on pruning ResNet56 on CIFAR10. We choose Fang
et al. (2023) because we want to compare our work with learning to prune methods in recent years
that also have strong results like us. The best candidates are Fang et al. (2023) and Wu et al. (2024).
While Wu et al. (2024) is a pruning before training method, both Fang et al. (2023) and our work are
pruning after training methods, so we choose Fang et al. (2023). The key idea of Fang et al. (2023) is
sparsity training before pruning. It does special training on the network before pruning to make it
more sparse and easier to prune.

All experiments are run on 1 NVIDIA RTX 4090. See table 7 for time consumptions of dfferent
methods. To align with Fang et al. (2023), we don’t use init pruning, and target at a speed up of
2.5x, which is the largest speed up in paper Fang et al. (2023). In ours(full), we finetune 100 epochs
after metanetwork and 100 epochs after pruning. But later we found our method is stronger and
the speed up 2.5x isn’t that hard. So in ours(efficient), we finetune 60 epochs after metanetwork
and 60 epochs after pruning but also get results comparable to Fang et al. (2023). The DepGraph
experiments use their default settings, sparsity training 100 epochs before pruning and finetune 100
epochs after pruning.

Table 7: Time (miniutes)

Process Ours(full) Ours(efficient) DepGraph

Meta-Train 192 + 165 = 357 192 + 165 = 357 0

Prune & Finetune 67 43 84

From the results we can see our methods is quite efficient. It uses 357 minutes for meta-train, which is
in a resonable range. We can greatly reduce time consumption in this process with some experiences,
but for the sake of fairness in comparison, we must pretend we have no relevant experience. Among
the 357 minutes, 192 minutes are used for generating 100 epochs metanetworks and 165 minutes
are used for visualizing the Acc VS. Speed Up Curve to select the appropriate metanetwork for
pruning. Once a metanetwork is trained, it can be used to prune as many networks as we want,
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so we can amortize the time for meta-training into each pruning. Figure 8 shows the amortized
time consumption of our work compared to DepGraph. In all, our work is more powerful and more
efficient in time if we prune several more networks or already have a trained metanetwork.

Figure 8: Amortized Time Consumption

As we mentioned in section A.2, our methods use a large VRAM for a long time in meta-training, a
still large but relatively smaller VRAM for a very short time when feed forward through metanetwork
during pruning, and a small VRAM for the standard finetuning. Specifically in this experiment, we
use 10000 MiB for meta-training, 6000 MiB for feedforward through metanetwork, and 1000 MiB
for finetuning. NVIDIA A100 with 80 GiB VRAM is enough for meta-training large models like
ResNet50 and ViT-B-16. When we don’t have enough memory capacity, we can also change the batch
size and use more time to make up for the lack of our memory capacity. We’ve also tried reducing
the size of metanetwork and fit on NVIDIA A100 40G and the results seem not much influenced.
All finetuning are standard finetuning and can be done on NVIDIA RTX 4090 with 24G VRAM.
In all, during pruning only the feed forward through metanetwork requires large VRAM for a very
short time and anything else is plain finetuning and requires small VRAM, during meta-training the
VRAM is in a resonable range.
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B FRAMEWORK IMPLEMENTATION DETAILS

B.1 METANETWORK(GNN) ARCHITECTURE

We build our metanetwork based on the message passing framework (Gilmer et al., 2017) and PNA
(Corso et al., 2020) architecture.

Notation:

a← b : assignment/update, overwrite a with the value of b (10)
X ⊙ Y : Hadamard/elementwise product, (X ⊙ Y )i = XiYi (11)

We use vi to represent node i’s feature vector, and eij to represent feature vector of the edge between
i and j. We consider undirected edges, i.e., eij is the same as eji. Our metanetwork is as follows.

First, all input node and edge features are encoded into the same hidden dimension.

v ← MLPNodeEnc(v
in), (12)

e← MLPEdgeEnc(e
in). (13)

Then they will pass through several message passing layers. In each layer, we generate the messages:

mij ← MLP1
Node(vi)⊙MLP2

Node(vj)⊙ eij , (14)

m′
ij ← MLP1

Node(vj)⊙MLP2
Node(vi)⊙ (eij ⊙ EdgeInvertor), (15)

where mij and m′
ij respectively encode message from i to j and message from j to i, and EdgeInvertor

is defined as:
EdgeInvertor ≜ [1, 1, . . . , 1︸ ︷︷ ︸

hidden_dim/2

,−1,−1, . . . ,−1︸ ︷︷ ︸
hidden_dim/2

]. (16)

The intuition behind EdgeInvertor is to let the first half dimensions to learn undirectional features
invariant to exchanging i, j, and the second half to capture directional information that changes
equivariantly with reverting i, j. Empirically we found this design the most effective among various
ways to encode edge features.

Then, we aggregate the messages to update node features:

vi ← vi + PNAAggr(mij) + PNAAggr(m
′
ij), (17)

where we have

PNAAggr(mij) ≜ MLPAggr

([
MEAN
j:(i,j)∈E

(mij), STD
j:(i,j)∈E

(mij), MAX
j:(i,j)∈E

(mij), MIN
j:(i,j)∈E

(mij)

])
.

(18)

For edge features in each layer, we also update them by:

eij ← eij + MLP1
Edge(vi)⊙MLP2

Edge(vj)⊙ eij

+ MLP1
Edge(vj)⊙MLP2

Edge(vi)⊙ (eij ⊙ EdgeInvertor). (19)

Finally, we use a decoder to recover node and edge features to their original dimensions:

vpred ← MLPNodeDec(v), (20)
epred ← MLPEdgeDec(e). (21)

We multiply predictions by a residual coefficient and add them to the original inputs as our final
outputs:

vout = α · vpred + vin, (22)
eout = β · epred + ein, (23)

where α and β in practice are set to a small real numbers like 0.01. This design enables the
metanetwork to learn only the delta weights on top of the original weights, instead of a complete
reweighting.
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B.2 PRUNING CRITERION

B.2.1 DEPGRAPH AND TORCH-PRUNING

DepGraph (Fang et al., 2023) proposes a general sparsity regularization based structural pruning
framework that can be applied to a wide range of neural network architectures, including CNNs,
RNNs, GNNs, Transformers, etc. Alongside the paper, the authors released Torch-Pruning, a
powerful Python library that enables efficient structural pruning for most modern architectures. In our
work, the pruning criterion is designed based on the methodology of DepGraph (Fang et al., 2023),
and all pruning operations are implemented using Torch-Pruning.
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Figure 9: A picture from (Fang et al., 2023). It shows how we group parameters together in structural
pruning.

B.2.2 STRUCTURAL PRUNING

We perform most of our experiments by default using structural pruning, but also include a small
number of experiments with unstructured and N:M sparsity pruning to demonstrate that our method
can be applied to all kinds of pruning. Here we mainly introduce the structural pruning.

Structural pruning involves removing parameters in predefined groups, so that the resulting pruned
model can be used as a standalone network—without relying on the original model with masks,
nor requiring specialized AI accelerators or software to realize reductions in memory footprint and
computational cost.

In structural pruning, a pruning group consists of all parameters that must be pruned together to
maintain network consistency. For example, in Figure 9(a), if an input channel of convolution layer
f4 is pruned, the corresponding channel in batch normalization (BN) layer f2 and the output channel
of convolution layer f1 must be pruned as well. Furthermore, due to the presence of a residual
connection, the corresponding channels in BN layer f5 and the output channel of convolution layer
f4 must also be removed. All of these channels together form a single pruning group. We define the
number of prunable dimensions of a group as the size of the input channel dimension of Conv f4
(which is equivalent to the corresponding dimensions in BN f2, the output channel of Conv f1, etc.)

For a more comprehensive theory to find all pruning groups in structural pruning, refer to the
DepGraph (Fang et al., 2023) paper (section 3.1 & 3.2).

B.2.3 A IMPORTANCE SCORE FUNCTION

Given a parameter group g = {w1, w2, . . . , w|g|} with K prunable dimensions indexed by wt[k]
(t ∈ {1, 2...|g|}), the score of the k th prunable dimension in group g is written is Ig,k, we introduce a
general way to generate a series types of importance scores. The way has two key concepts, REDUCE
and NORMALIZE. We first use REDUCE to reduce scores of parameters in the same group and in
the same prunable dimension into one score.

It,k = REDUCE
t:t∈{1,2...|g|}

(|wt[k]|p) (24)
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Here p is a hyperparameter and we usually set it to 2, REDUCE can be (but is not limited to) the
following:

(1) MEAN: (w1 + w2 + ...+ w|g|)/|g|
(2) FIRST: w1

Then we use NORMALIZE to normalize scores in the different prunable dimensions of the same
pruning group.

Îg,k = Ig,k/NORMALIZE
k:k∈{1,2...K}

(Ig,k) (25)

Here NORMALIZE can be (but is not limited to) the following:

(1) NONE: 1 (use no normalize).
(2) MEAN: (Ig,1 + Ig,2 + ...+ Ig,K)/K

(3) MAX: The maximum amoung Ig,1, Ig,2...Ig,K

We calculate scores of all prunable dimensions in all groups in a network, rank them and prune
according to their scores from lower to higher.

B.2.4 A SPARSITY LOSS

During training, our sparsity loss is defined as :

R(g, k) =
K∑

k=1

γk · Îg,k (26)

Where γk refers to a shrinkage strength applied to the parameters to modify the gradients for better
training. Defined as :

γk = 2
α

√
Imax
g −

√
Ig,k√

Imax
g −
√

Imin
g (27)

Here α can be but is not limited to:

(1) 4: What we use as default in all our experiments.
(2) 0: Same as using no shrinkage strength.

In sparsity loss, we treat γk and NORMALIZE in the denominator of Îg,k simply as constants, which
means gradients aren’t backpropagated through them. Gradients only back propagated fromR(g, k)
to Ig,k to the parameters of the network.

In our code, rather than calculate the sparsity loss, we directly modify the gradients of the parameters
of the network, which get the same results.

B.2.5 KINDS OF PRUNING CRITERION

By choosing different ways of REDUCE and NORMALIZE (appendix B.2.3) and different α
(appendix B.2.4), we can make different pruning cirteria in a uniform framework. In most of our
experiments, we use MEAN REDUCE, MAX NORMALIZE, α = 4, as our default pruning
criterion, and we name it group ℓ2 norm max normalizer. We also tried different criteria in
our experiments and found they are almost all effective, which further shows the flexibility and
effectiveness of our framework.

B.2.6 PAY ATTENTION

Though we draw ideas from Fang et al. (2023) and use their Torch-Pruning libirary, we find their
paper is inconsistent with their code. We wrote appendix B.2.3 & B.2.4 strictly based on their code,
which is the Torch-Pruning library. If you read the Fang et al. (2023) paper section 3.3, you may find
our description a little different from theirs, because their paper is inconsistent with their code, and
we are in line with their code.
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C EXPERIMENTAL PRELIMINARIES

C.1 TERMINOLOGIES

Speed Up: In line with prior works, we define Speed Up ≜ Origin FLOPs / Pruned FLOPs. It
reflects the extent to which our pruning reduces computation, thereby accelerating the network’s
operation.

Acc vs. Speed Up Curve: We generate the curve by prune the network little by little. After each
pruning step, we evaluated the model’s performance on the test set (no finetuning in this step) and
recorded a data point representing the current speed up and corresponding test accuracy. Connecting
these points forms a curve that illustrates how accuracy changes as the speed up increases.

C.2 PRUNING PIPELINE

Our pruning pipeline can be summarized as:

Initial Pruning (Finetuning)︸ ︷︷ ︸
Optional

→ Metanetwork (Finetuning)→ Pruning (Finetuning)︸ ︷︷ ︸
Necessary

(28)

Initial Pruning: Empirically, we observe that the metanetwork performs better on hard to prune
origin networks. However, many networks are initially easy to prune. For instance, ResNet56
on CIFAR10 can be pruned with a 1.3× speedup and then finetuned without any accuracy loss.
Therefore, unless stated otherwise, we apply the initial pruning step in all our experiments—both
when generating meta-training data models and during pruning. In this step, we slightly prune the
original network with a fixed speed up (a hyperparameter that can be determined in a few quick trials)
to make it harder to prune without loss in accuracy (Figure 10a), thereby exploiting the full potential
of the metanetwork. This effect is analogous to removing low-quality samples from a dataset in order
to obtain a higher-quality subset: an easy to prune network contains many low-quality parameters,
which may harm the training of the metanetwork. This step isn’t necesary, but facilitates convergence,
saves VRAM use, and helps achieve better pruning results (Figure 10b) during most of the time.

(a) The origin network is easy to prune, after ini-
tial pruning and slight finetuning, it becomes hard
to prune.

(b) Initial pruning helps get better metanetworks and
better pruning results

Figure 10: With or without initial pruning (ResNet56 on CIFAR10 as an example)

Metanetwork: Change the origin hard to prune network into a graph, feed it through the metanetwork
to get a new graph, and change it back into a new network.

Pruning: Prune the new easy to prune network.
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Finetuning: Train the network with a relatively small learning rate. This is a common step that is
widely used in pruning tasks.

Unlike prior learning to prune methods that require special training during each pruning, our pruning
pipeline only requires a feed forward through metanetwork and standard finetuning, which is simple,
general and effective.

Once we have a metanetwork, we can prune as many networks as we want. All our pruning models are
completely different from meta-training data models. This demonstrates our metanetwork naturally
has great transferability and no prior work has done something like this before.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL ON CNNS

D.1 GENERAL EXPERIMENT SETUP

D.1.1 GENERAL SETTINGS

Optimizer: For all data model training and fine-tuning, we use torch.optim.SGD with
momentum=0.9. For meta-training, we employ torch.optim.AdamW. All learning rates
are controlled using torch.optim.lr_scheduler.MultiStepLR with gamma=0.1. The
learning rate is adjusted at specified milestones; for instance, if milestones=[50, 90], the
learning rate is multiplied by 0.1 at epochs 50 and 90. These settings are not strictly necessary—other
optimizers and schedulers may be equally effective.

Data for Meta-Training: As discussed in Section 4.2, meta-training requires two types of data: data
models and traditional training datasets. To generate a data model, we train a base model, perform
initial pruning followed by finetuning, and finally save the model along with relevant information.
Typically, generating 2–10 data models is sufficient, with 1–8 used for meta-training and the remainder
reserved for meta-evaluation or testing.

Meta Evaluation (Meta Eval): Meta evaluation is a process used to assess the quality of the
metanetwork during meta-training. We did not include it in our final experiments due to its high
computational cost; however, we retain it as an optional tool for future research. At the end of
each meta-training epoch, we evaluate the metanetwork by feeding unseen data models (not used in
meta-training) through the network, finetuning, and then pruning to achieve the maximum speed-up
while maintaining accuracy above a predefined threshold. A higher resulting speed-up indicates better
metanetwork performance.

Visualizing Metanetworks: This is a key technique used throughout our experiments. When we
refer to visualizing a metanetwork, we mean passing a model through the metanetwork, followed by
finetuning, and then visualize the “Acc VS. Speed-Up” curve of the resulting model, as illustrated in
Figure 5. This visualization provides insights into the metanetwork’s behavior and helps determine
whether it is suitable for pruning. An ideal metanetwork should exhibit a long flat region in the
curve where accuracy remains close to or above the target pruning accuracy. There are two ways
to select a suitable metanetwork: (1) using meta-evaluation during meta-training, or (2) visualizing
metanetworks post-training. In our final experiments, we exclusively use the second method, which
is significantly more efficient. We typically do not visualize all metanetworks but instead search for
the best one using a binary search strategy.

Relationship between "Acc VS. Speed Up Curve" and Pruning Performance: Empirically,
pruning performance can be qualitatively predicted from the "Accuracy VS. Speed Up" curve. The
accuracy in the flat region of the curve typically represents the maximum achievable accuracy; after
pruning and finetuning, the final accuracy is usually the same or slightly lower, and sometimes only a
little bit higher at most. The amount of speed up that preserves this top accuracy is generally larger
than the speed up at the curve’s turning point, and these two values tend to correlate—the larger the
turning point speed up, the larger the maintainable speed up. Therefore, if we aim for a pruned model
with, for example, 93% accuracy, we should select a metanetwork whose flat-region accuracy is
around or slightly above 93%, and whose flat region is as long as possible. We cannot give a teoretical
guarantee between the "Acc VS. Speed Up" curve and the pruning performance. But this is not only
our problem, because as far as we know, all other pruning methods can’t give theoretical gurarantee
between their pruning criterion and final performance as well. The reasons can be the network itself
is too complex and processes like finetuning changes everything in an unpredictable way.

Big Batch Size and Small Batch Size: We use two different batch sizes in our experiments: a
small batch size and a big batch size. The big batch size is used during meta-training to compute
accuracy loss on new networks. Due to memory constraints, such large batches cannot be processed
in a single forward and backward pass. Instead, we accumulate gradients over multiple smaller
mini-batches before performing a single optimizer update—a common PyTorch practice. The big
batch size is thus expressed as batchsize * iters, indicating that one optimizer.step()
is performed after iters forward/backward passes, each using a mini-batch of size batchsize.
For all other standard training and finetuning tasks, we use the small batch size.
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D.1.2 GENERAL META TRAINING DETAILS

Equivalent Conversion between Network and Graph: During meta-training, we first convert the
original network into an origin graph. Then, we feed this origin graph through the metanetwork to
generate a new graph. Finally, we convert the new graph back into a new network. When converting
the original network into the origin graph, all network parameters are mapped to either node or edge
features in the graph. However, some graph features do not correspond to any network parameter. For
these missing features, we use default values that effectively simulate the absence of those parameters.
When converting the new graph back into the new network, we only map those trainable parameters
from the new graph back to the new network. For untrainable parameters in the new network, we
keep it the same as the old network. We provide more explanations for this conversion process in the
following subsections: D.2, D.3, and D.4.

The Relative Importance of Sparsity Loss and Accuracy Loss: In our experiments, we introduce a
hyperparameter called "pruner reg", which controls the relative importance of sparsity loss compared
to accuracy loss. During backpropagation, the gradient from the sparsity loss is scaled(multiplied) by
this "pruner reg" value, while the gradient from the accuracy loss remains unscaled.

Meta Training Milestone: As discussed in the Ablation Study (Section 5.3), as the number of
training epochs increases, the metanetwork’s ability to make the network easier to prune becomes
stronger, while its ability to maintain the accuracy becomes weaker. During meta-training, we usually
set a milestone for our learning rate scheduler. Before this milestone, we use a relatively large
learning rate to quickly improve the metanetwork’s ability to make networks easier to prune. After the
milestone, we switch to a smaller learning rate to finetune the metanetwork and slow down the change
of the two abilities, allowing us to select a well-balanced metanetwork. To determine a reasonable
milestone value, we can first perform a short meta-training phase using the large learning rate, then
visualize the resulting metanetworks to identify the point where the accuracy-maintaining ability of
metanetwork is a bit stronger than we expect.

Choose the Appropriate Metanetwork: During meta-training, we save the metanetwork after each
epoch. After training is complete, we search for the most suitable metanetwork by visualizing its
performance using a binary search strategy. Specifically, we start by visualizing the metanetwork
from the middle epoch. If the accuracy of its flat region is below our target pruned accuracy, we next
visualize the metanetwork from the first quarter of training. Otherwise, we check the one from the
third quarter. We continue this process iteratively until we find a metanetwork that meets our criteria:
a relatively high accuracy in the flat region and a long flat region indicating robustness to pruning.

D.1.3 GENERAL PRUNING DETAILS :

Pruning Speed Up: Once a suitable metanetwork has been selected for pruning, the next step is
to determine the target speed up. In general, after visualizing the metanetwork, we observe a flat
region followed by a sharp decline in accuracy. We define a turning point as the speed up at which
the accuracy drops below a certain threshold. Experimentally, we find that we can safely prune the
model at a speed up slightly higher than this turning point without incurring any accuracy loss after
finetuning. For instance, when pruning ResNet-56 on CIFAR-10, we consider an accuracy drop below
0.93 as the turning point (typically around 2.0× speed up), and in practice, we are able to achieve a
2.9× speed up with almost no loss in accuracy after finetuning.
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D.2 RESNET56 ON CIFAR10

D.2.1 EQUIVALENT CONVERSION BETWEEN NETWORK AND GRAPH

We change ResNet56 into a graph with node featrues of 8 dimensions and edge features of 9
dimensions.

The node features consist of 4 features derived from the batch normalization parameters (weight,
bias, running mean, and running variance) of the previous layer, along with 4 features from the batch
normalization of the previous residual connection. If no such residual connection exists, we assign
default values [1, 0, 0, 1] to the corresponding 4 features.

The edge features are constructed by zero-padding all convolutional kernels to a size of 3× 3 (note
that our networks only contain kernels of size 3× 3 or 1× 1), and then flattening them into feature
vectors. We treat all residual connections as convolutional layers with kernel size 1× 1. For example,
consider two layers A and B connected via a residual connection, with neurons indexed as 1, 2, 3, . . .
in both layers. If the residual connection has no learnable parameters (i.e., it directly adds the input to
the output), we represent the edge from Ai to Bi as a 1× 1 convolutional kernel with value 1, and the
edge from Ai to Bj (where i ̸= j) as a 1× 1 kernel with value 0. If the residual connection includes
parameters (e.g., a downsample with a convolutional layer and batch normalization), we construct the
edge features in the same way as for standard convolutional layers.

D.2.2 META TRAINING

Data Models : We generate 10 models as our data models, among them, 8 are used for meta-training
and 2 are used for validation (visualize the metanetwork). When generating each data model, we train
them 200 epochs with learning rate 0.1 and milestone "100, 150, 180", then pruning with speed up
1.32x, followed by a finetuning for 80 epochs with learning rate 0.01 and milestone "40, 70". Finally,
we can get a network with accuracy around 93.5%.

One Meta Training Epoch : Every epoch we enumerate over all 8 data models. When enumerate a
data model, we feedforward it through the metanetwork and generate a new network. We feed all our
CIFAR10 training data into the new network to calculate the accuracy loss, and use the parameters of
new network to calculate the sparsity loss. Then we backward the gradients from both two losses to
update our metanetwork.

Training: We train our metanetwork with learning rate 0.001, milestone "3", weight decay 0.0005
and pruner reg 10. Finally we use metanetwork from epoch 39 as our final network for pruning.

D.2.3 GPU USAGE

All tasks can be run on 1 NVIDIA RTX 4090.

D.2.4 FULL RESULTS

All results are summarized in Table 8, where we repeat the pruning process 3 times using different
seeds: 7, 8, 9. It is important to note that due to the design of our algorithm and implementation,
we cannot prune the network to exactly the same speed up across different runs. For instance, when
targeting a 1.3× speed up, the actual achieved speed up may be slightly larger, such as 1.31×, 1.32×,
or 1.35×.

The aggregated statistical results are presented in Table 9, where each value is reported in the form of
mean(standard deviation).

D.2.5 HYPERPARAMETERS

See Table 10.
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Table 8: ResNet56 on CIFAR10 Full

Method Base Pruned ∆ Acc Pruned FLOPs Speed Up

NISP (Yu et al., 2018) — — — 43.2% 1.76
Geometric (He et al., 2019b) 93.59 93.26 -0.33 41.2% 1.70
Polar (Zhuang et al., 2020) 93.80 93.83 0.03 46.8% 1.88

DCP-Adapt (Zhuang et al., 2018) 93.80 93.81 0.01 47.0% 1.89
CP (Li et al., 2017a) 92.80 91.80 -1.00 50.0% 2.00

AMC (He et al., 2018b) 92.80 91.90 -0.90 50.0% 2.00
HRank (Lin et al., 2020a) 93.26 92.17 -1.09 50.0% 2.00

SFP (He et al., 2018a) 93.59 93.36 -0.23 52.6% 2.11
ResRep (Ding et al., 2021) 93.71 93.71 0.00 52.8% 2.12
SCP (Kang & Han, 2020) 93.69 93.23 -0.46 51.5% 2.06
FPGM (He et al., 2019a) 93.59 92.93 -0.66 52.6% 2.11

FPC (He et al., 2020) 93.59 93.24 -0.35 52.9% 2.12
DMC (Gao et al., 2020) 93.62 92.69 -0.93 50.0% 2.00

GNN-RL (Yu et al., 2022) 93.49 93.59 0.10 54.0% 2.17
DepGraph w/o SL (Fang et al., 2023) 93.53 93.46 -0.07 52.6% 2.11
DepGraph with SL (Fang et al., 2023) 93.53 93.77 0.24 52.6% 2.11

ATO (Wu et al., 2024) 93.50 93.74 0.24 55.0% 2.22
Meta-Pruning (ours) 93.51 93.64 0.13 56.5% 2.30
Meta-Pruning (ours) 93.51 93.75 0.24 58.0% 2.38
Meta-Pruning (ours) 93.51 93.78 0.27 56.5% 2.30

GBN (You et al., 2019a) 93.10 92.77 -0.33 60.2% 2.51
AFP (Ding et al., 2018) 93.93 92.94 -0.99 60.9% 2.56

C-SGD (Ding et al., 2019) 93.39 93.44 0.05 60.8% 2.55
Greg-1 (Wang et al., 2021) 93.36 93.18 -0.18 60.8% 2.55
Greg-2 (Wang et al., 2021) 93.36 93.36 0.00 60.8% 2.55

DepGraph w/o SL (Fang et al., 2023) 93.53 93.36 -0.17 60.2% 2.51
DepGraph with SL (Fang et al., 2023) 93.53 93.64 0.11 61.1% 2.57

ATO (Wu et al., 2024) 93.50 93.48 -0.02 65.3% 2.88
Meta-pruning (ours) 93.51 93.64 0.13 65.6% 2.91
Meta-pruning (ours) 93.51 93.28 -0.23 65.9% 2.93
Meta-pruning (ours) 93.51 93.49 -0.02 66.0% 2.94
Meta-pruning (ours) 93.51 93.27 -0.24 66.8% 3.01
Meta-pruning (ours) 93.51 93.10 -0.41 66.9% 3.02
Meta-pruning (ours) 93.51 93.52 0.01 67.0% 3.03

Table 9: ResNet56 on CIFAR10 Statistics

Pruned Accuracy Pruned FLOPs Speed Up

93.72(±0.06) 57.0%(±0.71%) 2.3267(±0.0377)
93.47(±0.15) 65.83%(±0.17%) 2.9267(±0.0125)
93.30(±0.17) 66.90%(±0.08%) 3.0200(±0.0081)
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Table 10: ResNet56 on CIFAR10 Hyperparameters

Types Name Value

Compute Resources GPU NVIDIA RTX 4090
parallel No

Batch size small batch size 128
big batch size 500 × 100

Prepare Data Models data model num 10 ( 8 + 2 )
Train From Scratch epoch 200

lr 0.1
weight decay 0.0005

milestone "100, 150, 180"
Initial Pruning speed up 1.32

Finetuning epoch 80
lr 0.01

weight decay 0.0005
milestone "40, 70"

Metanetwork num layer 8
hiddim 64

in node dim 8
in edge dim 9

node res ratio 0.01
edge res ratio 0.01

Meta Training lr 0.001
weight decay 0.0005

milestone "3"
pruner reg 10

Final Pruning metanetwork epoch 39
speed up 2.3, 2.9, 3.0

Finetuning After Metanetwork epoch 100
lr 0.01

weight decay 0.0005
milestone "60, 90"

Finetuning After Pruning epoch 140
lr 0.01

weight decay 0.0005
milestone "80, 120"
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D.3 VGG19 ON CIFAR100

D.3.1 EQUIVALENT CONVERSION BETWEEN NETWORK AND GRAPH

We change VGG19 into a graph with node featrues of 5 dimensions and edge features of 9 dimensions.

The node features consist of 4 features derived from the batch normalization parameters (weight,
bias, running mean, and running variance) of the previous layer and 1 feature derived from the bias
of previous layer (0 if bias doesn’t exist).

The edge features are constructed by zero-padding all convolutional kernels to a size of 3× 3 (note
that our networks only contain kernels of size 3× 3 or 1× 1), and then flattening them into feature
vectors.

D.3.2 META TRAINING

Data Models : We generate 10 models as our data models, among them, 8 are used for meta-training
and 2 are used for validation (visualize the metanetwork). When generating each data model, we
train them 200 epochs with learning rate 0.1 and milestone "100, 150, 180", then pruning with speed
up 2.0x, followed by a finetuning for 140 epochs with learning rate 0.01 and milestone "80, 120".
Finally, we can get a network with accuracy around 73.5%.

One Meta Training Epoch : Every epoch we enumerate over all 8 data models. When enumerate a
data model, we feedforward it through the metanetwork and generate a new network. We feed all our
CIFAR100 training data into the new network to calculate the accuracy loss, and use the parameters
of new network to calculate the sparsity loss. Then we backward the gradients from both two losses
to update our metanetwork.

Training: We train our metanetwork with learning rate 0.001, milestone "10", weight decay 0.0005
and pruner reg 10. Finally we use metanetwork from epoch 38 as our final network for pruning.

D.3.3 GPU USAGE

All tasks can be run on 1 NVIDIA RTX 4090.

D.3.4 FULL RESULTS

All results are summarized in Table 11, where we repeat the pruning process 3 times using different
seeds: 7, 8, 9. It is important to note that due to the design of our algorithm and implementation,
we cannot prune the network to exactly the same speed up across different runs. For instance, when
targeting a 8.90× speed up, the actual achieved speed up may be slightly larger, such as 8.95×,
9.01×, or 9.02×.

The aggregated statistical results are presented in Table 12, where each value is reported in the form
of mean(standard deviation).

D.3.5 HYPERPARAMETERS

See Table 13.
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Table 11: VGG19 on CIFAR100 Full

Method Base Pruned ∆ Acc Pruned FLOPs Speed Up

OBD (Wang et al., 2019) 73.34 60.70 -12.64 82.55% 5.73
OBD (Wang et al., 2019) 73.34 60.66 -12.68 83.58% 6.09

EigenD (Wang et al., 2019) 73.34 65.18 -8.16 88.64% 8.80
Greg-1 (Wang et al., 2021) 74.02 67.55 -6.67 88.69% 8.84
Greg-2 (Wang et al., 2021) 74.02 67.75 -6.27 88.69% 8.84

DepGraph w/o SL (Fang et al., 2023) 73.50 67.60 -5.44 88.73% 8.87
DepGraph with SL (Fang et al., 2023) 73.50 70.39 -3.11 88.79% 8.92

Meta-Pruning (ours) 73.65 68.65 -5.00 88.81% 8.94
Meta-Pruning (ours) 73.65 67.63 -6.02 88.96% 9.06
Meta-Pruning (ours) 73.65 69.75 -3.90 88.83% 8.95

Table 12: VGG19 on CIFAR100 Statistics

Pruned Accuracy Pruned FLOPs Speed Up

68.68(±0.87) 88.87%(±0.07%) 8.9833(±0.0544)
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Table 13: VGG19 on CIFAR100 Hyperparameters

Types Name Value

Compute Resources GPU NVIDIA RTX 4090
parallel No

Batch size small batch size 128
big batch size 500 × 100

Prepare Data Models data model num 10 ( 8 + 2 )
Train From Scratch epoch 200

lr 0.1
weight decay 0.0005

milestone "100, 150, 180"
Initial Pruning speed up 2.0

Finetuning epoch 140
lr 0.01

weight decay 0.0005
milestone "80, 120"

Metanetwork num layer 8
hiddim 32

in node dim 5
in edge dim 9

node res ratio 0.05
edge res ratio 0.05

Meta Training lr 0.001
weight decay 0.0005

milestone "10"
pruner reg 10

Final Pruning metanetwork epoch 38
speed up 8.90

Finetuning After Metanetwork epoch 2000
lr 0.01

weight decay 0.0005
milestone "1850, 1950"

Finetuning After Pruning epoch 2000
lr 0.01

weight decay 0.0005
milestone "1850, 1950"
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D.4 RESNET50 ON IMAGENET

D.4.1 EQUIVALENT CONVERSION BETWEEN NETWORK AND GRAPH

We change ResNet50 into a graph with node featrues of 8 dimensions and edge features of 1, 9 or 49
dimensions. We employ 3 linear layers to project edge features of these 3 different dimensions into
the same hidden dimension, enabling their integration into our graph neural network.

The node features consist of 4 features derived from the batch normalization parameters (weight,
bias, running mean, and running variance) of the previous layer, along with 4 features from the batch
normalization of the previous residual connection. If no such residual connection exists, we assign
default values [1, 0, 0, 1] to the corresponding 4 features.

The edge features are constructed by simply flatten convolutional kernels into feature vectors (We
have convolutional kernels of size 1 × 1, 3 × 3 or 7 × 7). We treat all residual connections as
convolutional layers with kernel size 1×1. For example, consider two layers A and B connected via a
residual connection, with neurons indexed as 1, 2, 3, . . . in both layers. If the residual connection has
no learnable parameters (i.e., it directly adds the input to the output), we represent the edge from Ai

to Bi as a 1× 1 convolutional kernel with value 1. Different from section D.2, to reduce the VRAM
footprint of the program, we build no edges between Ai and Bj (i ̸= j). If the residual connection
includes parameters (e.g., a downsample with a convolutional layer and batch normalization), we
construct the edge features in the same way as for standard convolutional layers.

D.4.2 META TRAINING

Data Models : We generate 3 models as our data models, among them, 2 are used for meta-training
and 1 are used for validation (visualize the metanetwork). When generating each data model, we
finetune them based on the pretrained weights for 30 epochs with learning rate 0.01 and milestone
"10", then pruning with speed up 1.2920x, followed by a finetuning for 60 epochs with learning rate
0.01 and milestone "30". Finally, we can get a network with accuracy around 76.1%.

One Meta Training Epoch : We train with torch.nn.parallel.DistributedDataParallel
(pytorch data parallel) across 8 gpus. Unlike in Section D.2 and Section D.3, at the beginning of each
epoch, we evenly distribute different data models across the GPUs. For example, since we have two
data models, we load one on four GPUs and the other on the remaining four GPUs. At each iteration,
we forward all eight models (replicated across the 8 GPUs) through the metanetwork to generate
eight new models. We then feedforward a large batch of ImageNet data, evenly distributed through
these eight new models, to compute the accuracy loss. We also use the parameters of the eight new
networks to compute the sparsity loss. Then we backward the gradients from both two losses to
update our metanetwork. Each training epoch consists of (ImageNet data num / big batch size)
iterations, meaning that one full pass over the entire ImageNet dataset when computing the accuracy
loss is considered as one epoch .

Training: We train our metanetwork with learning rate 0.01, milestone "2", weight decay 0.0005
and pruner reg 10. Finally we use metanetwork from epoch 12 as our final network for pruning.

D.4.3 GPU USAGE

Meta-Training and feed forward through the metanetwork during pruning requires large VRAM and
needs to be run on NVIDIA A100. All other training and finetuning can be run on NVIDIA RTX
4090. In practice, we use 8 gpus in parallel.

D.4.4 FULL RESULTS

All results are summarized in Table 14, where we repeat the pruning process 3 times. It is important
to note that due to the design of our algorithm and implementation, we cannot prune the network to
exactly the same speed up across different runs. For instance, when targeting a 2.3× speed up, the
actual achieved speed up may be slightly larger, such as 2.31×, 2.32×, or 2.35×.

The aggregated statistical results are presented in Table 15, where each value is reported in the form
of mean(standard deviation).
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D.4.5 HYPERPARAMETERS

See Table 16.

Table 14: ResNet50 on ImageNet Full

Method Base Top-1(Top-5) Pruned Top-1(∆) Pruned Top-5(∆) Pruned FLOPs

DCP (Zhuang et al., 2018) 76.01%(92.93%) 74.95%(-1.06%) 92.32%(-0.61%) 55.6%
CCP (Peng et al., 2019) 76.15%(92.87%) 75.21%(-0.94%) 92.42%(-0.45%) 54.1%
FPGM (He et al., 2019a) 76.15%(92.87%) 74.83%(-1.32%) 92.32%(-0.55%) 53.5%
ABCP (Lin et al., 2020b) 76.01%(92.96%) 73.86%(-2.15%) 91.69%(-1.27%) 54.3%
DMC (Gao et al., 2020) 76.15%(92.87%) 75.35%(-0.80%) 92.49%(-0.38%) 55.0%
Random (Li et al., 2022) 76.15%(92.87%) 75.13%(-1.02%) 92.52%(-0.35%) 51.0%

DepGraph (Fang et al., 2023) 76.15%(-) 75.83%(-0.32%) - 51.7%
ATO (Wu et al., 2024) 76.13%(92.86%) 76.59%(+0.46%) 93.24%(+0.38%) 55.2%
DTP (Li et al., 2023) 76.13%(-) 75.55%(-0.58%) - 56.7%

ours 76.14%(93.11%) 76.13%(-0.01%) 92.78%(-0.33%) 57.2%
ours 76.14%(93.11%) 76.24%(+0.20%) 93.09%(-0.02%) 57.1%
ours 76.14%(93.11%) 76.08%(-0.06%) 92.93%(-0.18%) 56.9%

Table 15: ResNet50 on ImageNet Statistics

Pruned FLOPs (Speed Up) Pruned Top-1 Pruned Top-5

57.1%(2.33×) 76.15%(±0.07%) 92.93%(±0.13%)
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Table 16: ResNet50 on ImageNet Hyperparameters

Types Name Value

Compute Resources GPU NVIDIA A100 & NVIDIA RTX 4090
parallel 8

Batch size small batch size 32 × 8
big batch size 32 × 8 × 200

Prepare Data Models data model num 3 ( 2 + 1 )
Generate Data Model epoch 30

lr 0.01
weight decay 0.0001

milestone "10"
Initial Pruning speed up 1.2920

Finetuning epoch 60
lr 0.01

weight decay 0.0001
milestone "30"

Metanetwork num layer 6
hiddim 16

in node dim 8
node res ratio 0.002
edge res ratio 0.002

Meta Training lr 0.01
weight decay 0.0005

milestone "2"
pruner reg 10

Final Pruning metanetwork epoch 12
speed up 2.3095

Finetuning After Metanetwork epoch 200
lr 0.01

weight decay 0.0001
milestone "120, 160, 185"

Finetuning After Pruning epoch 200
lr 0.01

weight decay 0.0001
milestone "120, 160, 185"
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E MORE ABOUT ABLATION STUDY

E.1 FINETUNING AFTER METANETWORK

(a) Finetune Different Epochs with Same Metanetwork (b) Use Finetune to Get Better Performance

Figure 11: Finetune After Metanetwork (ResNet56 on CIFAR10 as example)

As mentioned in section 5.1, our pruning pipeline can be summarized as:

Initial Pruning (Finetuning)︸ ︷︷ ︸
Optional

→ Metanetwork (Finetuning)→ Pruning (Finetuning)︸ ︷︷ ︸
Necessary

(29)

In this pipeline, finetuning after pruning is a common way to improve the accuracy. However,
finetuning after the metanetwork is first proposed by us and may raise questions for readers regarding
its impact on performance—whether it is necessary or beneficial ? In this section, we aim to clarify the
effects of finetuning after the metanetwork and demonstrate that it is both necessary and advantageous.

To illustrate this, we use the example of pruning ResNet56 on CIFAR10. In Figure 11a, we visualize
the "Acc vs. Speed Up" curves for models after the same metanetwork and after various amounts
of finetuning. Without any finetuning after the metanetwork, the network’s accuracy is nearly zero
(which is why there is no "finetune_0_epoch" line in the figure—it lies at the bottom). Directly
proceeding to pruning and finetuning from such an unfinetuned network experimentally results in
poor performance.

However, as we increase the number of finetuning epochs after the metanetwork, several interesting
observations emerge:

• Quickly Recover: The accuracy of our network after metanetwork quickly recovers after
only very few finetuning, indicating that our metanetwork has the ability to preserve the
accuracy (i.e. our accuracy loss in meta-training works)

• Trend of Change: As the number of finetuning epochs increases, the flat portion of the
curve becomes shorter or stays the same, and the overall accuracy of this region improves.

When we feed the same network into metanetworks trained for different numbers of meta-training
epochs and get several modified networks, then finetune them with different epochs to reach the same
accuracy (as shown in Figure 11b), another important pattern emerges:

• More Finetune Better Performance : A network obtained from a metanetwork with more
meta-training epochs can typically achieve the same accuracy as one from a metanetwork
with fewer meta-training epochs—but requires more finetuning. Importantly, the former
usually results in better pruning performance. This is evident in Figure 11b, where the green
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line (representing a higher meta-training epoch) exhibits a longer flat region, indicating
improved robustness to pruning.

This suggests that the effectiveness of our method can be further improved by employing metanet-
works trained for more meta-training epochs and applying more finetuning afterward. In practice,
however, we avoid excessive finetuning in order to keep the number of finetuning epochs within a
reasonable range, allowing for multiple experimental trials.

Overall, all finetuning in our pipeline is necessary and effective.
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F EXPERIMENTS ON TRANSFERABILITY

F.1 TRANSFER BETWEEN DATASETS

The common pruning pipeline is:

Initial Pruning (Finetuning)→ Metanetwork (Finetuning)→ Pruning (Finetuning) (30)

Pruning pipeline for None is:

Initial Pruning (Finetuning)→ Pruning (Finetuning) (31)

The dataset of a to be pruned network means we do all training and finetuning on it using this dataset.
The dataset of a metanetwork means we generate dataset models, meta-train the metanetwork using
this dataset.

We mainly have 2 hyperparameters here–initial speed up and final speed up . We approximately set
them based on the difficulty of each dataset. Here dataset refers to the dataset of the to be pruned
network (rows in Table 17). For CIFAR10, the initial pruning speed up is 1.32x and the final speed
up is 3.0x. For CIFAR100 the initial pruning speed up is 1.32x and the final speed up is 2.5x. For
SVHN, the initial pruning speed up is 3.0x and the final speed up is 10.0x.

Table 17: Transfer between datasets: All networks’ architecture is ResNet56. Columns represent
the training datasets for the metanetwork, and rows represent the training datasets for the to be pruned
network. “None” indicates using no metanetwork. Results with metanetwork is obviously better than
no metanetwork (The only exception is when training datasets for the to be pruned network is SVHN,
and we guess this is because the dataset SVHN itself is too easy).

Dataset\Metanetwork CIFAR10 CIFAR100 SVHN None
CIFAR10 93.35 92.47 92.87 91.28

CIFAR100 69.97 70.16 69.25 68.91

SVHN 96.79 96.50 96.86 96.78

F.2 TRANSFER BETWEEN ARCHITECTURES

The common pruning pipeline is:

Initial Pruning (Finetuning)→ Metanetwork (Finetuning)→ Pruning (Finetuning) (32)

Pruning pipeline for None is:

Initial Pruning (Finetuning)→ Pruning (Finetuning) (33)

The architecture of a to be pruned network means this network is constructed using this architecture.
The architecture of a metanetwork means all dataset models we generated for meta-training this
metanetwork use this architecture.

We mainly have 2 hyperparameters here–initial speed up and final speed up. We approximately set
them based on the ability of each architecture. Here architecture refers to the architecture of the to be
pruned network (rows in Table 18). For ResNet56, the initial pruning speed up is 1.32x and the final
speed up is 3.0x. For ResNet110 the initial pruning speed up is 2.0x and the final speed up is 4.0x.

F.3 TRANSFER FROM SMALL DATASET TO LARGE DATASET

When we are using large dataset like imagenet, is it possible that we use a much smaller dataset
during meta-training but get the same results? Our answer is yes.

When pruning Resnet50 on IMAGENET, we evenly choose 10% on each class in IMAGENET
and form a new subset dataset. Meta-Training using this subset causes almost no drop in accuracy.
See results in Table 19. This suggest that even 10% percent dataset is enough in meta-train to let
metanetwork learn the pruning strategy.
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Table 18: Transfer between architectures. All training dataset is CIFAR10. Columns represent
the architectures used for training the metanetwork, and rows represent the architecures of the to be
pruned network. “None” indicates using no metanetwork. All results with metanetwork is obviously
better than no metanetwork.

Architecture\Metanetwork ResNet56 ResNet110 None
ResNet56 93.40 92.81 92.08

ResNet110 93.04 93.38 92.40

Table 19: During meta-train, use full ImageNet vs. only 10% ImageNet

Method Base Top-1(Top-5) Pruned Top-1(∆) Pruned Top-5(∆) Pruned FLOPs

ours 76.14%(93.11%) 76.13%(-0.01%) 92.78%(-0.33%) 57.2%
ours(10%) 76.14%(93.11%) 76.24%(+0.10%) 92.65%(-0.46%) 57.0%

F.4 TRANSFER FROM CLASSIFICATION TASK TO DETECTION TASK

We transfer the metanetwork from a classification task into another detection task. The detection
dataset is PASCAL VOC 07 (Girshick et al., 2014). Our detection network is a Faster R-CNN
detector with an ImageNet-pretrained ResNet-50 backbone (conv layers only, no FPN), a single-scale
RPN with 5×3 anchors per location, RoIAlign to 7×7, and the default torchvision Fast R-CNN
two-FC-layer head for 21-way VOC classification and bounding-box regression.

We use metanetwork traind when pruning Resnet50 on ImageNet. During pruning, we prune the
resnet50 backbone with 2.5x speed up. Results are in Table 20. We can see that metanetwork does
help preserve the detection ability of the network even if it is trained on a classification task. This
is not a perfect experiment because nowadays there are much more different and stronger detection
architectures and pretrain is widely used to enhance the network’s ability. But adding too many
complex structures would make the experimental results difficult to analyze. So we conduct this
simple and fair experiment and it demonstrates that our metanetwork can transfer to different tasks.

Table 20: Transfer classification to detection

Method Origin Prune w/o metanetwork Prune with metanetwork

mAP 0.6061 0.4524 0.5173
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G EXPRIMENTS ON TRANSFORMERS

G.1 MHSA TO GRAPH

A MHSA (multi-head self-attention) begins with linear projections of the input X using 3H indepen-
dent weight matrices—H each for queries, keys, and values. For each head h ∈ 1, . . . , H:

Qh = XWQ
h , Kh = XWK

h , Vh = XWV
h .

Then each head computes attention via

Yh = softmax(QhK
⊤
h )Vh,

The outputs Y1, . . . , YH are concatenated and linearly projected:

MHSA(X) = Concat(Y1, . . . , YH)WO.

The input and output are both d-dimensional. Each head produces dH -dimensional outputs. When
changing to a graph, we represent this with d input nodes in the first layer, H · dH attention head
nodes in the second layer, and d output nodes in the third layer.

Between the first and the second layer, we model the three projection types (query, key, value) using
multidimensional edge features: for each edge (i, j) in head h, the feature is

ehij =
(
(WQ

h )ij , (W
K
h )ij , (W

V
h )ij

)
.

Between the second and third layer, concatenation and the final projection WO are handled naturally
by the graph structure and treated as a standard linear layer.

In summary, every pair of nodes between the first and second layers is connected by an edge
characterized by three-dimensional features, which represent the attention parameters. Each pair of
nodes between the second and third layers is connected by an edge with a single-dimensional feature,
corresponding to the final linear projection.

G.2 EQUIVALENT CONVERSION BETWEEN NETWORK AND GRAPH

We change ViT-B/16 into a graph with node featrues of 6 dimensions and edge features of 1, 3 or 256
dimensions. We employ 3 linear layers to project edge features of these 3 different dimensions into
the same hidden dimension, enabling their integration into our graph neural network.

The node features consist of 6 features, they are weight and bias of previous layer norm, bias
of previous linear layer, biases of query, key, value of previous attention layer. In the case that
any of these features doesn’t exist, they are replaced by a default value of [1, 0, 0, 0, 0, 0] at their
corresponding positions.

The edge features are constructed almost in the same way as previous experiments. The only new
part is MHSA, and we construct it as described in Appendix G.1.

G.3 META TRAINING

Data Models: We use the default ViT-B/16 provided by PyTorch as the only data model. All training
and pruning are conducted on this model, as training several separate models from scratch would be
prohibitively time-consuming. Moreover, this choice ensures consistency with prior work in the field.
Based on the Acc VS. speed up curve of the original ViT (Figure 12), we do initial pruning with a
speed up of 1.0370x and apply no finetuning. This configuration yields a network with an accuracy
of 81%.

One Meta Training Epoch : The same as ResNet50 on ImageNet (Appendix D.4.2).

Training: We train our metanetwork with learning rate 0.01, milestone "3", weight decay 0.0005
and pruner reg 1000. Finally we use metanetwork from epoch 6 as our final network for pruning.
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Figure 12: Acc VS. Speed Up curve of the origin ViT

G.4 GPU USAGE

Meta-Training and feed forward through the metanetwork during pruning requires large VRAM and
needs to be run on NVIDIA A100. All other training and finetuning can be run on NVIDIA RTX
4090. In practice, we use 8 gpus in parallel.

G.5 FULL RESULTS

All results are summarized in Table 21.

G.6 HYPERPARAMETERS

See Table 22.

Table 21: ViT-B/16 on ImageNet

Method Base Top-1 Pruned Top-1 ∆Acc FLOPs

ViT-B/16 (Dosovitskiy et al., 2021) 81.07% - - 17.6
CP-ViT (Song et al., 2022) 77.91% 77.36% -0.55% 11.7

DepGraph (Fang et al., 2023) 81.07% 79.17% -1.90% 10.4
MetaPruning(ours) 81.07% 78.26% -2.81% 10.3
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Table 22: ViT-B/16 on ImageNet Hyperparameters

Types Name Value

Compute Resources GPU NVIDIA A100 & NVIDIA RTX 4090
parallel 8

Batch size small batch size 128 × 8
big batch size 32 × 8 × 200

Prepare Data Models data model num 1
Generate Data Model epoch 0

lr -
weight decay -

milestone -
Initial Pruning speed up 1.0370

Finetuning epoch 0
lr -

weight decay -
milestone -

Metanetwork num layer 3
hiddim 4

in node dim 6
node res ratio 0.1
edge res ratio 0.1

Meta Training lr 0.001
weight decay 0.0005

milestone -
pruner reg 10

Final Pruning metanetwork epoch 22
speed up 1.7

Finetuning After Metanetwork epoch 300
lr 0.01

weight decay 0.01
scheduler cosineannealinglr

label smoothing 0.1
mixup alpha 0.2
cutmix alpha 0.1

Finetuning After Pruning epoch 100
lr 0.0001

weight decay 0.0001
scheduler cosineannealinglr

label smoothing 0.1
mixup alpha 0.2
cutmix alpha 0.1
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H MORE VISUALIZATION OF STATISTICS

Figure 13: l1 Norm

Figure 14: Inter-Channel Correlation
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Figure 15: Effeicient Rank

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

I THE USE OF LARGE LANGUAGE MODELS

We only use LLMs to check grammar errors and polish our writing. All other works are done by
human writers.
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