
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

META PRUNING VIA GRAPH METANETWORKS :
A UNIVERSAL META LEARNING FRAMEWORK FOR
NETWORK PRUNING

Anonymous authors
Paper under double-blind review

Figure 1: For a pruning criterion, we use a metanetwork to change a hard to prune network into
another easy to prune network for better pruning.

ABSTRACT

We propose an entirely new meta-learning framework for network pruning. It
is a general framework that can be theoretically applied to almost all types of
networks with all kinds of pruning and has great generality and transferability.
Experiments have shown that it can achieve outstanding results on many popular
and representative pruning tasks (including both CNNs and Transformers). Unlike
all prior works that either rely on fixed, hand-crafted criteria to prune in a coarse
manner, or employ learning to prune ways that require special training during
each pruning and lack generality. Our framework can learn complex pruning
rules automatically via a neural network (metanetwork) and has great generality
that can prune without any special training. More specifically, we introduce
the newly developed idea of metanetwork from meta-learning into pruning. A
metanetwork is a network that takes another network as input and produces a
modified network as output. In this paper, we first establish a bijective mapping
between neural networks and graphs, and then employ a graph neural network
as our metanetwork. We train a metanetwork that learns the pruning strategy
automatically and can transform a network that is hard to prune into another
network that is much easier to prune. Once the metanetwork is trained, our
pruning needs nothing more than a feedforward through the metanetwork and
some standard finetuning to prune at state-of-the-art. Our code is available at
https://anonymous.4open.science/r/MetaPruning.

1 INTRODUCTION

With the rapid advancement of deep learning (LeCun et al., 2015; Schmidhuber, 2015), neural
networks have become increasingly powerful. However, this improved performance often comes
with a significant increase in the number of parameters and computational cost (FLOPs). As a result,
there is growing interest in methods to simplify these networks while preserving their performance.
Pruning, which involves selectively removing certain parts of a neural network, has proven to be an
effective approach (Cheng et al., 2024; He & Xiao, 2024; Reed, 1993).

A key idea of a large number of previous pruning works is to remove the unimportant components of
a neural network. To achieve this goal, various criteria that measure the importance of components of

1

https://anonymous.4open.science/r/MetaPruning

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a neural network have been invented. Some criteria are based on norm or magnitude scores (Han
et al., 2016; Li et al., 2017b; Sun et al., 2024; He et al., 2018a). Some are based on how much the
performance changes when certain parts of the network are removed or preserved (You et al., 2019b;
Ma et al., 2023; Frankle & Carbin, 2019; Ye et al., 2020). Some others defined more complex criteria
such as saliency and sensitivity (LeCun et al., 1989; Lee et al., 2019; Zhao et al., 2019).

Once a pruning criterion is established, we can assess whether a model is easy or hard to prune based
on that criterion. Technically, we consider a model easy to prune if we can prune a relatively large
part of it with only little loss in accuracy. Otherwise, we consider it hard to prune.

Prior researchers have generally approached pruning improvement in two ways: either by refining the
pruning criteria or by transforming the model to be easier to prune according to a given criterion. The
first approach is more straightforward and has been extensively studied in prior work. In contrast, the
second approach has received comparatively less attention. However, several studies adopting this
latter perspective have achieved promising results. Notably, sparsity regularization methods (Wen
et al., 2016; Fang et al., 2023; Wang et al., 2021) exemplify this approach by encouraging models to
become sparser, thereby facilitating more effective pruning.

Our framework inherits the idea of the second way. A metanetwork is a network that takes another
network as input and produces a modefied network as output. For any given pruning criterion, our
framework aims at training a metanetwork that can transform a hard to prune network into another
easier to prune network like figure 1.

Our contributions can be summarized as follows:

(1) Introduce the idea of metanetwork from meta-learning into pruning for the first time.
(2) Propose an entirely new universal pruning framework that is theoretically applicable

to almost all types of networks with all kinds of pruning.
(3) Present concrete implementations for our theoretical framework and achieve state-of-

the-art performance on various practical pruning tasks.
(4) Conduct further research on the flexibility and generality of our framework.

Our method is entirely new and fundamentally different from all prior works, see Appendix A for a
comparison with prior works to better understand our novel contributions and advantages.

2 RELATED WORK

2.1 METANETWORKS

Using neural networks to process other neural networks has emerged as an intriguing research
direction. Early studies demonstrated that neural networks can extract useful information directly
from the weights of other networks (Unterthiner et al., 2020). We define a metanetwork as a neural
network that takes another neural network as input and outputs either information about it or a
modified network. Initial metanetworks were simple multilayer perceptrons (MLPs), while more
recent designs incorporate stronger inductive biases by preserving symmetries (Godfrey et al., 2022)
inherent in the input networks. Broadly, metanetwork architectures can be categorized into two
perspectives. The weight space view applies specially designed MLPs directly on the model’s
weights (Zaheer et al., 2017; Navon et al., 2023; Zhou et al., 2023a; Tran et al., 2024b; Zhou et al.,
2023b; 2024; Tran et al., 2024a). And the graph view transforms the input network into a graph and
applies graph neural networks (GNNs) to it (Lim et al., 2024; Kofinas et al., 2024; Kalogeropoulos
et al., 2024). In this work, we adopt the graph view to build our metanetwork, leveraging the natural
correspondence between graph nodes and neurons in a network layer, as well as the symmetries they
exhibit (Maron et al., 2019). Given the maturity and effectiveness of GNNs, the graph metanetwork
approach offers both elegance and practicality.

2.2 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) are a class of neural networks specifically designed to operate on
graph-structured data, where graphs consist of nodes and edges with associated features (Wu et al.,
2021; Scarselli et al., 2009; Kipf & Welling, 2017). GNNs have gained significant attention in recent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

years, with frameworks such as the message passing neural network (MPNN) (Gilmer et al., 2017)
proving to be highly effective. In this paper, we employ the message passing framework, specifically
using Principal Neighborhood Aggregation (PNA) (Corso et al., 2020) as the backbone architecture
for our metanetwork.

2.3 SPARSITY REGULARIZATION BASED PRUNING

Networks that are inherently sparse tend to be easier to prune effectively. Prior research has explored
various regularization techniques to encourage sparsity in neural networks to facilitate pruning. This
idea of sparsity regularization has been widely adopted across many works (Wen et al., 2016; Gordon
et al., 2018; Huang & Wang, 2018; Lin et al., 2020c; He et al., 2017; Lin et al., 2019; Xia et al., 2022;
2024; Fang et al., 2023; Wang et al., 2021). Our method inherits this principle to some extent, as our
metanetwork can be viewed as transforming the original network into a sparser version for better
pruning.

2.4 LEARNING TO PRUNE & META PRUNING

Given the complexity of pruning, several previous works have leveraged neural networks (Dery et al.,
2024; He et al., 2017; Wu et al., 2024; Chen et al., 2023), reinforcement learning (Rao et al., 2019;
Yu et al., 2022; He et al., 2018b), and other techniques to automatically learn pruning strategies.
Viewing pruning as a learning problem naturally leads to the idea of meta-learning, which learns
“how to learn” (Hospedales et al., 2022). Some prior works have specifically applied meta-learning to
pruning (Liu et al., 2019; Li et al., 2020). Our work also draws idea from meta-learning, but it learns
in a way entirely different from all prior works.

3 A UNIVERSAL META-LEARNING FRAMEWORK

Our framework can be summarized in one single sentence (Figure 1):

For a pruning criterion, we use a metanetwork to change a hard to prune
network into another easy to prune network for better pruning.

Pruning criterion: A pruning criterion measures the importance of specific components of a neural
network. Typical examples include the ℓ1 norm and ℓ2 norm of weight vectors. During pruning, we
compute an importance score for each prunable component according to the criterion, and remove
components in ascending order of their scores.

Easy or hard to prune: For a fixed pruning criterion, if we gradually prune the network and the
accuracy drops quickly, we refer to it as hard to prune. Conversely, if the accuracy decreases slowly
with progressive pruning, we call it easy to prune.

Metanetwork: A metanetwork is a special type of neural network whose inputs and outputs are
both neural networks. In contrast, standard neural networks typically take structured data such as
images (CNNs), sentences (Transformers), or graphs (GNNs) as input. A metanetwork, however,
takes an existing network as input and outputs another network, hence the term meta—indicating that
it operates on neural networks themselves.

4 A SPECIFIC IMPLEMENTATION BASED ON GRAPH METANETWORKS

The proposed framework is conceptually simple and straightforward. However, its practical imple-
mentation requires addressing several technical challenges:

(1) How to build the metanetwork ?
(2) How to train the metanetwork ?
(3) How to design the pruning criterion ?

We present our implementations step by step, dedicating one subsection to each challenge. The final
subsection offers an overall summary of our method and a deeper understanding of it from a more
holistic perspective.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 METANETWORK DESIGN

Drawing ideas from recent researches (section 2.1), we use a graph neural network (GNN) as our
metanetwork. Please make sure you are familiar with the basic concepts of GNN before continuing.
Our design does not cover any complex GNN theory, you only need to know what is a graph and the
basic message passing algorithm.

Figure 2: Conversion between networks and
graphs: We visualize a two layer toy CNN as
example. Our graph contains 6 nodes correspond-
ing with 6 neurons in the network. For neurons
connected via convolutional channel like (1,3) and
connected by residual connection like (1,5), we
add an edge between their corresponding nodes.
Then we generate node and edge features as shown
in the figure. For some special cases, we use de-
fault values to replace non-existent values. For
example, for node 3 who doesn’t have a residual
connection, we set the last 4 number of its node
feature as [1, 0, 0, 1]. This means we treat it as
with previous residual batchnorm of weight 1, bias
0, running mean 0, running var 1, performing the
same as with no batchnorm.

Conversion between networks and graphs: To
apply a metanetwork (GNN) on networks, we
first need to establish a conversion between net-
works and graphs. Prior works such as Kofinas
et al. (2024); Lim et al. (2024) have managed
to change networks of almost all architectures
(CNN, Transformer, RNN, etc.) into graphs.

Here we show how we establish conversion be-
tween a ResNet (He et al., 2016) and a graph in
our experiments as an example. This inherits the
idea of Kofinas et al. (2024); Lim et al. (2024)
but is quite different in implementation details.
To convert a network into a graph, we establish
the correspondence between the components of
a neural network and elements of a graph as
follows:

(1) Node: Each neuron in fully connected layers
or channel in convolutional layers in the network
is represented as a node in the graph. (2) Edge:
An edge exists between two nodes if there is a
direct connection between them in the original
network. This includes fully connected layers,
convolutional layers, and residual connections.
(3) Node Features: Node features comprise
parameters associated with neurons, here we
use the weight, bias, running mean, running var
of batchnorm (Ioffe & Szegedy, 2015), including both batchnorms from previous adjacent layers and
previous skip connection layers (if exist). (4) Edge Features: Edge features encode the weights of
connections between nodes. We treat linear connections and residual connections as special cases of
convolutional connections with a kernel size of 1. For a k × k convolution between two channels, we
flatten it into a k2-dim edge feature vector.

Since graph neural networks here require all edge features to have the same dimension, we adopt
one of two strategies to standardize them: (1) Pad all convolutional kernels to the same size (e.g., the
maximum kernel size in the network) (2) Flatten convolutional kernels of varying sizes, then apply
learned linear transformations to project them into the same size.

During conversion, we simply ignored other components such as pooling layers. Although we have
methods to explicitly convert all of them, our experiments show that omitting them already yields
outstanding results. Therefore, it is acceptable to ignore them in practice. We also didn’t use any
other techniques like positional embedding.

By following these rules, we can generate a graph that corresponds to a given neural network.
Conversely, the inverse transformation can be applied to convert a graph back into an equivalent
network. In essence, we establish an equivalent conversion between networks and graphs. For a more
intuitive understanding, see Figure 2.

Metanetwork architecture: After establishing the conversion between networks and graphs, we can
convert the input network into a graph, use metanetwork(GNN) to transform the graph, and finally
convert the output graph back into a new network. Our metanetwork must be powerful enough to
learn the transforming rules for better pruning. We build our metanetwork based on the message
passing framework (Gilmer et al., 2017) and PNA (Corso et al., 2020) architecture. A brief overview
of our architecture is provided below, the full description is available in Appendix B.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We use vi to represent node i’s feature vector, and eij to represent feature vector of the edge between
i and j. We consider undirected edges, i.e., eij is the same as eji. Our metanetwork is as follows.

First, all input node and edge features are encoded into the same hidden dimension.

v ← MLPNodeEnc(vin), (1)
e← MLPEdgeEnc(ein). (2)

Then they will pass through several message passing layers. In each layer, we update node and edge
features using information from adjacent nodes and edges.

vi ← fv(vi, vj((i, j) ∈ E), eij((i, j) ∈ E)) (3)
eij ← fe(vi, vj , eij) (4)

Here fv and fe are fixed calculating processes.

Finally, we use a decoder to recover node and edge features to their original dimensions:

vpred ← MLPNodeDec(v), (5)
epred ← MLPEdgeDec(e). (6)

We multiply predictions by a residual coefficient and add them to the original inputs as final outputs:

vout = α · vpred + vin, (7)
eout = β · epred + ein, (8)

where α and β in practice are set to a small real numbers like 0.01. This design enables the
metanetwork to learn only the delta weights on top of the original weights, instead of a complete
reweighting.

4.2 META-TRAINING

Meta-training is the process we train our metanetwork (Figure 3).

Figure 3: Meta-Training Pipeline: During each
iteration, the origin network is converted into the
origin graph, fed through the metanetwork to get
a new graph and finally converted back into a new
network. We calculate accuracy loss and sparsitly
loss on the new network, then backpropagated the
gradients to update the metanetwork.

Data preparation: Meta-training data is com-
prised of two parts. The first is a set of neural
networks to prune, which serve as the origin
network in meta-training. We call them data
models. The number of data models can be ar-
bitrary small numbers like 1, 2, or 8, because
our implementations aren’t sensitive to it (See
more explanations in Section 4.4).The second is
the traditional training datasets, CIFAR-10 for
example, used to calculate the accuracy loss.

One training iteration: We select one model
from data models as the origin network. It is
converted into its graph representation, passed
through the metanetwork to get a new graph
and converted back into a new network. We
calculate accuracy loss and sparsity loss on this
new network, and backpropagated the gradients
to update the metanetwork.

Two types of losses are used during meta-training.(1) Accuracy Loss: We feed the training data (e.g.,
Train set of CIFAR-10. Note that test set is not used here) into the new network and compute the
cross-entropy loss based on the output predictions, ensuring the metanetwork doesn’t excessively
disturbing the effective parts of the origin network. (2) Sparsity Loss: We calculate a regularization
term on the new network to encourage it to be sparse, making it easier to prune. It is related to the
design of pruning criterion (section 4.3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 PRUNING CRITERION

A valid pruning criterion consists of two components:(1) An importance score function: During
pruning, we calculate the scores of all prunable components of a network, and prune them in ascending
order of their scores.(2) A sparsity loss: It is a kind of loss that is calculated on the parameters of the
network. Optimizing the network using this loss can make it easier to prune.

We perform most of our experiments by default using structural pruning, but also include a small
number of experiments with unstructured and N:M sparsity pruning to demonstrate that our method
can be applied to all kinds of pruning. In unstructured pruning and N:M sparisity pruning, we simply
use the naive l1 norm as both our importance score function and sparsity loss.

In structural pruning, we draw ideas from prior sparsity regularization based pruning methods(section
2.3), and design our pruning criterion based on them (especially Fang et al. (2023)). We will give
a brief introduction below. For a rigorous mathematical definition and more details, please refer to
appendix B.2.

A variant of the classical ℓ2 norm, the group norm is used as our importance score function. It
inherits the idea of using ℓ2 norm to calculate a score, but calculate it on a pruning group level. Since
structural pruning is performed on groups, traditional l2 norm that treats nodes and edges in isolation
is no longer viable. Group l2 norm that takes a whole group into consideration has shown to be more
effective. We calculate the sparisty loss by multiply our group norm scores with some coefficients.

The choice of pruning criteria is highly flexible (see in our later experiments, section 6.1), which
further demonstrates the generality of our framework. We perform most of our experiments by default
using structural pruning, but also include a small number of experiments with unstructured and N:M
sparsity pruning to demonstrate that our method can be applied to all kinds of pruning.

4.4 A HOLISTIC PERSPECTIVE

Figure 4: Feed forward through metanetwork: when a network is fed forward through the
metanetwork, every parameter in it gathers information from neighbour parameters and architectures.

Intuitively, when a network is fed forward through the metanetwork, every parameter in it gathers
information from neighbour parameters and architectures (Figure 4). The metanetwork automatically
learns how to process the information from neighbours and change the weights of the network based
on that for better pruning. And this has several important properties:

Generality: Our metanetwork is a really small GNN compared to the origin network, which means
each parameter can only see information from a limited local region. Due to the nature of GNN,
parameters at any position in the network—whether at the beginning, middle, or end—must process
information from neighbours in the same way. As a result, the metanetwork must learn a general
strategy to adjust parameters based on neighbour information for better pruning. This explains why,
in all our experiments, the pruning models and meta-training data models are completely different,
but the performance is as good as the same. This also explains why our implementations are not
sensitive to the number of data models. Even a single data model can be viewed as a collection of
numerous data points sufficient to train the metanetwork. So there is no overfitting at all, and whether
we are using 1, 2 or 8 data models during meta-training, the results remain the same.

Natural transferability: Just as a GNN can be applied to graphs of varying sizes without mod-
ification, our metanetwork can be directly applied to networks of different scales. This property
gives it natural transferability, as demonstrated in our experiments (section 6.3) where it successfully
transfers across related datasets and network architectures.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Universally applicability: Theoretically, our implementations can be applied to almost all types
of networks with all kinds of pruning. Almost all types of networks can be converted into graphs
(Kofinas et al., 2024; Lim et al., 2024), and the designs of the GNN and the pruning criteria are also
broadly compatible. This makes our framework a universally applicable solution for network pruning.

5 EXPERIMENTS ON CLASSICAL CNN PRUNING TASKS

5.1 PRELIMINARIES

Initial Pruning (Finetuning)︸ ︷︷ ︸
Optional

→ Metanetwork (Finetuning)→ Pruning (Finetuning)︸ ︷︷ ︸
Necessary

(9)

Definitions of the terms Speed Up and Acc vs. Speed Up Curve are in Appendix C.1. The pruning
pipeline is described as equation 9, and full details are provided in Appendix C.2.

Unlike prior learning to prune methods that require special training during each pruning, our pruning
pipeline only requires a feed forward through metanetwork and standard finetuning, which is simple,
general and effective. Once we have a metanetwork, we can prune as many networks as we want.
All pruning models are completely different from meta-training data models. This demonstrates our
metanetwork naturally has great transferability and no prior work has done something like this before.
See Appendix A for more comparisons between our work and prior ones (ideas, costs etc.).

5.2 CLASSICAL CNN PRUNING TASKS

We carry out our experiments on three most classical, popular, and representative image recognition
tasks, including pruning ResNet56 (He et al., 2016) on CIFAR10 (Krizhevsky & Hinton, 2009),
VGG19 (Simonyan & Zisserman, 2015) on CIFAR100 (Krizhevsky & Hinton, 2009) and ResNet50
(He et al., 2016) on ImageNet (Deng et al., 2009). See appendix D.1 for more general setups.

Our method achieves outstanding results on all 3 tasks and is better than almost all prior works
(Table 1). See full results compared with prior works in Table 8(ResNet56 on CIFAR10), Ta-
ble 11(VGG19 on CIFAR100), Table 14(ResNet50 on ImageNet). See Appendix D.2 D.3 D.4 for
implementation details on each tasks.

Table 1: Results for 3 classical CNN pruning tasks including pruning (1) ResNet56 on CIFAR10,
(2) VGG19 on CIFAR100 (3) ResNet50 on ImageNet. For full results compared with prior works,
see (1) Table 8, (2) Table 11, (3) Table 14.

Task Base Top-1(Top-5) Pruned Top-1(∆) Pruned Top-5(∆) Pruned FLOPs

(1) 93.51% 93.64%(+0.13%) — 65.6%
(2) 73.65% 69.75%(-3.90%) — 88.83%
(3) 76.14%(93.11%) 76.13%(-0.01%) 92.78%(-0.33%) 57.2%

5.3 ABLATION STUDY OF GENERAL BEHAVIORAL TENDENCIES

How metanetwork works: We visualized the "Acc vs. Speed Up" curve of both origin network
and network after feedforward through metanetwork and finetuning (Figure 5). They show that as
the pruning speed up increases, the accuracy drops at a significantly slower rate after applying the
metanetwork and finetuning.

Trade-off between accuracy and speed up: During meta-training: as the number of training epochs
increases, the metanetwork’s ability to make the network easier to prune becomes stronger. However,
its ability to maintain the accuracy becomes weaker. As shown in Figure 6a, with more training
epochs, the "Acc VS. Speed Up" curve shifts downward, and the flat portion of the curve becomes
longer. This characteristic allows us to adaptively meet different pruning requirements. If a
higher level of pruning is desired and a moderate drop in accuracy is acceptable, a metanetwork
trained for more epochs would be preferable. Conversely, if preserving accuracy is more important, a
metanetwork trained for fewer epochs would be a better choice (Figure 6b).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) ResNet56 on CIFAR10 (b) VGG19 on CIFAR100 (c) ResNet50 on ImageNet (d) ViT on ImageNet

Figure 5: Metanetwork changes hard to prune network into easy to prune network.

(a) Acc VS. Speed Up
curves of metanetworks
from different meta-training
epochs

(b) Feed network through metanetworks from different meta-training epochs,
finetuning, then prune it progressively to find the maximum speed up that can
maintain the accuracy above a certain threshold.

Figure 6: Trends in meta-training. (ResNet56 on CIFAR10 as example)

Finetuning after Metanetwork. See appendix E.1 for how number of finetuning epochs after
metanetwork influence the pruning results.

5.4 ABLATION STUDY OF STATISTICS

We compare the statistics between the origin network and the network after metanetwork(finetuning)
to find out how metanetwork transforms the network to make it easier to prune. We mainly visualize
the l2 norm and taylor sensitivity distribution of each layer in Figure 7. Taylor sensitivity here is
defined as w ·∆L, it estimates how much the loss will increase if we mask this weight to zero. The
larger taylor sensitivity, the more important the weight is and we are unlikely to prune it. More
visualization of other statistics are in Appendix H

6 EXPERIMENTS ON TRANSFERABILITY AND FLEXIBILITY

6.1 FLEXIBLE PRUNING CRITERION

Pruning criterion of our method is highly flexible. We build a series of reasonable pruning criterion
(Appendix B.2). At first, we directly use MEAN REDUCE, MAX NORMALIZE, α = 4 as default,
because this is the same as group norm in Fang et al. (2023). Later, we keep everything else the same,
and try many different criteria, and find they all works well (Table 2). This demonstrates that our
framework is robust and has many flexibilities.

6.2 UNSTRUCTURED PRUNING & N:M SPARSITY PRUNING

Most of our experiments are conducted using structured pruning as default. Here we conduct
unstructured pruning and N:M sparsity pruning to demonstrate that our methods can be use in all
kinds of pruning. We don’t use FLOPs to measure the pruning results because unstructured pruning
reduces no FLOPs and needs specialized algorithm to accelerate, so we measure the number of
parameters instead. See results in Table 3

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: Statistics: We compare the statistics of the origin network (orange) and the network after
metanetwork and finetuning (blue) when pruning ResNet56 on CIFAR10. The first row is layerwise
mean l2 norm and taylor sensitivity. Then we randomly select several layers and visualize their l2
norm distribution in row 2 and taylor sensitivity distribution in row 3. Observation: Row 1 shows
both norm and sensitivity drops on average, especially in the latter part of network where contains a
large amount of redundancy and can be substantially pruned. Row 2 shows l2 norm distribution has
been greatly changed. Large norms still exist but more norms tend to be very small. Row 3 shows
more parameters become less important under taylor sensitivity.

Table 2: Flexible pruning criterion: Pruning ResNet56 on CIFAR10, all experiments use the same
origin network wtih Test Acc 93.51%, all criteria use MEAN REDUCE. We tried different values of
Alpha and different ways of NORMALIZE, they all work well. Even in the Naive situation, where
we use no NORMALIZE and no shrinkage strength (Alpha is 0), the results remain robust.

NORMALIZE alpha Pruned Acc Pruned FLOPs Speed Up

Default MAX 4 93.64% 65.64% 2.91

Alpha MAX 0 93.37% 65.75% 2.92
MAX 2 92.87% 68.15% 3.14
MAX 6 93.36% 65.75% 2.92

NORMALIZE MEAN 4 93.42% 65.52% 2.90
NONE 4 93.08% 65.64% 2.91

Naive NONE 0 93.04% 65.75% 2.92

Table 3: Unstructured & N:M sparsity pruning: Pruning ResNet56 on CIFAR10, meta-train and
prune directly with the classical l1 norm. From the results we can see (1) our framework also works
great on unstructured pruning. (2) Unstructured pruning outperforms structured pruning because it is
more flexible.

Methods Pruned Acc Left Params Methods Pruned Acc Left Params
Unstructured 93.95% 50.25% Structured(2.9x) 93.49% 42,96%

94.14% 20.40% 3:4 94.02% 75.14%
93.43% 15.42% 2:4 93.97% 50.27%
92.96% 10.45% 1:4 93.13% 25.41%

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6.3 TRANSFER BETWEEN DATASETS AND ARCHITECTURES

Section 4.4 mentioned that our metanetwork has natural transferability. Following experiments
demonstrate that our metanetwork can transfer between similar datasets and network architectures.
More relative experiments are in Appendix F.3 F.4

Transfer between datasets: 3 datasets, CIFAR10 (Krizhevsky & Hinton, 2009), CI-
FAR100 (Krizhevsky & Hinton, 2009) and SVHN (Goodfellow et al., 2014) are used. We train
metanetwork and the to be pruned network on each of them, traverse through every possible combina-
tion, and use the metanetwork to prune the network. Results (Table 4) show that out metanetwork can
transfer between similar datasets. See Appendix F.1 for full details Transfer between architectures:

Table 4: Transfer between datasets: All networks’ architecture is ResNet56. Columns represent the
training datasets for the metanetwork, and rows represent the training datasets for the to be pruned
network. “None” indicates using no metanetwork. Results with metanetwork is obviously better than
no metanetwork (The only exception is when training datasets for the to be pruned network is SVHN,
and we guess this is because the dataset SVHN itself is too easy).

Dataset\Metanetwork CIFAR10 CIFAR100 SVHN None
CIFAR10 93.35 92.47 92.87 91.28

CIFAR100 69.97 70.16 69.25 68.91

SVHN 96.79 96.50 96.86 96.78

2 architectures, ResNet56 and ResNet110 (He et al., 2016) are used. We train metanetwork and the
to be pruned network on each of them, traverse through every possible combination, and use the
metanetwork to prune the network. Results (Table 5) show that our metanetwork can transfer between
similar datasets. See Appendix F.2 for full details Possible Future Use: For large-scale networks,

Table 5: Transfer between architectures. All training dataset is CIFAR10. Columns represent the
architectures used for training the metanetwork, and rows represent the architecures of the to be
pruned network. “None” indicates using no metanetwork. All results with metanetwork is obviously
better than no metanetwork.

Architecture\Metanetwork ResNet56 ResNet110 None
ResNet56 93.40 92.81 92.08

ResNet110 93.04 93.38 92.40

the metanetwork can be pretrained on smaller architectures of similar design. And when the original
training dataset is unavailable or excessively large, a related dataset may be used for pretraining. This
transferability substantially enhances the practicality of the framework.

7 EXPERIMENTS ON TRANSFORMERS

As mentioned in section 4.4, our framework is theoretically applicable to almost all types of networks
with all kinds of pruning. Here we expand our implementations to another widely used arthitecture–
transformer (Vaswani et al., 2017). More specifically, we pruned the vision transformer (ViT) from
Dosovitskiy et al. (2021) that is trained on ImageNet. See Appendix G for full experiments, including
how we convert transformer into graph and conduct further meta-training and pruning.

8 CONCLUSION

We propose an entirely new meta-learning framework for network pruning. For a pruning criterion,
we use a metanetwork to change a hard to prune network into another easy to prune network for
better pruning. This is a general framework that can be theoretically applied to almost all types of
networks with all kinds of pruning. We present practical implementations of our framework and
achieve outstanding results. Further analysis and experiments show that our framework has natural
generality, flexibility, and transferability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

Our code is available at https://anonymous.4open.science/r/MetaPruning together
with all the guides to reproduce our experiments.

REFERENCES

Tianyi Chen, Luming Liang, Tianyu Ding, Zhihui Zhu, and Ilya Zharkov. Otov2: Automatic, generic,
user-friendly. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=7ynoX1ojPMt.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Trans. Pattern Anal. Mach. Intell.,
46(12):10558–10578, 2024. doi: 10.1109/TPAMI.2024.3447085. URL https://doi.org/
10.1109/TPAMI.2024.3447085.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic. Principal neigh-
bourhood aggregation for graph nets. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pp. 248–255. IEEE
Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848. URL https://doi.org/10.
1109/CVPR.2009.5206848.

Lucio M. Dery, Steven Kolawole, Jean-François Kagey, Virginia Smith, Graham Neubig, and Ameet
Talwalkar. Everybody prune now: Structured pruning of llms with only forward passes. CoRR,
abs/2402.05406, 2024. doi: 10.48550/ARXIV.2402.05406. URL https://doi.org/10.
48550/arXiv.2402.05406.

Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang. Auto-balanced filter pruning for
efficient convolutional neural networks. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.),
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 6797–6804. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.12262. URL
https://doi.org/10.1609/aaai.v32i1.12262.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal SGD for pruning very
deep convolutional networks with complicated structure. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp.
4943–4953. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00508.
URL http://openaccess.thecvf.com/content_CVPR_2019/html/Ding_
Centripetal_SGD_for_Pruning_Very_Deep_Convolutional_Networks_
With_Complicated_CVPR_2019_paper.html.

Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang
Ding. Resrep: Lossless CNN pruning via decoupling remembering and forgetting. In 2021
IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada,
October 10-17, 2021, pp. 4490–4500. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00447. URL
https://doi.org/10.1109/ICCV48922.2021.00447.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,

11

https://anonymous.4open.science/r/MetaPruning
https://openreview.net/forum?id=7ynoX1ojPMt
https://openreview.net/forum?id=7ynoX1ojPMt
https://doi.org/10.1109/TPAMI.2024.3447085
https://doi.org/10.1109/TPAMI.2024.3447085
https://proceedings.neurips.cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/arXiv.2402.05406
https://doi.org/10.48550/arXiv.2402.05406
https://doi.org/10.1609/aaai.v32i1.12262
http://openaccess.thecvf.com/content_CVPR_2019/html/Ding_Centripetal_SGD_for_Pruning_Very_Deep_Convolutional_Networks_With_Complicated_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ding_Centripetal_SGD_for_Pruning_Very_Deep_Convolutional_Networks_With_Complicated_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ding_Centripetal_SGD_for_Pruning_Very_Deep_Convolutional_Networks_With_Complicated_CVPR_2019_paper.html
https://doi.org/10.1109/ICCV48922.2021.00447

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
YicbFdNTTy.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 16091–16101. IEEE, 2023. doi: 10.
1109/CVPR52729.2023.01544. URL https://doi.org/10.1109/CVPR52729.2023.
01544.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang. Discrete model compression with
resource constraint for deep neural networks. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 1896–
1905. Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00197.
URL https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_
Discrete_Model_Compression_With_Resource_Constraint_for_Deep_
Neural_Networks_CVPR_2020_paper.html.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 1263–1272.
PMLR, 2017. URL http://proceedings.mlr.press/v70/gilmer17a.html.

Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pp. 580–587.
IEEE Computer Society, 2014. doi: 10.1109/CVPR.2014.81. URL https://doi.org/10.
1109/CVPR.2014.81.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries
of deep learning models and their internal representations. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
4df3510ad02a86d69dc32388d91606f8-Abstract-Conference.html.

Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay D. Shet. Multi-digit
number recognition from street view imagery using deep convolutional neural networks. In
Yoshua Bengio and Yann LeCun (eds.), 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL
http://arxiv.org/abs/1312.6082.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi.
Morphnet: Fast & simple resource-constrained structure learning of deep networks. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pp. 1586–1595. Computer Vision Foundation / IEEE Computer Society, 2018.
doi: 10.1109/CVPR.2018.00171. URL http://openaccess.thecvf.com/content_
cvpr_2018/html/Gordon_MorphNet_Fast__CVPR_2018_paper.html.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun (eds.),
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1510.
00149.

12

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1109/CVPR52729.2023.01544
https://doi.org/10.1109/CVPR52729.2023.01544
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Discrete_Model_Compression_With_Resource_Constraint_for_Deep_Neural_Networks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Discrete_Model_Compression_With_Resource_Constraint_for_Deep_Neural_Networks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Discrete_Model_Compression_With_Resource_Constraint_for_Deep_Neural_Networks_CVPR_2020_paper.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
http://papers.nips.cc/paper_files/paper/2022/hash/4df3510ad02a86d69dc32388d91606f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/4df3510ad02a86d69dc32388d91606f8-Abstract-Conference.html
http://arxiv.org/abs/1312.6082
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_MorphNet_Fast__CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Gordon_MorphNet_Fast__CVPR_2018_paper.html
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey. IEEE
Trans. Pattern Anal. Mach. Intell., 46(5):2900–2919, 2024. doi: 10.1109/TPAMI.2023.3334614.
URL https://doi.org/10.1109/TPAMI.2023.3334614.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In Jérôme Lang (ed.), Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden, pp. 2234–2240. ijcai.org, 2018a. doi: 10.24963/IJCAI.2018/309. URL https://doi.
org/10.24963/ijcai.2018/309.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp.
4340–4349. Computer Vision Foundation / IEEE, 2019a. doi: 10.1109/CVPR.2019.00447. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_
Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_
Networks_CVPR_2019_paper.html.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp.
4340–4349. Computer Vision Foundation / IEEE, 2019b. doi: 10.1109/CVPR.2019.00447. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_
Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_
Networks_CVPR_2019_paper.html.

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter prun-
ing criteria for deep convolutional neural networks acceleration. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp.
2006–2015. Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00208.
URL https://openaccess.thecvf.com/content_CVPR_2020/html/He_
Learning_Filter_Pruning_Criteria_for_Deep_Convolutional_Neural_
Networks_Acceleration_CVPR_2020_paper.html.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-
29, 2017, pp. 1398–1406. IEEE Computer Society, 2017. doi: 10.1109/ICCV.2017.155. URL
https://doi.org/10.1109/ICCV.2017.155.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: automl for model
compression and acceleration on mobile devices. In Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss (eds.), Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part VII, volume 11211 of Lecture Notes
in Computer Science, pp. 815–832. Springer, 2018b. doi: 10.1007/978-3-030-01234-2_48. URL
https://doi.org/10.1007/978-3-030-01234-2_48.

Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J. Storkey. Meta-learning
in neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell., 44(9):5149–5169, 2022.
doi: 10.1109/TPAMI.2021.3079209. URL https://doi.org/10.1109/TPAMI.2021.
3079209.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks.
In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part XVI, volume 11220 of Lecture Notes in Computer Science, pp. 317–334.
Springer, 2018. doi: 10.1007/978-3-030-01270-0_19. URL https://doi.org/10.1007/
978-3-030-01270-0_19.

13

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TPAMI.2023.3334614
https://doi.org/10.24963/ijcai.2018/309
https://doi.org/10.24963/ijcai.2018/309
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/He_Learning_Filter_Pruning_Criteria_for_Deep_Convolutional_Neural_Networks_Acceleration_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/He_Learning_Filter_Pruning_Criteria_for_Deep_Convolutional_Neural_Networks_Acceleration_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/He_Learning_Filter_Pruning_Criteria_for_Deep_Convolutional_Neural_Networks_Acceleration_CVPR_2020_paper.html
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1007/978-3-030-01270-0_19
https://doi.org/10.1007/978-3-030-01270-0_19

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 448–456. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/ioffe15.html.

Ioannis Kalogeropoulos, Giorgos Bouritsas, and Yannis Panagakis. Scale equivariant
graph metanetworks. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neu-
ral Information Processing Systems 38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
c13d5a10028586fdc15ee7da97b7563f-Abstract-Conference.html.

Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differentiable masks.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 5122–5131.
PMLR, 2020. URL http://proceedings.mlr.press/v119/kang20a.html.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves,
Cees G. M. Snoek, and David W. Zhang. Graph neural networks for learning equivariant rep-
resentations of neural networks. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=oO6FsMyDBt.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky
(ed.), Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], pp. 598–605. Morgan Kaufmann, 1989. URL http://papers.
nips.cc/paper/250-optimal-brain-damage.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nat., 521(7553):436–444,
2015. doi: 10.1038/NATURE14539. URL https://doi.org/10.1038/nature14539.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: single-shot network pruning
based on connection sensitivity. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=B1VZqjAcYX.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017a. URL
https://openreview.net/forum?id=rJqFGTslg.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017b. URL
https://openreview.net/forum?id=rJqFGTslg.

Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Timofte. DHP: differentiable meta
pruning via hypernetworks. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm (eds.), Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part VIII, volume 12353 of Lecture Notes in Computer Science, pp.
608–624. Springer, 2020. doi: 10.1007/978-3-030-58598-3_36. URL https://doi.org/
10.1007/978-3-030-58598-3_36.

14

http://proceedings.mlr.press/v37/ioffe15.html
http://papers.nips.cc/paper_files/paper/2024/hash/c13d5a10028586fdc15ee7da97b7563f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c13d5a10028586fdc15ee7da97b7563f-Abstract-Conference.html
http://proceedings.mlr.press/v119/kang20a.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=oO6FsMyDBt
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage
https://doi.org/10.1038/nature14539
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://doi.org/10.1007/978-3-030-58598-3_36
https://doi.org/10.1007/978-3-030-58598-3_36

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisiting
random channel pruning for neural network compression. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp.
191–201. IEEE, 2022. doi: 10.1109/CVPR52688.2022.00029. URL https://doi.org/10.
1109/CVPR52688.2022.00029.

Yunqiang Li, Jan C. van Gemert, Torsten Hoefler, Bert Moons, Evangelos Eleftheriou, and Bram-
Ernst Verhoef. Differentiable transportation pruning. In IEEE/CVF International Conference on
Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pp. 16911–16921. IEEE, 2023.
doi: 10.1109/ICCV51070.2023.01555. URL https://doi.org/10.1109/ICCV51070.
2023.01555.

Derek Lim, Haggai Maron, Marc T. Law, Jonathan Lorraine, and James Lucas. Graph metanetworks
for processing diverse neural architectures. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=ijK5hyxs0n.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 1526–
1535. Computer Vision Foundation / IEEE, 2020a. doi: 10.1109/CVPR42600.2020.00160. URL
https://openaccess.thecvf.com/content_CVPR_2020/html/Lin_HRank_
Filter_Pruning_Using_High-Rank_Feature_Map_CVPR_2020_paper.html.

Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, and Yonghong Tian.
Channel pruning via automatic structure search. In Christian Bessiere (ed.), Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 673–
679. ijcai.org, 2020b. doi: 10.24963/IJCAI.2020/94. URL https://doi.org/10.24963/
ijcai.2020/94.

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang,
and David S. Doermann. Towards optimal structured CNN pruning via generative adversarial
learning. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pp. 2790–2799. Computer Vision Foundation / IEEE, 2019.
doi: 10.1109/CVPR.2019.00290. URL http://openaccess.thecvf.com/content_
CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_
Generative_Adversarial_Learning_CVPR_2019_paper.html.

Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li. Toward compact convnets via
structure-sparsity regularized filter pruning. IEEE Trans. Neural Networks Learn. Syst., 31(2):
574–588, 2020c. doi: 10.1109/TNNLS.2019.2906563. URL https://doi.org/10.1109/
TNNLS.2019.2906563.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, pp. 3295–3304. IEEE, 2019. doi: 10.1109/ICCV.2019.00339.
URL https://doi.org/10.1109/ICCV.2019.00339.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=Syx72jC9tm.

15

https://doi.org/10.1109/CVPR52688.2022.00029
https://doi.org/10.1109/CVPR52688.2022.00029
https://doi.org/10.1109/ICCV51070.2023.01555
https://doi.org/10.1109/ICCV51070.2023.01555
https://openreview.net/forum?id=ijK5hyxs0n
https://openaccess.thecvf.com/content_CVPR_2020/html/Lin_HRank_Filter_Pruning_Using_High-Rank_Feature_Map_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Lin_HRank_Filter_Pruning_Using_High-Rank_Feature_Map_CVPR_2020_paper.html
https://doi.org/10.24963/ijcai.2020/94
https://doi.org/10.24963/ijcai.2020/94
http://openaccess.thecvf.com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lin_Towards_Optimal_Structured_CNN_Pruning_via_Generative_Adversarial_Learning_CVPR_2019_paper.html
https://doi.org/10.1109/TNNLS.2019.2906563
https://doi.org/10.1109/TNNLS.2019.2906563
https://doi.org/10.1109/ICCV.2019.00339
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html
https://openreview.net/forum?id=Syx72jC9tm
https://openreview.net/forum?id=Syx72jC9tm

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pp. 11264–11272. Computer Vision Foundation
/ IEEE, 2019. doi: 10.1109/CVPR.2019.01152. URL http://openaccess.thecvf.
com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_
Neural_Network_Pruning_CVPR_2019_paper.html.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-
ariant architectures for learning in deep weight spaces. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Research, pp. 25790–25816. PMLR, 2023. URL
https://proceedings.mlr.press/v202/navon23a.html.

Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou Huang. Collaborative channel pruning for
deep networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 5113–5122. PMLR,
2019. URL http://proceedings.mlr.press/v97/peng19c.html.

Yongming Rao, Jiwen Lu, Ji Lin, and Jie Zhou. Runtime network routing for efficient image
classification. IEEE Trans. Pattern Anal. Mach. Intell., 41(10):2291–2304, 2019. doi: 10.1109/
TPAMI.2018.2878258. URL https://doi.org/10.1109/TPAMI.2018.2878258.

Russell Reed. Pruning algorithms-a survey. IEEE Trans. Neural Networks, 4(5):740–747, 1993. doi:
10.1109/72.248452. URL https://doi.org/10.1109/72.248452.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Trans. Neural Networks, 20(1):61–80, 2009. doi: 10.1109/
TNN.2008.2005605. URL https://doi.org/10.1109/TNN.2008.2005605.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–
117, 2015. doi: 10.1016/J.NEUNET.2014.09.003. URL https://doi.org/10.1016/j.
neunet.2014.09.003.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1409.1556.

Zhuoran Song, Yihong Xu, Zhezhi He, Li Jiang, Naifeng Jing, and Xiaoyao Liang. Cp-vit: Cascade
vision transformer pruning via progressive sparsity prediction, 2022. URL https://arxiv.
org/abs/2203.04570.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for
large language models. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=PxoFut3dWW.

Hoang Tran, Thieu Vo, Tho Huu, An Nguyen The, and Tan Nguyen. Monomial matrix
group equivariant neural functional networks. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Ad-
vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
577cd5863ec73be4e6871340be0936ae-Abstract-Conference.html.

Viet-Hoang Tran, Thieu N. Vo, An Nguyen The, Tho Tran Huu, Minh-Khoi Nguyen-Nhat, Thanh
Tran, Duy-Tung Pham, and Tan Minh Nguyen. Equivariant neural functional networks for
transformers. CoRR, abs/2410.04209, 2024b. doi: 10.48550/ARXIV.2410.04209. URL https:
//doi.org/10.48550/arXiv.2410.04209.

16

http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
https://proceedings.mlr.press/v202/navon23a.html
http://proceedings.mlr.press/v97/peng19c.html
https://doi.org/10.1109/TPAMI.2018.2878258
https://doi.org/10.1109/72.248452
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2203.04570
https://arxiv.org/abs/2203.04570
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
http://papers.nips.cc/paper_files/paper/2024/hash/577cd5863ec73be4e6871340be0936ae-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/577cd5863ec73be4e6871340be0936ae-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2410.04209
https://doi.org/10.48550/arXiv.2410.04209

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya O. Tolstikhin. Pre-
dicting neural network accuracy from weights. CoRR, abs/2002.11448, 2020. URL https:
//arxiv.org/abs/2002.11448.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Chaoqi Wang, Roger B. Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pp. 6566–6575. PMLR, 2019. URL http://proceedings.mlr.press/v97/wang19g.
html.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=o966_
Is_nPA.

Huan Wang, Can Qin, Yue Bai, Yulun Zhang, and Yun Fu. Recent advances on neural network
pruning at initialization. In Luc De Raedt (ed.), Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp.
5638–5645. ijcai.org, 2022. doi: 10.24963/IJCAI.2022/786. URL https://doi.org/10.
24963/ijcai.2022/786.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle
Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 2074–2082, 2016. URL https://proceedings.neurips.cc/paper/2016/
hash/41bfd20a38bb1b0bec75acf0845530a7-Abstract.html.

Xidong Wu, Shangqian Gao, Zeyu Zhang, Zhenzhen Li, Runxue Bao, Yanfu Zhang, Xiaoqian Wang,
and Heng Huang. Auto- train-once: Controller network guided automatic network pruning from
scratch. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024,
Seattle, WA, USA, June 16-22, 2024, pp. 16163–16173. IEEE, 2024. doi: 10.1109/CVPR52733.
2024.01530. URL https://doi.org/10.1109/CVPR52733.2024.01530.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst., 32
(1):4–24, 2021. doi: 10.1109/TNNLS.2020.2978386. URL https://doi.org/10.1109/
TNNLS.2020.2978386.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 1513–1528. Association for Computational
Linguistics, 2022. doi: 10.18653/V1/2022.ACL-LONG.107. URL https://doi.org/10.
18653/v1/2022.acl-long.107.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=09iOdaeOzp.

Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam R. Klivans, and Qiang Liu. Good
subnetworks provably exist: Pruning via greedy forward selection. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,

17

https://arxiv.org/abs/2002.11448
https://arxiv.org/abs/2002.11448
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://proceedings.mlr.press/v97/wang19g.html
http://proceedings.mlr.press/v97/wang19g.html
https://openreview.net/forum?id=o966_Is_nPA
https://openreview.net/forum?id=o966_Is_nPA
https://doi.org/10.24963/ijcai.2022/786
https://doi.org/10.24963/ijcai.2022/786
https://proceedings.neurips.cc/paper/2016/hash/41bfd20a38bb1b0bec75acf0845530a7-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/41bfd20a38bb1b0bec75acf0845530a7-Abstract.html
https://doi.org/10.1109/CVPR52733.2024.01530
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.18653/v1/2022.acl-long.107
https://openreview.net/forum?id=09iOdaeOzp

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

volume 119 of Proceedings of Machine Learning Research, pp. 10820–10830. PMLR, 2020. URL
http://proceedings.mlr.press/v119/ye20b.html.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
2130–2141, 2019a. URL https://proceedings.neurips.cc/paper/2019/hash/
b51a15f382ac914391a58850ab343b00-Abstract.html.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
2130–2141, 2019b. URL https://proceedings.neurips.cc/paper/2019/hash/
b51a15f382ac914391a58850ab343b00-Abstract.html.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S. Davis. NISP: pruning networks using neuron im-
portance score propagation. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 9194–9203.
Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.
00958. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_
NISP_Pruning_Networks_CVPR_2018_paper.html.

Sixing Yu, Arya Mazaheri, and Ali Jannesari. Topology-aware network pruning using multi-stage
graph embedding and reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pp. 25656–25667. PMLR, 2022. URL https://proceedings.
mlr.press/v162/yu22e.html.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov,
and Alexander J. Smola. Deep sets. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
3391–3401, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
f22e4747da1aa27e363d86d40ff442fe-Abstract.html.

Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. Varia-
tional convolutional neural network pruning. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 2780–2789.
Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00289. URL http:
//openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_
Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html.

Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J. Zico
Kolter, and Chelsea Finn. Permutation equivariant neural functionals. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/
4e9d8aeeab6120c3c83ccf95d4c211d3-Abstract-Conference.html.

Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J. Zico
Kolter, and Chelsea Finn. Neural functional transformers. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,

18

http://proceedings.mlr.press/v119/ye20b.html
https://proceedings.neurips.cc/paper/2019/hash/b51a15f382ac914391a58850ab343b00-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b51a15f382ac914391a58850ab343b00-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b51a15f382ac914391a58850ab343b00-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b51a15f382ac914391a58850ab343b00-Abstract.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
https://proceedings.mlr.press/v162/yu22e.html
https://proceedings.mlr.press/v162/yu22e.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html
http://papers.nips.cc/paper_files/paper/2023/hash/4e9d8aeeab6120c3c83ccf95d4c211d3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/4e9d8aeeab6120c3c83ccf95d4c211d3-Abstract-Conference.html

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
f4757db82a02eea015670ecca605d5cc-Abstract-Conference.html.

Allan Zhou, Chelsea Finn, and James Harrison. Universal neural functionals. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/bd20595c8e5802ba40ed418f4ec116f0-Abstract-Conference.html.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/703957b6dd9e3a7980e040bee50ded65-Abstract.html.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jin-Hui Zhu. Discrimination-aware channel pruning for deep neural networks. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pp. 883–894, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
55a7cf9c71f1c9c495413f934dd1a158-Abstract.html.

19

http://papers.nips.cc/paper_files/paper/2023/hash/f4757db82a02eea015670ecca605d5cc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f4757db82a02eea015670ecca605d5cc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/bd20595c8e5802ba40ed418f4ec116f0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/bd20595c8e5802ba40ed418f4ec116f0-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2020/hash/703957b6dd9e3a7980e040bee50ded65-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/703957b6dd9e3a7980e040bee50ded65-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/55a7cf9c71f1c9c495413f934dd1a158-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/55a7cf9c71f1c9c495413f934dd1a158-Abstract.html

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A COMPARISON WITH PRIOR WORKS

Our framework is entirely new and fundamentally different from all prior works. In this section, we
will compare our method with earlier ones to help you better understand the relationship between our
method and prior ones, and realize our unique innovations and advantages.

A.1 GENERAL COMPARISON

Previous pruning approaches can be broadly categorized into fixed pruning methods and learning
to prune methods. Our approach falls into the learning to prune category but learns in a completely
different way. For clarity, we provide a detailed comparison in Table 6 to help you better understand
how our work relates to previous studies.

Table 6: Our framework is entirely new and has many advantages over previous works

Fixed pruning Learning to prune Ours

Definition Pruning with fixed hand-
crafted algorithms.

Using neural network
learning techniques to
learn how to prune.

Also learning to prune,
but learning in a com-
pletely different way.

Performance Bad. Networks are com-
plex and hand-crafted al-
gorithms are quite lim-
ited

Good. Good (almost best ac-
cording to our experi-
ments).

Cost Low. No special extra
training needed.

High. Need special extra
training during each prun-
ing.

Need special extra train-
ing before pruning. But
once the training is done,
can prune as many net-
works as we want without
any special extra training.

Potential Has already been well-
studied and commonly
used.

The pruning process is
too tricky and costly.
Can only be used in
a very specific situation
and lack of generality.

The pruning process is
relatively more efficient.
Can theoretically be used
in almost all situations
and has great generality.

A.2 COMPUTATIONAL AND MEMORY COSTS

One important question for almost all previous meta-learning approaches is the computational and
memory costs are too large. We provide some estimate of memory and computational costs for
scaling our methods to larger models and compare with two classic pruning methods–pruning at
initalization methods (cheap pruning, hard to training and low accuracy like Lee et al. (2019); Wang
et al. (2022)) and iterative magnitude pruning (costly, pruning during training and high performance
like Frankle & Carbin (2019); Molchanov et al. (2019)). The results show that our method achieves
outstanding results while uses relatively low costs.

For convenience in expression, we refer to pruning at initialization as “init pruning”, iterative
magnitude pruning as “iter pruning” and our method as “meta pruning”.

For all usual networks which satisfy Edge Number » Neuron Number , the memory and
computational cost are all O(E) (E = Edge Number). This is obvious for init and iter pruning. For
meta pruning, our metanetwork doesn’t scale with the network. So all computation and memory cost
is it still O(E).

PS: The reason why our metanetwork doesn’t scale with the network is that it only learns how to
change weights based on local architectures and weights (the range of “local” is fixed for network of
different sizes). In all our experiments, it is a small network compared to the to be pruned network,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

and it works well. So we have the confidence that it shouldn’t and doesn’t need to scale with the
networks.

While all methods share the same asymptotic cost, their constant factors differ significantly.

Computational cost breaks down as:

Compu Cost = Training cost + Pruning cost + Other cost

• Init pruning: Low training and pruning costs, negligible other cost.
• Iter pruning: High training cost (initial training + multiple finetuning steps) and high

pruning cost (multiple pruning rounds), no extra cost.
• Meta pruning: Moderate training cost (initial training + 3 finetuning steps), moderate

pruning cost (2 pruning steps), plus a small other cost consisting of metanetwork feedforward
and amortized meta-training cost per network.

We estimate the relative magnitude in the following table:

Computation Training cost Pruning cost Other cost
Init 1T 1P 0
Iter > 10T > 5P 0

Meta 2–5T 2P ϵT + AT/N

Where:
T: Unit training cost
P: Unit pruning cost
ϵT: Metanetwork feedforward cost (almost zero compared to training cost)
N: Number of networks pruned; meta-training cost is amortized over N (Once we get a metanetwork
by meta-training, we can use it to prune as many networks as we want)
A: Meta-training cost. A is estimated 5–20.

Memory cost depends on both the amount of memory used and the duration of usage:

Method Amount Duration All
Init Small Short Low
Iter Medium Long Large

Meta Large for a very short time, Medium Medium but requires
Small rest of the time high memory capacity

• Init pruning: Low memory usage for a short time.
• Iter pruning: Medium memory usage for a very long time.
• Meta pruning: The “feed forward through metanetwork” process requires large memory

usage but takes a very short time. For the rest of the time it uses little memory. It is faster
than iter pruning but slower than init pruning. While the average memory cost is moderate,
peak usage demands high memory capacity.

Meta-training requires large memory usage for a long time. But its cost can be amortized into
each pruning like we mentioned before. Take pruning resnet50 or ViT on ImageNet as example
(which is already quite large model and dataset), NVIDIA A100 with 80GiB VRAM is enough for
meta-training and feedforward through metanetwork and the rest training and finetuning can be done
on NVIDIA RTX 4090 with 24 GiB VRAM. When we don’t have enough memory capacity, we can
also change the batch size and use more time to make up for the lack of our memory capacity.

In summary, our method achieves outstanding results while uses relatively low costs.

A.3 GENERALITY

Almost all previous meta-learning based pruning approaches, such as Liu et al. (2019); Li et al.
(2020); Wu et al. (2024), are tailored to a specific network and thus lack generality. Because of this
they require specialized training for each pruning instance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Unlike prior methods, our metanetwork learns a universal rule for adapting weights based on local
information, thereby enabling more effective pruning without relying on layer-specific or architecture-
specific heuristics. We need no special training during each pruning. Once our metanetwork is
trained, it can be used to prune as many networks as we want, and even transfer between datasets and
architectures.

We divided the generality of learning to prune methods into 4 stages.

(1) Learning once prune one specific network.

(2) Learning once prune one type of networks(same architecture and dataset) as many as
we want.

(3) Learning once prune one group of networks(similar architectures and datasets) as
many as we want.

(4) Learning once prune any networks.

Here learning refers to learn with extra trainings like gradient descent, reinforcement learning, etc.
Finetuning or other fixed rules processes are not included. As far as we know, all prior learning to
prune methods only reach stage (1). Our method reaches stage (3) and shows great improvement in
generality over prior works. Follow our ideas and pretrain the metanetwork on various networks and
datasets may provide a possible way to state (4), whether this will work requires further exploration
in the future.

In summary, our method shows great improvement in generality over prior learning to prune methods.

A.4 A CONCRETE EXAMPLE

We provide a concrete example compared with prior works and report everything-time, hardware,
gpu memory, results, etc. to give readers a more intuitive understanding of our method.

We compare our work with Fang et al. (2023) on pruning ResNet56 on CIFAR10. We choose Fang
et al. (2023) because we want to compare our work with learning to prune methods in recent years
that also have strong results like us. The best candidates are Fang et al. (2023) and Wu et al. (2024).
While Wu et al. (2024) is a pruning before training method, both Fang et al. (2023) and our work are
pruning after training methods, so we choose Fang et al. (2023). The key idea of Fang et al. (2023) is
sparsity training before pruning. It does special training on the network before pruning to make it
more sparse and easier to prune.

All experiments are run on 1 NVIDIA RTX 4090. See table 7 for time consumptions of dfferent
methods. To align with Fang et al. (2023), we don’t use init pruning, and target at a speed up of
2.5x, which is the largest speed up in paper Fang et al. (2023). In ours(full), we finetune 100 epochs
after metanetwork and 100 epochs after pruning. But later we found our method is stronger and
the speed up 2.5x isn’t that hard. So in ours(efficient), we finetune 60 epochs after metanetwork
and 60 epochs after pruning but also get results comparable to Fang et al. (2023). The DepGraph
experiments use their default settings, sparsity training 100 epochs before pruning and finetune 100
epochs after pruning.

Table 7: Time (miniutes)

Process Ours(full) Ours(efficient) DepGraph

Meta-Train 192 + 165 = 357 192 + 165 = 357 0

Prune & Finetune 67 43 84

From the results we can see our methods is quite efficient. It uses 357 minutes for meta-train, which is
in a resonable range. We can greatly reduce time consumption in this process with some experiences,
but for the sake of fairness in comparison, we must pretend we have no relevant experience. Among
the 357 minutes, 192 minutes are used for generating 100 epochs metanetworks and 165 minutes
are used for visualizing the Acc VS. Speed Up Curve to select the appropriate metanetwork for
pruning. Once a metanetwork is trained, it can be used to prune as many networks as we want,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

so we can amortize the time for meta-training into each pruning. Figure 8 shows the amortized
time consumption of our work compared to DepGraph. In all, our work is more powerful and more
efficient in time if we prune several more networks or already have a trained metanetwork.

Figure 8: Amortized Time Consumption

As we mentioned in section A.2, our methods use a large VRAM for a long time in meta-training, a
still large but relatively smaller VRAM for a very short time when feed forward through metanetwork
during pruning, and a small VRAM for the standard finetuning. Specifically in this experiment, we
use 10000 MiB for meta-training, 6000 MiB for feedforward through metanetwork, and 1000 MiB
for finetuning. NVIDIA A100 with 80 GiB VRAM is enough for meta-training large models like
ResNet50 and ViT-B-16. When we don’t have enough memory capacity, we can also change the batch
size and use more time to make up for the lack of our memory capacity. We’ve also tried reducing
the size of metanetwork and fit on NVIDIA A100 40G and the results seem not much influenced.
All finetuning are standard finetuning and can be done on NVIDIA RTX 4090 with 24G VRAM.
In all, during pruning only the feed forward through metanetwork requires large VRAM for a very
short time and anything else is plain finetuning and requires small VRAM, during meta-training the
VRAM is in a resonable range.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B FRAMEWORK IMPLEMENTATION DETAILS

B.1 METANETWORK(GNN) ARCHITECTURE

We build our metanetwork based on the message passing framework (Gilmer et al., 2017) and PNA
(Corso et al., 2020) architecture.

Notation:

a← b : assignment/update, overwrite a with the value of b (10)
X ⊙ Y : Hadamard/elementwise product, (X ⊙ Y)i = XiYi (11)

We use vi to represent node i’s feature vector, and eij to represent feature vector of the edge between
i and j. We consider undirected edges, i.e., eij is the same as eji. Our metanetwork is as follows.

First, all input node and edge features are encoded into the same hidden dimension.

v ← MLPNodeEnc(v
in), (12)

e← MLPEdgeEnc(e
in). (13)

Then they will pass through several message passing layers. In each layer, we generate the messages:

mij ← MLP1
Node(vi)⊙MLP2

Node(vj)⊙ eij , (14)

m′
ij ← MLP1

Node(vj)⊙MLP2
Node(vi)⊙ (eij ⊙ EdgeInvertor), (15)

where mij and m′
ij respectively encode message from i to j and message from j to i, and EdgeInvertor

is defined as:
EdgeInvertor ≜ [1, 1, . . . , 1︸ ︷︷ ︸

hidden_dim/2

,−1,−1, . . . ,−1︸ ︷︷ ︸
hidden_dim/2

]. (16)

The intuition behind EdgeInvertor is to let the first half dimensions to learn undirectional features
invariant to exchanging i, j, and the second half to capture directional information that changes
equivariantly with reverting i, j. Empirically we found this design the most effective among various
ways to encode edge features.

Then, we aggregate the messages to update node features:

vi ← vi + PNAAggr(mij) + PNAAggr(m
′
ij), (17)

where we have

PNAAggr(mij) ≜ MLPAggr

([
MEAN
j:(i,j)∈E

(mij), STD
j:(i,j)∈E

(mij), MAX
j:(i,j)∈E

(mij), MIN
j:(i,j)∈E

(mij)

])
.

(18)

For edge features in each layer, we also update them by:

eij ← eij + MLP1
Edge(vi)⊙MLP2

Edge(vj)⊙ eij

+ MLP1
Edge(vj)⊙MLP2

Edge(vi)⊙ (eij ⊙ EdgeInvertor). (19)

Finally, we use a decoder to recover node and edge features to their original dimensions:

vpred ← MLPNodeDec(v), (20)
epred ← MLPEdgeDec(e). (21)

We multiply predictions by a residual coefficient and add them to the original inputs as our final
outputs:

vout = α · vpred + vin, (22)
eout = β · epred + ein, (23)

where α and β in practice are set to a small real numbers like 0.01. This design enables the
metanetwork to learn only the delta weights on top of the original weights, instead of a complete
reweighting.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.2 PRUNING CRITERION

B.2.1 DEPGRAPH AND TORCH-PRUNING

DepGraph (Fang et al., 2023) proposes a general sparsity regularization based structural pruning
framework that can be applied to a wide range of neural network architectures, including CNNs,
RNNs, GNNs, Transformers, etc. Alongside the paper, the authors released Torch-Pruning, a
powerful Python library that enables efficient structural pruning for most modern architectures. In our
work, the pruning criterion is designed based on the methodology of DepGraph (Fang et al., 2023),
and all pruning operations are implemented using Torch-Pruning.

Conv 𝑓!

BN 𝑓"

ReLU 𝑓#

+

Conv 𝑓$

BN 𝑓%

ReLU 𝑓&

(a) CNNs

Add 𝑓'

𝑓!(𝑓!)

𝑓"(

𝑓")

𝑓#(

𝑓#) 𝑓$(𝑓$) 𝑓%(

𝑓%)

𝑓&(

𝑓&)

𝑓'(𝑓')

Succeeding
Layers

Preceding
Layers

(b) Propagation on Dependency Graph

𝑠𝑐ℎ 𝑓!" ≠ 𝑠𝑐ℎ(𝑓!#)

𝑠𝑐ℎ 𝑓$" = 𝑠𝑐ℎ(𝑓$#)

1
0

2
3

0 1 2 3

1
0

2
3

1
0

2
3

1
0

2
3

1
0

2
3

0 1 2 3

1
0

2
3

Figure 9: A picture from (Fang et al., 2023). It shows how we group parameters together in structural
pruning.

B.2.2 STRUCTURAL PRUNING

We perform most of our experiments by default using structural pruning, but also include a small
number of experiments with unstructured and N:M sparsity pruning to demonstrate that our method
can be applied to all kinds of pruning. Here we mainly introduce the structural pruning.

Structural pruning involves removing parameters in predefined groups, so that the resulting pruned
model can be used as a standalone network—without relying on the original model with masks,
nor requiring specialized AI accelerators or software to realize reductions in memory footprint and
computational cost.

In structural pruning, a pruning group consists of all parameters that must be pruned together to
maintain network consistency. For example, in Figure 9(a), if an input channel of convolution layer
f4 is pruned, the corresponding channel in batch normalization (BN) layer f2 and the output channel
of convolution layer f1 must be pruned as well. Furthermore, due to the presence of a residual
connection, the corresponding channels in BN layer f5 and the output channel of convolution layer
f4 must also be removed. All of these channels together form a single pruning group. We define the
number of prunable dimensions of a group as the size of the input channel dimension of Conv f4
(which is equivalent to the corresponding dimensions in BN f2, the output channel of Conv f1, etc.)

For a more comprehensive theory to find all pruning groups in structural pruning, refer to the
DepGraph (Fang et al., 2023) paper (section 3.1 & 3.2).

B.2.3 A IMPORTANCE SCORE FUNCTION

Given a parameter group g = {w1, w2, . . . , w|g|} with K prunable dimensions indexed by wt[k]
(t ∈ {1, 2...|g|}), the score of the k th prunable dimension in group g is written is Ig,k, we introduce a
general way to generate a series types of importance scores. The way has two key concepts, REDUCE
and NORMALIZE. We first use REDUCE to reduce scores of parameters in the same group and in
the same prunable dimension into one score.

It,k = REDUCE
t:t∈{1,2...|g|}

(|wt[k]|p) (24)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Here p is a hyperparameter and we usually set it to 2, REDUCE can be (but is not limited to) the
following:

(1) MEAN: (w1 + w2 + ...+ w|g|)/|g|
(2) FIRST: w1

Then we use NORMALIZE to normalize scores in the different prunable dimensions of the same
pruning group.

Îg,k = Ig,k/NORMALIZE
k:k∈{1,2...K}

(Ig,k) (25)

Here NORMALIZE can be (but is not limited to) the following:

(1) NONE: 1 (use no normalize).
(2) MEAN: (Ig,1 + Ig,2 + ...+ Ig,K)/K

(3) MAX: The maximum amoung Ig,1, Ig,2...Ig,K

We calculate scores of all prunable dimensions in all groups in a network, rank them and prune
according to their scores from lower to higher.

B.2.4 A SPARSITY LOSS

During training, our sparsity loss is defined as :

R(g, k) =
K∑

k=1

γk · Îg,k (26)

Where γk refers to a shrinkage strength applied to the parameters to modify the gradients for better
training. Defined as :

γk = 2
α

√
Imax
g −

√
Ig,k√

Imax
g −
√

Imin
g (27)

Here α can be but is not limited to:

(1) 4: What we use as default in all our experiments.
(2) 0: Same as using no shrinkage strength.

In sparsity loss, we treat γk and NORMALIZE in the denominator of Îg,k simply as constants, which
means gradients aren’t backpropagated through them. Gradients only back propagated fromR(g, k)
to Ig,k to the parameters of the network.

In our code, rather than calculate the sparsity loss, we directly modify the gradients of the parameters
of the network, which get the same results.

B.2.5 KINDS OF PRUNING CRITERION

By choosing different ways of REDUCE and NORMALIZE (appendix B.2.3) and different α
(appendix B.2.4), we can make different pruning cirteria in a uniform framework. In most of our
experiments, we use MEAN REDUCE, MAX NORMALIZE, α = 4, as our default pruning
criterion, and we name it group ℓ2 norm max normalizer. We also tried different criteria in
our experiments and found they are almost all effective, which further shows the flexibility and
effectiveness of our framework.

B.2.6 PAY ATTENTION

Though we draw ideas from Fang et al. (2023) and use their Torch-Pruning libirary, we find their
paper is inconsistent with their code. We wrote appendix B.2.3 & B.2.4 strictly based on their code,
which is the Torch-Pruning library. If you read the Fang et al. (2023) paper section 3.3, you may find
our description a little different from theirs, because their paper is inconsistent with their code, and
we are in line with their code.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL PRELIMINARIES

C.1 TERMINOLOGIES

Speed Up: In line with prior works, we define Speed Up ≜ Origin FLOPs / Pruned FLOPs. It
reflects the extent to which our pruning reduces computation, thereby accelerating the network’s
operation.

Acc vs. Speed Up Curve: We generate the curve by prune the network little by little. After each
pruning step, we evaluated the model’s performance on the test set (no finetuning in this step) and
recorded a data point representing the current speed up and corresponding test accuracy. Connecting
these points forms a curve that illustrates how accuracy changes as the speed up increases.

C.2 PRUNING PIPELINE

Our pruning pipeline can be summarized as:

Initial Pruning (Finetuning)︸ ︷︷ ︸
Optional

→ Metanetwork (Finetuning)→ Pruning (Finetuning)︸ ︷︷ ︸
Necessary

(28)

Initial Pruning: Empirically, we observe that the metanetwork performs better on hard to prune
origin networks. However, many networks are initially easy to prune. For instance, ResNet56
on CIFAR10 can be pruned with a 1.3× speedup and then finetuned without any accuracy loss.
Therefore, unless stated otherwise, we apply the initial pruning step in all our experiments—both
when generating meta-training data models and during pruning. In this step, we slightly prune the
original network with a fixed speed up (a hyperparameter that can be determined in a few quick trials)
to make it harder to prune without loss in accuracy (Figure 10a), thereby exploiting the full potential
of the metanetwork. This effect is analogous to removing low-quality samples from a dataset in order
to obtain a higher-quality subset: an easy to prune network contains many low-quality parameters,
which may harm the training of the metanetwork. This step isn’t necesary, but facilitates convergence,
saves VRAM use, and helps achieve better pruning results (Figure 10b) during most of the time.

(a) The origin network is easy to prune, after ini-
tial pruning and slight finetuning, it becomes hard
to prune.

(b) Initial pruning helps get better metanetworks and
better pruning results

Figure 10: With or without initial pruning (ResNet56 on CIFAR10 as an example)

Metanetwork: Change the origin hard to prune network into a graph, feed it through the metanetwork
to get a new graph, and change it back into a new network.

Pruning: Prune the new easy to prune network.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Finetuning: Train the network with a relatively small learning rate. This is a common step that is
widely used in pruning tasks.

Unlike prior learning to prune methods that require special training during each pruning, our pruning
pipeline only requires a feed forward through metanetwork and standard finetuning, which is simple,
general and effective.

Once we have a metanetwork, we can prune as many networks as we want. All our pruning models are
completely different from meta-training data models. This demonstrates our metanetwork naturally
has great transferability and no prior work has done something like this before.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL ON CNNS

D.1 GENERAL EXPERIMENT SETUP

D.1.1 GENERAL SETTINGS

Optimizer: For all data model training and fine-tuning, we use torch.optim.SGD with
momentum=0.9. For meta-training, we employ torch.optim.AdamW. All learning rates
are controlled using torch.optim.lr_scheduler.MultiStepLR with gamma=0.1. The
learning rate is adjusted at specified milestones; for instance, if milestones=[50, 90], the
learning rate is multiplied by 0.1 at epochs 50 and 90. These settings are not strictly necessary—other
optimizers and schedulers may be equally effective.

Data for Meta-Training: As discussed in Section 4.2, meta-training requires two types of data: data
models and traditional training datasets. To generate a data model, we train a base model, perform
initial pruning followed by finetuning, and finally save the model along with relevant information.
Typically, generating 2–10 data models is sufficient, with 1–8 used for meta-training and the remainder
reserved for meta-evaluation or testing.

Meta Evaluation (Meta Eval): Meta evaluation is a process used to assess the quality of the
metanetwork during meta-training. We did not include it in our final experiments due to its high
computational cost; however, we retain it as an optional tool for future research. At the end of
each meta-training epoch, we evaluate the metanetwork by feeding unseen data models (not used in
meta-training) through the network, finetuning, and then pruning to achieve the maximum speed-up
while maintaining accuracy above a predefined threshold. A higher resulting speed-up indicates better
metanetwork performance.

Visualizing Metanetworks: This is a key technique used throughout our experiments. When we
refer to visualizing a metanetwork, we mean passing a model through the metanetwork, followed by
finetuning, and then visualize the “Acc VS. Speed-Up” curve of the resulting model, as illustrated in
Figure 5. This visualization provides insights into the metanetwork’s behavior and helps determine
whether it is suitable for pruning. An ideal metanetwork should exhibit a long flat region in the
curve where accuracy remains close to or above the target pruning accuracy. There are two ways
to select a suitable metanetwork: (1) using meta-evaluation during meta-training, or (2) visualizing
metanetworks post-training. In our final experiments, we exclusively use the second method, which
is significantly more efficient. We typically do not visualize all metanetworks but instead search for
the best one using a binary search strategy.

Relationship between "Acc VS. Speed Up Curve" and Pruning Performance: Empirically,
pruning performance can be qualitatively predicted from the "Accuracy VS. Speed Up" curve. The
accuracy in the flat region of the curve typically represents the maximum achievable accuracy; after
pruning and finetuning, the final accuracy is usually the same or slightly lower, and sometimes only a
little bit higher at most. The amount of speed up that preserves this top accuracy is generally larger
than the speed up at the curve’s turning point, and these two values tend to correlate—the larger the
turning point speed up, the larger the maintainable speed up. Therefore, if we aim for a pruned model
with, for example, 93% accuracy, we should select a metanetwork whose flat-region accuracy is
around or slightly above 93%, and whose flat region is as long as possible. We cannot give a teoretical
guarantee between the "Acc VS. Speed Up" curve and the pruning performance. But this is not only
our problem, because as far as we know, all other pruning methods can’t give theoretical gurarantee
between their pruning criterion and final performance as well. The reasons can be the network itself
is too complex and processes like finetuning changes everything in an unpredictable way.

Big Batch Size and Small Batch Size: We use two different batch sizes in our experiments: a
small batch size and a big batch size. The big batch size is used during meta-training to compute
accuracy loss on new networks. Due to memory constraints, such large batches cannot be processed
in a single forward and backward pass. Instead, we accumulate gradients over multiple smaller
mini-batches before performing a single optimizer update—a common PyTorch practice. The big
batch size is thus expressed as batchsize * iters, indicating that one optimizer.step()
is performed after iters forward/backward passes, each using a mini-batch of size batchsize.
For all other standard training and finetuning tasks, we use the small batch size.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D.1.2 GENERAL META TRAINING DETAILS

Equivalent Conversion between Network and Graph: During meta-training, we first convert the
original network into an origin graph. Then, we feed this origin graph through the metanetwork to
generate a new graph. Finally, we convert the new graph back into a new network. When converting
the original network into the origin graph, all network parameters are mapped to either node or edge
features in the graph. However, some graph features do not correspond to any network parameter. For
these missing features, we use default values that effectively simulate the absence of those parameters.
When converting the new graph back into the new network, we only map those trainable parameters
from the new graph back to the new network. For untrainable parameters in the new network, we
keep it the same as the old network. We provide more explanations for this conversion process in the
following subsections: D.2, D.3, and D.4.

The Relative Importance of Sparsity Loss and Accuracy Loss: In our experiments, we introduce a
hyperparameter called "pruner reg", which controls the relative importance of sparsity loss compared
to accuracy loss. During backpropagation, the gradient from the sparsity loss is scaled(multiplied) by
this "pruner reg" value, while the gradient from the accuracy loss remains unscaled.

Meta Training Milestone: As discussed in the Ablation Study (Section 5.3), as the number of
training epochs increases, the metanetwork’s ability to make the network easier to prune becomes
stronger, while its ability to maintain the accuracy becomes weaker. During meta-training, we usually
set a milestone for our learning rate scheduler. Before this milestone, we use a relatively large
learning rate to quickly improve the metanetwork’s ability to make networks easier to prune. After the
milestone, we switch to a smaller learning rate to finetune the metanetwork and slow down the change
of the two abilities, allowing us to select a well-balanced metanetwork. To determine a reasonable
milestone value, we can first perform a short meta-training phase using the large learning rate, then
visualize the resulting metanetworks to identify the point where the accuracy-maintaining ability of
metanetwork is a bit stronger than we expect.

Choose the Appropriate Metanetwork: During meta-training, we save the metanetwork after each
epoch. After training is complete, we search for the most suitable metanetwork by visualizing its
performance using a binary search strategy. Specifically, we start by visualizing the metanetwork
from the middle epoch. If the accuracy of its flat region is below our target pruned accuracy, we next
visualize the metanetwork from the first quarter of training. Otherwise, we check the one from the
third quarter. We continue this process iteratively until we find a metanetwork that meets our criteria:
a relatively high accuracy in the flat region and a long flat region indicating robustness to pruning.

D.1.3 GENERAL PRUNING DETAILS :

Pruning Speed Up: Once a suitable metanetwork has been selected for pruning, the next step is
to determine the target speed up. In general, after visualizing the metanetwork, we observe a flat
region followed by a sharp decline in accuracy. We define a turning point as the speed up at which
the accuracy drops below a certain threshold. Experimentally, we find that we can safely prune the
model at a speed up slightly higher than this turning point without incurring any accuracy loss after
finetuning. For instance, when pruning ResNet-56 on CIFAR-10, we consider an accuracy drop below
0.93 as the turning point (typically around 2.0× speed up), and in practice, we are able to achieve a
2.9× speed up with almost no loss in accuracy after finetuning.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D.2 RESNET56 ON CIFAR10

D.2.1 EQUIVALENT CONVERSION BETWEEN NETWORK AND GRAPH

We change ResNet56 into a graph with node featrues of 8 dimensions and edge features of 9
dimensions.

The node features consist of 4 features derived from the batch normalization parameters (weight,
bias, running mean, and running variance) of the previous layer, along with 4 features from the batch
normalization of the previous residual connection. If no such residual connection exists, we assign
default values [1, 0, 0, 1] to the corresponding 4 features.

The edge features are constructed by zero-padding all convolutional kernels to a size of 3× 3 (note
that our networks only contain kernels of size 3× 3 or 1× 1), and then flattening them into feature
vectors. We treat all residual connections as convolutional layers with kernel size 1× 1. For example,
consider two layers A and B connected via a residual connection, with neurons indexed as 1, 2, 3, . . .
in both layers. If the residual connection has no learnable parameters (i.e., it directly adds the input to
the output), we represent the edge from Ai to Bi as a 1× 1 convolutional kernel with value 1, and the
edge from Ai to Bj (where i ̸= j) as a 1× 1 kernel with value 0. If the residual connection includes
parameters (e.g., a downsample with a convolutional layer and batch normalization), we construct the
edge features in the same way as for standard convolutional layers.

D.2.2 META TRAINING

Data Models : We generate 10 models as our data models, among them, 8 are used for meta-training
and 2 are used for validation (visualize the metanetwork). When generating each data model, we train
them 200 epochs with learning rate 0.1 and milestone "100, 150, 180", then pruning with speed up
1.32x, followed by a finetuning for 80 epochs with learning rate 0.01 and milestone "40, 70". Finally,
we can get a network with accuracy around 93.5%.

One Meta Training Epoch : Every epoch we enumerate over all 8 data models. When enumerate a
data model, we feedforward it through the metanetwork and generate a new network. We feed all our
CIFAR10 training data into the new network to calculate the accuracy loss, and use the parameters of
new network to calculate the sparsity loss. Then we backward the gradients from both two losses to
update our metanetwork.

Training: We train our metanetwork with learning rate 0.001, milestone "3", weight decay 0.0005
and pruner reg 10. Finally we use metanetwork from epoch 39 as our final network for pruning.

D.2.3 GPU USAGE

All tasks can be run on 1 NVIDIA RTX 4090.

D.2.4 FULL RESULTS

All results are summarized in Table 8, where we repeat the pruning process 3 times using different
seeds: 7, 8, 9. It is important to note that due to the design of our algorithm and implementation,
we cannot prune the network to exactly the same speed up across different runs. For instance, when
targeting a 1.3× speed up, the actual achieved speed up may be slightly larger, such as 1.31×, 1.32×,
or 1.35×.

The aggregated statistical results are presented in Table 9, where each value is reported in the form of
mean(standard deviation).

D.2.5 HYPERPARAMETERS

See Table 10.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 8: ResNet56 on CIFAR10 Full

Method Base Pruned ∆ Acc Pruned FLOPs Speed Up

NISP (Yu et al., 2018) — — — 43.2% 1.76
Geometric (He et al., 2019b) 93.59 93.26 -0.33 41.2% 1.70
Polar (Zhuang et al., 2020) 93.80 93.83 0.03 46.8% 1.88

DCP-Adapt (Zhuang et al., 2018) 93.80 93.81 0.01 47.0% 1.89
CP (Li et al., 2017a) 92.80 91.80 -1.00 50.0% 2.00

AMC (He et al., 2018b) 92.80 91.90 -0.90 50.0% 2.00
HRank (Lin et al., 2020a) 93.26 92.17 -1.09 50.0% 2.00

SFP (He et al., 2018a) 93.59 93.36 -0.23 52.6% 2.11
ResRep (Ding et al., 2021) 93.71 93.71 0.00 52.8% 2.12
SCP (Kang & Han, 2020) 93.69 93.23 -0.46 51.5% 2.06
FPGM (He et al., 2019a) 93.59 92.93 -0.66 52.6% 2.11

FPC (He et al., 2020) 93.59 93.24 -0.35 52.9% 2.12
DMC (Gao et al., 2020) 93.62 92.69 -0.93 50.0% 2.00

GNN-RL (Yu et al., 2022) 93.49 93.59 0.10 54.0% 2.17
DepGraph w/o SL (Fang et al., 2023) 93.53 93.46 -0.07 52.6% 2.11
DepGraph with SL (Fang et al., 2023) 93.53 93.77 0.24 52.6% 2.11

ATO (Wu et al., 2024) 93.50 93.74 0.24 55.0% 2.22
Meta-Pruning (ours) 93.51 93.64 0.13 56.5% 2.30
Meta-Pruning (ours) 93.51 93.75 0.24 58.0% 2.38
Meta-Pruning (ours) 93.51 93.78 0.27 56.5% 2.30

GBN (You et al., 2019a) 93.10 92.77 -0.33 60.2% 2.51
AFP (Ding et al., 2018) 93.93 92.94 -0.99 60.9% 2.56

C-SGD (Ding et al., 2019) 93.39 93.44 0.05 60.8% 2.55
Greg-1 (Wang et al., 2021) 93.36 93.18 -0.18 60.8% 2.55
Greg-2 (Wang et al., 2021) 93.36 93.36 0.00 60.8% 2.55

DepGraph w/o SL (Fang et al., 2023) 93.53 93.36 -0.17 60.2% 2.51
DepGraph with SL (Fang et al., 2023) 93.53 93.64 0.11 61.1% 2.57

ATO (Wu et al., 2024) 93.50 93.48 -0.02 65.3% 2.88
Meta-pruning (ours) 93.51 93.64 0.13 65.6% 2.91
Meta-pruning (ours) 93.51 93.28 -0.23 65.9% 2.93
Meta-pruning (ours) 93.51 93.49 -0.02 66.0% 2.94
Meta-pruning (ours) 93.51 93.27 -0.24 66.8% 3.01
Meta-pruning (ours) 93.51 93.10 -0.41 66.9% 3.02
Meta-pruning (ours) 93.51 93.52 0.01 67.0% 3.03

Table 9: ResNet56 on CIFAR10 Statistics

Pruned Accuracy Pruned FLOPs Speed Up

93.72(±0.06) 57.0%(±0.71%) 2.3267(±0.0377)
93.47(±0.15) 65.83%(±0.17%) 2.9267(±0.0125)
93.30(±0.17) 66.90%(±0.08%) 3.0200(±0.0081)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 10: ResNet56 on CIFAR10 Hyperparameters

Types Name Value

Compute Resources GPU NVIDIA RTX 4090
parallel No

Batch size small batch size 128
big batch size 500 × 100

Prepare Data Models data model num 10 (8 + 2)
Train From Scratch epoch 200

lr 0.1
weight decay 0.0005

milestone "100, 150, 180"
Initial Pruning speed up 1.32

Finetuning epoch 80
lr 0.01

weight decay 0.0005
milestone "40, 70"

Metanetwork num layer 8
hiddim 64

in node dim 8
in edge dim 9

node res ratio 0.01
edge res ratio 0.01

Meta Training lr 0.001
weight decay 0.0005

milestone "3"
pruner reg 10

Final Pruning metanetwork epoch 39
speed up 2.3, 2.9, 3.0

Finetuning After Metanetwork epoch 100
lr 0.01

weight decay 0.0005
milestone "60, 90"

Finetuning After Pruning epoch 140
lr 0.01

weight decay 0.0005
milestone "80, 120"

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

D.3 VGG19 ON CIFAR100

D.3.1 EQUIVALENT CONVERSION BETWEEN NETWORK AND GRAPH

We change VGG19 into a graph with node featrues of 5 dimensions and edge features of 9 dimensions.

The node features consist of 4 features derived from the batch normalization parameters (weight,
bias, running mean, and running variance) of the previous layer and 1 feature derived from the bias
of previous layer (0 if bias doesn’t exist).

The edge features are constructed by zero-padding all convolutional kernels to a size of 3× 3 (note
that our networks only contain kernels of size 3× 3 or 1× 1), and then flattening them into feature
vectors.

D.3.2 META TRAINING

Data Models : We generate 10 models as our data models, among them, 8 are used for meta-training
and 2 are used for validation (visualize the metanetwork). When generating each data model, we
train them 200 epochs with learning rate 0.1 and milestone "100, 150, 180", then pruning with speed
up 2.0x, followed by a finetuning for 140 epochs with learning rate 0.01 and milestone "80, 120".
Finally, we can get a network with accuracy around 73.5%.

One Meta Training Epoch : Every epoch we enumerate over all 8 data models. When enumerate a
data model, we feedforward it through the metanetwork and generate a new network. We feed all our
CIFAR100 training data into the new network to calculate the accuracy loss, and use the parameters
of new network to calculate the sparsity loss. Then we backward the gradients from both two losses
to update our metanetwork.

Training: We train our metanetwork with learning rate 0.001, milestone "10", weight decay 0.0005
and pruner reg 10. Finally we use metanetwork from epoch 38 as our final network for pruning.

D.3.3 GPU USAGE

All tasks can be run on 1 NVIDIA RTX 4090.

D.3.4 FULL RESULTS

All results are summarized in Table 11, where we repeat the pruning process 3 times using different
seeds: 7, 8, 9. It is important to note that due to the design of our algorithm and implementation,
we cannot prune the network to exactly the same speed up across different runs. For instance, when
targeting a 8.90× speed up, the actual achieved speed up may be slightly larger, such as 8.95×,
9.01×, or 9.02×.

The aggregated statistical results are presented in Table 12, where each value is reported in the form
of mean(standard deviation).

D.3.5 HYPERPARAMETERS

See Table 13.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 11: VGG19 on CIFAR100 Full

Method Base Pruned ∆ Acc Pruned FLOPs Speed Up

OBD (Wang et al., 2019) 73.34 60.70 -12.64 82.55% 5.73
OBD (Wang et al., 2019) 73.34 60.66 -12.68 83.58% 6.09

EigenD (Wang et al., 2019) 73.34 65.18 -8.16 88.64% 8.80
Greg-1 (Wang et al., 2021) 74.02 67.55 -6.67 88.69% 8.84
Greg-2 (Wang et al., 2021) 74.02 67.75 -6.27 88.69% 8.84

DepGraph w/o SL (Fang et al., 2023) 73.50 67.60 -5.44 88.73% 8.87
DepGraph with SL (Fang et al., 2023) 73.50 70.39 -3.11 88.79% 8.92

Meta-Pruning (ours) 73.65 68.65 -5.00 88.81% 8.94
Meta-Pruning (ours) 73.65 67.63 -6.02 88.96% 9.06
Meta-Pruning (ours) 73.65 69.75 -3.90 88.83% 8.95

Table 12: VGG19 on CIFAR100 Statistics

Pruned Accuracy Pruned FLOPs Speed Up

68.68(±0.87) 88.87%(±0.07%) 8.9833(±0.0544)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 13: VGG19 on CIFAR100 Hyperparameters

Types Name Value

Compute Resources GPU NVIDIA RTX 4090
parallel No

Batch size small batch size 128
big batch size 500 × 100

Prepare Data Models data model num 10 (8 + 2)
Train From Scratch epoch 200

lr 0.1
weight decay 0.0005

milestone "100, 150, 180"
Initial Pruning speed up 2.0

Finetuning epoch 140
lr 0.01

weight decay 0.0005
milestone "80, 120"

Metanetwork num layer 8
hiddim 32

in node dim 5
in edge dim 9

node res ratio 0.05
edge res ratio 0.05

Meta Training lr 0.001
weight decay 0.0005

milestone "10"
pruner reg 10

Final Pruning metanetwork epoch 38
speed up 8.90

Finetuning After Metanetwork epoch 2000
lr 0.01

weight decay 0.0005
milestone "1850, 1950"

Finetuning After Pruning epoch 2000
lr 0.01

weight decay 0.0005
milestone "1850, 1950"

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

D.4 RESNET50 ON IMAGENET

D.4.1 EQUIVALENT CONVERSION BETWEEN NETWORK AND GRAPH

We change ResNet50 into a graph with node featrues of 8 dimensions and edge features of 1, 9 or 49
dimensions. We employ 3 linear layers to project edge features of these 3 different dimensions into
the same hidden dimension, enabling their integration into our graph neural network.

The node features consist of 4 features derived from the batch normalization parameters (weight,
bias, running mean, and running variance) of the previous layer, along with 4 features from the batch
normalization of the previous residual connection. If no such residual connection exists, we assign
default values [1, 0, 0, 1] to the corresponding 4 features.

The edge features are constructed by simply flatten convolutional kernels into feature vectors (We
have convolutional kernels of size 1 × 1, 3 × 3 or 7 × 7). We treat all residual connections as
convolutional layers with kernel size 1×1. For example, consider two layers A and B connected via a
residual connection, with neurons indexed as 1, 2, 3, . . . in both layers. If the residual connection has
no learnable parameters (i.e., it directly adds the input to the output), we represent the edge from Ai

to Bi as a 1× 1 convolutional kernel with value 1. Different from section D.2, to reduce the VRAM
footprint of the program, we build no edges between Ai and Bj (i ̸= j). If the residual connection
includes parameters (e.g., a downsample with a convolutional layer and batch normalization), we
construct the edge features in the same way as for standard convolutional layers.

D.4.2 META TRAINING

Data Models : We generate 3 models as our data models, among them, 2 are used for meta-training
and 1 are used for validation (visualize the metanetwork). When generating each data model, we
finetune them based on the pretrained weights for 30 epochs with learning rate 0.01 and milestone
"10", then pruning with speed up 1.2920x, followed by a finetuning for 60 epochs with learning rate
0.01 and milestone "30". Finally, we can get a network with accuracy around 76.1%.

One Meta Training Epoch : We train with torch.nn.parallel.DistributedDataParallel
(pytorch data parallel) across 8 gpus. Unlike in Section D.2 and Section D.3, at the beginning of each
epoch, we evenly distribute different data models across the GPUs. For example, since we have two
data models, we load one on four GPUs and the other on the remaining four GPUs. At each iteration,
we forward all eight models (replicated across the 8 GPUs) through the metanetwork to generate
eight new models. We then feedforward a large batch of ImageNet data, evenly distributed through
these eight new models, to compute the accuracy loss. We also use the parameters of the eight new
networks to compute the sparsity loss. Then we backward the gradients from both two losses to
update our metanetwork. Each training epoch consists of (ImageNet data num / big batch size)
iterations, meaning that one full pass over the entire ImageNet dataset when computing the accuracy
loss is considered as one epoch .

Training: We train our metanetwork with learning rate 0.01, milestone "2", weight decay 0.0005
and pruner reg 10. Finally we use metanetwork from epoch 12 as our final network for pruning.

D.4.3 GPU USAGE

Meta-Training and feed forward through the metanetwork during pruning requires large VRAM and
needs to be run on NVIDIA A100. All other training and finetuning can be run on NVIDIA RTX
4090. In practice, we use 8 gpus in parallel.

D.4.4 FULL RESULTS

All results are summarized in Table 14, where we repeat the pruning process 3 times. It is important
to note that due to the design of our algorithm and implementation, we cannot prune the network to
exactly the same speed up across different runs. For instance, when targeting a 2.3× speed up, the
actual achieved speed up may be slightly larger, such as 2.31×, 2.32×, or 2.35×.

The aggregated statistical results are presented in Table 15, where each value is reported in the form
of mean(standard deviation).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

D.4.5 HYPERPARAMETERS

See Table 16.

Table 14: ResNet50 on ImageNet Full

Method Base Top-1(Top-5) Pruned Top-1(∆) Pruned Top-5(∆) Pruned FLOPs

DCP (Zhuang et al., 2018) 76.01%(92.93%) 74.95%(-1.06%) 92.32%(-0.61%) 55.6%
CCP (Peng et al., 2019) 76.15%(92.87%) 75.21%(-0.94%) 92.42%(-0.45%) 54.1%
FPGM (He et al., 2019a) 76.15%(92.87%) 74.83%(-1.32%) 92.32%(-0.55%) 53.5%
ABCP (Lin et al., 2020b) 76.01%(92.96%) 73.86%(-2.15%) 91.69%(-1.27%) 54.3%
DMC (Gao et al., 2020) 76.15%(92.87%) 75.35%(-0.80%) 92.49%(-0.38%) 55.0%
Random (Li et al., 2022) 76.15%(92.87%) 75.13%(-1.02%) 92.52%(-0.35%) 51.0%

DepGraph (Fang et al., 2023) 76.15%(-) 75.83%(-0.32%) - 51.7%
ATO (Wu et al., 2024) 76.13%(92.86%) 76.59%(+0.46%) 93.24%(+0.38%) 55.2%
DTP (Li et al., 2023) 76.13%(-) 75.55%(-0.58%) - 56.7%

ours 76.14%(93.11%) 76.13%(-0.01%) 92.78%(-0.33%) 57.2%
ours 76.14%(93.11%) 76.24%(+0.20%) 93.09%(-0.02%) 57.1%
ours 76.14%(93.11%) 76.08%(-0.06%) 92.93%(-0.18%) 56.9%

Table 15: ResNet50 on ImageNet Statistics

Pruned FLOPs (Speed Up) Pruned Top-1 Pruned Top-5

57.1%(2.33×) 76.15%(±0.07%) 92.93%(±0.13%)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 16: ResNet50 on ImageNet Hyperparameters

Types Name Value

Compute Resources GPU NVIDIA A100 & NVIDIA RTX 4090
parallel 8

Batch size small batch size 32 × 8
big batch size 32 × 8 × 200

Prepare Data Models data model num 3 (2 + 1)
Generate Data Model epoch 30

lr 0.01
weight decay 0.0001

milestone "10"
Initial Pruning speed up 1.2920

Finetuning epoch 60
lr 0.01

weight decay 0.0001
milestone "30"

Metanetwork num layer 6
hiddim 16

in node dim 8
node res ratio 0.002
edge res ratio 0.002

Meta Training lr 0.01
weight decay 0.0005

milestone "2"
pruner reg 10

Final Pruning metanetwork epoch 12
speed up 2.3095

Finetuning After Metanetwork epoch 200
lr 0.01

weight decay 0.0001
milestone "120, 160, 185"

Finetuning After Pruning epoch 200
lr 0.01

weight decay 0.0001
milestone "120, 160, 185"

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

E MORE ABOUT ABLATION STUDY

E.1 FINETUNING AFTER METANETWORK

(a) Finetune Different Epochs with Same Metanetwork (b) Use Finetune to Get Better Performance

Figure 11: Finetune After Metanetwork (ResNet56 on CIFAR10 as example)

As mentioned in section 5.1, our pruning pipeline can be summarized as:

Initial Pruning (Finetuning)︸ ︷︷ ︸
Optional

→ Metanetwork (Finetuning)→ Pruning (Finetuning)︸ ︷︷ ︸
Necessary

(29)

In this pipeline, finetuning after pruning is a common way to improve the accuracy. However,
finetuning after the metanetwork is first proposed by us and may raise questions for readers regarding
its impact on performance—whether it is necessary or beneficial ? In this section, we aim to clarify the
effects of finetuning after the metanetwork and demonstrate that it is both necessary and advantageous.

To illustrate this, we use the example of pruning ResNet56 on CIFAR10. In Figure 11a, we visualize
the "Acc vs. Speed Up" curves for models after the same metanetwork and after various amounts
of finetuning. Without any finetuning after the metanetwork, the network’s accuracy is nearly zero
(which is why there is no "finetune_0_epoch" line in the figure—it lies at the bottom). Directly
proceeding to pruning and finetuning from such an unfinetuned network experimentally results in
poor performance.

However, as we increase the number of finetuning epochs after the metanetwork, several interesting
observations emerge:

• Quickly Recover: The accuracy of our network after metanetwork quickly recovers after
only very few finetuning, indicating that our metanetwork has the ability to preserve the
accuracy (i.e. our accuracy loss in meta-training works)

• Trend of Change: As the number of finetuning epochs increases, the flat portion of the
curve becomes shorter or stays the same, and the overall accuracy of this region improves.

When we feed the same network into metanetworks trained for different numbers of meta-training
epochs and get several modified networks, then finetune them with different epochs to reach the same
accuracy (as shown in Figure 11b), another important pattern emerges:

• More Finetune Better Performance : A network obtained from a metanetwork with more
meta-training epochs can typically achieve the same accuracy as one from a metanetwork
with fewer meta-training epochs—but requires more finetuning. Importantly, the former
usually results in better pruning performance. This is evident in Figure 11b, where the green

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

line (representing a higher meta-training epoch) exhibits a longer flat region, indicating
improved robustness to pruning.

This suggests that the effectiveness of our method can be further improved by employing metanet-
works trained for more meta-training epochs and applying more finetuning afterward. In practice,
however, we avoid excessive finetuning in order to keep the number of finetuning epochs within a
reasonable range, allowing for multiple experimental trials.

Overall, all finetuning in our pipeline is necessary and effective.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

F EXPERIMENTS ON TRANSFERABILITY

F.1 TRANSFER BETWEEN DATASETS

The common pruning pipeline is:

Initial Pruning (Finetuning)→ Metanetwork (Finetuning)→ Pruning (Finetuning) (30)

Pruning pipeline for None is:

Initial Pruning (Finetuning)→ Pruning (Finetuning) (31)

The dataset of a to be pruned network means we do all training and finetuning on it using this dataset.
The dataset of a metanetwork means we generate dataset models, meta-train the metanetwork using
this dataset.

We mainly have 2 hyperparameters here–initial speed up and final speed up . We approximately set
them based on the difficulty of each dataset. Here dataset refers to the dataset of the to be pruned
network (rows in Table 17). For CIFAR10, the initial pruning speed up is 1.32x and the final speed
up is 3.0x. For CIFAR100 the initial pruning speed up is 1.32x and the final speed up is 2.5x. For
SVHN, the initial pruning speed up is 3.0x and the final speed up is 10.0x.

Table 17: Transfer between datasets: All networks’ architecture is ResNet56. Columns represent
the training datasets for the metanetwork, and rows represent the training datasets for the to be pruned
network. “None” indicates using no metanetwork. Results with metanetwork is obviously better than
no metanetwork (The only exception is when training datasets for the to be pruned network is SVHN,
and we guess this is because the dataset SVHN itself is too easy).

Dataset\Metanetwork CIFAR10 CIFAR100 SVHN None
CIFAR10 93.35 92.47 92.87 91.28

CIFAR100 69.97 70.16 69.25 68.91

SVHN 96.79 96.50 96.86 96.78

F.2 TRANSFER BETWEEN ARCHITECTURES

The common pruning pipeline is:

Initial Pruning (Finetuning)→ Metanetwork (Finetuning)→ Pruning (Finetuning) (32)

Pruning pipeline for None is:

Initial Pruning (Finetuning)→ Pruning (Finetuning) (33)

The architecture of a to be pruned network means this network is constructed using this architecture.
The architecture of a metanetwork means all dataset models we generated for meta-training this
metanetwork use this architecture.

We mainly have 2 hyperparameters here–initial speed up and final speed up. We approximately set
them based on the ability of each architecture. Here architecture refers to the architecture of the to be
pruned network (rows in Table 18). For ResNet56, the initial pruning speed up is 1.32x and the final
speed up is 3.0x. For ResNet110 the initial pruning speed up is 2.0x and the final speed up is 4.0x.

F.3 TRANSFER FROM SMALL DATASET TO LARGE DATASET

When we are using large dataset like imagenet, is it possible that we use a much smaller dataset
during meta-training but get the same results? Our answer is yes.

When pruning Resnet50 on IMAGENET, we evenly choose 10% on each class in IMAGENET
and form a new subset dataset. Meta-Training using this subset causes almost no drop in accuracy.
See results in Table 19. This suggest that even 10% percent dataset is enough in meta-train to let
metanetwork learn the pruning strategy.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 18: Transfer between architectures. All training dataset is CIFAR10. Columns represent
the architectures used for training the metanetwork, and rows represent the architecures of the to be
pruned network. “None” indicates using no metanetwork. All results with metanetwork is obviously
better than no metanetwork.

Architecture\Metanetwork ResNet56 ResNet110 None
ResNet56 93.40 92.81 92.08

ResNet110 93.04 93.38 92.40

Table 19: During meta-train, use full ImageNet vs. only 10% ImageNet

Method Base Top-1(Top-5) Pruned Top-1(∆) Pruned Top-5(∆) Pruned FLOPs

ours 76.14%(93.11%) 76.13%(-0.01%) 92.78%(-0.33%) 57.2%
ours(10%) 76.14%(93.11%) 76.24%(+0.10%) 92.65%(-0.46%) 57.0%

F.4 TRANSFER FROM CLASSIFICATION TASK TO DETECTION TASK

We transfer the metanetwork from a classification task into another detection task. The detection
dataset is PASCAL VOC 07 (Girshick et al., 2014). Our detection network is a Faster R-CNN
detector with an ImageNet-pretrained ResNet-50 backbone (conv layers only, no FPN), a single-scale
RPN with 5×3 anchors per location, RoIAlign to 7×7, and the default torchvision Fast R-CNN
two-FC-layer head for 21-way VOC classification and bounding-box regression.

We use metanetwork traind when pruning Resnet50 on ImageNet. During pruning, we prune the
resnet50 backbone with 2.5x speed up. Results are in Table 20. We can see that metanetwork does
help preserve the detection ability of the network even if it is trained on a classification task. This
is not a perfect experiment because nowadays there are much more different and stronger detection
architectures and pretrain is widely used to enhance the network’s ability. But adding too many
complex structures would make the experimental results difficult to analyze. So we conduct this
simple and fair experiment and it demonstrates that our metanetwork can transfer to different tasks.

Table 20: Transfer classification to detection

Method Origin Prune w/o metanetwork Prune with metanetwork

mAP 0.6061 0.4524 0.5173

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

G EXPRIMENTS ON TRANSFORMERS

G.1 MHSA TO GRAPH

A MHSA (multi-head self-attention) begins with linear projections of the input X using 3H indepen-
dent weight matrices—H each for queries, keys, and values. For each head h ∈ 1, . . . , H:

Qh = XWQ
h , Kh = XWK

h , Vh = XWV
h .

Then each head computes attention via

Yh = softmax(QhK
⊤
h)Vh,

The outputs Y1, . . . , YH are concatenated and linearly projected:

MHSA(X) = Concat(Y1, . . . , YH)WO.

The input and output are both d-dimensional. Each head produces dH -dimensional outputs. When
changing to a graph, we represent this with d input nodes in the first layer, H · dH attention head
nodes in the second layer, and d output nodes in the third layer.

Between the first and the second layer, we model the three projection types (query, key, value) using
multidimensional edge features: for each edge (i, j) in head h, the feature is

ehij =
(
(WQ

h)ij , (W
K
h)ij , (W

V
h)ij

)
.

Between the second and third layer, concatenation and the final projection WO are handled naturally
by the graph structure and treated as a standard linear layer.

In summary, every pair of nodes between the first and second layers is connected by an edge
characterized by three-dimensional features, which represent the attention parameters. Each pair of
nodes between the second and third layers is connected by an edge with a single-dimensional feature,
corresponding to the final linear projection.

G.2 EQUIVALENT CONVERSION BETWEEN NETWORK AND GRAPH

We change ViT-B/16 into a graph with node featrues of 6 dimensions and edge features of 1, 3 or 256
dimensions. We employ 3 linear layers to project edge features of these 3 different dimensions into
the same hidden dimension, enabling their integration into our graph neural network.

The node features consist of 6 features, they are weight and bias of previous layer norm, bias
of previous linear layer, biases of query, key, value of previous attention layer. In the case that
any of these features doesn’t exist, they are replaced by a default value of [1, 0, 0, 0, 0, 0] at their
corresponding positions.

The edge features are constructed almost in the same way as previous experiments. The only new
part is MHSA, and we construct it as described in Appendix G.1.

G.3 META TRAINING

Data Models: We use the default ViT-B/16 provided by PyTorch as the only data model. All training
and pruning are conducted on this model, as training several separate models from scratch would be
prohibitively time-consuming. Moreover, this choice ensures consistency with prior work in the field.
Based on the Acc VS. speed up curve of the original ViT (Figure 12), we do initial pruning with a
speed up of 1.0370x and apply no finetuning. This configuration yields a network with an accuracy
of 81%.

One Meta Training Epoch : The same as ResNet50 on ImageNet (Appendix D.4.2).

Training: We train our metanetwork with learning rate 0.01, milestone "3", weight decay 0.0005
and pruner reg 1000. Finally we use metanetwork from epoch 6 as our final network for pruning.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Figure 12: Acc VS. Speed Up curve of the origin ViT

G.4 GPU USAGE

Meta-Training and feed forward through the metanetwork during pruning requires large VRAM and
needs to be run on NVIDIA A100. All other training and finetuning can be run on NVIDIA RTX
4090. In practice, we use 8 gpus in parallel.

G.5 FULL RESULTS

All results are summarized in Table 21.

G.6 HYPERPARAMETERS

See Table 22.

Table 21: ViT-B/16 on ImageNet

Method Base Top-1 Pruned Top-1 ∆Acc FLOPs

ViT-B/16 (Dosovitskiy et al., 2021) 81.07% - - 17.6
CP-ViT (Song et al., 2022) 77.91% 77.36% -0.55% 11.7

DepGraph (Fang et al., 2023) 81.07% 79.17% -1.90% 10.4
MetaPruning(ours) 81.07% 78.26% -2.81% 10.3

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Table 22: ViT-B/16 on ImageNet Hyperparameters

Types Name Value

Compute Resources GPU NVIDIA A100 & NVIDIA RTX 4090
parallel 8

Batch size small batch size 128 × 8
big batch size 32 × 8 × 200

Prepare Data Models data model num 1
Generate Data Model epoch 0

lr -
weight decay -

milestone -
Initial Pruning speed up 1.0370

Finetuning epoch 0
lr -

weight decay -
milestone -

Metanetwork num layer 3
hiddim 4

in node dim 6
node res ratio 0.1
edge res ratio 0.1

Meta Training lr 0.001
weight decay 0.0005

milestone -
pruner reg 10

Final Pruning metanetwork epoch 22
speed up 1.7

Finetuning After Metanetwork epoch 300
lr 0.01

weight decay 0.01
scheduler cosineannealinglr

label smoothing 0.1
mixup alpha 0.2
cutmix alpha 0.1

Finetuning After Pruning epoch 100
lr 0.0001

weight decay 0.0001
scheduler cosineannealinglr

label smoothing 0.1
mixup alpha 0.2
cutmix alpha 0.1

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

H MORE VISUALIZATION OF STATISTICS

Figure 13: l1 Norm

Figure 14: Inter-Channel Correlation

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Figure 15: Effeicient Rank

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

I THE USE OF LARGE LANGUAGE MODELS

We only use LLMs to check grammar errors and polish our writing. All other works are done by
human writers.

49

	Introduction
	Related Work
	Metanetworks
	Graph Neural Networks
	Sparsity Regularization Based Pruning
	Learning to Prune & Meta Pruning

	A Universal Meta-Learning Framework
	A Specific Implementation Based on Graph Metanetworks
	Metanetwork Design
	Meta-Training
	Pruning Criterion
	A Holistic Perspective

	Experiments on Classical CNN Pruning Tasks
	Preliminaries
	Classical CNN Pruning Tasks
	Ablation Study of General Behavioral Tendencies
	Ablation Study of Statistics

	Experiments on Transferability and Flexibility
	Flexible Pruning Criterion
	Unstructured Pruning & N:M Sparsity Pruning
	Transfer between Datasets and Architectures

	Experiments on Transformers
	Conclusion
	Reproducibility statement
	Comparison with prior works
	General Comparison
	Computational and Memory Costs
	Generality
	A Concrete Example

	Framework implementation details
	Metanetwork(GNN) Architecture
	Pruning Criterion
	DepGraph and Torch-Pruning
	Structural pruning
	A importance score function
	A sparsity loss
	Kinds of pruning criterion
	Pay Attention

	Experimental Preliminaries
	Terminologies
	Pruning Pipeline

	Experimental on CNNs
	General Experiment Setup
	General Settings
	General Meta Training Details
	General Pruning Details :

	ResNet56 on CIFAR10
	Equivalent Conversion between Network and Graph
	Meta Training
	GPU Usage
	Full Results
	Hyperparameters

	VGG19 on CIFAR100
	Equivalent Conversion between Network and Graph
	Meta Training
	GPU Usage
	Full Results
	Hyperparameters

	ResNet50 on ImageNet
	Equivalent Conversion between Network and Graph
	Meta Training
	GPU Usage
	Full Results
	Hyperparameters

	More About Ablation Study
	Finetuning after Metanetwork

	Experiments on Transferability
	Transfer between datasets
	Transfer between Architectures
	Transfer From Small Dataset to Large Dataset
	Transfer From Classification Task to Detection Task

	Expriments on Transformers
	MHSA to Graph
	Equivalent Conversion between Network and Graph
	Meta Training
	GPU Usage
	Full Results
	Hyperparameters

	More Visualization of Statistics
	The Use of Large Language Models

