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Abstract

The Chinese Spelling Check (CSC)
research objective is to detect and correct
the spelling errors in the input. Generally,
the number of incorrect characters in the
input is far less than the correct, so the
error probability sequence of input
sentence predicted by the detection
module should be sparse and sharp.
However, all existing work has ignored
this problem. In this paper, we add a
sparsity regularization item to the
objective function to make the output of
the detection module close to sparse and

sharp. We study two kinds of
regularization: L, regularization and
minimum entropy regularization.

Extensive experiments on the SIGHAN
show that the sparsity regularization
proposed in this paper can effectively
improve the performance of the CSC
model while without increasing the
computational complexity. In addition, the
robustness experiment results show that
our method is robust.

1 Introduction

Chinese Spelling Check (CSC) task is an
important task in Natural Language Processing
(NLP) community, which aims to correct spelling
errors in Chinese input (Yu & Li, 2014). There are
usually two types of errors in Chinese text editing
and text Recognition: errors of visually similar
characters caused by Optical Character
Recognition (OCR) or Wubi input method, and
errors caused by the misuse of phonologically
similar characters (Duan Jianyong, 2021).
Spelling errors will affect the semantics of the
sentence and then negatively impact downstream
text processing tasks. Therefore, it is necessary
and practical to study the CSC.

The CSC task consists of two subtasks: error
detection and error correction. For the CSC task,
complete Chinese sentences with/without spelling
errors will be given as the input. For the detection
subtask, the detection module should return the
locations of the incorrect characters. For the
correction subtask, the correct module should
point out the correct characters based on the
output of detection subtask. The error correction
problem is a follow-up problem of error detection
for checking spelling errors (HI&lek et al., 2020;
Tseng et al., 2015).

The input of the detection module is Chinese
sentence X = (xq,x,,+,x,), and x; represents
the i-th character in the input. The output is a
probability vector P = (py,p2",Pn) » Di
represents the probability that x; is an incorrect
character. In the input of the CSC, the number of
incorrect characters is usually far less than correct
characters. Therefore, the probability vector
output by the detection module should be sparse
and sharp. For example, as shown in Figure 1, for
the input “FLARTEZE HIFIR, AL T, B
J13% . ” (Correct sentence: “F& LAy AH L4 ff
R, AR T, HEMIR. 2, meaning is “I
wanted to tell you before, but | forgot, so
confused. ), the best output of detection module
is a probability vector which with 1 at the location
of “i&” (4, tell), and “F'F5” (#¥k, confused),
and 0 at the other positions. The best output of the
detection module is sparse and sharp, but this is a
tremendous challenge for the detection module.

Based on the above problem, and inspired by
the attention with sparsity regularization (Zhang et
al., 2018), this paper uses sparsity regularization
item to constrain the probability vector output of
the detection module. We study two kinds of
sparsity regularization: L, regularization and
minimum entropy regularization. Ly
regularization will constrain the sum of the
absolute value of the probability vector output by



1.0

0.8+

0. 61

0. 41

0. 21

ol m_m_ W -~ Hml

Figure 1: The example of the output of spelling
detection.

detection module, so as to promote the sparsity of
the probability vector. Minimum entropy
regularization minimizes the entropy of the
probability vector output by the detection module.
As we all know, the more certain, the smaller
entropy. So, when p; is 0 or 1, the entropy of the
probability vector P is the smallest. Therefore,
minimum entropy regularization can make the
probability vector output by the detection module
close to sparse and sharp.

In order to test the effectiveness of our
approach, we evaluated our method on the
SIGHAN dataset. On the premise of using the
same training set, validation set, and test set and
keeping the same experimental setup, the two
kinds of sparsity regularization used in this paper
can effectively improve the performance of the
CSC model. In addition, we use five new test sets
to test the robustness of our approach. In these test
sets, the proportion of without spelling errors
sentences increases sequentially. The main
contributions of this paper are as follows:

e We firstly propose use  sparsity
regularization to improve the performance
of CSC model while without increasing the
computational complexity of the model, and
analyze why the sparsity regularization can
be effective in CSC task from theoretical
level.

e We study two Kkinds of sparsity
regularization: L, regularization and
minimum entropy regularization, and test
the effectiveness and robustness of these
two kinds of sparsity regularization through
experiments.

2 Related Work

Early CSC methods were based on rules such as
chunk, syntax, and grammar to determine spelling
errors in the input (Hirst & Budanitsky,
2005).This kind of approach has high correction
accuracy but poor generalization performance.
Because the rules need to be defined by experts
based on knowledge and experience, the rules can
only cover limited situations, and the formulation
of these rules takes a lot of time. Then the
researchers tried to use the statistical language
model to complete the CSC task. First, replace the
characters in the input sentence sequentially
according to the confusion set, then use the
statistical language model to score these replaced
sentences, and give correction suggestions based
on the score (Huang et al., 2014; Yeh et al., 2017).
But the method based on the statistical language
model has shortcomings, that is, the expressive
and learning capability of the model are poor.

Deep learning technology can contribute to this
problem. The literature (Duan et al., 2019)
employs Bi-LSTM combined with conditional
random field (CRF) to achieve the error detection,
and CRF was used to predict the best annotation
sequence. The literature (Wang et al., 2021)
employs Lattice-LSTM to dynamically integrate
characters, words, and pinyin information, and
then the CRF layer detected errors according to
the integrated information. The focus of these
works is to integrate multiple features to improve
the performance of the model. Different from
these works, the literature (Wang et al., 2019)
applies the pointer-generation model, which
excellent performance in automatic
summarization tasks, to the error correction task.
For each character in the input sentence, the
pointer-generation model decides whether to copy
the character or replace by the character generated
by the Generation network according to the
probability output by the detection module. As far
as we know, this is the first CSC model using the
soft strategy. However, these methods are difficult
to adopt when the corpus is limited, because these
models need enough labeled corpus for training
(Tan et al., 2020).

In recent years, BERT has been applied to
many natural language processing tasks as a pre-
trained representation model and has shown
strong performance (Devlin et al., 2019). Some
researchers applied the BERT to the CSC task and
achieved state-of-the-art (SOTA) results. The



literature (Cheng et al., 2020) employs BERT to
obtain the distributed representation of the input
and employs the graph convolutional neural
network (GCN) to learn the similarity knowledge
in phonological and visual pronunciation to
complete CSC task. The literature (Zhang et al.,
2020) employs the Bi-GRU network as the
detection module and then employs BERT to
complete the error correction task according to the
output of the detection module. The literature (Li
et al., 2021) proposes a cloze-style detector-
corrector framework (DCSpell) that firstly detects
whether a character is erroneous before correcting
it. DCSpell employs the discriminator of
ELECTRA (Clark et al., 2016) as the Detector to
detect the positions of incorrect characters and
then employs BERT to correcting it.

The model based on BERT has achieved the
SOTA on the CSC task, but some researchers
pointed out that the error detection capability of
BERT is poor (Zhang et al., 2020; Hong et al.,
2019). Therefore, how to improve the detection
capability of the CSC model base on BERT is a
critical issue, which is also the focus of this paper.

3  Method
3.1 Soft-Masked BERT

The sparsity regularization method proposed in
this paper is an improvement method that can
improve the performance of the CSC model. The
sparsity regularization method can be widely used
in CSC tasks at a theoretical level. In order to
show the superiority of our method, we use the
strong baseline model Soft-Masked BERT (SM)
(Zhang et al., 2020). The model structure is shown
in Figure 2.

The SM model is composed of a detection
module and correction module. The detection
module uses a bidirectional GRU (Bi-GRU)
model and the correction module uses BERT. The
input of the detection module is the word
embedding sequence E = (ei,e3,:"e,) , €;
represents the embedding representation of the
character x;. The e; consists of word embedding,
position embedding, and segment embedding like
the input of BERT. The output of the detection
module is a probability vector P = (p1, 02, Pn),
p; represents the probability that the character x;
is incorrect.

In the SM model, for each character of the
sequence, the p; is calculated as

pi = Py(g; = 11X) = o(W;h? + b,) (1)

where P;(g; = 1|X) denotes the conditional
probability predicted by the detection module, o
denotes the sigmoid function, hf’ is the hidden
state of the Bi-GRU, W, and b, are parameters of
the model.

According to the probability output by the
detection module, the soft-masked embedding e;
for the x; is calculated as Formula (2).

e =Di emsk T (1 —D) & (2
where e; is the embedding of x; outputted by
BERT and e,,q IS the mask embedding of
character [MASK] outputted by BERT. When the
p; close to 0, the ¢; is close to the e;; otherwise, it
is close to the e,,q, Which can reduce the impact
of incorrect characters on the semantics of the
input sentence.

The correction network is a sequential multi-
class labeling task, which is based on the BERT
model. The input of the correction network is the
sequence E' = (e, ez, -, e,) that consists of
soft-masked embedding. The output is a character
sequence corrected by correction network, we
defineitasY = (¥4, ¥2, = Yn)-

BERT is based on the transformer model and
the hidden states of the output of BERT are
denoted as H¢ = (h$, hS, -+, hy). For each x;, the
corresponding output of the SM model is
calculated as follows

P.(y = 1 X) = softmax(Wh + B) [/ (3)

Where P.(y; = j | X) define the probability that
x; is corrected as character j in the output of the
correct module, softmax denote the softmax
function, W and b are parameters, h; is the hidden
state which is obtained by residual connection,
defined as

h} = hf + ¢ (4)
The training of the SM model is conducted end-
to-end. For the dataset D = {(Xf,Yf)}IY X7 is
. ]=1
the j-th input sequence, Y7 is the correct sequence
of the X7, N denotes that there are N with\without
error sentences in the dataset. The goal of the
training process is to optimize the two objective

functions, corresponding to the detection module
and error module.

n .
L=, loaPu(sl1X.6.) )
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Figure 2: Structure of Soft-Masked BERT.

n .
Le= Z?]=1z_ 1log (v | X;.6.) (6)
=

Where L; and £, denotes the objective of the
detection module and the correction module,
respectively. 8, and 6, denote the parameters of
the detection module and correction module. The
linear combination of £; and L. is the overall
training objective of the SM model.

L=2-L+(A=-1)- Ly (7)
Where A is a hyper-parameter and A € (0,1).

3.2

The output of the detection network is a
probability vector P = (p1,p2, -+ pn)- In the input
of the CSC, the number of incorrect characters is
usually far less than correct characters. Therefore,
the probability vector P should be sparse and
sharp. Accordingly, we attempt to study the
sparsity regularization method for the CSC task.
Specifically, we add a sparsity regularization item
to the objective function as a penalty term to
constraint the distribution of probability vector P.

L'=2Lo+(1=2)Lg+B- T R(P) (8)

Sparsity Regularization

in which R(P/) is the sparsity regularization item,
B is the hyper-parameter which balances the
sparsity regularization term and the log-likelihood
function. In this paper, we study two sparsity
regularization methods: L, regularization and
minimum entropy regularization.

L, regularization L, regularization and L,
regularization are the most commonly used
regularization method to control the sparsity of
parameters. The return of L, regularization is
positively correlated with the number of non-zero
elements in the input, so minimizing the L,
regularization term can make the parameters
sparse. But L, regularization is a non-convex
function, which means it is difficult to optimize.
Therefore,  researchers usually use L,
regularization instead of L, regularization. For the
probability vector P/, L, regularization item is:

Le =" |yl ©

Where pl.j is a probability and pij € (0,1). Since
the optimization strategy in this paper is to
maximize the objective function £’, R(P/) based
on the L, regularization in this paper is defined as:

. n :
RPH=-)" ]
i=

In the CSC task, maximizing the R(P’) based

on L, regularization will cause all pij to approach
0. For j-th sentence in the dataset, If the character
at the k-th position is incorrect, £; will constrain
p,{ to approach 1. So L, regularization can control
the distribution of P/ close to sparse theoretically.
However, since the L, regularization item expects
all pij close to 0, even if the character is incorrect.
This means that L; regularization cannot
contribute to the probability vector P/ to be sharp.

(10)



We aim to contribute to the probability vectors P/
to be sparse and sharp. Accordingly, we introduce
the minimum entropy approach.

Minimum entropy regularization In a statistical
learning community, Minimum entropy is used
less frequently than maximum entropy and L;
regularization, there is also has been used as a
regularization item. The literature (Grandvalet &
Bengio, 2005) uses minimum  entropy
regularization to help the classifier based on semi-
supervised learning make full use of beneficial
unlabeled data, aiming to improve the robustness
of the classifier. The literature (Zhang et al., 2018)
uses the minimum entropy regularization item to
contribute the distribution of attention vectors to
sparse and sharp.

In the CSC task, we argue that P/ should be
sparse and sharp. That is, the probability vector P/
should have low entropy. We use the minimum
entropy regularization to meet this prior as follows.

_ n )
Ent(P/)) = —z' 1pij log(p/) (11)
i=

R(P)) = — Ent(P)) = Z pllog(p!) (12)
i=1

The derivative of the minimum entropy

function f(x) = xlog(x) is
f'(x) =1+log (x) (13)

When x € (0,1/e), f'(x) <0, and when x €
(1/e,1), f'(x)>0, and f(0)=f(1)=0.
Therefore, when x € (0,1), maximizing the
minimum entropy function will make the value of
x to 0 or 1. For the CSC task, the value of the
probability vector output by the detection module
is preferably 0 or 1, corresponding to the location
of the correct character and incorrect character. In

summary, minimum entropy regularization can
contribute to the CSC task at the theoretical level.

4  Experiment

In this section, we analyzed the experimental
results of our method on the CSC task in detail
and compared it with the results of baselines
based on different methods. We also discussed
how to choose model parameters and verified the
robustness of our method.

"Id": | "A2-0023-1"
*Original_text": "T/I\E’a:ﬁﬁ, IR AT 5
- " | EEEDUL.
"Wrong_ids": | "[9]"
orrect text | T TN, BREREI A AT
- " | EEEDUL. T

Table 1: Data sample.

Train and Val Data Line /
(Wang et al., 2018) 271,329
SIGHAN13 700
SIGHAN14 1301
SIGHAN15 970
Total 274,300
Test Data Line (Line with error character)
SIGHAN13 1000(971)
SIGHAN14 1062(529)
SIGHAN15 1100(550)
Total 3162(2074)

Table 2: The statistic of the data.

4.1

Train and Validation set In this paper, the
training data is composed of (Wu et al., 2013), (Yu
et al., 2014), and (Tseng et al., 2015). Following
the literature (Wang et al., 2019), we add an
additional 271K samples to our training data,
which are provided by the literature (Wang et al.,
2018). To observe the training process in real-time,
we randomly selected 10% of these training data
as the validation set and the other sample as the
training set. We show one data sample in Table 1.
As shown in Table 1, a sample consists of four
parts: Id, Original_text, Wrong_ids, and
Correct_text. The Id is the id of the sample. The
original_text denotes the input of the CSC task
with\without incorrect characters. The Wrong_ids
point out the location of the incorrect character,
and it is an empty list when there are without
incorrect characters in the input. The Correct_text
denotes the corrected sentence, and it is the same
as the Original_text when there are without
incorrect characters in the input.
Test set Following the literature (Wang et al.,
2019), we used the test dataset from the
SIGHAN13 (Wu et al., 2013), SIGHAN14 (Yu et
al., 2014), and SIGHAN15 (Tseng et al., 2015)
benchmarks. Like related work, we also use
OpenCC1 to convert the characters in the test set
from traditional Chinese to simplified Chinese.
The statistic of the data is listed in Table 2.

Dataset

lhttps://github.com/BYVoid/OpenCC
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4.2

For this paper, we report precision (P), recall (R),
and F1 scores as evaluation metrics, which are
used by almost all CSC tasks. We report the
sentence-level metrics on the detection sub-task
and correction sub-task, i.e., we consider an input
sentence has been correctly only when the output
sentences of the model are completely consistent
with our expected. As shown in Formula 24
through 26, the metrics are measured with the
help of the confusion matrix which is shown in
Table 3 following the literature (Tseng et al.,
2015).

Evaluation Metrics

Precision = TP / (TP + FP) (14)
Recall = TP / (TP + FN) (15)
F1 = 2 #Precision*Recall (16)

Precision+Recall

For the CSC task, the better precision means
that the fewer correct characters are recognized as
incorrect characters, and the better recall means
that the more incorrect characters can be
detected/corrected.

4.3 Baselines

We compare our method to the following
baselines.

FASpell 2 (Hong et al., 2019): The FASpell
model uses the pre-trained model BERT as a
denoising autoencoder (DAE) and decoder and
uses confidence to filter candidate modifications
instead of confusion set.

DCSpell (Li et al., 2021): The DCSpell model
proposes a cloze-style  detector-corrector
framework that firstly detects whether a character
is erroneous before correcting it. DCSpell uses the
pre-trained discriminator ELECTRA (Clark et al.,
2016) as a detection module and uses BERT to
correct the incorrect characters.

BERT-Finetune (BERT-FT) (Devlin et al.,
2019): Add a Softmax layer after the last layer of
the BERT model, and use the training set to fine-
tune the BERT model so that it can complete the
CSC task.

Soft-Masked BERT? (Zhang et al., 2020): The
SM model uses the Bi-GRU as the detection
module, and then rewrites the input embedding
according to the results of the detection module,

2https://github.com/iqiyi/FASPell
Shttps://github.com/gitabtion/SoftMasked
Bert-PyTorch

System Result
Confusion matrix Positive Negative
(Erroneous) | (Correct)
Gold Positive TP FN
Standard Negative FP TN

Table 3: Confusion matrix.

and then enters it into the BERT model to
complete the error correction.

4.4 Experimental Setting

In order to show the improvement of our method
on the performance of the SM model, we use the
same experimental setting as the literature (Zhang
et al.,, 2020). Our code is based on BERT®*.
Following the literature (Zhang et al., 2020), when
the fine-tuning process, we kept the default hyper-
parameters and only used Adam. We did not use
the dynamic learning rate strategy. The learning
rate is set to 2e~>, the hidden dimension of Bi-
GRU is set to 256, the batch size is set to 320, and
the training epochs are set to 100. In order to save
time, we use early stop strategy. We stop the
training process early when the validation loss
does not decrease for ten consecutive epochs. The
value of A is set to 0.8, which is the best value
reported by (Zhang et al., 2020)

4.5

We list the experimental results of our method and
four baseline models on the test set. It can be seen
from Table 4, the precision and F1 score of the
SM model with sparsity regularization method are
better than baselines including SM model. Such
experimental results show the effectiveness of the
sparsity regularization method. In addition, we
found that both the detection and correction recall
of the SM model are better than that of the BERT-
FT model. Such experimental results show that
the Bi-GRU model is more effective than the
BERT model as the detection module, which
further supports the conclusion of literature
(Zhang et al., 2020) and (Hong et al., 2019) that
the error detection capability of BERT is poor.
Compared with the L; regularization, the
minimum entropy regularization is better. This
result is consistent with the analysis in Section 3.2.
The L, regularization only can contribute to the
sparsity of the probability vector output by the
detection module, while minimum entropy
regularization can contribute to sparsity and

Result analysis

‘https://github.com/google-research/bert
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Detection Correction
Test set Method P R F1 P R F1
FASpell 36.4 43.3 39.6 30.1 35.7 32.7
DCSpell 62.0 54.8 58.2 57.9 51.1 54.3
BERT-FT 84.9 60.4 70.6 84.3 57.8 68.4
SIGHAN SM 84.0 61.5 71.0 83.4 58.8 68.9
SM + L, 85.5 61.4 715 84.9 58.8 69.5
SM + Entropy 86.1 62.6 72.5 85.6 60.1 70.6
Table 4. Performance of different methods on test set.
Detection Correction
Method Pe% P R F1 P R F1
SM 20% 77.6 61.5 68.6 76.8 58.8 66.6
40% 72.9 61.5 66.7 72.0 58.8 64.7
60% 67.9 61.5 64.5 66.9 58.8 62.6
80% 63.7 61.5 62.5 62.6 58.8 60.6
100% 59.7 61.5 60.6 58.6 58.7 58.7
20% 78.8 61.4 69.0 78.0 58.8 67.1
40% 73.5 61.4 66.9 72.7 58.8 65.0
SM + L, 60% 68.6 61.4 64.8 67.7 58.8 63.0
80% 64.4 61.4 62.9 63.4 58.8 61.0
100% 60.5 61.4 60.9 59.4 58.8 59.1
20% 80.4 62.6 70.4 79.8 60.1 68.5
40% 75.0 62.6 68.2 74.2 60.1 66.4
SM + Entropy 60% 70.3 62.6 66.2 69.4 60.1 64.4
80% 66.1 62.6 64.3 65.2 60.1 62.5
100% 62.5 62.6 62.5 61.5 60.1 60.8

Table 5:  The result of robustness study.

sharpness. So, it is reasonable that the minimum
entropy regularization method is better than L
regularization.

Further analysis of the experimental results
shows that the detection precision and recall of the
SM  model with the minimum entropy
regularization are better than the original SM
model. This finding suggests that the minimum
entropy regularization method can help the SM
model fewer recognize correct characters as
incorrect characters, and help it detect more
incorrect characters. This result means that the
minimum entropy regularization method that we
have proposed therefore assists in improving the
detection ability of the CSC model thoroughly. It
should be noted that our method does not need
any change in model architecture, that is, our
method is theoretically applicable to all Chinese
spelling error detection (CSED) tasks and the
CSC tasks that include error detection sub-task.

In  addition, the minimum  entropy
regularization improves the F1 score of error
detection more than that of error correction. This
result shows that the SM model with the
minimum entropy regularization can detect and

correct some sentences that the original SM model
detects the incorrect characters but failed to
correct. This result may be explained by the fact
that the improvement of minimum entropy
regularization for error correction comes from the
advance of error detection. It can also make the
probability vector output by the detection module
sparse and sharp. According to this result, we can
infer that our method is more suitable for the CSC
model using soft strategy than the CSC model
using fixed threshold strategy.

4.6

Few input sentences contain incorrect characters
in practical applications, such as text editing and
correction. So, the robustness of the CSC model is
very important when there are more and more
without incorrect characters sentences in the test
set. Therefore, we tested the robustness of our
method.

We use the following methods to increase the
number of sentences in the test set that without
incorrect characters:

1) Randomly select Pe% of having incorrect

characters samples from the test set;

Robustness Study



Pe% 0% 20% 40% 60% 80% 100%
L, 06 05 03 04 04 0.4
Entropy 17 19 17 18 19 2.1
Table 6: Effect of regularization item.
Detection Correction
Method B F1 F1
0.02 70.5 68.7
L 0.04 715 69.5
! 0.06 70.8 69.0
0.08 70.9 69.1
Table 7: Effect of B (L, regularization).
Detection Correction
Method B 1 1
0.02 72.1 70.1
L 0.04 70.5 68.7
! 0.06 72.5 70.6
0.08 71.2 69.2

Table 8: Effect of § (minimum entropy regularization).

2) For each selected sample, use the
Correct_text of the data to replace its
Original_text, thereby generating a new
test without incorrect characters sample;

3) Add all the new samples generated in step

2) to the test set.
We tested the performance of the SM model
and our method when Pe% is

20%/40%/60%/80%/100%, and the results are
reported in Table 5. During the robustness study,
we will not fine-tune.

When Pe% takes different values, the recall of
the three models always remains static. Because
we just added some new without incorrect
character samples to the test set. Therefore, the
containing incorrect characters sample that the
CSC model can detect and correct will not change
while without fine-tune. So, the recall will not
change.

As shown in Table 5, when the number of without
incorrect characters samples in the test set
increases, the precision of the three models
decreases.  However, minimum  entropy
regularization and L, regularization can still
improve the performance of the CSC model. We
study the improvement of the F1 score of the two

kinds of sparsity regularization methods when Pe%

takes different values.

Table 6 reports the result, it can be seen that the
L, regularization can continually improve the
performance of the CSC model when Pe% takes
different values, but the improvement is slight.

The minimum entropy regularization is better than
the L, regularization, and as the value of Pe%
increases, the minimum entropy regularization
also shows a gradual improvement in the model
performance. Therefore, it can be concluded that
the two kinds of sparsity regularization studied in
this paper are robust when the number of without
incorrect characters samples in the test set
increases.

4.7 Effect of Hyper Parameter §§

We use the hyperparameter $ to balance the
objective function and the sparsity regularization
item. The value of B is determined by the
correcting F1 score on the test set. According to
the experimental results, the best value of B is
0.04 when we use L, regularization, and the best
value of B is 0.06 when we use minimum entropy
regularization. The detailed experimental results
are reported in Table 7 and Table 8.

5 Conclusion

This paper proposes to use the sparse
regularization method to improve the performance
of the CSC model. Specifically, we studied two
kinds of sparsity regularization methods: L,
regularization and minimum entropy
regularization. By adding a sparsity regularization
item to the objective function, the output of the
detection module is close to sparse and sharp, so
as to improve the performance of the CSC model.
Although we only conducted experiments on the
SM model, it should be noted that our method
does not need any change in model architecture.
Therefore, our method can apply to all Chinese
spelling error detection (CSED) tasks and the
CSC tasks that include the sub-task theoretical
level. Experiments on the SIGHAN test set show
that our method can effectively improve the
performance of the CSC model, especially the
minimum entropy regularization method.
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