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Abstract 1 

The Chinese Spelling Check (CSC) 2 

research objective is to detect and correct 3 

the spelling errors in the input. Generally, 4 

the number of incorrect characters in the 5 

input is far less than the correct, so the 6 

error probability sequence of input 7 

sentence predicted by the detection 8 

module should be sparse and sharp. 9 

However, all existing work has ignored 10 

this problem. In this paper, we add a 11 

sparsity regularization item to the 12 

objective function to make the output of 13 

the detection module close to sparse and 14 

sharp. We study two kinds of 15 

regularization: L1   regularization and 16 

minimum entropy regularization. 17 

Extensive experiments on the SIGHAN 18 

show that the sparsity regularization 19 

proposed in this paper can effectively 20 

improve the performance of the CSC 21 

model while without increasing the 22 

computational complexity. In addition, the 23 

robustness experiment results show that 24 

our method is robust. 25 

1 Introduction 26 

Chinese Spelling Check (CSC) task is an 27 

important task in Natural Language Processing 28 

(NLP) community, which aims to correct spelling 29 

errors in Chinese input (Yu & Li, 2014). There are 30 

usually two types of errors in Chinese text editing 31 

and text Recognition: errors of visually similar 32 

characters caused by Optical Character 33 

Recognition (OCR) or Wubi input method, and 34 

errors caused by the misuse of phonologically 35 

similar characters (Duan Jianyong, 2021). 36 

Spelling errors will affect the semantics of the 37 

sentence and then negatively impact downstream 38 

text processing tasks. Therefore, it is necessary 39 

and practical to study the CSC. 40 

The CSC task consists of two subtasks: error 41 

detection and error correction. For the CSC task, 42 

complete Chinese sentences with/without spelling 43 

errors will be given as the input. For the detection 44 

subtask, the detection module should return the 45 

locations of the incorrect characters. For the 46 

correction subtask, the correct module should 47 

point out the correct characters based on the 48 

output of detection subtask. The error correction 49 

problem is a follow-up problem of error detection 50 

for checking spelling errors (Hládek et al., 2020; 51 

Tseng et al., 2015). 52 

The input of the detection module is Chinese 53 

sentence 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) , and 𝑥𝑖  represents 54 

the i-th character in the input. The output is a 55 

probability vector 𝑃 = (𝑝1, 𝑝2, ⋯ , 𝑝𝑛) , 𝑝𝑖 56 

represents the probability that 𝑥𝑖  is an incorrect 57 

character. In the input of the CSC, the number of 58 

incorrect characters is usually far less than correct 59 

characters. Therefore, the probability vector 60 

output by the detection module should be sparse 61 

and sharp. For example, as shown in Figure 1, for 62 

the input “我以前想要高诉你，可是忘了，真63 

户秃。” (Correct sentence: “我以前想要告诉64 

你，可是忘了，真糊涂。”, meaning is “I 65 

wanted to tell you before, but I forgot, so 66 

confused. ”), the best output of detection module 67 

is a probability vector which with 1 at the location 68 

of “高” (告,tell), and “户秃” (糊涂,confused), 69 

and 0 at the other positions. The best output of the 70 

detection module is sparse and sharp, but this is a 71 

tremendous challenge for the detection module. 72 

Based on the above problem, and inspired by 73 

the attention with sparsity regularization (Zhang et 74 

al., 2018), this paper uses sparsity regularization 75 

item to constrain the probability vector output of 76 

the detection module. We study two kinds of 77 

sparsity regularization: 𝐿1  regularization and 78 

minimum entropy regularization. 𝐿1 79 

regularization will constrain the sum of the 80 

absolute value of the probability vector output by 81 
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detection module, so as to promote the sparsity of 82 

the probability vector. Minimum entropy 83 

regularization minimizes the entropy of the 84 

probability vector output by the detection module. 85 

As we all know, the more certain, the smaller 86 

entropy. So, when 𝑝𝑖 is 0 or 1, the entropy of the 87 

probability vector 𝑃  is the smallest. Therefore, 88 

minimum entropy regularization can make the 89 

probability vector output by the detection module 90 

close to sparse and sharp. 91 

In order to test the effectiveness of our 92 

approach, we evaluated our method on the 93 

SIGHAN dataset. On the premise of using the 94 

same training set, validation set, and test set and 95 

keeping the same experimental setup, the two 96 

kinds of sparsity regularization used in this paper 97 

can effectively improve the performance of the 98 

CSC model. In addition, we use five new test sets 99 

to test the robustness of our approach. In these test 100 

sets, the proportion of without spelling errors 101 

sentences increases sequentially. The main 102 

contributions of this paper are as follows: 103 

• We firstly propose use sparsity 104 

regularization to improve the performance 105 

of CSC model while without increasing the 106 

computational complexity of the model, and 107 

analyze why the sparsity regularization can 108 

be effective in CSC task from theoretical 109 

level. 110 

• We study two kinds of sparsity 111 

regularization: L1 regularization and 112 

minimum entropy regularization, and test 113 

the effectiveness and robustness of these 114 

two kinds of sparsity regularization through 115 

experiments. 116 

2 Related Work 117 

Early CSC methods were based on rules such as 118 

chunk, syntax, and grammar to determine spelling 119 

errors in the input (Hirst & Budanitsky, 120 

2005).This kind of approach has high correction 121 

accuracy but poor generalization performance. 122 

Because the rules need to be defined by experts 123 

based on knowledge and experience, the rules can 124 

only cover limited situations, and the formulation 125 

of these rules takes a lot of time. Then the 126 

researchers tried to use the statistical language 127 

model to complete the CSC task. First, replace the 128 

characters in the input sentence sequentially 129 

according to the confusion set, then use the 130 

statistical language model to score these replaced 131 

sentences, and give correction suggestions based 132 

on the score (Huang et al., 2014; Yeh et al., 2017). 133 

But the method based on the statistical language 134 

model has shortcomings, that is, the expressive 135 

and learning capability of the model are poor. 136 

Deep learning technology can contribute to this 137 

problem. The literature (Duan et al., 2019) 138 

employs Bi-LSTM combined with conditional 139 

random field (CRF) to achieve the error detection, 140 

and CRF was used to predict the best annotation 141 

sequence. The literature (Wang et al., 2021) 142 

employs Lattice-LSTM to dynamically integrate 143 

characters, words, and pinyin information, and 144 

then the CRF layer detected errors according to 145 

the integrated information. The focus of these 146 

works is to integrate multiple features to improve 147 

the performance of the model. Different from 148 

these works, the literature (Wang et al., 2019) 149 

applies the pointer-generation model, which 150 

excellent performance in automatic 151 

summarization tasks, to the error correction task. 152 

For each character in the input sentence, the 153 

pointer-generation model decides whether to copy 154 

the character or replace by the character generated 155 

by the Generation network according to the 156 

probability output by the detection module. As far 157 

as we know, this is the first CSC model using the 158 

soft strategy. However, these methods are difficult 159 

to adopt when the corpus is limited, because these 160 

models need enough labeled corpus for training 161 

(Tan et al., 2020). 162 

In recent years, BERT has been applied to 163 

many natural language processing tasks as a pre-164 

trained representation model and has shown 165 

strong performance (Devlin et al., 2019). Some 166 

researchers applied the BERT to the CSC task and 167 

achieved state-of-the-art (SOTA) results. The 168 

 

Figure 1:  The example of the output of spelling 

detection. 
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literature (Cheng et al., 2020) employs BERT to 169 

obtain the distributed representation of the input 170 

and employs the graph convolutional neural 171 

network (GCN) to learn the similarity knowledge 172 

in phonological and visual pronunciation to 173 

complete CSC task. The literature (Zhang et al., 174 

2020) employs the Bi-GRU network as the 175 

detection module and then employs BERT to 176 

complete the error correction task according to the 177 

output of the detection module. The literature (Li 178 

et al., 2021) proposes a cloze-style detector-179 

corrector framework (DCSpell) that firstly detects 180 

whether a character is erroneous before correcting 181 

it. DCSpell employs the discriminator of 182 

ELECTRA (Clark et al., 2016) as the Detector to 183 

detect the positions of incorrect characters and 184 

then employs BERT to correcting it.  185 

The model based on BERT has achieved the 186 

SOTA on the CSC task, but some researchers 187 

pointed out that the error detection capability of 188 

BERT is poor (Zhang et al., 2020; Hong et al., 189 

2019). Therefore, how to improve the detection 190 

capability of the CSC model base on BERT is a 191 

critical issue, which is also the focus of this paper. 192 

3 Method 193 

3.1 Soft-Masked BERT 194 

The sparsity regularization method proposed in 195 

this paper is an improvement method that can 196 

improve the performance of the CSC model. The 197 

sparsity regularization method can be widely used 198 

in CSC tasks at a theoretical level. In order to 199 

show the superiority of our method, we use the 200 

strong baseline model Soft-Masked BERT (SM) 201 

(Zhang et al., 2020). The model structure is shown 202 

in Figure 2. 203 

The SM model is composed of a detection 204 

module and correction module. The detection 205 

module uses a bidirectional GRU (Bi-GRU) 206 

model and the correction module uses BERT. The 207 

input of the detection module is the word 208 

embedding sequence 𝐸 = (𝑒1, 𝑒2, ⋯ 𝑒𝑛) , 𝑒𝑖 209 

represents the embedding representation of the 210 

character 𝑥𝑖. The 𝑒𝑖 consists of word embedding, 211 

position embedding, and segment embedding like 212 

the input of BERT. The output of the detection 213 

module is a probability vector 𝑃 = (𝑝1, 𝑝2, ⋯ 𝑝𝑛), 214 

𝑝𝑖 represents the probability that the character 𝑥𝑖 215 

is incorrect. 216 

In the SM model, for each character of the 217 

sequence, the 𝑝𝑖 is calculated as 218 

 𝑝𝑖 = 𝑃𝑑(𝑔𝑖 = 1|𝑋) = 𝜎(𝑊𝑑ℎ𝑖
𝑑 + 𝑏𝑑)  (1) 219 

where 𝑃𝑑(𝑔𝑖 = 1|𝑋)  denotes the conditional 220 

probability predicted by the detection module, σ 221 

denotes the sigmoid function, ℎ𝑖
𝑑  is the hidden 222 

state of the Bi-GRU, 𝑊𝑑 and 𝑏𝑑 are parameters of 223 

the model. 224 

According to the probability output by the 225 

detection module, the soft-masked embedding 𝑒𝑖
′ 226 

for the 𝑥𝑖 is calculated as Formula (2). 227 

 𝑒𝑖
′ = 𝑝𝑖 ⋅ 𝑒mask + (1 − 𝑝𝑖) ⋅ 𝑒𝑖  (2) 228 

where 𝑒𝑖  is the embedding of 𝑥𝑖  outputted by 229 

BERT and 𝑒mask  is the mask embedding of 230 

character [MASK] outputted by BERT. When the 231 

𝑝𝑖 close to 0, the 𝑒𝑖
′ is close to the 𝑒𝑖; otherwise, it 232 

is close to the 𝑒mask, which can reduce the impact 233 

of incorrect characters on the semantics of the 234 

input sentence. 235 

The correction network is a sequential multi-236 

class labeling task, which is based on the BERT 237 

model. The input of the correction network is the 238 

sequence 𝐸′ = (𝑒1
′ , 𝑒2

′ , ⋯ , 𝑒𝑛
′ )  that consists of 239 

soft-masked embedding. The output is a character 240 

sequence corrected by correction network, we 241 

define it as 𝑌 = (𝑦1, 𝑦2, ⋯ 𝑦𝑛). 242 

BERT is based on the transformer model and 243 

the hidden states of the output of BERT are 244 

denoted as 𝐻c = (ℎ1
c, ℎ2

c , ⋯ , ℎ𝑛
c ). For each 𝑥𝑖, the 245 

corresponding output of the SM model is 246 

calculated as follows 247 

 𝑃𝑐( 𝑦𝑖 = 𝑗 ∣∣ 𝑋 ) = softmax(𝑊ℎ𝑖
′ + 𝑏) [𝑗]  (3) 248 

Where 𝑃𝑐( 𝑦𝑖 = 𝑗 ∣∣ 𝑋 ) define the probability that 249 

x𝑖 is corrected as character j in the output of the 250 

correct module, softmax denote the softmax 251 

function, 𝑊 and 𝑏 are parameters, ℎ𝑖
′ is the hidden 252 

state which is obtained by residual connection, 253 

defined as 254 

 ℎ𝑖
′ = ℎ𝑖

𝑐 + 𝑒𝑖  (4) 255 

The training of the SM model is conducted end-256 

to-end. For the dataset 𝐷 = {(𝑋𝑗 , 𝑌𝑗)}
𝑗=1

𝑁
, 𝑋𝑗  is 257 

the j-th input sequence, 𝑌𝑗 is the correct sequence 258 

of the 𝑋𝑗, N denotes that there are N with\without 259 

error sentences in the dataset. The goal of the 260 

training process is to optimize the two objective 261 

functions, corresponding to the detection module 262 

and error module. 263 

 ℒ𝑑 = ∑ ∑ log 𝑃𝑑( 𝑔𝑖
𝑗

∣∣ 𝑋𝑗 , 𝜃𝑑 )
𝑛

𝑖=1

𝑁
𝑗=1   (5) 264 
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 ℒ𝑐 = ∑ ∑ log 𝑃𝑐( 𝑦𝑖
𝑗

∣∣ 𝑋𝑗, 𝜃𝑐 )
𝑛

𝑖=1

𝑁
𝑗=1   (6) 265 

Where ℒ𝑑  and ℒ𝑐  denotes the objective of the 266 

detection module and the correction module, 267 

respectively. 𝜃𝑑  and 𝜃𝑐  denote the parameters of 268 

the detection module and correction module. The 269 

linear combination of ℒ𝑑  and ℒ𝑐  is the overall 270 

training objective of the SM model. 271 

 ℒ = 𝜆 ⋅ ℒ𝑐 + (1 − 𝜆) ⋅ ℒ𝑑  (7) 272 

Where 𝜆 is a hyper-parameter and 𝜆 ∈ (0,1). 273 

3.2 Sparsity Regularization 274 

The output of the detection network is a 275 

probability vector 𝑃 = (𝑝1, 𝑝2, ⋯ 𝑝𝑛). In the input 276 

of the CSC, the number of incorrect characters is 277 

usually far less than correct characters. Therefore, 278 

the probability vector 𝑃  should be sparse and 279 

sharp. Accordingly, we attempt to study the 280 

sparsity regularization method for the CSC task. 281 

Specifically, we add a sparsity regularization item 282 

to the objective function as a penalty term to 283 

constraint the distribution of probability vector 𝑃. 284 

 ℒ′ = 𝜆 ⋅ ℒ𝑐 + (1 − 𝜆) ⋅ ℒ𝑑 + 𝛽 ∙ ∑ 𝑅(𝑃𝑗)𝑁
𝑗=1   (8) 285 

in which 𝑅(𝑃𝑗) is the sparsity regularization item, 286 

𝛽  is the hyper-parameter which balances the 287 

sparsity regularization term and the log-likelihood 288 

function. In this paper, we study two sparsity 289 

regularization methods: L1  regularization and 290 

minimum entropy regularization. 291 

 292 

𝐋𝟏 regularization  L0  regularization and L1 293 

regularization are the most commonly used 294 

regularization method to control the sparsity of 295 

parameters. The return of L0  regularization is 296 

positively correlated with the number of non-zero 297 

elements in the input, so minimizing the L0 298 

regularization term can make the parameters 299 

sparse. But L0  regularization is a non-convex 300 

function, which means it is difficult to optimize. 301 

Therefore, researchers usually use L1 302 

regularization instead of L0 regularization. For the 303 

probability vector 𝑃𝑗, L1 regularization item is: 304 

 𝐿1(𝑃𝑗) = ∑ |𝑝𝑖
𝑗
|

n

𝑖=1
  (9) 305 

Where 𝑝𝑖
𝑗
 is a probability and 𝑝𝑖

𝑗
∈ (0,1). Since 306 

the optimization strategy in this paper is to 307 

maximize the objective function ℒ′, 𝑅(𝑃𝑗) based 308 

on the L1 regularization in this paper is defined as: 309 

 𝑅(𝑃𝑗) = − ∑ 𝑝𝑖
𝑗

n

𝑖=1
  (10) 310 

In the CSC task, maximizing the 𝑅(𝑃𝑗) based 311 

on L1 regularization will cause all 𝑝𝑖
𝑗
 to approach 312 

0. For j-th sentence in the dataset, If the character 313 

at the k-th position is incorrect, ℒ𝑑 will constrain 314 

𝑝𝑘
𝑗
 to approach 1. So L1 regularization can control 315 

the distribution of 𝑃𝑗 close to sparse theoretically. 316 

However, since the L1 regularization item expects 317 

all 𝑝𝑖
𝑗
 close to 0, even if the character is incorrect. 318 

This means that L1  regularization cannot 319 

contribute to the probability vector 𝑃𝑗 to be sharp. 320 

 

Figure 2:   Structure of Soft-Masked BERT. 
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We aim to contribute to the probability vectors 𝑃𝑗 321 

to be sparse and sharp. Accordingly, we introduce 322 

the minimum entropy approach. 323 

 324 

Minimum entropy regularization In a statistical 325 

learning community, Minimum entropy is used 326 

less frequently than maximum entropy and L1 327 

regularization, there is also has been used as a 328 

regularization item. The literature (Grandvalet & 329 

Bengio, 2005) uses minimum entropy 330 

regularization to help the classifier based on semi-331 

supervised learning make full use of beneficial 332 

unlabeled data, aiming to improve the robustness 333 

of the classifier. The literature (Zhang et al., 2018) 334 

uses the minimum entropy regularization item to 335 

contribute the distribution of attention vectors to 336 

sparse and sharp. 337 

In the CSC task, we argue that 𝑃𝑗  should be 338 

sparse and sharp. That is, the probability vector 𝑃𝑗 339 

should have low entropy. We use the minimum 340 

entropy regularization to meet this prior as follows. 341 

 Ent(𝑃𝑗) = − ∑ 𝑝𝑖
𝑗

log(𝑝𝑖
𝑗
)

n

𝑖=1
  (11) 342 

 𝑅(𝑃𝑗) = − Ent(𝑃𝑗) = ∑ 𝑝𝑖
𝑗

log(𝑝𝑖
𝑗
)

n

𝑖=1
  (12) 343 

The derivative of the minimum entropy 344 

function f(x) = xlog(x) is 345 

 𝑓′(𝑥) = 1 + log (𝑥)  (13) 346 

When 𝑥 ∈ (0, 1 𝑒⁄ ) , 𝑓′(𝑥) < 0 , and when 𝑥 ∈347 

(1 𝑒⁄ , 1) , 𝑓′(𝑥) > 0 , and 𝑓(0) = 𝑓(1) = 0 . 348 

Therefore, when x ∈ (0,1), maximizing the 349 

minimum entropy function will make the value of 350 

x to 0 or 1. For the CSC task, the value of the 351 

probability vector output by the detection module 352 

is preferably 0 or 1, corresponding to the location 353 

of the correct character and incorrect character. In 354 

summary, minimum entropy regularization can 355 

contribute to the CSC task at the theoretical level. 356 

4  Experiment 357 

In this section, we analyzed the experimental 358 

results of our method on the CSC task in detail 359 

and compared it with the results of baselines 360 

based on different methods. We also discussed 361 

how to choose model parameters and verified the 362 

robustness of our method. 363 

4.1 Dataset 364 

Train and Validation set  In this paper, the 365 

training data is composed of (Wu et al., 2013), (Yu 366 

et al., 2014), and (Tseng et al., 2015). Following 367 

the literature (Wang et al., 2019), we add an 368 

additional 271K samples to our training data, 369 

which are provided by the literature (Wang et al., 370 

2018). To observe the training process in real-time, 371 

we randomly selected 10% of these training data  372 

as the validation set and the other sample as the 373 

training set. We show one data sample in Table 1. 374 

As shown in Table 1, a sample consists of four 375 

parts: Id, Original_text, Wrong_ids, and 376 

Correct_text. The Id is the id of the sample. The 377 

original_text denotes the input of the CSC task 378 

with\without incorrect characters. The Wrong_ids 379 

point out the location of the incorrect character, 380 

and it is an empty list when there are without 381 

incorrect characters in the input. The Correct_text 382 

denotes the corrected sentence, and it is the same 383 

as the Original_text when there are without 384 

incorrect characters in the input. 385 

Test set  Following the literature (Wang et al., 386 

2019), we used the test dataset from the 387 

SIGHAN13 (Wu et al., 2013), SIGHAN14 (Yu et 388 

al., 2014), and SIGHAN15 (Tseng et al., 2015) 389 

benchmarks. Like related work, we also use 390 

OpenCC1 to convert the characters in the test set 391 

from traditional Chinese to simplified Chinese. 392 

The statistic of the data is listed in Table 2. 393 

 
1 https://github.com/BYVoid/OpenCC 

"Id": "A2-0023-1" 

"Original_text": 
"下个星期，我跟我朋唷打算

去法国玩儿。" 

"Wrong_ids": " [9] " 

"Correct_text": 
"下个星期，我跟我朋友打算

去法国玩儿。" 
 

Table 1:  Data sample. 

Train and Val Data Line Avg. Length Errors 

(Wang et al., 2018) 271,329 44.4 382,704 

SIGHAN13 700 49.2 350 

SIGHAN14 1301 49.7 5284 

SIGHAN15 970 30.0 3143 

Total 274,300 44.4 391,481 

Test Data Line (Line with error character) Avg. Length Errors 

SIGHAN13 1000(971) 74.1 1227 

SIGHAN14 1062(529) 50.1 782 

SIGHAN15 1100(550) 30.5 715 

Total 3162(2074) 50.8 2724 
 

Table 2:   The statistic of the data. 

https://github.com/BYVoid/OpenCC
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4.2 Evaluation Metrics 394 

For this paper, we report precision (P), recall (R), 395 

and F1 scores as evaluation metrics, which are 396 

used by almost all CSC tasks. We report the 397 

sentence-level metrics on the detection sub-task 398 

and correction sub-task, i.e., we consider an input 399 

sentence has been correctly only when the output 400 

sentences of the model are completely consistent 401 

with our expected. As shown in Formula 24 402 

through 26, the metrics are measured with the 403 

help of the confusion matrix which is shown in 404 

Table 3 following the literature (Tseng et al., 405 

2015). 406 

 Precision =  TP / (TP + FP)  (14) 407 

 Recall =  TP / (TP + FN)  (15) 408 

 F1 =  
2 ∗Precision∗Recall

Precision+Recall
  (16) 409 

For the CSC task, the better precision means 410 

that the fewer correct characters are recognized as  411 

incorrect characters, and the better recall means 412 

that the more incorrect characters can be 413 

detected/corrected. 414 

4.3 Baselines 415 

We compare our method to the following 416 

baselines. 417 

FASpell 2  (Hong et al., 2019): The FASpell 418 

model uses the pre-trained model BERT as a 419 

denoising autoencoder (DAE) and decoder and 420 

uses confidence to filter candidate modifications 421 

instead of confusion set. 422 

DCSpell (Li et al., 2021): The DCSpell model 423 

proposes a cloze-style detector-corrector 424 

framework that firstly detects whether a character 425 

is erroneous before correcting it. DCSpell uses the 426 

pre-trained discriminator ELECTRA (Clark et al., 427 

2016) as a detection module and uses BERT to 428 

correct the incorrect characters. 429 

BERT-Finetune (BERT-FT) (Devlin et al., 430 

2019): Add a Softmax layer after the last layer of 431 

the BERT model, and use the training set to fine-432 

tune the BERT model so that it can complete the 433 

CSC task.  434 

Soft-Masked BERT3 (Zhang et al., 2020): The 435 

SM model uses the Bi-GRU as the detection 436 

module, and then rewrites the input embedding 437 

according to the results of the detection module, 438 

 
2 https://github.com/iqiyi/FASPell 
3https://github.com/gitabtion/SoftMasked

Bert-PyTorch 

and then enters it into the BERT model to 439 

complete the error correction. 440 

4.4 Experimental Setting 441 

In order to show the improvement of our method 442 

on the performance of the SM model, we use the 443 

same experimental setting as the literature (Zhang 444 

et al., 2020). Our code is based on BERT 4 . 445 

Following the literature (Zhang et al., 2020), when 446 

the fine-tuning process, we kept the default hyper-447 

parameters and only used Adam. We did not use 448 

the dynamic learning rate strategy. The learning 449 

rate is set to 2𝑒−5, the hidden dimension of Bi-450 

GRU is set to 256, the batch size is set to 320, and 451 

the training epochs are set to 100. In order to save 452 

time, we use early stop strategy. We stop the 453 

training process early when the validation loss 454 

does not decrease for ten consecutive epochs. The 455 

value of λ is set to 0.8, which is the best value 456 

reported by (Zhang et al., 2020) 457 

4.5 Result analysis 458 

We list the experimental results of our method and 459 

four baseline models on the test set. It can be seen 460 

from Table 4, the precision and F1 score of the 461 

SM model with sparsity regularization method are 462 

better than baselines including SM model. Such 463 

experimental results show the effectiveness of the 464 

sparsity regularization method. In addition, we 465 

found that both the detection and correction recall 466 

of the SM model are better than that of the BERT-467 

FT model. Such experimental results show that 468 

the Bi-GRU model is more effective than the 469 

BERT model as the detection module, which 470 

further supports the conclusion of literature 471 

(Zhang et al., 2020) and (Hong et al., 2019) that 472 

the error detection capability of BERT is poor. 473 

Compared with the L1  regularization, the 474 

minimum entropy regularization is better. This 475 

result is consistent with the analysis in Section 3.2. 476 

The L1  regularization only can contribute to the 477 

sparsity of the probability vector output by the 478 

detection module, while minimum entropy 479 

regularization can contribute to sparsity and 480 

 
4 https://github.com/google-research/bert 

Confusion matrix 

System Result 

Positive 

(Erroneous) 

Negative 

(Correct) 

Gold 

Standard 

Positive TP FN 

Negative FP TN 

Table 3:  Confusion matrix. 

https://github.com/iqiyi/FASPell
https://github.com/iqiyi/FASPell
https://github.com/gitabtion/SoftMaskedBert-PyTorch
https://github.com/gitabtion/SoftMaskedBert-PyTorch
https://github.com/google-research/bert
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sharpness. So, it is reasonable that the minimum 481 

entropy regularization method is better than L1 482 

regularization. 483 

Further analysis of the experimental results 484 

shows that the detection precision and recall of the 485 

SM model with the minimum entropy 486 

regularization are better than the original SM 487 

model. This finding suggests that the minimum 488 

entropy regularization method can help the SM 489 

model fewer recognize correct characters as 490 

incorrect characters, and help it detect more 491 

incorrect characters. This result means that the 492 

minimum entropy regularization method that we 493 

have proposed therefore assists in improving the 494 

detection ability of the CSC model thoroughly. It 495 

should be noted that our method does not need 496 

any change in model architecture, that is, our 497 

method is theoretically applicable to all Chinese 498 

spelling error detection (CSED) tasks and the 499 

CSC tasks that include error detection sub-task. 500 

In addition, the minimum entropy 501 

regularization improves the F1 score of error 502 

detection more than that of error correction. This 503 

result shows that the SM model with the 504 

minimum entropy regularization can detect and 505 

correct some sentences that the original SM model 506 

detects the incorrect characters but failed to 507 

correct. This result may be explained by the fact 508 

that the improvement of minimum entropy 509 

regularization for error correction comes from the 510 

advance of error detection. It can also make the 511 

probability vector output by the detection module 512 

sparse and sharp. According to this result, we can 513 

infer that our method is more suitable for the CSC 514 

model using soft strategy than the CSC model 515 

using fixed threshold strategy. 516 

4.6 Robustness Study 517 

Few input sentences contain incorrect characters 518 

in practical applications, such as text editing and 519 

correction. So, the robustness of the CSC model is 520 

very important when there are more and more 521 

without incorrect characters sentences in the test 522 

set. Therefore, we tested the robustness of our 523 

method. 524 

We use the following methods to increase the 525 

number of sentences in the test set that without 526 

incorrect characters: 527 

1) Randomly select Pe% of having incorrect 528 

characters samples from the test set; 529 

Test set Method 
Detection Correction 

P R F1 P R F1 

SIGHAN 

FASpell 36.4 43.3 39.6 30.1 35.7 32.7 

DCSpell 62.0 54.8 58.2 57.9 51.1 54.3 

BERT-FT 84.9  60.4  70.6  84.3  57.8  68.4 

SM 84.0 61.5 71.0 83.4 58.8 68.9 

SM + L1 85.5 61.4 71.5 84.9 58.8 69.5 

SM + Entropy 86.1 62.6 72.5 85.6 60.1 70.6 
 

Table 4:    Performance of different methods on test set. 

Method  Pe% 
Detection Correction 

P R F1 P R F1 

SM 20% 77.6 61.5 68.6 76.8 58.8 66.6 

 40% 72.9 61.5 66.7 72.0 58.8 64.7 

 60% 67.9 61.5 64.5 66.9 58.8 62.6 

 80% 63.7 61.5 62.5 62.6 58.8 60.6 

 100% 59.7 61.5 60.6 58.6 58.7 58.7 

SM + L1 

20% 78.8 61.4 69.0 78.0 58.8 67.1 

40% 73.5 61.4 66.9 72.7 58.8 65.0 

60% 68.6 61.4 64.8 67.7 58.8 63.0 

80% 64.4 61.4 62.9 63.4 58.8 61.0 

100% 60.5 61.4 60.9 59.4 58.8 59.1 

SM + Entropy 

20% 80.4 62.6 70.4 79.8 60.1 68.5 

40% 75.0 62.6 68.2 74.2 60.1 66.4 

60% 70.3 62.6 66.2 69.4 60.1 64.4 

80% 66.1 62.6 64.3 65.2 60.1 62.5 

100% 62.5 62.6 62.5 61.5 60.1 60.8 
 

Table 5:    The result of robustness study. 
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2) For each selected sample, use the 530 

Correct_text of the data to replace its 531 

Original_text, thereby generating a new 532 

test without incorrect characters sample; 533 

3) Add all the new samples generated in step 534 

2) to the test set. 535 

We tested the performance of the SM model 536 

and our method when Pe% is 537 

20%/40%/60%/80%/100%, and the results are 538 

reported in Table 5. During the robustness study, 539 

we will not fine-tune. 540 

When Pe% takes different values, the recall of 541 

the three models always remains static. Because 542 

we just added some new without incorrect 543 

character samples to the test set. Therefore, the 544 

containing incorrect characters sample that the 545 

CSC model can detect and correct will not change 546 

while without fine-tune. So, the recall will not 547 

change. 548 

As shown in Table 5, when the number of without 549 

incorrect characters samples in the test set 550 

increases, the precision of the three models 551 

decreases. However, minimum entropy 552 

regularization and L1  regularization can still 553 

improve the performance of the CSC model. We 554 

study the improvement of the F1 score of the two 555 

kinds of sparsity regularization methods when Pe% 556 

takes different values. 557 

Table 6 reports the result, it can be seen that the 558 

L1  regularization can continually improve the 559 

performance of the CSC model when Pe% takes 560 

different values, but the improvement is slight. 561 

The minimum entropy regularization is better than 562 

the L1  regularization, and as the value of Pe% 563 

increases, the minimum entropy regularization 564 

also shows a gradual improvement in the model 565 

performance. Therefore, it can be concluded that 566 

the two kinds of sparsity regularization studied in 567 

this paper are robust when the number of without 568 

incorrect characters samples in the test set 569 

increases. 570 

4.7 Effect of Hyper Parameter β 571 

We use the hyperparameter β  to balance the 572 

objective function and the sparsity regularization 573 

item. The value of β  is determined by the 574 

correcting F1 score on the test set. According to 575 

the experimental results, the best value of β  is 576 

0.04 when we use L1 regularization, and the best 577 

value of β is 0.06 when we use minimum entropy 578 

regularization. The detailed experimental results 579 

are reported in Table 7 and Table 8. 580 

5 Conclusion 581 

This paper proposes to use the sparse 582 

regularization method to improve the performance 583 

of the CSC model. Specifically, we studied two 584 

kinds of sparsity regularization methods: L1 585 

regularization and minimum entropy 586 

regularization. By adding a sparsity regularization 587 

item to the objective function, the output of the 588 

detection module is close to sparse and sharp, so 589 

as to improve the performance of the CSC model. 590 

Although we only conducted experiments on the 591 

SM model, it should be noted that our method 592 

does not need any change in model architecture. 593 

Therefore, our method can apply to all Chinese 594 

spelling error detection (CSED) tasks and the 595 

CSC tasks that include the sub-task theoretical 596 

level. Experiments on the SIGHAN test set show 597 

that our method can effectively improve the 598 

performance of the CSC model, especially the 599 

minimum entropy regularization method.  600 
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