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Abstract

Compositional generalization tests are often
used to estimate the compositionality of LLM:s.
However, compositional generalization tests
(1) do not focus on the explanations of LLMs
for their fitted functions and (2) use consis-
tency with a fixed function on a pre-partitioned
test set as a criterion, hindering the acqui-
sition of explainable and convincing estima-
tion and analysis of the compositionality of
LLMs. In this work, we propose a program-
generation perspective that takes the programs
generated by LLMs as externalized explana-
tions and provides estimates of the composi-
tionality of LLMs with the help of complexity-
based theory. The perspective addresses the
explainability limitations of compositional gen-
eralization tests and provides a new way to an-
alyze the compositionality characterization of
LLMs. We conduct experiments and analysis of
existing advanced LLMs based on this perspec-
tive on a string-to-grid task, and find various
compositionality characterizations and compo-
sitionality deficiencies exhibited by LLMs.

1 Introduction

Compositionality is a concept that originates in
the philosophy of language. It is a property that
a language has to a certain extent and can be ex-
pressed as "the meaning of a complex expression
is determined by its structure and the meanings
of its constituents" (Pelletier, 1994; Janssen and
Partee, 1997; Szabd, 2004; Pagin and Westerstahl,
2010). In machine learning, the concept of compo-
sitionality is generalized to the mapping of inputs
to outputs, suggesting that the output is determined
by the meanings of the components of the input and
the form in which the components are combined
(Lake and Baroni, 2018; Hupkes et al., 2020). In
the NLP domain, many tasks involve mappings
with significant compositionality, such as semantic
parsing (Keysers et al., 2020), data-to-text genera-

tion (Xu and Wang, 2024), compositional reason-
ing (Li et al., 2024), etc.

For a task that involves mappings with composi-
tionality, if a model can recognize the composition-
ality of the mappings and utilize it, then the model
will be able to correctly map the inputs made up
of components to the outputs, as long as it knows
the meaning of the components. This ability to
recognize the compositionality of the mappings
and utilize it is called the model’s composition-
ality. Models’ compositionality characterizes an
effective form of reaching out-of-distribution gen-
eralization (Bahdanau et al., 2019) and this form
is typical in human intelligence (Dehaene et al.,
2022). Therefore, the compositionality of models
is an important research topic from both practical
and cognitive perspectives (Hupkes et al., 2022).

The research on models’ compositionality has
long been controversial, and the controversy fo-
cuses on how to properly measure a model’s com-
positionality and whether the existing paradigms
enable models to develop sufficient composition-
ality. In the NLP domain, a widely used approach
to study the compositionality of language models
on specific tasks is to conduct compositional gen-
eralization tests. The essence of the compositional
generalization test is to partition the training and
test sets with compositional differences, and then
test the trained model’s performance on the test
set. After the emergence of large language models
(LLMs), compositional generalization tests are still
widely used under in-context learning for LLMs
that are difficult to fine-tune directly.

The results of the compositional generalization
test are intuitively suitable as a reflection of the
compositionality of LLMs. However, composi-
tional generalization tests have limitations regard-
ing explainability, mainly in terms of (1) the lack
of attention to the LLMs’ explanation of their fit-
ted functions, and (2) the lack of explainability in
using consistency with a fixed function on a pre-



partitioned test set as a criterion. The limitations
make it difficult to obtain convincing estimates and
analyses of the LLMs’ compositionality, hindering
more in-depth research on the explainable compo-
sitionality of the LLMs.

To solve this problem, we propose a program-
generation perspective for the estimation and anal-
ysis of the compositionality of LLMs. In this per-
spective, we take the program generated by LLMs
as an explanation of their fitted functions and draw
on complexity-based theory to give an estimate of
the compositionality of LLMs based on the expla-
nation. By externalizing the explanation and appro-
priately quantifying the compositionality reflected
in the explanation, this perspective addresses the
explainability limitations of compositional gener-
alization tests. The perspective is consistent with
intuitions about compositionality and generaliza-
tion, and provides new ways to characterize the
compositionality of LL.Ms.

Based on this perspective, we experiment and an-
alyze advanced LLMs including reasoning models
and non-reasoning models on a simple string-to-
grid task. We identify different compositionality
characterizations exhibited by LLMs, and compo-
sitionality defects of LLMs in various situations.

2 Compositional Generalization Tests

In this section, we introduce the formulation of
compositional functions and compositional gener-
alization tests. We discuss the limitations of com-
positional generalization tests in terms of explain-
ability.

2.1 Formulation

Following the formulation in Wiedemer et al.
(2023), a compositional function f transforms K
independent input components into K output com-
ponents, and then combines these output compo-
nents into an output. Formally, the K independent
input components are K sets C', ..., C'x, where
Cr = {vg1, ..., v, } denotes the U possible val-
ues of the k-th input component. For a value ¢, €
Cp, the transformation function ¢ : Cr, — Ry
transforms it into the output component 7. The
combination function g : Ry X --- X Rg — Y
combines the components into the output y. We
define X = (7 x --- x Ok to denote the set
containing all possible inputs. Given the input
x = (c1,...,cx) € X, the compositional function

f+ X — Y can be expressed as:

f(z) = g(d1(c1); . oK (ck)) ()

For an unknown compositional function f, com-
positional generalization requires that the model
be able to map unseen combinations of compo-
nent values to expected outputs after seeing all
the component values and some combinations of
component values mapped to the outputs. Com-
positional generalization tests typically follow the
training-test paradigm. In this paradigm, we divide
X into two disjoint subsets Xg and X7 that sat-
isfy Vg, do € Xg, x = vy 5, and generate
training set S = {(z, f(z)) | * € Xg} and test
set T = {(z, f(z)) | = € Xr}. The division is
usually based on minimizing the degree to which
combinations of components in 7" are visible in S
(Keysers et al., 2020; Kim and Linzen, 2020). After
amodel is trained on the training set .S, the model’s
accuracy on the test set 71" is used to measure the
model’s compositional generalization performance.
For LLMs that are difficult to fine-tune directly,
each test of x € X is usually performed indepen-
dently by extracting a subset of S that covers the
values in z to be input to the LLMs as a demonstra-
tion of in-context learning.

2.2 Limitations of Tests

It is intuitively appropriate to use the model’s com-
positional generalization performance to reflect the
model’s compositionality. However, the composi-
tional generalization test has the following limita-
tions in terms of explainability:

(L1) The model’s explanation of the function
f* it fits cannot be obtained simply from the
mapping results, preventing a convincing anal-
ysis of the model’s compositionality. In compo-
sitional generalization tests, we only observe the
mapping results output by the model without fo-
cusing on the process of generating the mapping
results. However, by simply observing the map-
ping results, we cannot obtain an explanation of
the model for the function f* it fits. In this case,
we cannot provide a convincing analysis of the
model’s compositionality based on the model’s ex-
planation of its fitted function f*. For example,
we cannot convincingly capture what exactly the
model recognizes as the samples’ compositionality
and analyze how it differs from our expectations,
making it difficult to explain the model’s errors in
compositional generalization tests.
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Figure 1: The above shows a compositional function f that maps a 4-bit A / B string to a 2 x 4 grid. Models 1 and 2
fit functions f{ and f3 which fit S but are inconsistent with f on x. L1: Based only on the mapping results output
by the model, the explanation for f* as in the figure cannot be obtained for analysis. L2: Even if the model fits a
function inconsistent with f on z, it may have a sufficiently compositional (not clearly defined) explanation, e.g.,
the explanation of f; in the figure is intuitively sufficiently compositional while the explanation of fJ is not.

(L2) Using consistency with a fixed function f
on a pre-partitioned test set as a criterion lacks
explanability and may lead to unconvincing es-
timates of the model’s compositionality. For a
training set S, the function that can fit it is not
unique. Compositional generalization tests use f
as a fixed criterion, requiring the model to perform
consistently with f on the test set. The reason for
choosing f as a fixed criterion is usually that the
explanation of f is sufficiently compositional from
human intuition, but we lack a clear definition of
what is "compositional”. In this case, the estimate
of the model’s compositionality lacks explainabil-
ity: even if the model’s performance on x € T
is inconsistent with f, its fitted function f* may,
under some definition, be fairly "compositional” in
its explanation, and the estimate is therefore uncon-
vincing. To solve this problem, it is necessary to
move away from the paradigm that partitions the
training and test sets and evaluates the consistency
with f on the test set. We need to clearly define
the compositionality reflected in the explanation
and give an estimate of the model’s composition-
ality through the model’s explanation of its fitted
function. To do this, L1 first needs to be addressed.

Figure 1 provides a specific example illustrating
L1 and L2. The development of the performance
of LLMs has made it possible to direct LLMs to
export their explanations, which motivates us to

consider a more explainable perspective for mea-
suring and analyzing the compositionality of LLMs
to address both L1 and L2.

3 Program-Generation Perspective

In this section, we propose the program-generation
perspective for the estimation and analysis of the
compositionality of LLMs. We introduce the ra-
tionale and formulation of the perspective, and the
characterization of the compositionality of LLMs
provided by quantitative metrics. We show that this
perspective addresses the limitations of composi-
tional generalization tests in terms of explainability.

3.1 Rationale

The key to addressing .1 and L2 is that (1) we need
to be explicit about the explanation of the LLMs
for the functions they fit, and (2) we need a method
for properly estimating the compositionality of the
LLMs based on their explanation.

Since it is difficult to analyze the explanations
of the LLMs from the internal states, we use exter-
nalization, i.e., we ask the LLMs to directly output
their explanations of the fitted functions. We want
the explanation to be presented in a formal lan-
guage with unambiguity, and the LLMs need no
additional guidance for the generation of this for-
mal language. Therefore, we choose a common
programming language as the formal language of
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Figure 2: Examples of the mapping table of P* (3 atomic input components, 6 atomic output components, 8
samples). We group mappings involving the same atomic input components and mark the involved atomic output
components with colors. The leftmost and rightmost examples demonstrate zero and sufficient compositionality.

the explanation and ask the LLMs to output the
program as the explanation. Specifically, for the set
D = {(zi,4:1) | @i € X, yi = f(xi)}{=, generated
by a compositional function f containing d sam-
ples that cover all possible input component values,
we ask the LLMs to output a program P satisfying
that for any ¢ € {1, ..., d}, the program P outputs
y; on input z;.

To estimate the compositionality of LLMs via
the program P, we introduce the complexity-based
theory of compositionality proposed by Elmoznino
et al. (2025). The theory is based on Kolmogorov
Complexity K (Kolmogorov, 1965) for a quantita-
tive definition of the compositionality of mappings
from a compression perspective. For object lists
I and O, K(O) denotes the length of the shortest
program (in a certain programming language) that
outputs O, and K(O|I) denotes the length of the
shortest program that outputs O with input I. Let
Dx = {z;}%_, and Dy = {y;}¢_, be lists of z;
and y; in D, respectively. In this theory, the com-
positionality of the set D (regarded as a mapping
.fron.l .D x to Dy) is defined as %, which
intuitively means the extent to which the represen-
tation of Dy can be compressed using D .

Although K is not computable, its upper bound
can be estimated. The compositionality of an LLM
can be characterized as how small an estimate of
the upper bound on K(Dy|Dx) is provided by
the program P that the LLM generates, as smaller
estimates indicate a stronger degree of compression.
The most direct upper bound estimate provided by
a correct P is the length itself. However, the length
of P is affected by many non-essential factors (e.g.,
formatting, naming, different description of the
same process, etc.), and P may be incorrect on D

(i.e., for some input x;, the output is not y;), so the
upper bounds provided by different P with their
lengths may lack comparability. We can transform
P into a hypothetical program PT in a uniform
programming paradigm such that P is correct
on D and the upper bound estimates provided by
different P™ are comparable. The upper bound
estimates provided by P™ can then be used as a
basis for estimating the compositionality of LLMs.

3.2 Formulation

Suppose a sample contains N atomic input com-
ponents and M atomic output components. A hy-
pothetical program PT contains a mapping table
consisting of z mappings. The z-th mapping maps
the values of n. input components to the values
of m_ atomic output components. Using the map-
ping table, P™ transforms the input into output
components and combines them into an output by
a fixed algorithm. Assuming that the values of
all atomic input and output components are pro-
grammed with length 1, we have that the length of
Pt is wy - ZZZ:l(nz + m) + wa, where wy, wo
are constants that are consistent for any P*. Thus
we define the size of the mapping table as a compa-
rable metric for the estimates provided by P+:

2

Figure 2 illustrates the meaning of L(P™). By
parsing P for locations involving values of the in-
put and output components (see Appendix A for
details), we can get the metric L(P™) of its cor-
responding P*. We also need to check the cor-
rectness of P on D. If there are F errors (i.e.,



E = Zle [P(x;) # yi]), then E mappings di-
rectly corresponding to the error samples (all N
atomic input components mapped to all M atomic
output components) will need to be added to the
mapping table to make P correct, and so L(P™)
increases by (N 4+ M )E. We thus obtain a metric
for the estimates provided by P:

L(P)=L(P")+ (N+ M)E 3)

For a P* that is correct on D, there are two
bounds on the size of its mapping table: (1) each
atomic input component corresponds to a fixed set
of atomic output components (mutually disjoint
and the union is all atomic output components),
each mapping is a mapping of the value of an
atomic input component to the value of its corre-
sponding atomic output components, and the map-
ping table size Ly = U (N + M) corresponds to suf-
ficient compositionality; (2) the mapping table con-
tains d mappings directly corresponding to d sam-
ples, and the mapping table size L, = d(N + M)
corresponds to zero compositionality. Figure 2 il-
lustrates examples of the two bounds. If d > U
(i.e., at least one of the values appears more than
once in D), we can normalize the metric:

L, — Clip(L(P), L,, L)
Lz - Ls

where Clip takes the value L(P) when L(P) €
[L,, Ls), and otherwise is the one closer to L(P)
among L, and Ls. We have C(P) € [0,100]. A
larger metric C(P) represents a smaller estimate of
K(Dy|Dx) provided by P, reflecting a stronger
compositionality of the LLM.

C(P) =100-
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3.3 Characterization

In the program-generation perspective, L(P™) is
consistent with our intuition about composition-
ality, as smaller Y n, indicates that the LLM is
more aware of the independence of the input com-
ponents, and smaller »  m, indicates that the LLM
more accurately identifies the output components
that are influenced by the input components. Also,
the characterization of the degree of compression
by L(P™) is consistent with our intuition about
generalization. L(P) further takes the number of
errors E' into account and is normalized to the met-
ric C(P). The combination of L(P™) and E can
provide a holistic and relative characterization of
the compositionality of LLMs into three types:
(T1) Low L(P") and Low E. LLMs exhibit
sufficient compositionality: they adequately and

correctly capture the compositionality of the sam-
ples and utilize it to describe D.

(T2) High L(P") and Low E. LLMs do not
adequately capture the compositionality of the sam-
ples and therefore choose to low-compressively but
high-correctly describe D (e.g., simply using all
samples directly in the program).

(T3) Low L(P™") and High E. LLMs do not
adequately capture the compositionality of the sam-
ple, but still try to highly compress the description
of D, leading to a highly erroneous description.

Under this characterization, L(P") and E are
two dimensions that characterize the degree of com-
pression and compression loss, respectively. The
high C(P) exhibited by T1 can be thought of as
a low-loss high compression of samples through
their compositionality. The low C(P) exhibited by
T2 and T3 both manifestations of the inability to
correctly capture the compositionality of the sam-
ples, but they exhibit different biases: T2 is biased
towards low loss and T3 is biased towards high
compression.

3.4 Addressing Limitations

The program-generation perspective addresses L1
and L2 of compositional generalization tests:

(1) In this perspective, we use the program out-
put by the LL.Ms as an unambiguous explanation
of the function they fit on D. Based on the expla-
nation, we are able to provide a more convincing
analysis of the compositionality of LL.Ms, thus ad-
dressing L1.

(2) In this perspective, we quantify the compo-
sitionality of LLMs reflected in the explanation
program P as metrics, which draw on complexity-
based theory to give a clear definition of how com-
positional an explanation is. Although we have a
function f to generate D, we do not need to per-
form a training-test partition, and the quantitative
metrics do not involve any consistency measure
with the explanation of f. This perspective moves
away from the paradigm of using consistency with
a fixed function on the test set as a criterion, and
provides a more convincing estimate of the com-
positionality of LLMs based on explanations, thus
addressing L2.

4 Experiments and Analysis

4.1 Experimental settings

Task Formulation. The input of the compositional
function is a string of length N = 4 and the output



Horizontal Block Vertical Random
L(PY) E c(®)|LPY) E c@®) |LPY)Y E c@)|LPY) E C(P)
DeepSeek-R1 | 43.23 1.33  89.80 | 25443 3.63 7.62 | 25477 6.00 0.00 | 270.00 5.13  0.00
QwQ-Plus 71.33 7.30 44.00 | 11833 11.23 286 | 9597 9.17 2331 | 181.27 9.20 0.00
ol-mini 49.43 0.30 9449 | 21523 3.03 19.38 | 280.87 223 429 | 27853 320 0.00
03-mini 46.73 0.27 95.69 | 150.87 047 57.07 | 24353 0.07 2731 | 318.13 0.07 0.67
Gemini-2.5 45.83 0.70 9292 | 197.03 0.13 4296 | 23490 0.00 30.39 | 292.00 0.10 10.00
Claude-3.7 40.27 220 84.67 | 89.17 640 47.57 | 21630 5.10 14.71 | 19233 8.63  3.52
DeepSeek-V3 | 165.27 3.20 42.87 | 24153 6.60 0.00 | 258.87 5.13 0.00 | 239.70 590 3.33
Qwen-Max 44.57 853 46.67 | 50.70 1503 0.48 | 71.80 1493 0.00 | 62.00 14.77 0.00
GPT-40 46.67 1570 0.00 | 51.80 1590 0.00 | 90.63 1590 0.00 | 111.33 1593 0.00
Gemini-2.0 189.60 7.17  7.77 | 25593 450 043 | 286.13 213 0.67 | 295.00 117 3.71
Claude-3.5 11843 14.10 6.69 | 135.03 15.10 0.00 | 120.00 16.00 0.00 | 13397 1543 0.00
Table 1: Results of the base experiment.

bit 1 [] bit 2 [] bit 3 [] bit 4 [] on the task. Our extended experimental settings,

; including random index and setting combination,

are discussed further in 4.3. Figure 3 shows an

illustration of the settings.

Evaluated LLMs. The LLMs we evaluate in-

Horizontal Block Random Index (H) clude the reasoning models: DeepSeek-R1-0120

(DeepSeek-Al et al., 2025a), QwQ-Plus-0305

(Qwen-Team, 2025), o1-mini-2024-09-12 (Ope-

nAl et al.,, 2024b), 03-mini-2025-01-31 (Ope-

Vertical Random Combination (H-+R) nAl, 2025), Gemini-2.5-pro-exp-03-25 (Google,

Figure 3: An illustration of the experimental settings.
The color of each grid point indicates the input string
bit that determines its value.

isa4 x 4 grid (M = 16). Each grid point has 2
possible values [-, *]. Each bit of the string has U =
2 possible values, and the possible values of the ¢-th
bit are the (2¢ — 1)-th and (27)-th uppercase letters.
Each bit of the string determines the value of 4 grid
points, and the set of grid points determined by
each bit of the string is mutually exclusive. The
value of any grid point differs when the value of
the input bit that determines it differs. All possible
d = 16 samples generated by the compositional
function are provided to the LLMs as D and the
LLMs are asked to generate a Python program to
describe D.

Data Generation. Our base experiment consists
of four different compositional function settings:
(1) Horizontal (the -th bit determines the i-th row),
(2) Block (the i-th bit determines the i-th 2 x 2
subgrid), (3) Vertical (the i-th bit determines the
1-th column), and (4) Random (each bit determines
4 random grid points). For each setting, we sam-
ple 30 different compositional functions for data
generation and report the average results of LLMs

2025), Claude-3.7-Sonnet-20250219 (Anthropic,
2025), and the non-reasoning models: DeepSeek-
V3-0324 (DeepSeek-Al et al., 2025b), Qwen-
Max-0125 (Yang et al., 2024), GPT-40-2024-
08-06 (OpenAl et al., 2024a), Gemini-2.0-flash
(Google, 2024), and Claude-3.5-Haiku-20241022
(Anthropic, 2024).

4.2 Base Experiment

Table 1 shows the results of the base experiment.

4.2.1 Compositionality Characterization

The non-reasoning models we evaluate exhibit
fairly low compositionality in most cases, and only
DeepSeek-V3 and Qwen-Max exhibit relatively
high compositionality in the Horizontal setting.
Relatively among the non-reasoning models: (1)
Qwen-Max, GPT-40, and Claude-3.5 are character-
ized as T3. Although they exhibit strong compres-
sion, their extremely high error rate means that their
descriptions of D are almost completely incorrect.
(2) Deepseek-V3 and Gemini-2.0 are characterized
as T2. They have a relatively high degree of cor-
rectness in describing D, but also a relatively low
degree of compression.

The reasoning models we evaluate generally ex-
hibit stronger compositionality than non-reasoning
models in settings other than Random. The stronger



Random Index (H) Setting Combination (H+R)
L(PT) E C(P) L(PT) E C(P)
DeepSeek-R1 | 174.07 (+130.83)  4.17 (+2.83)  26.54 (-63.26) | 187.30 (+30.68)  3.57 (+0.33) 27.43 (-17.47)
QwQ-Plus 138.23 (+66.90) 10.97 (+3.67)  0.00 (-44.00) | 147.60 (+21.30) 9.83 (+1.58)  4.00 (-18.00)
ol-mini 138.27 (+88.83)  1.27 (+0.97) 56.69 (-37.80) | 176.60 (+12.62) 2.67 (+0.92) 34.26 (-12.98)
03-mini 106.90 (+60.17)  0.50 (+0.23)  73.20 (-22.49) | 84.73 (-97.70) 0.77 (+0.60)  78.79 (+30.61)
Gemini-2.5 87.57 (+41.73) 0.93 (+0.23)  76.58 (-16.33) | 205.53 (+36.62) 0.73 (+0.33)  38.98 (-12.48)
Claude-3.7 40.23 (-0.03) 3.13(+0.93)  79.04 (-5.63) 62.57 (-53.73) 3.80(-1.62)  66.39 (+22.30)
DeepSeek-V3 | 145.40 (-19.87) 8.57 (+5.37) 12.85(-30.02) | 207.43 (+4.95) 5.27 (+0.72) 9.89 (-13.21)
Qwen-Max 51.00 (+6.43) 14.83 (+6.30)  1.38 (-45.29) 58.93 (+5.65) 13.67 (+2.02) 6.67 (-16.67)
GPT-40 45.33 (-1.33) 15.80 (+0.10)  0.00 (-0.00) 58.20 (-20.80)  15.80 (-0.02) 0.00 (-0.00)
Gemini-2.0 267.10 (+77.50)  3.83 (-3.33) 1.81 (-5.96) | 267.53 (+25.23) 4.07 (-0.10) 0.43 (-5.32)
Claude-3.5 116.37 (-2.07) 15.73 (+1.63)  0.00 (-6.69) 113.60 (-12.60) 15.83 (+1.07)  0.00 (-3.35)

Table 2: Results of extended experiments. The amount of change compared to the results of the base experiment is
shown in parentheses (left: compared to Horizontal; right: compared to the average of Horizontal and Random).

compositionality stems from maintaining a certain
degree of compression at a generally lower number
of errors. However, the reasoning models do not
exhibit sufficient compositionality in settings other
than Horizontal. In settings other than Horizontal,
the reasoning models exhibit the following char-
acterization in relative terms: (1) QwQ-Plus and
Claude-3.7 are characterized as T3. They exhibit a
high error rate and a high degree of compression.
(2) Gemini-2.5 and 03-mini are characterized as
T2. They exhibit a low error rate and a low degree
of compression. (3) DeepSeek-R1 and ol-mini are
characterized roughly between T2 and T3.

4.2.2 Impact of the Settings

Since all possible samples are provided in D, for
any bit of the input string, LLMs can theoretically
find that the bit independently determines some
grid points from multiple pairs of samples differ-
ing only on that bit, which is independent of the
compositional function setting. However, the C(P)
of LLMs differ clearly across settings and mostly
follow the relation: Horizontal > Block > Verti-
cal > Random (except for QwQ-Plus which shows
Vertical > Block).

We hypothesize that the compositionality exhib-
ited by LLMs on this task is influenced by how in-
tuitive the sample’s compositionality is. Of the four
compositional function settings, the first three have
a certain regularity and a similar intuition in the
two-dimensional view, since the grid points deter-
mined by each bit of the string in these settings are
connected in the two-dimensional plane. However,
in the linear form of text input, for the continuity
of the grid point positions determined by each bit
of the string in the settings, we have Horizontal
> Block > Vertical. As continuity declines, the

intuition of the compositionality of samples may
decline for LLMs, which are used to intuitively cap-
turing by row. The Random setting, on the other
hand, provides no intuition for LLMs at all.

4.3 Extended Experiments

Table 2 shows the results of the extended experi-
ments.

4.3.1 Random Index

We conduct extended experiments with the Ran-
dom Index setting on the Horizontal setting, where
LLMs exhibit the strongest compositionality in the
base experiment. In the base experiment, the i-
th bit of the input string corresponds to the i-th
row of the grid in the Horizontal setting. With
the extended Random Index setting, the row corre-
sponding to each bit is randomized.

The results show that the Random Index setting
causes a severe weakening of the compositional-
ity exhibited by the LLMs. For reasoning models,
all models except Claude-3.7 exhibit high L(P™)
increases, indicating a reduction in compression.
For reasoning models, all models except Claude-
3.7 exhibit a high increase in L(P™), indicating
a decrease in compression; all models exhibit an
increase in F, indicating an elevated compres-
sion loss, especially DeepSeek-R1 and QwQ-Plus.
Among the reasoning models, Claude-3.7 exhibits
the least decrease in compositionality and shows
the strongest compositionality with the Random
Index setting. Most of the non-reasoning models
show a decrease in compositionality, approaching
zero compositionality.

Although Random Index does not change the
Horizontal pattern followed by each component
mapping, the LLMs generally show a decline in



compositionality, which is partly indicative of the
LLMs’ reliance on sequential correspondences for
sample compositionality capture for this task, re-
flecting a deficiency in compositionality.

4.3.2 Setting Combination

We combine Horizontal and Random, the two set-
tings where LLMs exhibit the strongest and weak-
est compositionality in the base experiment. Under
the setting combination, two random rows in the
grid use the Horizontal setting, and the other grid
points use the Random setting.

For the reasoning models, compared to the
average of the metrics in the two settings: (1)
DeepSeek-R1, QwQ-Plus, ol-mini, and Gemini-
2.5 exhibit elevated L(P™") and F and decreased
C(P). This means that when the compositionality
of a portion of the sample’s components (Random)
is difficult to capture, their degree of compression
and compression loss for all components are af-
fected, even though the compositionality of the re-
maining components (Horizontal) is relatively easy
for them to capture. This reflects a composition-
ality flaw of LLMs in that they have difficulty in
independent compositionality capture for different
sets of components. (2) Claude-3.7 and 03-mini
exhibit elevated C(P), which suggests that they are
somewhat capable of independent compositionality
capture for the Horizontal component. In this case,
even if they still exhibit low compression in the
Random portion, there is a clear L(P™) reduction
brought about by the reduction of the component
space. In addition, Claude-3.7 also exhibits a de-
crease in F, which indicates that its compression
loss can also be reduced as the component space is
reduced. The non-reasoning models mostly exhibit
a decrease in C(P), approaching zero composition-
ality. Overall, many of the LLMs exhibit deficien-
cies in independent compositionality capture for
different sets of components.

4.4 Qualitative Analysis

Figure 4 shows fragments of some of the programs
generated by LLMs.

(1) There are some examples of high C(P) in
settings other than Random. The output strings de-
termined by a bit of the input string typically each
correspond to at most one segment of a contiguous
region within one row of the grid in linear form.
This partly supports our hypothesis in 4.2.2.

(2) Typical examples of high L(P™) and low
E are simply enumerating all samples in all D.

T1: high C(P)

T2: high L(P"), low E
ADE G":
k. k\ Nk 2. \NkkRR\NL 4L
BDF H":
« o K\ N Rk \ Nk K\ Nkokokok

Horizontal

ACEH

Rk \ Nk ok, \ Nk, sk, \ Nk, ok
BCFH

ok \ Nk \ NG L\ Nk

T3: low L(P*), high E
for row in (4):
col = columns[row]
line = []
for ¢ in (4):
if ¢ == col:
line.
else:
line.

if top_left == 'A':

top_left_rowl = "..
top_left_row2 = "k«
else: # assume 'B'
top_left_rowl = "xx
top_left_row2 = "..

Vertical

# First row
if 'A' in input_letters:

grid[ol[0] = "*

if 'C' in input_letters:
grid[o] [1] = 'x

if 'E' in input_letters:
grid[e] [2] = 'x

if 'G' in input_letters:
grid[0] [3] = 'x

Setting Combination

if 11 == 'A' and 13 == 'E':
grid. ("aka")

elif 11 == 'B' and 13 == 'E':
grid. ("o

Random Index

if "G" in letters:
output[0] = ".x.x
else:
output[0] = "x.*.

if 12 == 'C":
grid.

elif 12 ==
grid.

if "C" in letters:
output[1] = "..x.
else:
output[1] = "sek.x

Figure 4: Examples of fragments of programs generated
by LLMs.

Typical examples of low L(P™) and high E are
compression using simple algorithms not fully sup-
ported by D.

(3) High C(P) with Random Index setting is
exemplified by the perception of sequential non-
correspondence, and high C(P) with Setting Com-
bination is exemplified by the perception of regions
independently affected by different settings. In the
extended experiments, typical examples of high
FE are still generating programs according to the
Horizontal setting in the base experiment; typical
examples of high L(P™) are the same as in (2), aris-
ing from the inability to capture compositionality
due to the extended settings.

5 Conclusion

In this work, we propose the program-generation
perspective for estimating and analyzing the com-
positionality of LLMs. This perspective addresses
the explainability limitations of compositional gen-
eralization tests and provides a new way to ana-
lyze the compositionality characterization of LLMs.
Through experiments and analysis based on this
perspective, we identify different compositionality
characterizations and compositionality defects ex-
hibited by existing advanced LLMs. This perspec-
tive provides support for the study of explainable
compositionality of LLMs.



Limitations

The program-generation perspective is an ex-
ploratory perspective that still has limitations in
its implementation:

(1) The perspective uses programs as an exter-
nalization of the interpretations of LLMs to allow
for unambiguous parsing of the explanations. This
requires that the LLMs under study have a certain
level of program generation capability: on the task
under consideration, the LLMs should at least be
able to generate the correct program when provided
with a complete explanation of the algorithm that
generates D.

(2) To exclude the influence of non-essential fac-
tors, the perspective requires a parser to implement
the conversion from the program to the estimate of
the upper bound on K provided by it. Due to the
diversity of the generated programs, it is difficult
for the parser to cover all possible cases, potentially
leading to bias in the conversion.

In this work, to minimize the impact of the above
limitations on the results, we (1) pre-check the ba-
sic program generation capabilities of LLMs and
(2) discover cases that the parser fails to cover and
adjust the implementation through example testing
and manual checking. We will continue to investi-
gate how this perspective can be better applied to a
wider range of models and tasks, and hope that the
perspective can provide insights into explainable
compositionality studies.

Ethics Statement

We comply with the license to use language models
for scientific research purposes only. The datasets
we construct will also be open source for scientific
research purposes. The datasets we use do not
contain any information that names or uniquely
identifies individual people or offensive content.

The Al assistant we use in our work is Copilot
(for simple code completion).
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A Details on obtaining L(P™)

To obtain the corresponding metric L(P*) from
the program P, we need to determine the > n, and
>~ m, mapping table by the location of the values
involving the input and output components in P.
The contents of the comments are ignored.

A.1 Determination of Y 7,

To determine ) n,, we need to determine which
combinations of values of the input components
used to determine the output are contained in P. A
combination consists of values of input components
that are (1) in a mapping of an explicit mapping
table (dictionary), (2) on the same row, and (3) on
a path in a nested structured tree of conditional
judgments. For cases (2) and (3), it is considered to
be used to determine the output when the row or the
execution statements of the conditional judgments
involve the values of the output components.

With the help of Python’s AST tool, we are able
to get all combinations of values of input compo-
nents used to determine the output. The value of
an input component may be on the right of an as-
signment statement and then affect a wider range
through the variables on the left of the assignment
statement. To handle this situation, we maintain the
set of values of the input components involved for
each variable due to assignment and utilize them
when determining the values of the input compo-
nents involved in the statement. For the nested
structure of conditional judgments, we construct
trees and obtain all possible paths and correspond-
ing combinations by traversing them. For an else
statement, we match it to the corresponding if and
elif statements and treat it as containing one hypo-
thetical value for each input bit involved in the if
and elif statements.

The same combination may occur several times
in P and can be generalized to the same mapping.
Therefore, we count the total length of the values
of the input components involved in mutually ex-
clusive combinations as > n,.

A.2 Determination of Y m,

>~ m, can theoretically be determined by finding
the values of all output components in P and com-
puting the length sum. However, we find that P
sometimes expresses the determination of the out-
put indirectly in other forms (e.g., storing the co-
ordinates of the determined grid points), which
occurs mainly in the explicit mapping table (dictio-
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nary). Therefore, we perform additional processing
to count each atomic unit on the right side of the
explicit mapping table as a value of an output com-
ponent in »_ m.

A.3 Examples

Figure 5 shows two example code fragments. They
both have > n, =12 and > m, = 48.

Code fragment 1 mainly shows the case with
conditional judgments. The first three code blocks
contribute 2,8,2 to > n,, and 8,16,8 to > m..
All combinations of input component values in the
last code block have already appeared in the second
code block, so they are no longer counted in Y _ n.
The last code block contributes 16 to Y m..

Code fragment 2 mainly shows the case with
dictionaries. The four dictionaries contribute
16,8,16,8 to > m,. The three dictionaries, ex-
cept dictionary 3, contribute 8,2,2to > n..



# First row is determined by the first letter (A or B)
if letters([0] A':

rowl KK
else: # B

rowl *. ok,

# Second row is determined by the combination of second and fourth letters
if letters[1] o letters[3] G":
row2 *. k.,
elif lettersl[1] letters[3]
row2 caas
elif lettersl[1] letters[3]
row2 dokokok
else: # D and H
row2 KK

# Third row is determined by the third letter (E or F)
if letters[2] g

row3 « FOkOK
else: # F

row3 *iun

# Fourth row is determined by the combination of second and fourth letters
if letters[1] o letters[3] G":
row4 K
elif letters[1] letters[3]
rowd .ok,
elif letters[1] letters[3]
row4 dok %
else: # D and H
rowsd %4 koK

# Mapping for first row (determined by first and third letters)
rowl_patterns = {

# Mapping for second row (determined by second letter)
row2_patterns = {

C'": "sekkxk',

D
}

# Mapping for third row (determined by first and third letters)
row3_patterns = {

= *.k, ",

’
ce k",
K.k

):
):
):
):

# Mapping for fourth row (determined by fourth letter)
row4_patterns = {

G": ".x.x",

H": "sk.k.

Figure 5: Two examples of fragments of programs generated by LLMs. They both have > " n, = 12and ) m, = 48.
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