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Abstract001

Compositional generalization tests are often002
used to estimate the compositionality of LLMs.003
However, compositional generalization tests004
(1) do not focus on the explanations of LLMs005
for their fitted functions and (2) use consis-006
tency with a fixed function on a pre-partitioned007
test set as a criterion, hindering the acqui-008
sition of explainable and convincing estima-009
tion and analysis of the compositionality of010
LLMs. In this work, we propose a program-011
generation perspective that takes the programs012
generated by LLMs as externalized explana-013
tions and provides estimates of the composi-014
tionality of LLMs with the help of complexity-015
based theory. The perspective addresses the016
explainability limitations of compositional gen-017
eralization tests and provides a new way to an-018
alyze the compositionality characterization of019
LLMs. We conduct experiments and analysis of020
existing advanced LLMs based on this perspec-021
tive on a string-to-grid task, and find various022
compositionality characterizations and compo-023
sitionality deficiencies exhibited by LLMs.024

1 Introduction025

Compositionality is a concept that originates in026

the philosophy of language. It is a property that027

a language has to a certain extent and can be ex-028

pressed as "the meaning of a complex expression029

is determined by its structure and the meanings030

of its constituents" (Pelletier, 1994; Janssen and031

Partee, 1997; Szabó, 2004; Pagin and Westerståhl,032

2010). In machine learning, the concept of compo-033

sitionality is generalized to the mapping of inputs034

to outputs, suggesting that the output is determined035

by the meanings of the components of the input and036

the form in which the components are combined037

(Lake and Baroni, 2018; Hupkes et al., 2020). In038

the NLP domain, many tasks involve mappings039

with significant compositionality, such as semantic040

parsing (Keysers et al., 2020), data-to-text genera-041

tion (Xu and Wang, 2024), compositional reason- 042

ing (Li et al., 2024), etc. 043

For a task that involves mappings with composi- 044

tionality, if a model can recognize the composition- 045

ality of the mappings and utilize it, then the model 046

will be able to correctly map the inputs made up 047

of components to the outputs, as long as it knows 048

the meaning of the components. This ability to 049

recognize the compositionality of the mappings 050

and utilize it is called the model’s composition- 051

ality. Models’ compositionality characterizes an 052

effective form of reaching out-of-distribution gen- 053

eralization (Bahdanau et al., 2019) and this form 054

is typical in human intelligence (Dehaene et al., 055

2022). Therefore, the compositionality of models 056

is an important research topic from both practical 057

and cognitive perspectives (Hupkes et al., 2022). 058

The research on models’ compositionality has 059

long been controversial, and the controversy fo- 060

cuses on how to properly measure a model’s com- 061

positionality and whether the existing paradigms 062

enable models to develop sufficient composition- 063

ality. In the NLP domain, a widely used approach 064

to study the compositionality of language models 065

on specific tasks is to conduct compositional gen- 066

eralization tests. The essence of the compositional 067

generalization test is to partition the training and 068

test sets with compositional differences, and then 069

test the trained model’s performance on the test 070

set. After the emergence of large language models 071

(LLMs), compositional generalization tests are still 072

widely used under in-context learning for LLMs 073

that are difficult to fine-tune directly. 074

The results of the compositional generalization 075

test are intuitively suitable as a reflection of the 076

compositionality of LLMs. However, composi- 077

tional generalization tests have limitations regard- 078

ing explainability, mainly in terms of (1) the lack 079

of attention to the LLMs’ explanation of their fit- 080

ted functions, and (2) the lack of explainability in 081

using consistency with a fixed function on a pre- 082
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partitioned test set as a criterion. The limitations083

make it difficult to obtain convincing estimates and084

analyses of the LLMs’ compositionality, hindering085

more in-depth research on the explainable compo-086

sitionality of the LLMs.087

To solve this problem, we propose a program-088

generation perspective for the estimation and anal-089

ysis of the compositionality of LLMs. In this per-090

spective, we take the program generated by LLMs091

as an explanation of their fitted functions and draw092

on complexity-based theory to give an estimate of093

the compositionality of LLMs based on the expla-094

nation. By externalizing the explanation and appro-095

priately quantifying the compositionality reflected096

in the explanation, this perspective addresses the097

explainability limitations of compositional gener-098

alization tests. The perspective is consistent with099

intuitions about compositionality and generaliza-100

tion, and provides new ways to characterize the101

compositionality of LLMs.102

Based on this perspective, we experiment and an-103

alyze advanced LLMs including reasoning models104

and non-reasoning models on a simple string-to-105

grid task. We identify different compositionality106

characterizations exhibited by LLMs, and compo-107

sitionality defects of LLMs in various situations.108

2 Compositional Generalization Tests109

In this section, we introduce the formulation of110

compositional functions and compositional gener-111

alization tests. We discuss the limitations of com-112

positional generalization tests in terms of explain-113

ability.114

2.1 Formulation115

Following the formulation in Wiedemer et al.116

(2023), a compositional function f transforms K117

independent input components into K output com-118

ponents, and then combines these output compo-119

nents into an output. Formally, the K independent120

input components are K sets C1, ..., CK , where121

Ck = {vk,1, ..., vk,U} denotes the U possible val-122

ues of the k-th input component. For a value ck ∈123

Ck, the transformation function ϕk : Ck → Rk124

transforms it into the output component rk. The125

combination function g : R1 × · · · × RK → Y126

combines the components into the output y. We127

define X = C1 × · · · × CK to denote the set128

containing all possible inputs. Given the input129

x = (c1, ..., cK) ∈ X , the compositional function130

f : X → Y can be expressed as: 131

f(x) = g(ϕ1(c1), ..., ϕK(cK)) (1) 132

For an unknown compositional function f , com- 133

positional generalization requires that the model 134

be able to map unseen combinations of compo- 135

nent values to expected outputs after seeing all 136

the component values and some combinations of 137

component values mapped to the outputs. Com- 138

positional generalization tests typically follow the 139

training-test paradigm. In this paradigm, we divide 140

X into two disjoint subsets XS and XT that sat- 141

isfy ∀ vk,j , ∃ x ∈ XS , xk = vk,j , and generate 142

training set S = {(x, f(x)) | x ∈ XS} and test 143

set T = {(x, f(x)) | x ∈ XT }. The division is 144

usually based on minimizing the degree to which 145

combinations of components in T are visible in S 146

(Keysers et al., 2020; Kim and Linzen, 2020). After 147

a model is trained on the training set S, the model’s 148

accuracy on the test set T is used to measure the 149

model’s compositional generalization performance. 150

For LLMs that are difficult to fine-tune directly, 151

each test of x ∈ XT is usually performed indepen- 152

dently by extracting a subset of S that covers the 153

values in x to be input to the LLMs as a demonstra- 154

tion of in-context learning. 155

2.2 Limitations of Tests 156

It is intuitively appropriate to use the model’s com- 157

positional generalization performance to reflect the 158

model’s compositionality. However, the composi- 159

tional generalization test has the following limita- 160

tions in terms of explainability: 161

(L1) The model’s explanation of the function 162

f∗ it fits cannot be obtained simply from the 163

mapping results, preventing a convincing anal- 164

ysis of the model’s compositionality. In compo- 165

sitional generalization tests, we only observe the 166

mapping results output by the model without fo- 167

cusing on the process of generating the mapping 168

results. However, by simply observing the map- 169

ping results, we cannot obtain an explanation of 170

the model for the function f∗ it fits. In this case, 171

we cannot provide a convincing analysis of the 172

model’s compositionality based on the model’s ex- 173

planation of its fitted function f∗. For example, 174

we cannot convincingly capture what exactly the 175

model recognizes as the samples’ compositionality 176

and analyze how it differs from our expectations, 177

making it difficult to explain the model’s errors in 178

compositional generalization tests. 179
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Figure 1: The above shows a compositional function f that maps a 4-bit A / B string to a 2× 4 grid. Models 1 and 2
fit functions f∗

1 and f∗
2 which fit S but are inconsistent with f on x. L1: Based only on the mapping results output

by the model, the explanation for f∗ as in the figure cannot be obtained for analysis. L2: Even if the model fits a
function inconsistent with f on x, it may have a sufficiently compositional (not clearly defined) explanation, e.g.,
the explanation of f∗

1 in the figure is intuitively sufficiently compositional while the explanation of f∗
2 is not.

(L2) Using consistency with a fixed function f180

on a pre-partitioned test set as a criterion lacks181

explanability and may lead to unconvincing es-182

timates of the model’s compositionality. For a183

training set S, the function that can fit it is not184

unique. Compositional generalization tests use f185

as a fixed criterion, requiring the model to perform186

consistently with f on the test set. The reason for187

choosing f as a fixed criterion is usually that the188

explanation of f is sufficiently compositional from189

human intuition, but we lack a clear definition of190

what is "compositional". In this case, the estimate191

of the model’s compositionality lacks explainabil-192

ity: even if the model’s performance on x ∈ T193

is inconsistent with f , its fitted function f∗ may,194

under some definition, be fairly "compositional" in195

its explanation, and the estimate is therefore uncon-196

vincing. To solve this problem, it is necessary to197

move away from the paradigm that partitions the198

training and test sets and evaluates the consistency199

with f on the test set. We need to clearly define200

the compositionality reflected in the explanation201

and give an estimate of the model’s composition-202

ality through the model’s explanation of its fitted203

function. To do this, L1 first needs to be addressed.204

Figure 1 provides a specific example illustrating205

L1 and L2. The development of the performance206

of LLMs has made it possible to direct LLMs to207

export their explanations, which motivates us to208

consider a more explainable perspective for mea- 209

suring and analyzing the compositionality of LLMs 210

to address both L1 and L2. 211

3 Program-Generation Perspective 212

In this section, we propose the program-generation 213

perspective for the estimation and analysis of the 214

compositionality of LLMs. We introduce the ra- 215

tionale and formulation of the perspective, and the 216

characterization of the compositionality of LLMs 217

provided by quantitative metrics. We show that this 218

perspective addresses the limitations of composi- 219

tional generalization tests in terms of explainability. 220

3.1 Rationale 221

The key to addressing L1 and L2 is that (1) we need 222

to be explicit about the explanation of the LLMs 223

for the functions they fit, and (2) we need a method 224

for properly estimating the compositionality of the 225

LLMs based on their explanation. 226

Since it is difficult to analyze the explanations 227

of the LLMs from the internal states, we use exter- 228

nalization, i.e., we ask the LLMs to directly output 229

their explanations of the fitted functions. We want 230

the explanation to be presented in a formal lan- 231

guage with unambiguity, and the LLMs need no 232

additional guidance for the generation of this for- 233

mal language. Therefore, we choose a common 234

programming language as the formal language of 235
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Figure 2: Examples of the mapping table of P+ (3 atomic input components, 6 atomic output components, 8
samples). We group mappings involving the same atomic input components and mark the involved atomic output
components with colors. The leftmost and rightmost examples demonstrate zero and sufficient compositionality.

the explanation and ask the LLMs to output the236

program as the explanation. Specifically, for the set237

D = {(xi, yi) | xi ∈ X, yi = f(xi)}di=1 generated238

by a compositional function f containing d sam-239

ples that cover all possible input component values,240

we ask the LLMs to output a program P satisfying241

that for any i ∈ {1, ..., d}, the program P outputs242

yi on input xi.243

To estimate the compositionality of LLMs via244

the program P, we introduce the complexity-based245

theory of compositionality proposed by Elmoznino246

et al. (2025). The theory is based on Kolmogorov247

Complexity K (Kolmogorov, 1965) for a quantita-248

tive definition of the compositionality of mappings249

from a compression perspective. For object lists250

I and O, K(O) denotes the length of the shortest251

program (in a certain programming language) that252

outputs O, and K(O|I) denotes the length of the253

shortest program that outputs O with input I . Let254

DX = {xi}di=1 and DY = {yi}di=1 be lists of xi255

and yi in D, respectively. In this theory, the com-256

positionality of the set D (regarded as a mapping257

from DX to DY ) is defined as K(DY )
K(DY |DX) , which258

intuitively means the extent to which the represen-259

tation of DY can be compressed using DX .260

Although K is not computable, its upper bound261

can be estimated. The compositionality of an LLM262

can be characterized as how small an estimate of263

the upper bound on K(DY |DX) is provided by264

the program P that the LLM generates, as smaller265

estimates indicate a stronger degree of compression.266

The most direct upper bound estimate provided by267

a correct P is the length itself. However, the length268

of P is affected by many non-essential factors (e.g.,269

formatting, naming, different description of the270

same process, etc.), and P may be incorrect on D271

(i.e., for some input xi, the output is not yi), so the 272

upper bounds provided by different P with their 273

lengths may lack comparability. We can transform 274

P into a hypothetical program P+ in a uniform 275

programming paradigm such that P+ is correct 276

on D and the upper bound estimates provided by 277

different P+ are comparable. The upper bound 278

estimates provided by P+ can then be used as a 279

basis for estimating the compositionality of LLMs. 280

3.2 Formulation 281

Suppose a sample contains N atomic input com- 282

ponents and M atomic output components. A hy- 283

pothetical program P+ contains a mapping table 284

consisting of z mappings. The z-th mapping maps 285

the values of nz input components to the values 286

of mz atomic output components. Using the map- 287

ping table, P+ transforms the input into output 288

components and combines them into an output by 289

a fixed algorithm. Assuming that the values of 290

all atomic input and output components are pro- 291

grammed with length 1, we have that the length of 292

P+ is w1 ·
∑Z

z=1(nz + mz) + w2, where w1, w2 293

are constants that are consistent for any P+. Thus 294

we define the size of the mapping table as a compa- 295

rable metric for the estimates provided by P+: 296

L(P+) =
Z∑

z=1

(nz +mz) (2) 297

Figure 2 illustrates the meaning of L(P+). By 298

parsing P for locations involving values of the in- 299

put and output components (see Appendix A for 300

details), we can get the metric L(P+) of its cor- 301

responding P+. We also need to check the cor- 302

rectness of P on D. If there are E errors (i.e., 303
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E =
∑d

i=1[P(xi) ̸= yi]), then E mappings di-304

rectly corresponding to the error samples (all N305

atomic input components mapped to all M atomic306

output components) will need to be added to the307

mapping table to make P+ correct, and so L(P+)308

increases by (N +M)E. We thus obtain a metric309

for the estimates provided by P:310

L(P) = L(P+) + (N +M)E (3)311

For a P+ that is correct on D, there are two312

bounds on the size of its mapping table: (1) each313

atomic input component corresponds to a fixed set314

of atomic output components (mutually disjoint315

and the union is all atomic output components),316

each mapping is a mapping of the value of an317

atomic input component to the value of its corre-318

sponding atomic output components, and the map-319

ping table size Ls = U(N+M) corresponds to suf-320

ficient compositionality; (2) the mapping table con-321

tains d mappings directly corresponding to d sam-322

ples, and the mapping table size Lz = d(N +M)323

corresponds to zero compositionality. Figure 2 il-324

lustrates examples of the two bounds. If d > U325

(i.e., at least one of the values appears more than326

once in D), we can normalize the metric:327

C(P) = 100 · Lz − Clip(L(P), Lz, Ls)

Lz − Ls
(4)328

where Clip takes the value L(P) when L(P) ∈329

[Lz, Ls], and otherwise is the one closer to L(P)330

among Lz and Ls. We have C(P) ∈ [0, 100]. A331

larger metric C(P) represents a smaller estimate of332

K(DY |DX) provided by P, reflecting a stronger333

compositionality of the LLM.334

3.3 Characterization335

In the program-generation perspective, L(P+) is336

consistent with our intuition about composition-337

ality, as smaller
∑

nz indicates that the LLM is338

more aware of the independence of the input com-339

ponents, and smaller
∑

mz indicates that the LLM340

more accurately identifies the output components341

that are influenced by the input components. Also,342

the characterization of the degree of compression343

by L(P+) is consistent with our intuition about344

generalization. L(P) further takes the number of345

errors E into account and is normalized to the met-346

ric C(P). The combination of L(P+) and E can347

provide a holistic and relative characterization of348

the compositionality of LLMs into three types:349

(T1) Low L(P+) and Low E. LLMs exhibit350

sufficient compositionality: they adequately and351

correctly capture the compositionality of the sam- 352

ples and utilize it to describe D. 353

(T2) High L(P+) and Low E. LLMs do not 354

adequately capture the compositionality of the sam- 355

ples and therefore choose to low-compressively but 356

high-correctly describe D (e.g., simply using all 357

samples directly in the program). 358

(T3) Low L(P+) and High E. LLMs do not 359

adequately capture the compositionality of the sam- 360

ple, but still try to highly compress the description 361

of D, leading to a highly erroneous description. 362

Under this characterization, L(P+) and E are 363

two dimensions that characterize the degree of com- 364

pression and compression loss, respectively. The 365

high C(P) exhibited by T1 can be thought of as 366

a low-loss high compression of samples through 367

their compositionality. The low C(P) exhibited by 368

T2 and T3 both manifestations of the inability to 369

correctly capture the compositionality of the sam- 370

ples, but they exhibit different biases: T2 is biased 371

towards low loss and T3 is biased towards high 372

compression. 373

3.4 Addressing Limitations 374

The program-generation perspective addresses L1 375

and L2 of compositional generalization tests: 376

(1) In this perspective, we use the program out- 377

put by the LLMs as an unambiguous explanation 378

of the function they fit on D. Based on the expla- 379

nation, we are able to provide a more convincing 380

analysis of the compositionality of LLMs, thus ad- 381

dressing L1. 382

(2) In this perspective, we quantify the compo- 383

sitionality of LLMs reflected in the explanation 384

program P as metrics, which draw on complexity- 385

based theory to give a clear definition of how com- 386

positional an explanation is. Although we have a 387

function f to generate D, we do not need to per- 388

form a training-test partition, and the quantitative 389

metrics do not involve any consistency measure 390

with the explanation of f . This perspective moves 391

away from the paradigm of using consistency with 392

a fixed function on the test set as a criterion, and 393

provides a more convincing estimate of the com- 394

positionality of LLMs based on explanations, thus 395

addressing L2. 396

4 Experiments and Analysis 397

4.1 Experimental settings 398

Task Formulation. The input of the compositional 399

function is a string of length N = 4 and the output 400
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Horizontal Block Vertical Random
L(P+) E C(P) L(P+) E C(P) L(P+) E C(P) L(P+) E C(P)

DeepSeek-R1 43.23 1.33 89.80 254.43 3.63 7.62 254.77 6.00 0.00 270.00 5.13 0.00
QwQ-Plus 71.33 7.30 44.00 118.33 11.23 2.86 95.97 9.17 23.31 181.27 9.20 0.00
o1-mini 49.43 0.30 94.49 215.23 3.03 19.38 280.87 2.23 4.29 278.53 3.20 0.00
o3-mini 46.73 0.27 95.69 150.87 0.47 57.07 243.53 0.07 27.31 318.13 0.07 0.67
Gemini-2.5 45.83 0.70 92.92 197.03 0.13 42.96 234.90 0.00 30.39 292.00 0.10 10.00
Claude-3.7 40.27 2.20 84.67 89.17 6.40 47.57 216.30 5.10 14.71 192.33 8.63 3.52
DeepSeek-V3 165.27 3.20 42.87 241.53 6.60 0.00 258.87 5.13 0.00 239.70 5.90 3.33
Qwen-Max 44.57 8.53 46.67 50.70 15.03 0.48 71.80 14.93 0.00 62.00 14.77 0.00
GPT-4o 46.67 15.70 0.00 51.80 15.90 0.00 90.63 15.90 0.00 111.33 15.93 0.00
Gemini-2.0 189.60 7.17 7.77 255.93 4.50 0.43 286.13 2.13 0.67 295.00 1.17 3.71
Claude-3.5 118.43 14.10 6.69 135.03 15.10 0.00 120.00 16.00 0.00 133.97 15.43 0.00

Table 1: Results of the base experiment.

Figure 3: An illustration of the experimental settings.
The color of each grid point indicates the input string
bit that determines its value.

is a 4 × 4 grid (M = 16). Each grid point has 2401

possible values [·, ∗]. Each bit of the string has U =402

2 possible values, and the possible values of the i-th403

bit are the (2i− 1)-th and (2i)-th uppercase letters.404

Each bit of the string determines the value of 4 grid405

points, and the set of grid points determined by406

each bit of the string is mutually exclusive. The407

value of any grid point differs when the value of408

the input bit that determines it differs. All possible409

d = 16 samples generated by the compositional410

function are provided to the LLMs as D and the411

LLMs are asked to generate a Python program to412

describe D.413

Data Generation. Our base experiment consists414

of four different compositional function settings:415

(1) Horizontal (the i-th bit determines the i-th row),416

(2) Block (the i-th bit determines the i-th 2 × 2417

subgrid), (3) Vertical (the i-th bit determines the418

i-th column), and (4) Random (each bit determines419

4 random grid points). For each setting, we sam-420

ple 30 different compositional functions for data421

generation and report the average results of LLMs422

on the task. Our extended experimental settings, 423

including random index and setting combination, 424

are discussed further in 4.3. Figure 3 shows an 425

illustration of the settings. 426

Evaluated LLMs. The LLMs we evaluate in- 427

clude the reasoning models: DeepSeek-R1-0120 428

(DeepSeek-AI et al., 2025a), QwQ-Plus-0305 429

(Qwen-Team, 2025), o1-mini-2024-09-12 (Ope- 430

nAI et al., 2024b), o3-mini-2025-01-31 (Ope- 431

nAI, 2025), Gemini-2.5-pro-exp-03-25 (Google, 432

2025), Claude-3.7-Sonnet-20250219 (Anthropic, 433

2025), and the non-reasoning models: DeepSeek- 434

V3-0324 (DeepSeek-AI et al., 2025b), Qwen- 435

Max-0125 (Yang et al., 2024), GPT-4o-2024- 436

08-06 (OpenAI et al., 2024a), Gemini-2.0-flash 437

(Google, 2024), and Claude-3.5-Haiku-20241022 438

(Anthropic, 2024). 439

4.2 Base Experiment 440

Table 1 shows the results of the base experiment. 441

4.2.1 Compositionality Characterization 442

The non-reasoning models we evaluate exhibit 443

fairly low compositionality in most cases, and only 444

DeepSeek-V3 and Qwen-Max exhibit relatively 445

high compositionality in the Horizontal setting. 446

Relatively among the non-reasoning models: (1) 447

Qwen-Max, GPT-4o, and Claude-3.5 are character- 448

ized as T3. Although they exhibit strong compres- 449

sion, their extremely high error rate means that their 450

descriptions of D are almost completely incorrect. 451

(2) Deepseek-V3 and Gemini-2.0 are characterized 452

as T2. They have a relatively high degree of cor- 453

rectness in describing D, but also a relatively low 454

degree of compression. 455

The reasoning models we evaluate generally ex- 456

hibit stronger compositionality than non-reasoning 457

models in settings other than Random. The stronger 458
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Random Index (H) Setting Combination (H+R)
L(P+) E C(P) L(P+) E C(P)

DeepSeek-R1 174.07 (+130.83) 4.17 (+2.83) 26.54 (-63.26) 187.30 (+30.68) 3.57 (+0.33) 27.43 (-17.47)
QwQ-Plus 138.23 (+66.90) 10.97 (+3.67) 0.00 (-44.00) 147.60 (+21.30) 9.83 (+1.58) 4.00 (-18.00)
o1-mini 138.27 (+88.83) 1.27 (+0.97) 56.69 (-37.80) 176.60 (+12.62) 2.67 (+0.92) 34.26 (-12.98)
o3-mini 106.90 (+60.17) 0.50 (+0.23) 73.20 (-22.49) 84.73 (-97.70) 0.77 (+0.60) 78.79 (+30.61)
Gemini-2.5 87.57 (+41.73) 0.93 (+0.23) 76.58 (-16.33) 205.53 (+36.62) 0.73 (+0.33) 38.98 (-12.48)
Claude-3.7 40.23 (-0.03) 3.13 (+0.93) 79.04 (-5.63) 62.57 (-53.73) 3.80 (-1.62) 66.39 (+22.30)
DeepSeek-V3 145.40 (-19.87) 8.57 (+5.37) 12.85 (-30.02) 207.43 (+4.95) 5.27 (+0.72) 9.89 (-13.21)
Qwen-Max 51.00 (+6.43) 14.83 (+6.30) 1.38 (-45.29) 58.93 (+5.65) 13.67 (+2.02) 6.67 (-16.67)
GPT-4o 45.33 (-1.33) 15.80 (+0.10) 0.00 (-0.00) 58.20 (-20.80) 15.80 (-0.02) 0.00 (-0.00)
Gemini-2.0 267.10 (+77.50) 3.83 (-3.33) 1.81 (-5.96) 267.53 (+25.23) 4.07 (-0.10) 0.43 (-5.32)
Claude-3.5 116.37 (-2.07) 15.73 (+1.63) 0.00 (-6.69) 113.60 (-12.60) 15.83 (+1.07) 0.00 (-3.35)

Table 2: Results of extended experiments. The amount of change compared to the results of the base experiment is
shown in parentheses (left: compared to Horizontal; right: compared to the average of Horizontal and Random).

compositionality stems from maintaining a certain459

degree of compression at a generally lower number460

of errors. However, the reasoning models do not461

exhibit sufficient compositionality in settings other462

than Horizontal. In settings other than Horizontal,463

the reasoning models exhibit the following char-464

acterization in relative terms: (1) QwQ-Plus and465

Claude-3.7 are characterized as T3. They exhibit a466

high error rate and a high degree of compression.467

(2) Gemini-2.5 and o3-mini are characterized as468

T2. They exhibit a low error rate and a low degree469

of compression. (3) DeepSeek-R1 and o1-mini are470

characterized roughly between T2 and T3.471

4.2.2 Impact of the Settings472

Since all possible samples are provided in D, for473

any bit of the input string, LLMs can theoretically474

find that the bit independently determines some475

grid points from multiple pairs of samples differ-476

ing only on that bit, which is independent of the477

compositional function setting. However, the C(P)478

of LLMs differ clearly across settings and mostly479

follow the relation: Horizontal > Block > Verti-480

cal > Random (except for QwQ-Plus which shows481

Vertical > Block).482

We hypothesize that the compositionality exhib-483

ited by LLMs on this task is influenced by how in-484

tuitive the sample’s compositionality is. Of the four485

compositional function settings, the first three have486

a certain regularity and a similar intuition in the487

two-dimensional view, since the grid points deter-488

mined by each bit of the string in these settings are489

connected in the two-dimensional plane. However,490

in the linear form of text input, for the continuity491

of the grid point positions determined by each bit492

of the string in the settings, we have Horizontal493

> Block > Vertical. As continuity declines, the494

intuition of the compositionality of samples may 495

decline for LLMs, which are used to intuitively cap- 496

turing by row. The Random setting, on the other 497

hand, provides no intuition for LLMs at all. 498

4.3 Extended Experiments 499

Table 2 shows the results of the extended experi- 500

ments. 501

4.3.1 Random Index 502

We conduct extended experiments with the Ran- 503

dom Index setting on the Horizontal setting, where 504

LLMs exhibit the strongest compositionality in the 505

base experiment. In the base experiment, the i- 506

th bit of the input string corresponds to the i-th 507

row of the grid in the Horizontal setting. With 508

the extended Random Index setting, the row corre- 509

sponding to each bit is randomized. 510

The results show that the Random Index setting 511

causes a severe weakening of the compositional- 512

ity exhibited by the LLMs. For reasoning models, 513

all models except Claude-3.7 exhibit high L(P+) 514

increases, indicating a reduction in compression. 515

For reasoning models, all models except Claude- 516

3.7 exhibit a high increase in L(P+), indicating 517

a decrease in compression; all models exhibit an 518

increase in E, indicating an elevated compres- 519

sion loss, especially DeepSeek-R1 and QwQ-Plus. 520

Among the reasoning models, Claude-3.7 exhibits 521

the least decrease in compositionality and shows 522

the strongest compositionality with the Random 523

Index setting. Most of the non-reasoning models 524

show a decrease in compositionality, approaching 525

zero compositionality. 526

Although Random Index does not change the 527

Horizontal pattern followed by each component 528

mapping, the LLMs generally show a decline in 529
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compositionality, which is partly indicative of the530

LLMs’ reliance on sequential correspondences for531

sample compositionality capture for this task, re-532

flecting a deficiency in compositionality.533

4.3.2 Setting Combination534

We combine Horizontal and Random, the two set-535

tings where LLMs exhibit the strongest and weak-536

est compositionality in the base experiment. Under537

the setting combination, two random rows in the538

grid use the Horizontal setting, and the other grid539

points use the Random setting.540

For the reasoning models, compared to the541

average of the metrics in the two settings: (1)542

DeepSeek-R1, QwQ-Plus, o1-mini, and Gemini-543

2.5 exhibit elevated L(P+) and E and decreased544

C(P). This means that when the compositionality545

of a portion of the sample’s components (Random)546

is difficult to capture, their degree of compression547

and compression loss for all components are af-548

fected, even though the compositionality of the re-549

maining components (Horizontal) is relatively easy550

for them to capture. This reflects a composition-551

ality flaw of LLMs in that they have difficulty in552

independent compositionality capture for different553

sets of components. (2) Claude-3.7 and o3-mini554

exhibit elevated C(P), which suggests that they are555

somewhat capable of independent compositionality556

capture for the Horizontal component. In this case,557

even if they still exhibit low compression in the558

Random portion, there is a clear L(P+) reduction559

brought about by the reduction of the component560

space. In addition, Claude-3.7 also exhibits a de-561

crease in E, which indicates that its compression562

loss can also be reduced as the component space is563

reduced. The non-reasoning models mostly exhibit564

a decrease in C(P), approaching zero composition-565

ality. Overall, many of the LLMs exhibit deficien-566

cies in independent compositionality capture for567

different sets of components.568

4.4 Qualitative Analysis569

Figure 4 shows fragments of some of the programs570

generated by LLMs.571

(1) There are some examples of high C(P) in572

settings other than Random. The output strings de-573

termined by a bit of the input string typically each574

correspond to at most one segment of a contiguous575

region within one row of the grid in linear form.576

This partly supports our hypothesis in 4.2.2.577

(2) Typical examples of high L(P+) and low578

E are simply enumerating all samples in all D.579

Figure 4: Examples of fragments of programs generated
by LLMs.

Typical examples of low L(P+) and high E are 580

compression using simple algorithms not fully sup- 581

ported by D. 582

(3) High C(P) with Random Index setting is 583

exemplified by the perception of sequential non- 584

correspondence, and high C(P) with Setting Com- 585

bination is exemplified by the perception of regions 586

independently affected by different settings. In the 587

extended experiments, typical examples of high 588

E are still generating programs according to the 589

Horizontal setting in the base experiment; typical 590

examples of high L(P+) are the same as in (2), aris- 591

ing from the inability to capture compositionality 592

due to the extended settings. 593

5 Conclusion 594

In this work, we propose the program-generation 595

perspective for estimating and analyzing the com- 596

positionality of LLMs. This perspective addresses 597

the explainability limitations of compositional gen- 598

eralization tests and provides a new way to ana- 599

lyze the compositionality characterization of LLMs. 600

Through experiments and analysis based on this 601

perspective, we identify different compositionality 602

characterizations and compositionality defects ex- 603

hibited by existing advanced LLMs. This perspec- 604

tive provides support for the study of explainable 605

compositionality of LLMs. 606
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Limitations607

The program-generation perspective is an ex-608

ploratory perspective that still has limitations in609

its implementation:610

(1) The perspective uses programs as an exter-611

nalization of the interpretations of LLMs to allow612

for unambiguous parsing of the explanations. This613

requires that the LLMs under study have a certain614

level of program generation capability: on the task615

under consideration, the LLMs should at least be616

able to generate the correct program when provided617

with a complete explanation of the algorithm that618

generates D.619

(2) To exclude the influence of non-essential fac-620

tors, the perspective requires a parser to implement621

the conversion from the program to the estimate of622

the upper bound on K provided by it. Due to the623

diversity of the generated programs, it is difficult624

for the parser to cover all possible cases, potentially625

leading to bias in the conversion.626

In this work, to minimize the impact of the above627

limitations on the results, we (1) pre-check the ba-628

sic program generation capabilities of LLMs and629

(2) discover cases that the parser fails to cover and630

adjust the implementation through example testing631

and manual checking. We will continue to investi-632

gate how this perspective can be better applied to a633

wider range of models and tasks, and hope that the634

perspective can provide insights into explainable635

compositionality studies.636

Ethics Statement637

We comply with the license to use language models638

for scientific research purposes only. The datasets639

we construct will also be open source for scientific640

research purposes. The datasets we use do not641

contain any information that names or uniquely642

identifies individual people or offensive content.643

The AI assistant we use in our work is Copilot644

(for simple code completion).645
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A Details on obtaining L(P+)1071

To obtain the corresponding metric L(P+) from1072

the program P, we need to determine the
∑

nz and1073 ∑
mz mapping table by the location of the values1074

involving the input and output components in P.1075

The contents of the comments are ignored.1076

A.1 Determination of
∑

nz1077

To determine
∑

nz , we need to determine which1078

combinations of values of the input components1079

used to determine the output are contained in P. A1080

combination consists of values of input components1081

that are (1) in a mapping of an explicit mapping1082

table (dictionary), (2) on the same row, and (3) on1083

a path in a nested structured tree of conditional1084

judgments. For cases (2) and (3), it is considered to1085

be used to determine the output when the row or the1086

execution statements of the conditional judgments1087

involve the values of the output components.1088

With the help of Python’s AST tool, we are able1089

to get all combinations of values of input compo-1090

nents used to determine the output. The value of1091

an input component may be on the right of an as-1092

signment statement and then affect a wider range1093

through the variables on the left of the assignment1094

statement. To handle this situation, we maintain the1095

set of values of the input components involved for1096

each variable due to assignment and utilize them1097

when determining the values of the input compo-1098

nents involved in the statement. For the nested1099

structure of conditional judgments, we construct1100

trees and obtain all possible paths and correspond-1101

ing combinations by traversing them. For an else1102

statement, we match it to the corresponding if and1103

elif statements and treat it as containing one hypo-1104

thetical value for each input bit involved in the if1105

and elif statements.1106

The same combination may occur several times1107

in P and can be generalized to the same mapping.1108

Therefore, we count the total length of the values1109

of the input components involved in mutually ex-1110

clusive combinations as
∑

nz .1111

A.2 Determination of
∑

mz1112 ∑
mz can theoretically be determined by finding1113

the values of all output components in P and com-1114

puting the length sum. However, we find that P1115

sometimes expresses the determination of the out-1116

put indirectly in other forms (e.g., storing the co-1117

ordinates of the determined grid points), which1118

occurs mainly in the explicit mapping table (dictio-1119

nary). Therefore, we perform additional processing 1120

to count each atomic unit on the right side of the 1121

explicit mapping table as a value of an output com- 1122

ponent in
∑

mz . 1123

A.3 Examples 1124

Figure 5 shows two example code fragments. They 1125

both have
∑

nz = 12 and
∑

mz = 48. 1126

Code fragment 1 mainly shows the case with 1127

conditional judgments. The first three code blocks 1128

contribute 2, 8, 2 to
∑

nz, and 8, 16, 8 to
∑

mz . 1129

All combinations of input component values in the 1130

last code block have already appeared in the second 1131

code block, so they are no longer counted in
∑

nz . 1132

The last code block contributes 16 to
∑

mz . 1133

Code fragment 2 mainly shows the case with 1134

dictionaries. The four dictionaries contribute 1135

16, 8, 16, 8 to
∑

mz . The three dictionaries, ex- 1136

cept dictionary 3, contribute 8, 2, 2 to
∑

nz . 1137
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Figure 5: Two examples of fragments of programs generated by LLMs. They both have
∑

nz = 12 and
∑

mz = 48.
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