
Can Large Language Models Understand DL-Lite Ontologies? An
Empirical Study

Anonymous ACL submission

Abstract

Large language models (LLMs) have shown001
significant achievements in solving a wide002
range of tasks. Recently, LLMs’ capabil-003
ity to store, retrieve and infer with symbolic004
knowledge has drawn a great deal of atten-005
tion, showing their potential to understand006
structured information. However, it is not yet007
known whether LLMs can understand Descrip-008
tion Logic (DL) ontologies. In this work, we009
empirically analyze the LLMs’ capability of010
understanding DL-Lite ontologies covering 6011
representative tasks from syntactic and seman-012
tic aspects. With extensive experiments, we013
demonstrate both the effectiveness and limita-014
tions of LLMs in understanding DL-Lite on-015
tologies. We find that LLMs can understand016
formal syntax and model-theoretic semantics of017
concepts and roles. However, LLMs struggle018
with understanding TBox NI transitivity and019
handling ontologies with large ABoxes. We020
hope that our experiments and analyses provide021
more insights into LLMs and inspire to build022
more faithful knowledge engineering solutions.023

1 Introduction024

Large Language Models (LLMs) (Brown et al.,025

2020a; OpenAI, 2023; Touvron et al., 2023) have026

showcased remarkable proficiency in understand-027

ing textual data and revolutionized the field of nat-028

ural language processing. Recent studies suggest029

that LLMs possess adaptability to store, retrieve030

and infer with symbolic knowledge such as knowl-031

edge graphs (KGs) (Mruthyunjaya et al., 2023;032

Feng et al., 2023), sparking interest in their po-033

tential for understanding structured information.034

However, LLMs’ capacity in understanding more035

complex symbolic knowledge, Description Logic036

(DL) ontologies, remains unexplored.037

Compared with KGs, DL ontologies have more038

fined-grained knowledge representation with for-039

mal syntax and model-theoretic semantics. For syn-040

tax, while most KGs generally only support atomic041

Figure 1: Illustration and examples of evaluation tasks.

entities like PhdStudent, DL ontologies can sup- 042

port various constructors and compound concepts 043

such as ¬PhdStudent ⊓ ∃HasStudentID. For 044

semantics, DL ontologies have model-theoretic se- 045

mantics. For example, the above complex concept 046

can be interpreted as the set of individuals who are 047

not PhD students but do have a student ID. Further, 048

DL ontologies efficiently support logical reasoning 049

such as R1 ⊑ R2, C ⊑ ¬∃R−
2 → ∃R

−
1 ⊑ ¬C. 050

Understanding a DL ontology goes beyond just 051

the capabilities of storage, retrieval, and inference, 052

but involves a deeper comprehension of its formal 053

syntax and semantic interpretations. 054

While the necessity for more detailed investi- 055

gations for LLMs’ capacity in understanding DL 056

ontologies is clear, a comprehensively evaluation 057

presents a challenge. Most related works focus 058

on LLMs’ capacity to capturing patterns in KGs 059

(Mruthyunjaya et al., 2023; Feng et al., 2023), far 060

away from indicating that LLMs possess the ability 061

to understand DL ontologies. Even though many 062
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endeavors study whether LLMs can do logical rea-063

soning (Wang et al., 2024b; Bao et al., 2024; Luo064

et al., 2023; Pan et al., 2023), few of them explore065

LLMs’ capacity with DL services. DL is primarily066

focused on representing and reasoning about the hi-067

erarchical relationships and properties of concepts068

within a domain, distinguishing it from other log-069

ics by its emphasis on structured, formal ontology.070

This research gap highlights the significance and071

challenges in comprehensively evaluating whether072

LLMs can understand DL ontologies.073

In this study, we investigate how effectively074

LLMs can understand DL-Lite ontologies, a mem-075

ber of the DL ontology family known for simplic-076

ity and efficient reasoning. We present an eval-077

uation framework that comprehensively assesses078

LLMs’ capability to understand DL-Lite ontolo-079

gies in two aspects, respectively, whether LLMs080

can grasp the formal representations (the syntac-081

tic aspect) and whether LLMs can understand the082

semantic interpretations of ontologies and effec-083

tively utilize them (the semantic aspect). For the084

syntactic aspect, we investigate whether LLMs can085

comprehend the structural rules, valid statements,086

and expressions of DL-Lite through syntax check-087

ing. For the semantic aspect, we first investigate088

whether LLMs can understand the semantics of089

concepts and roles from two aspects, intension and090

extension, by subsumption of concepts or roles091

and instance checking respectively. Additionally,092

we probe property characteristics in DL-Lite on-093

tologies, such as inverse roles and functional roles.094

Further, we conduct query answering and ontology095

satisfiability checking to evaluate whether LLMs096

can understand the semantics of the whole ontolo-097

gies. Figure 1 gives an illustration of these tasks.098

Through extensive experiments, we find that:099

• LLMs possess capacity for understanding DL-100

Lite syntax (Section 4.1).101

• LLMs can understand the semantics of con-102

cepts, roles (Section 4.2.1) and some property char-103

acteristics (Section 4.2.2).104

• LLMs fail to understand some TBox NI transi-105

tivity rules, thus LLMs’ capability for subsumption106

of concepts or roles is limited (Section 4.2.1).107

• LLMs fail to handle ontologies with large scale108

ABoxes, thus LLMs’ capability for instance check-109

ing and query answering is limited (Section 4.2.1,110

Section 4.2.3).111

• LLMs can perform ontology satisfiability check-112

ing with DL-Lite ontologies but struggle with de-113

tecting inconsistency in complex ontologies (Sec-114

tion 4.2.4). 115

To the best of our knowledge, this is the first 116

study to conduct comprehensive evaluations about 117

whether LLMs can understand DL-Lite ontologies. 118

Overall, our work contributes to a better under- 119

standing of LLMs’ behaviors and inspires to build 120

more faithful knowledge engineering solutions. 121

2 Related Work 122

2.1 LLMs for Syntax Understanding 123

With the arrival of LLMs, some works focus on 124

using LLMs to translate natural language into for- 125

mal language to reduce labor in real-world applica- 126

tions. For example, Fill et al. (2023) use Chat- 127

GPT to generate entity relation (ER) diagrams 128

for conceptual modeling and Yang et al. (2023) 129

present a fine-tuned LLaMA-7B model to trans- 130

late natural language into first-order logic (FOL). 131

Mateiu and Groza (2023) convert natural language 132

sentences into OWL Functional Syntax, showing 133

LLMs’ prospect of ontology engineering. However, 134

there is a significant difference in syntax between 135

DL and other formal languages like ER, FOL and 136

OWL, and few works study whether LLMs can 137

understand DL syntax. 138

2.2 LLMs for Semantics Understanding 139

Some studies, like (Mruthyunjaya et al., 2023; Feng 140

et al., 2023), focus on LLMs’ capacity of matching 141

up to knowledge that presents in KGs, but such 142

kind of factual knowledge is not the main focus of 143

DL ontology. Shani et al. (2023) analyze how well 144

LLMs capture concepts and their structures, show- 145

ing evidence that LLMs can understand conceptual 146

knowledge, but DL ontologies support more auto- 147

mated reasoning than just conceptual taxonomies. 148

Further, recent works conduct evaluations on how 149

effectively LLMs can capture logic and perform 150

logical reasoning (Wang et al., 2024b; Bao et al., 151

2024; Luo et al., 2023; Pan et al., 2023; Chen et al., 152

2023). However, none of them study LLMs’ capac- 153

ity in understanding DL semantics. Focusing on 154

representation and reasoning with structured, for- 155

mal ontology, DL provides formal semantics based 156

on model theory and strikes a balance between ex- 157

pressiveness and computational tractability , mak- 158

ing differences with other logics. 159

Additionally, some works study LLMs acting 160

as knowledge bases (Heinzerling and Inui, 2021), 161

which focus on LLMs’ capacity for storing and 162

retrieving knowledge. In contrast, we conduct an 163
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in-depth study of LLMs’ understanding of the com-164

ponents (e.g., concepts and roles) in DL ontolo-165

gies, like how these components get their mean-166

ings (from two aspects, extension and intension)167

and how the meaning of a complex expression de-168

pends on its parts (considering various reasoning169

services).170

3 Preliminaries171

In this section, we briefly recall some basic notions172

about DL-Lite ontology (Calvanese et al., 2007,173

2009). Particularly, we focus on DL-Litecore, DL-174

LiteF and DL-LiteR, three members in DL-Lite175

family, while our evaluation framework can be ap-176

plied to any other description logics (DLs) such as177

DL-LiteA, ALC and EL.178

DL-Lite ontology. We start from DL-Litecore179

concepts and roles, which are defined as follows:180

B ::= A | ∃R | ∃R− R ::= P | P−181

C ::= B | ¬B | C1 ⊓ C2 E ::= R | ¬R182

where A denotes an atomic concept, P denotes183

an atomic role, and P− denotes the inverse of the184

atomic role P and ¬R denote the negation of R.185

We call B,R,C,E a basic concept, a basic role, a186

general concept and a general role respectively.187

A DL-Litecore ontology O = ⟨T ,A⟩ consists188

of a TBox T and an ABox A. T is formed by a189

finite set of concept inclusion assertions of the form190

B ⊑ C. A is formed by a finite set of membership191

assertions on atomic concepts and on atomic roles,192

of the form A(a) and P (a, b), where a and b are193

constants. DL-LiteR extends DL-Litecore with role194

inclusion assertions of the form R ⊑ E and DL-195

LiteF extends DL-Litecore with functionality on196

roles or on their inverses of the form (funct R).197

The semantics of DL-Lite is given in a model-198

theoretic way via interpretations over a fixed infi-199

nite domain ∆. Given an interpretation I and an200

assertion α, I |= α means that I is a model of α.201

An interpretation is a model of a DL-Lite ontology202

O, if and only if it is a model for each assertion in203

O. An ontologyO is satisfiable if it has at least one204

model. O logically implies an assertion α, written205

O |= α, if all models of O are also models of α.206

Reasoning services with DL-Lite ontology. De-207

signed for knowledge representation and efficient208

reasoning, DL-Lite ontology supports several DL209

reasoning services (Calvanese et al., 2007):210

- Ontology satisfiability checking: given an ontol-211

ogyO, verify whetherO admits at least one model;212

- Logical implication of O assertions, which con-213

sists of the following sub-problems: 214

• Instance checking: given an ontology O, a con- 215

cept C and a constant a (resp., a role R and a pair 216

of constants a and b ), verify whether O |= C(a) 217

(resp., O |= R(a, b)) 218

• Subsumption of concepts or roles: given a 219

TBox T and two general concepts C1 and C2 (resp., 220

two general roles R1 and R2 ), verify whether 221

T |= C1 ⊑ C2 (resp., T |= R1 ⊑ R2 ). 222

• Checking functionality - given a TBox T and a 223

basic role R, verify whether T |= ( funct R). 224

- Query answering: given an ontology O and a 225

query q over O, compute the answer set ans(q,O). 226

A key characteristic of DL-Lite syntax and se- 227

mantics is that they are primarily designed for per- 228

forming these DL reasoning services efficiently. 229

Conducting an extensive evaluation of LLMs for 230

these tasks is beneficial to provide insights into 231

whether LLMs can understand DL-Lite ontologies. 232

Transitivity rules. For instance checking and 233

subsumption of concepts or roles, we especially 234

focus on deducing logical implications with 235

some reasoning rules. Borrowing the idea of 236

Canonical Interpretation (PI-closure) and Closure 237

of Negative Inclusion Assertions (NI-closure) 238

from (Calvanese et al., 2007, 2009), we collect 239

the reasoning rules in three categories, 2 TBox 240

PI (positive inclusion) transitivity rules, 11 241

TBox NI (negative inclusion) transitivity rules 242

and 5 ABox transitivity rules. We cover them 243

in Appendix A and there are some examples below: 244

TBox PI transitivity examples:
α = C1 ⊑ C2, β = C2 ⊑ C3 → βnew = C1 ⊑ C3

α = R1 ⊑ R2, β = R2 ⊑ R3 → βnew = R1 ⊑ R3

TBox NI transitivity examples:
α = C1 ⊑ C2, β = C3 ⊑ ¬C2 → βnew = C1 ⊑ ¬C3

α = R1 ⊑ R2, β = ∃R−
2 ⊑ ¬C → βnew = ∃R−

1 ⊑ ¬C
ABox transitivity examples:
α = C ⊑ ∃R, β = C(a) → βnew = R (a, anew )
α = ∃R ⊑ C, β = R (a, a′) → βnew = C(a)

245

4 Unveiling LLMs’ Capabilities in 246

Understanding DL-Lite Ontology 247

In this section, we comprehensively investigate 248

how effectively LLMs can understand DL-Lite on- 249

tologies, especially, grasp the formal representa- 250

tions (syntax) and interpretations of elements in on- 251

tologies (semantics). We conduct a series of tasks, 252

including syntax checking, subsumption of con- 253

cepts or roles, instance checking, query answering, 254

ontology satisfiability checking and property char- 255

acteristics probing. Figure 2 presents an overview 256

of the evaluation framework for the first three tasks. 257
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Figure 2: Evaluation pipeline for syntax checking, subsumption of concepts or roles, and instance checking.

Datasets GO FMA MarineTLO Music OBI
Metric Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

GPT3.5–NI 66 90 76 100 100 100 96 87 91 100 97 98 100 100 100
GPT3.5–WI 66 97 79 68 100 81 100 100 100 83 100 91 83 97 89

GPT3.5–WIE 72 93 81 65 100 79 87 87 87 63 100 77 82 90 86
GPT4o–NI 100 97 98 86 100 92 100 100 100 100 100 100 100 97 98
GPT4o–WI 91 100 95 88 100 94 97 100 98 100 100 100 79 100 88

GPT4o–WIE 100 100 100 88 100 94 97 100 98 97 100 98 94 100 97
LLaMA3-8b–NI 65 93 77 50 100 67 50 100 67 63 97 76 58 93 71
LLaMA3-8b–WI 91 100 95 50 100 67 67 100 80 76 97 85 64 90 75

LLaMA3-8b–WIE 67 93 78 58 97 73 63 100 77 78 97 86 71 100 83

Table 1: Performances of LLMs in syntax checking (%).

We collect specified datasets for each task and con-258

struct three prompts of binary questions, and test259

three LLMs, namely, GPT3.5 (Brown et al., 2020b),260

GPT4o1 (OpenAI, 2023) and LLaMA3-8B2 (Tou-261

vron et al., 2023). The evaluation pipelines of the262

other three tasks introduced later are quite similar.263

4.1 Can LLMs Understand the Syntax of264

DL-Lite Ontologies?265

An important aspect of how effectively LLMs can266

understand DL-Lite ontologies is their capacity to267

comprehend the syntax. In this section, we conduct268

syntax checking to evaluate LLMs’ comprehension269

of structural rules and the construction of valid270

statements and expressions in DL-Lite ontologies.271

Datasets. We select several commonly used DL272

ontologies, including Gene Ontology (GO) (Con-273

sortium, 2004), Foundational Model of Anatomy274

(FMA) (Rosse and Mejino Jr, 2008), Ontology275

for Biomedical Investigations (OBI) (Bandrowski276

et al., 2016), MarineTLO (Tzitzikas et al., 2016)277

and the Music Ontology (Raimond and San-278

dler, 2012). For each DL ontology, we ran-279

domly collect 30 DL-Lite axioms. For each280

collected axiom, we insert random one type281

of syntax error, such as invalid quantifier (eg.282

∃TeachesTo→ ∃∃TeachesTo) and invalid con-283

junction (eg. Professor ⊓ ∃TeachesTo →284

⊓ Professor ∃TeachesTo). We summarize typ-285

1https://openai.com/index/hello-gpt-4o/
2https://github.com/meta-llama/llama3

ical syntax errors in DL-Lite in Appendix B. We 286

build 150 correct and 150 corrupted DL-Lite ax- 287

ioms as datasets for syntax checking. 288

Experimental setup. We utilize binary ques- 289

tions for syntax checking. Generally, the prompts 290

include task description (T) and the input DL-Lite 291

axioms (A). We design three kinds of prompts: 292

• prompt without any instructions about DL-Lite 293

syntax in T, denoted as NI (No Instructions); 294

• prompt with instructions about DL-Lite syntax in 295

T, denoted as WI (With Instructions); 296

• prompt with instructions about DL-Lite syntax 297

and corresponding examples in T, denoted as WIE 298

(With Instructions and Examples). 299

Figure 1 shows an example and we cover de- 300

tailed prompts in Appendix C. 301

Results analysis. In Table 2, we present pre- 302

cision, recall and F1 score of tested LLMs and 303

prompts. Overall, LLMs possess the ability to un- 304

derstand DL-Lite syntax. We find that no matter 305

what kinds of prompts we use, GPT4o achieves 306

good results on all the five data sources. In compar- 307

ison, LLaMA3-8b shows relatively poor results. To 308

deliver a more in-depth investigation, we conduct 309

analyses for the following questions: 310

Can instructions or examples benefit LLMs’ un- 311

derstanding of DL-Lite syntax? For GPT3.5 and 312

GPT4o, there is little difference among the three 313

prompts, while performances of LLaMA3-8B–WI 314

and LLaMA3-8B–WIE are significantly better than 315

those of LLaMA3-8B–NI. This may be because 316
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GPT3.5 and GPT4o have learned detailed DL-Lite317

syntax during training but LLaMA3-8B hasn’t.318

What types of errors do LLMs usually make for319

syntax checking? In most cases, LLMs achieve320

high recall and relatively low precision, since321

LLMs hardly mistake correct axioms, but do some-322

times treat incorrect axioms as correct. Especially,323

we find that LLMs sometimes perform poorly in324

distinguishing between concepts and roles. For325

example, they may treat ∃isConnectedTo ⊑326

Organ− as syntax-correct, which is incorrect since327

inverse (−) can only be put on roles.328

4.2 Can LLMs Understand the Semantics of329

DL-Lite ontologies?330

Another aspect of whether LLMs can understand331

ontologies is their capacity to comprehend the se-332

mantics. Semantics goes beyond the syntactic struc-333

ture and explores the interpretation and significance334

of the elements like concepts and roles of the on-335

tology. In this section, we explore the capability336

of LLMs to understand the semantics of the com-337

ponents within ontology (i.e., concepts and roles)338

considering instance checking and subsumption339

of concepts or roles. Additionally, we probe some340

property characteristics (i.e., inverse roles and func-341

tional roles) in DL-Lite ontologies. Further, we342

conduct query answering and ontology satisfiability343

checking to explore LLMs’ capacity to understand344

the semantics of the whole ontologies.345

4.2.1 Semantics of Concepts and Roles346

We evaluate the capacity of LLMs to understand347

the semantics of concepts and roles from two as-348

pects: extension and intension (Bouaud et al., 1995;349

Woods, 1975; Formica, 2006; Wang et al., 2024a).350

The extension of a concept or role refers to the set351

of individuals or objects that fall under that concept352

or role (Bouaud et al., 1995; Formica, 2006). For353

example, the extension of the concept “President354

of the U.S.” would be the set of all individuals con-355

sidered as U.S. presidents such as “Barack Obama”356

and “Joe Biden”. The intension of a concept or role357

refers to the characteristics, properties, or condi-358

tions that determine whether an individual belongs359

to that concept or role (Formica, 2006). For exam-360

ple, “President of the U.S.” is a “Politician” and361

“someone who plays a role in federal legislation”3.362

We use instance checking for the former, since it363

involves determining whether a particular individ-364

ual belongs to a specified concept within a given365

3https://en.wikipedia.org/wiki/President_of_the_United_States

ontology. Subsumption of concepts or roles is for 366

the latter, which involves determining whether one 367

concept or role is subsumed by another more gen- 368

eral concept or role, reflecting the attributes, charac- 369

teristics, constraints, and conditions encompassed 370

by the inherent intension. 371

Data Sources #T. B ⊑ C #T. R ⊑ E #L. B ⊑ C #L. R ⊑ E

VICODI 193 9 195 9
STOCKEXCHANGE 26 0 12 0

UNIVERSITY 36 5 31 9
ADOLENA 100 0 72 0
SEMINTEC 55 0 47 0

Table 2: Statistics about data sources for subsumption
of concepts or roles. # denotes “the number of”, and T.,
L. denote TBox and logical implications respectively.

Data Sources #O. C(a) #O. R(a, b) #L. C(a) #L. R(a, b)

UOBM1 2338 0 478 0
UOBM2 1389 0 278 0
UOBM3 678 0 136 0
UOBM4 576 0 113 0
UOBM5 466 0 93 0

Table 3: Statistics about data sources for instance check-
ing. # denotes “the number of”, and O., L. denote
ontology and logical implications respectively.

Datasets. For subsumption of concepts or 372

roles, we use the TBox of existing DL-Lite ontolo- 373

gies. We select 4 DL-LiteR ontologies, VICODI 374

(Nagypál et al., 2005), STOCKEXCHANGE 375

(Rodriguez-Muro et al., 2008), UNIVERSITY 376

(Guo et al., 2005), ADOLENA (Keet et al., 2008) 377

from (Pérez-Urbina et al., 2009), and SEMINTEC 378

from (Motik and Sattler, 2006) as approximation 379

of DL-Lite ontology. For instance checking, we 380

construct a series of DL-Lite ontologies of varying 381

sizes using the UOBM benchmark (Ma et al., 2006). 382

We select a variant of UOBM ontology, denoted as 383

UOBM0, and derive five additional ontologies with 384

significantly different ABox sizes by randomly re- 385

moving class assertions from UOBM0, which are 386

labeled as UOBM1, UOBM2, UOBM3, UOBM4 387

and UOBM5 respectively. 388

Then we load the ontologies into Protégé 4 and 389

utilize the reasoning engine HermiT (Glimm et al., 390

2014) to infer logical implications. We cover the de- 391

tails of using Protégé to obtain logical implications 392

in Appendix D. Because there are a large number 393

of logical implications in instance checking, we 394

randomly select a subset for evaluation. Table 2 395

and Table 3 show the statistical details. 396

4https://protege.stanford.edu/
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Figure 3: Performances of LLMs in subsumption of concepts or roles and instance checking.

DL-Lite Ontology Logical Implications

Case 1: TBox = { C1 ⊑ C2, C2 ⊑ ¬C3, C4 ⊑ ¬C2, R1 ⊑ R2,
∃R2 ⊑ ¬C5, C6 ⊑ ¬∃R2, R3 ⊑ R4, ∃R−

4 ⊑ ¬C7, C8 ⊑ ¬∃R−
4 ,

R5 ⊑ R6, R6 ⊑ ¬R7, R8 ⊑ ¬R6 }

C1 ⊑ ¬C3, C1 ⊑ ¬C4, ∃R1 ⊑ ¬C5, ∃R1 ⊑ ¬C6, ∃R−
3 ⊑ ¬C7,

∃R−
3 ⊑ ¬C8, R5 ⊑ ¬R7, R5 ⊑ ¬R8

Case 2: TBox = { C1 ⊑ C2, C1 ⊑ C3, C2 ⊑ C4, R1 ⊑ R2,
R3 ⊑ R4, C5 ⊑ ∃R5, ∃R6 ⊑ C6, ∃R7 ⊑ ∃R8}; ABox = { C1(a),
C1(b), R1(c, d), R3(e, f), C5(a), R6(a, k), R7(g, h)}

C2(a), C3(a), C2(b), C3(b), R2(c, d), R4(e, f), C4(a), C4(b),
R5(a, _), C6(a), R8(h, _)

Table 4: Some ontologies in case study of transitivity rules.

Experimental setup. The prompts include task397

description (T), input ontology (O, only TBox for398

subsumption of concepts or roles while TBox +399

ABox for instance checking) and logical implica-400

tions (L). We design three kinds of prompts:401

• prompt without any instructions about reasoning402

rules in T, denoted as NI;403

• prompt with instructions about reasoning rules404

(TBox PI transitivity, TBox NI transitivity for con-405

cept or role subsumption, and ABox transitivity for406

instance checking) in T, denoted as WI;407

• prompt with instructions about reasoning rules408

(same as above) and corresponding examples in T,409

denoted as WIE.410

Figure 1 shows examples and we cover detailed411

prompts in Appendix C. The evaluation metric is412

the ratio of logical implications that LLMs can413

deduce to all the logical implications.414

Results analysis. The performances of LLMs415

in subsumption of concepts or roles and instance416

checking are represented in Figure 3. For subsump-417

tion of concepts or roles, we find that LLMs achieve418

promising results in most cases. However, for in-419

stance checking, none of the logical implications420

can be inferred by LLMs for UOBM1 and UOBM2,421

even though LLMs achieve good performances for422

the other three ontologies. This is because the task423

of subsumption of concepts or roles only requires424

the input of the TBox which is usually relatively425

small, while instance checking requires an ontology426

that includes both the TBox and the ABox where427

sometimes the ABox can be quite large. We input428

the TBox and ABox at one prompt and the size of429

UOBM1 and UOBM2 exceeds the maximum size430

limit that the selected LLMs can handle. Overall,431

LLMs perform well in these two tasks when the in- 432

put ontology is relatively small. More specifically, 433

we analyze the following questions: 434

How do the size of the ontology and the scale of 435

LLMs affect the understanding of the ontology? 436

The experimental results show that the larger the 437

ontology is, the worse the understanding of LLMs 438

is. For small ontologies, LLMs can achieve almost 439

100% performance. However, when the size of 440

the ontology exceeds a certain threshold, the per- 441

formance of LLMs drops to nearly 0%. Similarly, 442

the larger the scale of the LLM is, the better its 443

capacity to understand ontologies is. For instance, 444

the scale of LLaMA3-8B is much smaller than that 445

of GPT-3.5 and GPT-4o, so its performances on 446

several ontologies are significantly worse. 447

Can LLMs understand the transitivity rules and 448

efficiently apply them in reasoning? For subsump- 449

tion of concepts or roles and the smaller three on- 450

tologies UOBM3, UOBM4, UOBM5 in instance 451

checking in Figure 3, GPT4o can deduce all the 452

implications and GPT3.5, LLaMA3-7b can both 453

deduce most of the logical implications, indicating 454

that LLMs can efficiently perform instance check- 455

ing and subsumption of concepts or roles when the 456

ontology is not that large. 457

However, this does not mean that LLMs truly 458

understand and correctly use every transitivity rule 459

because: (1) The used transitivity rules for those 460

logical implications only cover a small part of all 461

the transitivity rules; (2) LLMs may have poten- 462

tial hallucinations about transitivity rules. Thus we 463

conduct a case study. We build five handcrafted 464

DL-Lite ontologies with logical implications for 465

this use where each logical implication can be de- 466
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Figure 5: Performances for probing of inverse role property and (inverse) functional role property.

duced by certain kind of transitivity rule and the467

examples cover all the introduced transitivity rules.468

Table 6 shows two of them and we cover all of469

them in Appendix E. We apply the above prompts470

but add “Give reasons or inferring process for each471

answer.” to the end of task definition (T). Figure472

4 shows the results. LLMs perform well in case473

2, case 4 and case 5, but perform poorly in case 1474

and case 3, because most logical implications in475

case 1 and case 3 can only be deduced by TBox NI476

transitivity, and those in other cases can be deduced477

by TBox PI transitivity or ABox transitivity. LLMs478

fail to understand TBox NI transitivity rules well,479

and instructions or examples have limited effect.480

We also find LLMs give incorrect explanations to481

logical implications which can only be deduced by482

certain TBox NI transitivity rules, indicating that483

LLMs have hallucinations about TBox NI transi-484

tivity rules or possess some incorrect knowledge485

about TBox NI transitivity.486

4.2.2 Property Characteristics Probing487

Property characteristics, such as symmetric prop-488

erty, transitive property, functional property and in-489

verse functional property, play a significant role in490

a DL ontology. Some studies have shown evidence491

that the LLMs have limited knowledge of some492

property characteristics without external knowl-493

edge or instructions such as inverse role property494

(called "reversal curse" in (Berglund et al., 2023))495

and property inheritance (Shani et al., 2023). In496

this work, especially, we focus on two important497

property characteristics in DL-Lite, inverse role498

property and (inverse) functional role property. We499

set property characteristics probing tasks:500

• inverse role probing: Given an ontology O, a role 501

R, its inverse role P = R−, and two constants a 502

and b which satisfy O |= R(a, b), verify whether 503

O |= P (b, a). 504

• (inverse) functional role probing: Given an ontol- 505

ogy O, a functional role (funct R) (an inverse func- 506

tional role (funct R−)), and three constants a, b and 507

c which satisfies O |= R(a, b) and O |= R(a, c) 508

(resp. O |= R(b, a) and O |= R(c, a)), verify 509

whether b ≡ c. 510

Datasets. We obtain the DL-Lite datasets by 511

extracting and processing existing DL ontologies, 512

namely, Academic Hierarchy (from the Univer- 513

sity Ontology Benchmark (Ma et al., 2006)), E- 514

Commerce System (from the GoodRelations On- 515

tology (Hepp, 2008)), Library System (from the 516

Dublin Core Metadata (Weibel et al., 1998)), So- 517

cial Network Relations (from FOAF, Friend of a 518

Friend (Golbeck and Rothstein, 2008)) and Medi- 519

cal Relationships (from SNOMED CT (El-Sappagh 520

et al., 2018)). 521

For inverse role property probing, we select in- 522

verse roles in the ontologies and use them to build 523

logical implications. For example, if WorksIn 524

and WorksIn− exists, we add Employs, 525

Employs⊑WorksIn−, WorksIn−⊑Employs 526

to the ontology. If WorksIn(a, b) exists in 527

the ontology, we build the logical implication 528

Employs(b, a). For (inverse) functional role prop- 529

erty probing, similarly we select functional roles 530

and build logical implications. For example, if 531

(funct BelongsTo) and BelongsTo(a, b) hold, 532

we then add BelongsTo(a, x) to the ontology and 533

build the logical implication x ≡ b. Statistical 534

7



details are covered in Appendix F.535

Experimental setup. The prompt is almost the536

same to prompt-NI in instance checking. We add537

“Give reasons or inferring process." to the end of538

the task definition. We use GPT4o and the same539

metric in instance checking for evaluation.540

Results analysis. The results in Figure 5541

show that LLMs can deduce most of the log-542

ical implications. LLMs give reasonable ex-543

planations of the deducing process such as544

“Since BelongsTo(Product1, Category1) is given545

and BelongsTo is the inverse of Owns, hence546

Owns(Category1, Product1) can be deduced” and547

“Given: WorksAt(DrBrown,RegionalHospital) and548

WorksAt(DrBrown,x3). Since WorksAt is a func-549

tional property, DrBrown can only work at one550

hospital. Thus, x3 must be RegionalHospital to551

satisfy the functional constraint”. LLMs have the552

potential to understand such logical constraints in553

DL ontologies, indicating the promising prospects554

to utlize ontologies to enhance LLMs’ inference555

capacity such as in the scene of “reversal curse”556

(Berglund et al., 2023).557

4.2.3 Query Answering558

Query answering over an ontology involves retriev-559

ing information that satisfies a given query based560

on this ontology (Calvanese et al., 2007).561

Datasets. We use the Lehigh University Bench-562

mark (LUBM) (Guo et al., 2005) with the given563

TBox, ABox example and 14 test queries5.564

Experimental setup. We use GPT4o for evalu-565

ation. Similar to prompt-NI in instance checking,566

the prompt includes task description (T), input on-567

tology (O) and the query (Q). Because LLMs can’t568

handle large-scale ABox at one time as shown in569

Section 4.2.1, we cut the ontology into 10 parts and570

input them in turn.571

Results analysis. Test results show that GPT4o572

fails to give a totally correct answer for each query.573

For Q3, Q8, Q12, Q13 and Q14, GPT4o can only574

answer a very small part of all the expected answers.575

For other queries, GPT4o has hallucinations and576

answer incorrect answers. LLMs can’t memorize577

and understand large scale factual knowledge and578

fail to perform query answering well practically.579

4.2.4 Ontology Satisfiability Checking580

Ontology satisfiability checking is to verify the log-581

ical consistency of an ontology by ensuring the582

existence of at least one model that satisfies its583

5https://swat.cse.lehigh.edu/projects/lubm/

Datasets economy-inc. MaasMatch.
Metric Precision Recall F1-Score Precision Recall F1-Score

GPT3.5–NI 100 93.1 96.4 57.6 100 73.1
GPT4o–NI 100 89.7 94.5 63.0 76.3 69.0

LLaMA3-8b–NI 81.0 58.6 68.0 55.3 55.3 55.3

Table 5: Performances of LLMs in ontology satisfiabil-
ity checking (%).

axioms. This process is closely related to the se- 584

mantic relationships within the ontology because 585

a consistent, semantically meaningful ontology is 586

more likely to be satisfiable and able to provide an 587

accurate representation of the intended domain. 588

Datasets. We build inconsistent DL-Lite ontolo- 589

gies by generating minimal inconsistent subsets 590

(MISs) (Hunter et al., 2008) of existing inconsis- 591

tent ontologies from (Ji et al., 2014). We choose 592

economy-Inc. and Maa-edas-iasted in (Ji et al., 593

2014) to generate MISs, because the expressivity 594

of their MISs is close to DL-Lite. We select 29 595

MISs of economy-Inc. and 38 MISs of Maa-edas- 596

iasted. For each MIS, we randomly delete an axiom 597

to obtain the corresponding consistent ontology. 598

Experimental setup. The experimental settings 599

are similar to those in syntax checking. We use 600

the prompt-NI including task definition (T ) and 601

ontology (O). We cover prompts in Appendix C. 602

Results analysis. From Table 5, we observe that 603

LLMs perform well on economiy-inc., and rela- 604

tively poor on Maa-edas-iasted, since Maa-edas- 605

iasted is more complex and has more constructors. 606

Overall, LLMs can detect logical inconsistencies in 607

DL-Lite ontologies to some degree. However, this 608

capacity is limited for more complex inconsistent 609

DL ontologies. 610

5 Conclusion 611

We have empirically investigated whether LLMs 612

can understand DL-Lite ontologies. Extensive ex- 613

perimental results demonstrated the effectiveness 614

and limitations of LLMs in understanding the syn- 615

tax and semantics of DL-Lite ontologies. For in- 616

stance, LLMs possess the ability to understand for- 617

mal syntax and semantics of concepts, roles and 618

property characteristics. However, LLMs still strug- 619

gle with understanding TBox NI transitivity rules 620

and handling ontologies with large scale ABoxes. 621

As future works, we will consider exploring the 622

ability of LLMs to understand ontologies in other 623

lightweight ontology languages, such as EL, and 624

to understand ontologies in intractable ontology 625

languages, such as ALC and SHOIQ. 626
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Limitations627

This work is an empirical study on LLMs’ capacity628

of understanding DL-Lite ontologies, and it has629

several limitations. Firstly, the size and diversity630

are limited due to the data sources and costs of631

LLMs. Secondly, there are various kinds of DLs632

and we just choose DL-Lite for evaluation. We thus633

encourage future work to conduct investigations634

for more DLs. Finally, it still remains unexplored635

how to improve LLMs’ understanding capacity for636

TBox NI transitivity and large-scale ABox.637
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A DL-Lite Transitivity Rules833

TBox PI transitivity rules:
α = C1 ⊑ C2, β = C2 ⊑ C3 → βnew = C1 ⊑ C3

α = R1 ⊑ R2, β = R2 ⊑ R3 → βnew = R1 ⊑ R3

TBox NI transitivity rules:
α = C1 ⊑ C2, β = C2 ⊑ ¬C3 → βnew = C1 ⊑ ¬C3

α = C1 ⊑ C2, β = C3 ⊑ ¬C2 → βnew = C1 ⊑ ¬C3

α = R1 ⊑ R2, β = ∃R2 ⊑ ¬C → βnew = ∃R1 ⊑ ¬C
α = R1 ⊑ R2, β = C ⊑ ¬∃R2 → βnew = ∃R1 ⊑ ¬C
α = R1 ⊑ R2, β = C ⊑ ¬∃R−

2 → βnew = ∃R−
1 ⊑ ¬C

α = R1 ⊑ R2, β = ∃R−
2 ⊑ ¬C → βnew = ∃R−

1 ⊑ ¬C
α = R1 ⊑ R2, β = R2 ⊑ ¬R3 → βnew = R1 ⊑ ¬R3

α = R1 ⊑ R2, β = R3 ⊑ ¬R2 → βnew = R1 ⊑ ¬R3

α = R ⊑ ¬R → βnew1 = ∃R ⊑ ¬∃R, βnew2 = ∃R− ⊑ ¬∃R−

α = ∃R ⊑ ¬∃R → βnew1 = R ⊑ ¬R, βnew2 = ∃R− ⊑ ¬∃R−

α = ∃R− ⊑ ¬∃R− → βnew1 = R ⊑ ¬R, βnew2 = ∃R ⊑ ¬∃R

ABox transitivity rules:
α = C1 ⊑ C2, β = C1(a) → βnew = C1(a)
α = C ⊑ ∃R, β = C(a) → βnew = R (a, anew)
α = ∃R ⊑ C, β = R (a, a′) → βnew = C(a)
α = ∃R1 ⊑ ∃R2, β = R1 (a, a

′) → βnew = R2 (a, anew )
α = R1 ⊑ R2, β = R1 (a, a

′) → βnew = R2 (a, a
′)

834

835

We refer to Section 3.1 in (Calvanese et al.,836

2007) for detailed illustrations and examples about837

these transitivity roles.838

839

840

B Typical DL-Lite Syntax Errors841

Common Syntax Errors in DL-Lite Examples

Invalid inverse
Inverse operator on a concept Professor−

Misplaced inverse operator −TeachesTo
Inverse operator on a quantifier ∃−

Invalid quantifiers

Misplaced quantifiers TeachesTo∃
Quantifiers with concept following ∃Professor
Quantifiers missing role following ∃

Redundant multiple quantifiers ∃∃TeachesTo

Invalid negation
Misplaced negation operator Professor¬

Negation without anything following ¬

Invalid conjunction

Conjoining incomplete concepts Professor⊓
Conjoining a concept with a role Professor ⊓ TeachesTo

Conjoining roles directly TeachesTo ⊓HasTutor
Missing conjunction operator Professor∃TeachesTo

Misplaced conjunction operator ⊓Professor∃TeachesTo

842
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C Prompts And Answer Examples843

All symbols and constructors in the prompts can844

be input into LLMs, but only one kind of font can845

be input into LLMs (Colors and italics are only for846

display convenience).847

848

Prompt-NI for syntax checking:849

850 Task Description:851

There are some DL-Lite axioms, and your task is852

to determine whether the syntax of each of these853

axioms is correct.854

855

Given DL-Lite Axioms:856

MaterialEntity ⊑ ¬PhysicalObject857

∃hasPerformer¬ ⊑MusicalExpression858

Investigation ⊑ ∃hasPart859

Protocol ⊑ ¬Investigation¬860

(··· more context here ···)861

862

Answer:863

Prompt-WI for syntax checking:864

865 Task Description:866

There are some DL-Lite axioms, and your task is867

to determine whether the syntax of each of these868

axioms is correct.869

DL-Litecore concepts and roles are defined as870

follows:871

B ::= A | ∃R | ∃R− R ::= P | P−872

C ::= B | ¬B | C1 ⊓ C2 E ::= R | ¬R873

where A denotes an atomic concept, P denotes874

an atomic role, and P− denotes the inverse of the875

atomic role P . We call B,R,C,E a basic concept,876

a basic role, a general concept and a general role877

respectively.878

A DL-Litecore ontology O = ⟨T ,A⟩ consists of a879

TBox T and an ABox A. T is formed by a finite880

set of concept inclusion assertions of the form881

B ⊑ C. A is formed by a finite set of membership882

assertions on atomic concepts and on atomic roles,883

of the form A(a) and P (a, b). DL-LiteR extends884

DL-Litecore with role inclusion assertions of the885

form R ⊑ E and DL-LiteF extends DL-Litecore886

with functionality on roles or on their inverses of887

the form (Funct R).888

889

Given DL-Lite Axioms:890

MaterialEntity ⊑ ¬PhysicalObject891

∃hasPerformer¬ ⊑MusicalExpression892

Investigation ⊑ ∃hasPart893

Protocol ⊑ ¬Investigation¬ 894

(··· more context here ···) 895

896

Answer: 897

Prompt-WIE for syntax checking: 898

899
Task Description: 900

There are some DL-Lite axioms, and your task is 901

to determine whether the syntax of each of these 902

axioms is correct. 903

DL-Litecore concepts and roles are defined as 904

follows: 905

B ::= A | ∃R | ∃R− R ::= P | P− 906

C ::= B | ¬B | C1 ⊓ C2 E ::= R | ¬R 907

where A denotes an atomic concept, P denotes 908

an atomic role, and P− denotes the inverse of the 909

atomic role P . We call B,R,C,E a basic concept, 910

a basic role, a general concept and a general role 911

respectively. 912

A DL-Litecore ontology O = ⟨T ,A⟩ consists of a 913

TBox T and an ABox A. T is formed by a finite 914

set of concept inclusion assertions of the form 915

B ⊑ C. A is formed by a finite set of membership 916

assertions on atomic concepts and on atomic roles, 917

of the form A(a) and P (a, b). DL-LiteR extends 918

DL-Litecore with role inclusion assertions of the 919

form R ⊑ E and DL-LiteF extends DL-Litecore 920

with functionality on roles or on their inverses of 921

the form (Funct R). 922

Here are some examples of common syntactic 923

errors: 924
−TeachesTo is incorrect, for the misplaced 925

inverse operator; ∃− is incorrect, for the inverse op- 926

erator applied to a quantifier; ∃Professor is incor- 927

rect, for the quantifier with a concept following; ∃ 928

is incorrect, for the quantifier missing a role follow- 929

ing; ∃∃TeachesTo is incorrect, for the redundant 930

multiple quantifiers; TeachesTo∃ is incorrect, 931

for the misplaced quantifiers; Professor¬ is 932

incorrect, for the misplaced negation operator; 933

Professor⊓ is incorrect, for conjoining incom- 934

plete concepts; Professor ⊓ TeachesTo is 935

incorrect, for conjoining a concept with a role; 936

TeachesTo ⊓ HasTutor is incorrect, for con- 937

joining roles directly; Professor∃TeachesTo is 938

incorrect, for missing conjunction operator. 939

940

Given DL-Lite Axioms: 941

MaterialEntity ⊑ ¬PhysicalObject 942

∃hasPerformer¬ ⊑MusicalExpression 943

12



Investigation ⊑ ∃hasPart944

Protocol ⊑ ¬Investigation¬945

(··· more context here ···)946

947

Answer:948

Sample answer for syntax checking:949

950 (··· more context here ··· )951

Now, let’s analyze each given DL-Lite axiom for952

syntactic correctness:953

954

1. MaterialEntity ⊑ ¬ PhysicalObject955

This axiom states that MaterialEntity is a subclass956

of the negation of PhysicalObject.957

This is syntactically correct.958

959

2. ∃hasPerformer¬ ⊑ Performance ⊓ Musi-960

calExpression961

Here, ∃hasPerformer¬ seems to be intended as962

an existential quantification, but the syntax ¬ is963

misplaced. Correct form should be something like964

∃hasPerformer ⊑ Performance ⊓ MusicalEx-965

pression.966

Therefore, this is syntactically incorrect due to the967

misplacement of the negation.968

(··· more context here ··· )969

Prompt-NI for subsumption of concepts or970

roles:971

972 Task Description:973

There are a DL-Lite ontology and some logical974

implications, and your task is to determine whether975

each of these logical implications can be deduced976

from the given ontology.977

978

Given Ontology :979

Ability ⊑ ¬Disability980

Ability ⊑ ¬Device981

Ability ⊑ ∃isAssistedBy982

(··· more context here ···)983

984

Logical Implications:985

Achondroplasia ⊑ PhysicalDisability986

Amputation ⊑ PhysicalDisability987

AssistiveDevice ⊑ Device988

Autism ⊑MentalDisability989

(··· more context here ···)990

991

Answer:992

Prompt-WI for subsumption of concepts or 993

roles: 994

995Task Description: 996

There are a DL-Lite ontology and some logical 997

implications, and your task is to determine whether 998

each of these logical implications can be deduced 999

from the given ontology. 1000

Here, you are provided with some reasoning rules: 1001

α = C1 ⊑ C2, β = C2 ⊑ C3 → βnew = C1 ⊑ C3 1002

α = R1 ⊑ R2, β = R2 ⊑ R3 → βnew = R1 ⊑ 1003

R3 1004

α = C1 ⊑ C2, β = C2 ⊑ ¬C3 → βnew = C1 ⊑ 1005

¬C3 1006

α = C1 ⊑ C2, β = C3 ⊑ ¬C2 → βnew = C1 ⊑ 1007

¬C3 1008

α = R1 ⊑ R2, β = ∃R2 ⊑ ¬C → βnew = 1009

∃R1 ⊑ ¬C 1010

α = R1 ⊑ R2, β = C ⊑ ¬∃R2 → βnew = 1011

∃R1 ⊑ ¬C 1012

α = R1 ⊑ R2, β = C ⊑ ¬∃R−
2 → βnew = 1013

∃R−
1 ⊑ ¬C 1014

α = R1 ⊑ R2, β = ∃R−
2 ⊑ ¬C → βnew = 1015

∃R−
1 ⊑ ¬C 1016

α = R1 ⊑ R2, β = R2 ⊑ ¬R3 → βnew = R1 ⊑ 1017

¬R3 1018

α = R1 ⊑ R2, β = R3 ⊑ ¬R2 → βnew = R1 ⊑ 1019

¬R3 1020

one of the assertions R ⊑ ¬R,∃R ⊑ 1021

¬∃R,∃R− ⊑ ¬∃R− → the other two 1022

1023

Given Ontology : 1024

Ability ⊑ ¬Disability 1025

Ability ⊑ ¬Device 1026

Ability ⊑ ∃isAssistedBy 1027

(··· more context here ···) 1028

1029

Logical Implications: 1030

Achondroplasia ⊑ PhysicalDisability 1031

Amputation ⊑ PhysicalDisability 1032

AssistiveDevice ⊑ Device 1033

Autism ⊑MentalDisability 1034

(··· more context here ···) 1035

1036

Answer: 1037

Prompt-WIE for subsumption of concepts or 1038

roles: 1039

1040Task Description: 1041

There are a DL-Lite ontology and some logical 1042

implications, and your task is to determine whether 1043

13



each of these logical implications can be deduced1044

from the given ontology.1045

Here, you are provided with some reasoning rules:1046

α = C1 ⊑ C2, β = C2 ⊑ C3 → βnew = C1 ⊑ C31047

α = R1 ⊑ R2, β = R2 ⊑ R3 → βnew = R1 ⊑1048

R31049

α = C1 ⊑ C2, β = C2 ⊑ ¬C3 → βnew = C1 ⊑1050

¬C31051

α = C1 ⊑ C2, β = C3 ⊑ ¬C2 → βnew = C1 ⊑1052

¬C31053

α = R1 ⊑ R2, β = ∃R2 ⊑ ¬C → βnew =1054

∃R1 ⊑ ¬C1055

α = R1 ⊑ R2, β = C ⊑ ¬∃R2 → βnew =1056

∃R1 ⊑ ¬C1057

(··· more context here ···)1058

Here are some examples:1059

If HasParent ⊑ HasAncestor and Mortal ⊑1060

¬∃HasAncestor, then ∃HasParent ⊑ ¬Mortal.1061

If HasParent ⊑ HasAncestor and Immortal ⊑1062

¬∃hasAncestor−, then ∃hasParent− ⊑ ¬Immortal.1063

If HasParent ⊑ HasAncestor and ∃ hasAncestor−1064

⊑ ¬immortal, then ∃hasParent− ⊑ ¬Immortal. If1065

HasParent ⊑ HasAncestor and HasAncestor ⊑1066

¬HasSibling, then HasParent ⊑ ¬HasSibling.1067

(··· more context here ···)1068

1069

1070

Given Ontology :1071

Ability ⊑ ¬Disability1072

Ability ⊑ ¬Device1073

Ability ⊑ ∃isAssistedBy1074

(··· more context here ···)1075

1076

1077

Logical Implications:1078

Achondroplasia ⊑ PhysicalDisability1079

Amputation ⊑ PhysicalDisability1080

AssistiveDevice ⊑ Device1081

Autism ⊑MentalDisability1082

(··· more context here ···)1083

1084

Answer:1085

Sample answer for subsumption of concepts or1086

roles:1087

1088 (··· more context here ··· )1089

1. Professor ⊑ Staff1090

Professor is a subclass of Academic_Staff and1091

Academic_Staff is a subclass of Staff in the1092

ontology. So, this implication holds.1093

1094

1095

2. BatteryPowered_Wheelchair ⊑ Mo- 1096

torised_Wheelchair 1097

There’s no direct assertion about Battery- 1098

Powered_Wheelchair being a subclass of 1099

Motorised_Wheelchair in the TBox. Therefore, 1100

this implication cannot be deduced. 1101

1102

(··· more context here ··· ) 1103

Prompt-NI for instance checking: 1104

1105Task Description: 1106

There are a DL-Lite ontology and some logical 1107

implications, and your task is to determine whether 1108

each of these logical implications can be deduced 1109

from the given ontology. 1110

1111

Given Ontology : 1112

(··· more context here ···) 1113

AssistantProfessor(AssistantProfessor0) 1114

SportsFan(AssistantProfessor0) 1115

(··· more context here ···) 1116

1117

Logical Implications: 1118

Man(AssistantProfessor0) 1119

SportsLover(AssistantProfessor0) 1120

(··· more context here ···) 1121

1122

Answer: 1123

Prompt-WI for instance checking: 1124

1125Task Description: 1126

There are a DL-Lite ontology and some logical 1127

implications, and your task is to determine whether 1128

each of these logical implications can be deduced 1129

from the given ontology. 1130

Here, you are provided with some reasoning rules: 1131

α = C1 ⊑ C2, β = C1(a)→ βnew = C1(a) 1132

α = C ⊑ ∃R, β = C(a)→ βnew = R (a, anew) 1133

α = ∃R ⊑ C, β = R (a, a′)→ βnew = C(a) 1134

α = ∃R1 ⊑ ∃R2, β = R1 (a, a
′) → βnew = 1135

R2 (a, anew ) 1136

α = R1 ⊑ R2, β = R1 (a, a
′) → βnew = 1137

R2 (a, a
′) 1138

1139

Given Ontology : 1140

AssistantProfessor(AssistantProfessor0) 1141

SportsFan(AssistantProfessor0) 1142

14



(··· more context here ···)1143

1144

Logical Implications:1145

Man(AssistantProfessor0)1146

SportsLover(AssistantProfessor0)1147

(··· more context here ···)1148

1149

Answer:1150

Prompt-WIE for instance checking:1151

1152
Task Description:1153

There are a DL-Lite ontology and some logical1154

implications, and your task is to determine whether1155

each of these logical implications can be deduced1156

from the given ontology.1157

Here, you are provided with some reasoning rules:1158

α = C1 ⊑ C2, β = C1(a)→ βnew = C1(a)1159

(··· more context here ···)1160

Here are examples:1161

If Human ⊑ Animal and Human(John), then1162

Animal(John)1163

If Human ⊑ ∃hasParent and Human(John), then1164

hasParent(John, _).1165

If ∃hasChild ⊑ Parent and HasChild(John, _), then1166

Parent(John).1167

If ∃hasChild ⊑ ∃hasDescendant and1168

HasChild(John, _), then hasDescendant(John, _).1169

If HasParent ⊑ HasRelative and HasParent(Mary,1170

John), then HasRelative(Mary, John).1171

1172

Given Ontology :1173

AssistantProfessor(AssistantProfessor0)1174

SportsFan(AssistantProfessor0)1175

(··· more context here ···)1176

1177

Logical Implications:1178

Man(AssistantProfessor0)1179

SportsLover(AssistantProfessor0)1180

(··· more context here ···)1181

1182

Answer:1183

Sample answer for instance checking:1184

1185
(··· more context here ··· )1186

1. Man(AssistantProfessor0) - True, since Assis-1187

tantProfessor0 is explicitly stated to be a Man.1188

(··· more context here ··· )1189

Prompt for property characteristic probing: 1190

1191Task Description: 1192

There are a DL-Lite ontology and some logical 1193

implications, and your task is to determine whether 1194

each of these logical implications can be deduced 1195

from the given ontology. Give reasons or inferring 1196

process. 1197

1198

Given Ontology : 1199

(··· more context here ···) 1200

WorksIn− ⊑ Employs 1201

Employs ⊑WorksIn− 1202

(funct WorksIn) 1203

WorksIn(John, Google) 1204

WorksIn(John, x) 1205

(··· more context here ···) 1206

1207

Logical Implications: 1208

Employs(Google, John) 1209

x ≡ John 1210

(··· more context here ···) 1211

1212

Answer: 1213

Sample answer for property characteristic prob- 1214

ing: 1215

1216(··· more context here ··· ) 1217

1218

1. Employs(Google, John) - True, Since 1219

WorksIn(John, Google) is given and Employs is 1220

the inverse of WorksIn, hence Employs(Google, 1221

John) can be deduced. 1222

1223

2. x ≡ John - True, Given: WorksIn(John, 1224

Google) and WorksIn(John, x). Since WorksIn is 1225

a functional property, John can only work at one 1226

company. Thus, x must be Google to satisfy the 1227

functional constraint. 1228

1229

(··· more context here ··· ) 1230

Prompt for query answering: 1231

1232Task Description: 1233

There are a DL-Lite ontology and a query, and 1234

your task is to answer the query over the given 1235

DL-Lite ontology. Because ontology is relatively 1236

large, it will be entered in several times. 1237

1238

Given Ontology : 1239
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(··· more context here ···)1240

PhDStudent ⊑ Student1241

Student ⊑ ¬∃hasStaffID1242

∃hasStaffID− ⊑ ID1243

Student ⊑ ¬ID1244

PhdStudent(John)1245

(··· more context here ···)1246

1247

Queries:1248

Q1(x)← Student(x)1249

(··· more context here ···)1250

1251

Answer:1252

Sample answer for query answering:1253

1254 (··· more context here ··· )1255

1256

1. From axiom 5, we know PhDStudent(John).1257

From axiom 1, we have PhDStudent ⊑ Student.1258

This means every PhDStudent is a Student. There-1259

fore, PhDStudent(John) implies Student(John).1260

The answer is q(John).1261

1262

(··· more context here ··· )1263

Prompt for ontology satisfiability checking:1264

1265 Task Description:1266

There is a DL-Lite ontology, and your task is to1267

determine whether the ontology is satisfiable, i.e.,1268

iff it has at least one model.1269

1270

Given Ontology :1271

(··· more context here ···)1272

MasterStudent ⊑ Student1273

MasterStudent ⊑ Employee1274

Student ⊑ ¬ Employee1275

MasterStudent(John)1276

(··· more context here ···)1277

1278

Answer:1279

Sample answer for ontology satisfiability check-1280

ing:1281

1282 (··· more context here ··· )1283

1284

The axioms lead to a logical inconsistency1285

regarding the concept of MasterStudent MasterStu-1286

dent. Therefore, the given DL-Lite ontology is not1287

satisfiable. 1288

1289

(··· more context here ··· ) 1290

D Instructions about Protégé 1291

We import the selected ontological datasets into 1292

Protégé and utilize the reasoning engine HermiT 1293

1.3.8.413 to infer logical implications.

1294
Then we export the inferred axioms. For subsump- 1295

tion of concepts or roles, the chosen categories of 1296

inferred axioms exported are subclasses, sub object 1297

properties, and sub data properties. For instance 1298

checking, the chosen categories of inferred axioms 1299

exported are class assertions and property asser- 1300

tions

1301
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DL-Lite Ontology Logical Implications

Case 1: TBox = { C1 ⊑ C2, C2 ⊑ ¬C3, C4 ⊑ ¬C2, R1 ⊑ R2,
∃R2 ⊑ ¬C5, C6 ⊑ ¬∃R2, R3 ⊑ R4, ∃R−

4 ⊑ ¬C7, C8 ⊑ ¬∃R−
4 ,

R5 ⊑ R6, R6 ⊑ ¬R7, R8 ⊑ ¬R6 }

C1 ⊑ ¬C3, C1 ⊑ ¬C4, ∃R1 ⊑ ¬C5, ∃R1 ⊑ ¬C6, ∃R−
3 ⊑ ¬C7,

∃R−
3 ⊑ ¬C8, R5 ⊑ ¬R7, R5 ⊑ ¬R8

Case 2: TBox = { C1 ⊑ C2, C1 ⊑ C3, C2 ⊑ C4, R1 ⊑ R2,
R3 ⊑ R4, C5 ⊑ ∃R5, ∃R6 ⊑ C6, ∃R7 ⊑ ∃R8}; ABox = { C1(a),
C1(b), R1(c, d), R3(e, f), C5(a), R6(a, k), R7(g, h)}

C2(a), C3(a), C2(b), C3(b), R2(c, d), R4(e, f), C4(a), C4(b),
R5(a, _), C6(a), R8(h, _)

Case 3: TBox = {C1 ⊑ C2, C1 ⊑ C4, C1 ⊑ C6, C2 ⊑ C3, C4 ⊑
¬C5, C7 ⊑ ¬C6, R1 ⊑ R2, R4 ⊑ R5, R6 ⊑ R7, R2 ⊑ R3,
∃R2 ⊑ ¬C8, C9 ⊑ ¬∃R2, C10 ⊑ ¬∃R−

5 , ∃R−
5 ⊑ ¬C11, R7 ⊑

¬R8, R9 ⊑ ¬R7, R10 ⊑ ¬R10, ∃R11 ⊑ ¬∃R11, ∃R−
12 ⊑ ¬∃R−

12}

C1 ⊑ C3, C1 ⊑ ¬C5, C1 ⊑ ¬C7, R1 ⊑ R3, ∃R1 ⊑ ¬C8, ∃R1 ⊑
¬C9, ∃R−

4 ⊑ ¬C10, ∃R−
4 ⊑ ¬C11, R6 ⊑ ¬R8, R6 ⊑ ¬R9,

∃R10 ⊑ ¬∃R10, ∃R−
10 ⊑ ¬∃R−

10, R11 ⊑ ¬R11, ∃R−
11 ⊑ ¬∃R−

11,
R12 ⊑ ¬R12, ∃R12 ⊑ ¬∃R12.

Case 4: TBox = { C1 ⊑ C2, C1 ⊑ ∃R1, ∃R2 ⊑ C3, ∃R3 ⊑ ∃R4,
R5 ⊑ R5}; ABox = {C1(a), C1(b), R2(c, d), R3(e, f), R5(g, h)}

C2(a), R1(b, _), C3(c), R4(e, _), R6(g, h).

Case 5: TBox = {C1 ⊑ C2, C2 ⊑ C3, C3 ⊑ C4, C4 ⊑ C5, C3 ⊑ C6,
C6 ⊑ C7, R1 ⊑ R2, R2 ⊑ R3, R3 ⊑ R4}

C1 ⊑ C3, C1 ⊑ C4, C1 ⊑ C5, C1 ⊑ C6, C1 ⊑ C7, C2 ⊑ C3,
C2 ⊑ C4, C2 ⊑ C5, C2 ⊑ C6, C2 ⊑ C7, C3 ⊑ C5, C3 ⊑ C6,
C3 ⊑ C7, R1 ⊑ R3, R1 ⊑ R4, R2 ⊑ R4.

Table 6: Handcrafted ontologies in case study of transitivity rules.

Data Sources #ax. #as. #inv. #fun. #inv. fun. #impli.inv. #impli.fun.

Academic Hierarchy 36 120 6 3 1 12 12
E-Commerce System 32 51 4 2 1 8 6

Library System 22 70 3 0 3 7 6
Social Network Relations 29 102 3 1 4 5 3

Medical Medical Relationships 16 21 3 1 0 13 4

Table 7: Statistics about data sources for property characteristics probing. # denotes “the number of ”, and ax., as.,
inv., fun., inv. fun., impli., impli. fun. denote class axioms, class assertions, inverse roles, functional roles, inverse
functional roles, logical implications for inverse roles, logical implication for functional roles.

E Ontologies in Case Study of1302

Transitivity Rules1303

Table 6 demonstrate the handcrafted ontologies in1304

case study of transitivity rules.1305

F Data Stastistics for Property1306

Characteristic Probing1307

Table 7 demonstrate statistics about data sources1308

for property characteristics probing.1309
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