
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ABBEL: LLM AGENTS ACTING THROUGH BELIEF
BOTTLENECKS EXPRESSED IN LANGUAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

As the length of sequential decision-making tasks increases, it becomes compu-
tationally impractical to keep full interaction histories in context. We introduce a
general framework for LLM agents to maintain concise contexts through multi-step
interaction: Acting through Belief Bottlenecks Expressed in Language (ABBEL),
and methods to further improve ABBEL agents with RL post-training. ABBEL
replaces long multi-step interaction history by a belief state, i.e., a natural lan-
guage summary of what has been discovered about task-relevant unknowns. Under
ABBEL, at each step the agent first updates a prior belief with the most recent
observation from the environment to form a posterior belief, then uses only the
posterior to select an action. We systematically evaluate frontier models under
ABBEL across six diverse multi-step environments, finding that ABBEL supports
generating interpretable beliefs while maintaining near-constant memory use over
interaction steps. However, bottleneck approaches are generally prone to error
propagation, which we observe causing inferior performance when compared to
the full context setting due to errors in belief updating. Therefore, we train LLMs
to generate and act on beliefs within the ABBEL framework via reinforcement
learning (RL). We experiment with belief grading, to reward higher quality beliefs,
as well as belief length penalties to reward more compressed beliefs. Our experi-
ments demonstrate the ability of RL to improve ABBEL’s performance beyond the
full context setting, while using less memory than contemporaneous approaches.

1 INTRODUCTION

Recent approaches to automating complex tasks such as software development and scientific research
result in AI systems that take hundreds or thousands of steps of interaction with their environment,
often exceeding the practical context limits of even frontier models. These limitations necessitate
the development of methods that compress interaction histories while preserving the most relevant
information for effective decision-making. While work on maintaining minimal sufficient statistics
for sequential decision-making stretches back to Åström (1965), LLMs provide a unique opportunity
for expressing such information in language, a medium that is both flexible and interpretable. The
information in the interaction history required to solve a task can generally be described by a posterior
belief over the values of task-relevant variables. Compressing an interaction history into such a
belief state could, in principle, limit the growth of the context length without harming performance.
Furthermore, recent work suggests that LLMs can accurately update natural language descriptions of
beliefs given new observations (Arumugam & Griffiths, 2025), and prompting language agents to
explicitly generate a belief before acting can enhance their performance (Kim et al., 2025).

In light of this, we propose ABBEL (Acting through Belief Bottlenecks Expressed in Language),
a framework for maintaining compact and interpretable contexts where an agent generates and acts on
natural language belief states instead of full interaction histories. Figure 1 illustrates ABBEL in the
multi-step word guessing game Wordle1. ABBEL replaces the full history of guesses and feedback
(VANILLA) with a current belief over the letters comprising the secret word. ABBEL alternates
between updating a belief state given new observations, and selecting an action based solely on the
current belief. Thus, ABBEL relies on the ability of a language model to propagate the correct

1In Wordle, the player has 6 tries to guess a 5-letter secret word, receiving feedback about each letter (i.e.,
whether it is not in the secret, in the secret in a different position, or in the correct position) after each guess.
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Figure 1: (a) Overview of the belief update and action selection contexts over 3 timesteps under
ABBEL, in contrast to the typical multi-step paradigm (VANILLA) or simply prompting for belief
generation (BELIEF PROMPTING) which keep all past steps in context. (b) an example step of
ABBEL in Wordle; actions are word guesses, and observations provide feedback on each letter.

information at each step: the model’s output must maintain sufficient information for selecting good
actions, while discarding superfluous information, e.g., repeated feedback that a letter is not in the
secret word, to generate belief states that are compact enough to keep the context length manageable
in long-horizon settings.

We systematically evaluate current frontier models under ABBEL across six multi-step environments
with varying levels of reasoning complexity and structure, and compare to ablations to separately
study the effects of prompting for belief generation and removing the interaction history. We find that
in many environments, the generated belief states are human-understandable and significantly shorter
than the full interaction history without significantly impacting performance, and that conditioning
on self-generated beliefs also reduces unnecessary reasoning. While interaction history grows
linearly with interaction steps, the lengths of ABBEL-generated beliefs grow much more slowly, even
decreasing in some environments as the beliefs concentrate around the answer. However, for each
model, we find environments where reduced context decreases task performance, and identify several
key causes: propagating erroneous beliefs across steps, hallucinating false memories of previous steps,
and repeating uninformative actions because the belief doesn’t change without new information.

Considering the significant divergence between ABBEL and typical LLM training settings, we
propose to use RL to fine-tune LLM agents to better generate and reason through belief state
bottlenecks under ABBEL. In addition to outcome rewards, we introduce belief grading and belief
length penalty rewards to train the generation of more accurate and more concise beliefs, respectively.
Training Qwen2.5-7B-Instruct with belief grading in a simplified version of Wordle, we find ABBEL
exceeds the performance of the full-context setting by about 20% while maintaining near-constant-
length beliefs. We train ABBEL with a belief length penalty in a multi-objective question-answering
setting with much lengthier observations and more extreme horizon generalization from Zhou et al.
(2025b), obtaining significantly higher task performance with lower memory usage than MEM1 (Zhou
et al., 2025b). Ablating the belief length penalty, we find it only slightly decreased performance,
demonstrating that the isolated belief state provides the flexibility to effectively trade-off performance
for memory usage without degrading reasoning. We finally study our approach in a more complex
environment, ColBench (Zhou et al., 2025a), a collaborative programming setting where the agent
must assist a user in writing code through asking for clarifications about the desired behavior. We
find that belief grading allows more data-efficient training, and ABBEL learns to perform close to the
full-context model while using half as much memory.
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2 RELATED WORK

Long context management. Several recent systems have developed practical solutions for managing
long contexts. Context compression methods generate dense representations that, while computation-
ally efficient, sacrifice human-understandability (Chevalier et al., 2023; Jiang et al., 2024). Wang et al.
(2025b), Örwall (2024) and Starace et al. (2025) hand-design summarization prompts and pruning
strategies specific to their target environments, which requires expert human knowledge of what
information must be maintained for each task rather than allowing the agent to learn what to remember
as part of its decision-making strategy. Packer et al. (2024) and Xu et al. (2025) process long contexts
into an external memory store for the agents to query, which is is an orthogonal approach with
different constraints, and can be combined with ABBEL. Wang et al. (2025a) and Yu et al. (2025)
recursively update a natural language summary similar to ABBEL’s belief state, but they summarize
pre-existing long contexts divided into chunks, with no method to update summaries after taking
actions. We study the more general multi-step setting where the agent must continually update a
summary while actively exploring, which requires reasoning over the summary to select actions that
gather missing information needed for the task.

Multi-step exploration with beliefs. Various works have studied compact representations of
interaction history for multi-step tasks that involve active information-gathering. Kim et al. (2025)
improve action selection by first prompting LLMs to explicitly generate beliefs of the current state
relative to the goal, though they still include the full interaction history in context. Hard-coded
summary statistics of past observations have proven effective for bandit problems (Krishnamurthy
et al., 2024; Nie et al., 2025), but lack the flexibility needed for more complex environments.
Arumugam & Griffiths (2025) show that frontier models can be effective at belief updating, but they
initialize the agents with hand-crafted prior beliefs tailored to each environment, whereas in realistic
settings such priors are often unavailable, and they use the suboptimal posterior sampling algorithm
to select actions rather than training agents to explore optimally from beliefs. MEM1 (Zhou et al.,
2025b) trains LLMs to maintain an internal state, similar to ABBEL’s belief state, that summarizes
key information during multi-step interaction. However, while ABBEL first generates a belief and
then reasons with the belief to select an action, MEM1 directly reasons to select an action and treats
the entire reasoning trace as the new internal state. Entangling the beliefs about the task with the
reasoning harms conciseness and interpretability, and makes it difficult to steer or compress the
beliefs during training in contrast to ABBEL’s isolated belief state.

3 FORMULATION

Problem Setup. We model each environment as a Partially Observable Markov Decision Process,
using Wordle as an example environment for grounding our formulation. In Wordle, the objective is to
identify a secret 5-letter word in fewer than 7 turns by guessing a 5-letter word at each step. Each task
corresponds to a randomly sampled hidden initial state s0, e.g., (secret:GUARD, step:0).
At each step the agent selects an action at from the action space, e.g., 5-letter English words. The
hidden state st+1 is updated based on st and at, which in Wordle simply increments the step counter.
The agent receives reward rt and observation ot both conditioned on at and st, e.g., rt = 1 if at =
GUARD and step < 7 otherwise rt = 0, and ot is feedback on each letter in at (i.e., whether the
letter is not present in the secret word, present at a different position, or present at the guessed
position) and the new step count (see Fig. 1).

Belief Bottleneck Interaction Framework. We use LLMs to implement context-conditioned policies
at ∼ π(· | ct). In the typical multi-step paradigm, the context includes the full interaction history of
observations and actions ht = ⟨a1, o2, a2, o3, . . . , at−1, ot−1⟩, as shown in Fig. 1 (Vanilla), while in
ABBEL it contains only a current belief. In ABBEL, the agent is called twice at each step t: first,
conditioned on the environment instructions pI (e.g., how to play Wordle) and the last belief, action,
and observation, and belief prompt pb, we generate a new belief bt ∼ π(· | pI , bt−1, at−1, ot−1, pb)
(Update belief in Fig. 1). Next, all steps before t are removed from the context, and π is called with
action prompt pa and the newest belief bt to select the next action at ∼ π(· | pI , bt, pa) (Select action
in Fig. 1), resulting in a new observation ot from the environment. See Appendix B for the full details.
We measure the performance of π in each environment by its expected performance across the task
distribution, e.g., the uniform distribution over all possible 5-letter secret words.
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4 EVALUATING FRONTIER MODELS WITH BELIEF BOTTLENECKS

We investigate to what extent current frontier models can already generate and reason through natural
language belief states as bottlenecks in reasoning. We use a purely prompting-based approach,
following the framework described in section 3.

4.1 ENVIRONMENTS

We evaluate across six multi-step environments from Tajwar et al. (2025) spanning various levels
of reasoning complexity and structure.2 Wordle and Mastermind demand complex reasoning using
highly structured feedback on each position of a secret word or 4-digit code. Mastermind has the
same rules as Wordle (described in Section 3), except feedback only reveals the total number of
guessed digits in the correct position, or in the code but in a different position. Twenty Questions
and Guess My City involve iteratively narrowing down a search space of topics or cities by asking a
sequence of questions. In contrast, both actions and observations in Murder Mystery and Customer
Service are free-form descriptive sentences: actions correspond to clue-gathering or troubleshooting
instructions, and observations, generated by GPT-4o-mini, describe what the detective discovers or
how the customer responds. The goal is to identify the culprit or correctly diagnose the customer’s
problem, respectively.

4.2 MODELS AND FRAMEWORKS

We evaluate Gemini 2.5 Pro, DeepSeek R1, and DeepSeek V3 using chain-of-thought prompting. For
each model, we compare ABBEL with two variations. The first is a standard multi-step interaction
framework (Fig. 1, VANILLA) where at each step the agent is prompted with the initial instructions
followed by the full interaction history of actions and observations (not including reasoning), and
finally a prompt to generate the next action. The second framework (Fig. 1, BELIEF PROMPTING)
follows ABBEL in first prompting to update beliefs and then prompting to select an action given
the beliefs at each step, but the full interaction history remains in context, ablating the information
bottleneck aspect of ABBEL. We sample 40 task instances from each environment and report the
mean and standard error of the mean of task outcomes (Success Rate).

4.3 RESULTS

Task Performance. We first analyze how well frontier models perform under each framework. Fig. 2a
presents the success rates for each setting. We find that Gemini 2.5 Pro with ABBEL maintains or
even exceeds the performance of both full-context settings in most tasks. However, the Deepseek
models generally perform worse under all frameworks and show greater drops in performance
under ABBEL, with the exception of Twenty Questions. We then examine the performance of
BELIEF PROMPTING to separately study the effects of prompting for belief generation, and acting
on the belief state bottleneck. Here, a belief state is maintained, but in contrast to ABBEL, we
condition action generation both on the belief state and the full history. Prior work has found
that conditioning on interaction history alongside a belief summary is helpful for long sequential
decision-making tasks (Kim et al., 2025). In our experiments, we find that BELIEF PROMPTING
rarely outperforms VANILLA and sometimes substantially decreases performance. Secondly, we
investigate belief sufficiency, comparing ABBEL and BELIEF PROMPTING. We observe that the
weaker Deepseek models generally struggle more with generating sufficient beliefs in environments
with low information structure (Customer Service and Murder Mystery), where it is more ambiguous
what information should be maintained in the beliefs. Even Gemini 2.5 Pro fails to generate sufficient
beliefs across all environments, as evidenced by the small performance drop in Mastermind.3

Belief State Compactness and Interpretability. We next investigate if ABBEL can reduce the
context length for frontier models by examining the compactness of belief states generated through
ABBEL across different models and tasks, shown in Fig. 2b. In most cases, beyond the first few
steps, the belief states were significantly shorter than the length of the interaction history (gray dashed

2Table 3 in the Appendix summarizes key characteristics of each environment.
3Surprisingly, Gemini 2.5 Pro performs much better under ABBEL than VANILLA in Murder Mystery. We

find that VANILLA is more biased to keep gathering clues and run out of steps before making an accusation.
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the mean. In most tasks, Gemini 2.5 Pro maintained performance with ABBEL despite significantly reduced
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(b) Average length of beliefs generated under ABBEL compared to full interaction histories. While history
grows linearly over interaction steps, the belief lengths generally grow more slowly and are significantly shorter
after the first few steps.

Figure 2: Behavior of frontier models across environments and frameworks.

line). While the history always grows linearly with the number of interaction steps, belief lengths
grow more slowly, plateauing or even decreasing in some environments as possibilities were ruled
out, with the exception of Gemini 2.5 Pro in Twenty Questions and Guess My City. By inspection we
found that all models generated human-understandable beliefs, which allowed us to better understand
model behavior. For instance, in Twenty Questions we find that Gemini 2.5 Pro concatenates all
information from the observations, which explains why the length grows linearly with time on par
with the history, whereas DeepSeek R1 maintains a compact description of the posterior beliefs (see
Appendix C for examples).

Impact on Reasoning. Finally, we investigate how ABBEL affects reasoning for action selection,
where models are prompted to think step-by-step before choosing an action, conditioned on some
context. We find that conditioning on belief states generated by ABBEL and BELIEF PROMPTING
rather than full histories significantly reduces reasoning length for comparable performance in several
environments (see Figure 6). We also find ABBEL often uses even less reasoning than BELIEF
PROMPTING while achieving similar success rates. Thus, using belief states as a bottleneck provides
an additional benefit of preventing unnecessary extra reasoning over interaction histories when beliefs
are sufficient. See Appendix D for more analysis.

We additionally inspect the traces to get further insight into the challenges of reasoning through
a belief bottleneck. We find that performance of ABBEL is impacted when the agent does not
update the belief state after uninformative observations (e.g., in Customer Service when the customer
responds “I’m not sure” to the agent’s question), causing it to take the same action again, whereas
if the action selection step is conditioned on the interaction history (including previous actions),
it is much less likely to repeat an uninformative action. Additionally, in environments requiring
more complex reasoning (Wordle and Mastermind), we find many cases where belief state errors
are introduced and propagated from one step to the next. If errors are propagated, models have the
opportunity to self-correct the belief state if they receive contradictory observations, but the wasted
turns may be irrecoverable; whereas access to the full history enables earlier error detection and
perfect posterior reconstruction. We find two main causes of belief state errors: incorrectly updating
on the new observation due to mistakes in reasoning (e.g., falsely assuming that the secret code cannot
contain repeated characters), and hallucinating false memories of past interactions (see Appendix D.1
for an example).
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Figure 3: Overview of belief grading. Beliefs, actions and observations generated at timestep t are
denoted by bt, at, and ot, respectively. After collecting trajectories from the current ABBEL policy
(a), each step is copied into a new group consisting of the original belief update and a newly generated
posterior belief from the same context (b), which are each assigned rewards by a belief grader (c).
The grader shown here was customized for Combination Lock, a 3-digit version of Wordle. The policy
is finally updated with GRPO using both the trajectory groups and the belief groups.

5 REINFORCEMENT LEARNING TO ACT THROUGH BELIEF BOTTLENECKS

We found in Section 4 that ABBEL can already lead to significantly shorter yet interpretable contexts
for frontier models, and belief bottlenecks also have potential for improving reasoning efficiency.
However, for each frontier model we found environments where there was still significant room for
improvement, in either the task performance or the conciseness of the beliefs. Reinforcement learning
(RL) has been shown to improve general abilities across task structures and input distribution shifts
compared to SFT alone (Nie et al., 2025; Kirk et al., 2024; Tajwar et al., 2025). We propose to use
RL to improve LLMs’ abilities to generate and reason through belief bottlenecks under ABBEL.

5.1 METHODS

RL with outcome-based rewards naturally incentivizes learning to accurately maintain the relevant
information in the beliefs for completing the task, without requiring task-specific knowledge or
demonstrations. In addition, we experiment with rewards that leverage ABBEL’s isolated belief
states to provide additional training signal.

5.1.1 BELIEF LENGTH PENALTIES

For settings where ABBEL generates bloated belief states, we propose to add a small negative reward
penalizing the token length of the belief states. Because ABBEL’s belief states are separated from
the reasoning, this penalty encourages more concise beliefs without degrading reasoning capabilities.
The penalty for a trajectory is proportional to the length of longest belief state in the trajectory, and
like Arora & Zanette (2025), we apply it after advantage normalization, to reduce its impact as beliefs
get shorter to avoid over-compression. See Appendix G.3 for details.

5.1.2 BELIEF GRADING

In environments requiring more complex belief update reasoning such as Wordle and Mastermind, it
may be difficult to learn to generate accurate beliefs from a sparse outcome reward. Inspired by the
use of belief grading for tuning context summarization prompts in software engineering tasks (Wang
et al., 2025b), we propose to add shaping rewards based on the quality of the generated beliefs.

Adding rewards for every belief state directly to each trajectory’s outcome rewards may cause reward
hacking, as rewards could be maximized by solving the task less efficiently to collect more step-wise
belief rewards (Lidayan et al., 2025). Instead, we treat belief generation as a separate task, creating
additional "trajectories" consisting of single belief update generations to which we assign the grading
rewards (Fig. 3a and 3b). To do this, we collect belief states generated during the environment’s
multi-step roll out, and for each belief we prompt ABBEL again to generate another belief from the
same context to create a size-2 group for GRPO (Fig. 3b). We then grade and assign rewards to each
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Figure 4: Test behavior of Qwen2.5-7B-Instruct trained in Combination Lock. (a) Task success rates
over training steps show ABBEL quickly reduces its performance gap with other frameworks, while
Belief Grading allows ABBEL to surpass the other frameworks. (b) The beliefs generated by ABBEL
BELIEF GRADING initially increase in length but eventually become even shorter over training, and
remain significantly shorter than the interaction history beyond the first 2 environment steps.

belief (Fig. 3c), which provides a learning signal whenever the two beliefs in a group receive different
grades. The policy gradient step for belief grades and outcome-based rewards is applied concurrently.
See Algorithm 2 for more details. Different grading functions may be used for different environments;
here we show an example for Combination Lock, a 3-digit version of Wordle (details in Section 5.2.1).
We also propose a domain-general heuristic that does not require parsing or ground-truth posteriors
in Section 5.2.3.

5.2 EXPERIMENTS

To evaluate our approach, we train ABBEL in Combination Lock, which requires complex belief up-
date reasoning, multi-objective QA (Zhou et al., 2025b), with much lengthier 300-word observations
and extreme horizon generalization (from 2 questions and 6 steps to 16 questions and 20 steps), and
ColBench (Zhou et al., 2025a), a more complex collaborative coding setting. In all experiments, we
train Qwen2.5-7B-Instruct with chain-of-thought prompting, and use GRPO in VeRL-agent (Feng
et al., 2025), a multi-context synchronous rollout framework (for full details see Appendix G).

5.2.1 COMBINATION LOCK

Environment and Metrics. Combination Lock is a 3-character version of Wordle proposed by
Arumugam & Griffiths (2025); we train with a vocabulary of 10 digits and 12-step horizon, and
test on a disjoint vocabulary of 16 letters and 16-step horizon. Each episode ends with reward
(H + 1− steps to find code)/H if the code was identified, and −1 otherwise. As a coarse-grained
measure of performance, we report the fraction of episodes ending in identifying the secret code
(Success Rate). To cleanly quantify exploration efficiency, we also measure the "Cumulative Regret"
over each trajectory, which increases by 1 at every step that the code has not been identified such that
the mean Cumulative Regret at step H is the mean number of steps taken to find the code.

Experimental Setup. As Combination Lock involves complex belief update reasoning, we train
ABBEL with belief grading as outlined in Section 5.1.2 (ABBEL BELIEF GRADING). We also
train without belief grading (ABBEL), as well as the full-context BELIEF PROMPTING and VANILLA
settings described in Fig.1.

Belief Grader. In Combination Lock it is possible to compute the ground truth posterior exactly from
the previous actions and observations in the trajectory. To grade each belief in Combination Lock,
we first used Grok-4-Fast-Free to parse it into a list of possible numbers at each position, which we
compared to the ground truth posterior, generating a reward of 1 when they were identical and 0
otherwise (Fig. 3c). We stop grading each trajectory after the first step with an incorrect belief, to
avoid penalizing beliefs that were only incorrect due to propagating errors from the previous step.
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Results. In line with our findings from Section 4.3, the initial performance of all ABBEL agents was
significantly lower than either the baseline (VANILLA) or BELIEF PROMPTING (Fig. 4a). However,
we find that RL with belief grading is highly effective, resulting in ABBEL-BELIEF GRADING
outperforming both. The beliefs remain concise; in fact, we find that they first increase in length,
but then decrease later in training (Fig. 4b), which could be a side-effect of the grading encouraging
the model to generate beliefs that are easier to parse with an LLM (see Appendix E for examples).
Ablating the belief grading, we find it played a major role in boosting performance, especially
Cumulative Regret (Fig. 10a), though we note that RL is still effective for ABBEL, leading to its
success rate quickly increasing to bridge the gap with the full-context models. We also find that
ABBEL without grading learns to generate longer belief states over training (though still significantly
shorter than the full interaction history past the first two steps (Fig. 10b).

5.2.2 MULTI-OBJECTIVE QUESTION ANSWERING

Environment and Metrics. In the multi-objective question answering (QA) environment introduced
by Zhou et al. (2025b) each task requires the agent to answer a set of questions (objectives), by
iteratively querying an external knowledge base before generating a final answer composed of
semicolon-delimited answers to each question. Each query retrieves the first 100 words of the three
most relevant documents in the knowledge base. During training, each task involves only 2 questions
and a horizon of 6 steps, while we evaluate on tasks with up to 16 objectives and 20 steps. We use the
Exact Match Count (EM), defined as the number of answers that exactly match the correct answer
text, as both the reward and performance metric. We measure memory efficiency with the Peak Token
Usage metric proposed by Zhou et al. (2025b), which is the maximum sequence length (input and
output, excluding the system prompt) over all steps in each trajectory. We report mean and standard
error over the test set for each metric.

Experimental Setup. As this environment involves very lengthy observations, we experiment with
training ABBEL with a belief length penalty (ABBEL-LP) to further decrease memory usage. We
also train with no penalty (ABBEL) and evaluate with no RL at all (ABBEL Zero). We compare
with MEM1 (Zhou et al., 2025b), which also uses RL to train LLMs to generate and act on context
summaries instead of full interaction histories. However, rather than generating a separate belief
state, the entire reasoning trace is used as the memory that gets carried forward to the next step.
We refer to both this memory and ABBEL’s belief states as internal states. We compare with the
metrics reported by Zhou et al. (2025b) for MEM1 (MEM1 Base, trained from Qwen2.5-7B-Base),
and an untrained Qwen2.5-14B-Instruct model operating in the full context setting (VANILLA 14B
Zero-Shot). We also re-implement MEM1 by training a Qwen2.5-7B-Instruct model under MEM1’s
prompting and rollout framework (MEM1 Instruct)4 for an apples-to-apples comparison with ABBEL.
As a measure of best-case performance, we train a Qwen2.5-7B-Instruct model in the full-context
setting (VANILLA) and also evaluate its zero-shot performance (VANILLA Zero).

Results. ABBEL achieves significantly higher performance than all other memory models for
more than 2 objectives (Fig. 5a). Inspecting the belief states, we find that they remain concise and
interpretable, summarizing what is known so far about the answers to the questions. Meanwhile
MEM1’s internal states are significantly longer (Fig. 5b), containing reasoning for drawing conclu-
sions from previous search results (see Appendix F for examples). Though ABBEL’s shorter internal
state doesn’t make a big difference to Peak Token Usage relative to MEM1 due to the length of the
reasoning and environment feedback, the more concise beliefs may help performance by being easier
to reason over. The lower performance of ABBEL Zero-Shot confirms that RL was effective, while
causing only a small increase to memory usage. The belief length penalty further shrinks the belief
states, making ABBEL LP significantly more memory-efficient than MEM1 (Fig. 5c), with only a
slight decrease in performance compared to ABBEL while still significantly outperforming MEM1.
Inspecting the beliefs, we observe that they remain interpretable yet more concise (see Appendix F
for examples). This shows that ABBEL provides the flexibility to efficiently trade-off memory usage
for performance. Note that this shaping reward cannot be applied to MEM1 as it does not isolate
the belief from the reasoning in the internal state, so such a reward would have the adverse effect of
penalizing reasoning. The trained VANILLA model only performs slightly better than ABBEL, with
no advantage at the 16 objective setting despite access to the full context and using 9.5x as much
memory. In addition, both zero-shot VANILLA models cannot handle 16 objectives at all (scoring

4In our experiments we found training from Qwen2.5-7B-Instruct outperformed training from the base model.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ABBEL Zero ABBEL ABBEL LP VANILLA Zero VANILLA MEM1 Instruct MEM1 Base VANILLA 14B Zero

0 1 2 4 8 16

0.5

1

1.5

2

2.5

3

3.5

# Objectives per Task

C
or

re
ct

 A
ns

w
er

 C
ou

nt
 (E

M
 S

co
re

)

(a) Task performance.

1 2 4 8 16
0

50

100

150

200

# Objectives per Task

B
el

ie
f L

en
gt

h 
(p

ea
k 

to
ke

ns
)

(b) Belief/internal state lengths.

1 2 4 8 16
500
600
700
800

1000
1200
1500

3000

4500

10k

# Objectives per Task

M
em

or
y 

U
sa

ge
 (p

ea
k 

to
ke

ns
)

(c) Inference time memory usage

Figure 5: Model comparison in multi-objective QA. ABBEL performs closest to the full-context
VANILLA model for 4+ objectives, and training with a length penalty on the belief state (ABBEL
LP) remains competitive while using much less memory.

Table 1: Multi-objective QA results. Arrows indicate desired directions. Results for MEM1 Base and
VANILLA 14B Zero from Zhou et al. (2025b). Memory models listed in the bottom section.

Model 2-Objective 8-Objective 16-Objective

EM Score ↑ Tokens (×102) ↓ EM Score ↑ Tokens (×102) ↓ EM Score ↑ Tokens (×102) ↓

VANILLA Zero 0.30 11.25±0.09 0.37 16.06±0.59 0.40 15.40±0.84
VANILLA 14B Zero 0.73 15.60±0.19 1.55 44.70 ± 0.37 0.57 38.40±0.71
VANILLA 0.79 17.87±0.15 2.54 64.07±0.44 3.06 96.08±0.37

MEM1 Base 0.71 6.40±0.02 1.87 8.01±0.06 1.97 10.40±0.09
MEM1 Instruct 0.79 6.69±0.01 1.88 9.13±0.03 2.50 10.58±0.07
ABBEL Zero 0.53 6.85±0.01 1.28 8.67±0.04 1.62 9.46±0.08
ABBEL 0.73 6.78±0.01 2.40 8.95±0.03 3.57 10.12±0.06
ABBEL LP 0.70 6.56±0.01 2.19 7.61±0.02 3.43 7.64±0.04

about 3.5x lower than ABBEL Zero), suggesting that this setting may be approaching the limit of
what long-context models can handle.

5.2.3 COLLABORATIVE PROGRAMMING

Environment and Metrics. We use the collaborative back-end programming environment from
the ColBench benchmark introduced by Zhou et al. (2025a), where the agent must collaborate with
the user to write a Python function of up to 50 lines. The agent is initially provided with an under-
specified high level description and the function signature, and can ask the user up to 10 questions
to gather information before finally submitting code. The generated code is finally evaluated by 10
hidden unit tests, yielding an outcome reward equal to the fraction of unit tests passed. We report
the mean fraction of passing unit tests (Test Pass Rate), and the fraction of tasks with all 10 tests
passing (Success Rate). As in Section 5.2.2, we measure Peak Tokens to evaluate memory usage. The
human user is simulated by Gemma 3 27B-it with access to the hidden tests and a reference solution,
prompted to behave like a human that needs help.

Experimental Setup and Belief Grader. We train 2 seeds each of ABBEL with and without belief
grading (BG), and one seed in the full-context setting described in Fig.1 (VANILLA), evaluating
after 0, 50 and 100 training steps. Ground-truth posteriors are unavailable in ColBench, so we use
a fully domain-general belief grader: how useful the generated belief bt+1 is for reconstructing the
most recent observation ot given previous belief bt and action at, to encourage bt+1 to integrate
information in ot that isn’t already in bt. We define this as the mean log probability under the agent
model of the tokens in the last observation conditioned on bt+1, bt, and at, i.e.,

fBG(bt+1) =
1

|ot|
log p(ot | bt, at, bt+1). (1)

This expression is proportional to log p(bt+1 | bt, at, ot) − log p(bt+1 | bt, at) plus a constant (by
application of Bayes’ rule), where the second term encourages bt+1 to contain new information
relative to the prior, while the first term encourages that new information to be explainable by ot.
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Results. We find zero-shot ABBEL and VANILLA are on-par due to ABBEL biasing the agent to
ask more questions before submitting code (an average of about 6, versus only 2.8 for VANILLA),
making it more likely to get all necessary clarifications. This also explains why zero-shot VANILLA
has low Peak Tokens. We again find that ABBEL’s performance improves with RL while remaining
far more memory-efficient than VANILLA: ABBEL’s step 100 performance is only 11.5% lower than
VANILLA while using 49% as much memory. We observe that belief grading helps ABBEL learn to
add more useful information to its beliefs, as at step 50 ABBEL-BG’s belief states were on average
24% longer and its performance was significantly better compared to ABBEL (see Appendix G.4 for
examples) and on-par with VANILLA while using less than half as much memory. ABBEL without
belief grading learns more slowly, only catching up at step 100.

Table 2: Model comparison on ColBench. Arrows indicate desired directions. We report the mean
and SEM over 2 seeds for ABBEL and ABBEL-BG, and over the test set of 1 seed for VANILLA.

Step Model Test Pass Rate ↑ Success Rate ↑ Peak Tokens (×102) ↓

0 VANILLA 0.2827±0.0125 0.1748±0.0119 4.5938±0.1532
ABBEL 0.2642±0.0125 0.1709±0.0118 3.2953±0.0525

50 VANILLA 0.4456±0.0139 0.3047±0.0144 8.9805±0.1396
ABBEL 0.3844±0.0140 0.2651±0.0093 3.4078±0.0499

ABBEL-BG 0.4560±0.0132 0.3228±0.0079 3.9693±0.2542

100 VANILLA 0.5260±0.0141 0.3936±0.0153 7.8845±0.1084
ABBEL 0.4655±0.0112 0.3286±0.0121 3.8614±0.0711

ABBEL-BG 0.4577±0.0004 0.3262±0.0021 3.4149±0.3210

6 DISCUSSION

We introduce ABBEL, a general framework for LLM agents to maintain manageable and interpretable
contexts for long horizon interactive tasks via generating natural language beliefs. ABBEL provides
a valuable testbed for exploring the limitations of models in constructing beliefs, and opens up myriad
possibilities for supervision and controllability during training.

Evaluating frontier models in ABBEL across diverse multi-step environments, we find that they
maintain interpretable beliefs that are significantly shorter than full interaction histories, and the
bottleneck can reduce unnecessary reasoning. However, we find the models fail to generate both
concise and sufficient belief states in all environments, with failure modes including propagating
belief errors across steps and hallucinating false memories of previous steps. We thus propose RL in
ABBEL as a general method for post-training LLM agents to more effectively generate and reason
through beliefs, and introduce additional methods for steering RL through belief bottlenecks. In
particular, we propose belief length penalties to generate more concise beliefs without degrading
reasoning, and belief grading to reward the generation of high quality beliefs. In Combination
Lock we show that RL with a task-specific belief grader allows ABBEL to outperform models with
full history access. In multi-objective QA we show that ABBEL outperforms contemporaneous
approaches for multi-step context management, with belief length penalties allowing ABBEL to
efficiently trade off performance and memory use. Finally, we demonstrate ABBEL is also effective
in the more complex ColBench environment, with a domain-general belief grading heuristic helping
ABBEL learn to integrate more useful information into its beliefs.

In our work we focus on the improvements which can be gained by improved belief generation, but
for practical settings this may be combined with additional external memory tools such as Packer et al.
(2024) for even better results. Additionally, though ABBEL updates the belief state after every action,
in practice beliefs may be updated much less frequently for lower computational costs. Though
we study multi-step settings, recent work suggests methods like ABBEL may also be helpful for
single-step long reasoning problems by formulating beliefs over internal reasoning, and treating
chunks of reasoning as observations to update on (Yan et al., 2025).
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7 REPRODUCIBILITY STATEMENT

We have provided the full prompts used in Appendix B and the RL training details including the hyper-
parameters used in Appendix G. We have also open-sourced our code in an anonymous repository
available here. We believe that with our code and prompts, all results from the paper should be
completely reproducible.
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A LLM USAGE IN PAPER WRITING.

LLM tools were used minimally for finding related work, polishing writing, e.g., rephrasing sentences
to flow more naturally, and editing code to reformat figures.

B BELIEF BOTTLENECK ROLLOUT

Algorithm 1 Belief Bottleneck Rollout

Require: Instructions pI ; horizon H ∈ N; step function T : S ×A → S ×O; initial state s0.
Require: Belief generation prompt pb; action selection prompt pa; policy π.
t← 0
s← s0
b← “This is the start of the game. No beliefs right now."
while t ≤ H do

a ∼ π(·|pI , b, pa) ▷ Action selection
s, o← T (s, a) ▷ Environment step: get new state and observation.
t← t+ 1
b ∼ π(·|pI , b, a, o, pb) ▷ Belief update

end while

See Algorithm 1 for the rollout algorithm. Below, we show one sample and associated prompts for
the game Wordle with Deepseek R1 (illustrated in Fig. 1).
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Game State

Secret: GUARD
Step: 2 out of 6
Goal Reached: No

Instructions

You are playing a game of Wordle.
Format your response in the following way: <Think> Any step-by-step, short and concise
thinking to strategically determine the next guess for the secret word </Think> <Answer>
your guess of what the word should be </Answer>
The game begins now, please make your first guess about the secret five-letter word!

Current Belief State

Excluded letters: C, O, N, Y
Included letters: R (must be in position 1, 3, 4, or 5)
Target word contains R and excludes C, O, N, Y.

Action Prompt

This is the game information:
<game_instructions>
You are currently taking your attempt <step> out of <horizon> attempts. Look at the
current belief state and history and give an answer based on it.
Give an answer that leads to optimal exploration and do not be greedy unless it is the last
attempt. Try to maximize the amount of information you have so that you can solve the task
correctly.
Belief: <curr_belief>
Please format your response as: <Answer>your answer in the correct format mentioned
</Answer>

Action and Observation

Action: STARE
Observation:
First letter, s, is not in the target word
Second letter, t, is not in the target word
Third letter, a, is correct and in the correct position in the target word
Fourth letter, r, is correct and in the correct position in the target word
Fifth letter, e, is not in the target word

Belief Update Prompt

This is the game information:
<game_instructions>
Look at the current belief and the agent’s action and environment response on that belief.
You have to update the current belief based on the action and response, while maintaining
important information about the game state needed to take optimal future actions.
Current belief: <curr_belief>
Agent’s action: <action>
Environment’s response: <observation>
Output the updated belief state inside <BELIEF> and </BELIEF> tags.
Understand that only the generated belief is fed to the agent to pick the next action, not the
history, so be sure to include all necessary information.
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Updated Belief State

Excluded letters: C, O, N, Y, S, T, E
Included letters: A (position 3), R (position 4)
Target word contains A and R, excludes the listed letters, and has A in position 3 and R in
position 4.

Table 3: Characteristics of frontier model evaluation environments.

Environment Horizon Complex
Reasoning

Information
Structure Answer Space Size

Murder Mystery 20 No Low 3 (suspects)
Customer Service 20 No Low ∼ 102 (faulty parts)
Twenty Questions 20 No Medium ∼ 103 (e.g., animals)
Guess My City 20 No Medium ∼ 103 (all cities)
Wordle 6 Yes High 2315 (5-letter words)
Mastermind 12 Yes High 104 (4-digit numbers)

C FRONTIER MODEL-GENERATED BELIEF STATE EXAMPLES

We compare examples of the belief states generated by DeepSeek R1 and Gemini 2.5 Pro operating
under ABBEL. Each are at step 15 of the Twenty Questions game, where the answer is "waistcocat".

DeepSeek R1

The garment is a standalone structured, strapless, sleeveless formal bridal piece, not layered
over other garments (confirmed). Excludes outerwear (boleros, jackets), full gowns, corsets,
bustiers, and undergarments. Focus narrows to standalone bridal separates with stiffened
fabrics (taffeta, satin) or layered construction for structural elegance, lacking boning. Key
possibilities: embellished strapless bridal tops (beaded/embroidered), corsage-inspired de-
signs with tailored support, or reinforced bridal camisoles/decorative tulle overlays. Must
function independently (paired with skirts) without waist-flared elements or basque termi-
nology. Core attributes: bridal formality, structural integrity via tailoring or stiff fabrics, no
corsetry associations.

Gemini 2.5 Pro

I am playing a game of 20 Questions to identify a piece of clothing. I have now used 15 out
of 20 questions.

Here’s what I know so far:
• Fact 1: The item is worn on the upper body.
• Fact 2: It is NOT typically worn as outerwear.
• Fact 3: It typically has a collar.
• Fact 4: It typically has buttons all the way down the front.
• Fact 5: It is typically worn by men.
• Fact 6: It is typically worn for formal or business occasions.
• Fact 7: It has short sleeves.
• Fact 8: It features decorative vertical pleats or embroidery on the front.
• Fact 9: It is NOT a Guayabera shirt.
• Fact 10: It is NOT considered a form of national dress for a specific country.
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• Fact 11: It is specifically worn with a tuxedo.
• Fact 12: It is NOT called a “short-sleeved tuxedo shirt”.
• Fact 13: Its decorative front does NOT feature ruffles.
• Fact 14: Its decorative front does NOT consist of a distinct, separate panel of fabric

(a “bib”).
• Fact 15: The decorative vertical pleats on the front are NOT known as “pin-tucks”.

Based on the cumulative information, my confidence has been updated.
• Analysis: The “No” answer to my last question, “Are the decorative vertical pleats

on the front known as ‘pin-tucks’?” is a major setback. My leading hypothesis of a
“pleated-front shirt” or “pin-tuck shirt” has been invalidated. This means that if the
decorative elements are pleats, they are a very obscure type.

• Re-evaluation: I must now reconsider the other half of Fact 8: “. . . pleats or
embroidery”. Having exhausted the most common types of pleated fronts (ruffles,
bib, pin-tucks), it is highly likely that the decorative elements are not pleats at all, but
rather a form of embroidery. The object remains a very unusual item: a short-sleeved
formal shirt worn with a tuxedo, featuring vertical decorations that are not ruffles,
not a bib, and not pin-tucks.

• Current Prime Candidate: There is no longer a single prime candidate for the
item’s name. The identity is very mysterious. The immediate goal is to confirm the
nature of the decoration. My new leading hypothesis is that the item is a shirt with
vertical embroidery on the front.

My confidence in any specific name is now low. However, I am confident that the next step
must be to pivot away from pleats and investigate the “embroidery” possibility directly.

D FRONTIER MODEL REASONING ANALYSIS

0 5 10 15 20

500

1000

1500

0 5 10 15 20

400

600

800

1000

0 5 10 15 20
0

1000

2000

3000

4000

0 5 10 15 20

1000

2000

3000

0 2 4 6

0

2000

4000

6000

0 5 10

0

2k

4k

6k

8k

10k
Deepseek R1 (ABBEL)

Deepseek R1 (BELIEF PROMPTING)

Deepseek R1 (VANILLA)

Gemini 2.5 Pro (ABBEL)

Gemini 2.5 Pro (BELIEF PROMPTING)

Gemini 2.5 Pro (VANILLA)

Step Step Step Step Step Step

A
ct

io
n 

R
ea

so
ni

ng
 T

ok
en

s

Murder Mystery Customer Service Twenty Questions Guess my City Wordle Mastermind

Figure 6: Lengths of reasoning traces for action selection across steps. Some models have no data at
higher steps because all episodes ended early. DeepSeek V3 is not shown because it is not a reasoning
model. Access to prior beliefs reduces reasoning in most environments, while ABBEL reduces
reasoning even more than belief prompting alone.

Figure 6 shows the average length of reasoning used for action selection for DeepSeek-R1 and
Gemini-2.5-Pro.5 Conditioning on belief states generated by ABBEL and BELIEF PROMPTING
rather than full histories significantly reduces reasoning length for comparable performance in several
environments. We find that this is because the reasoning models naturally integrate information from
the interaction history as the first step of reasoning, and access to beliefs allows them to skip this
part of the reasoning process. We also find ABBEL often uses even less reasoning than BELIEF
PROMPTING while achieving similar success rates (e.g., Deepseek R1 in Twenty Questions, Guess my
City and Mastermind). Inspecting the reasoning traces (see Appendix D.2 for examples), we find that

5Only reasoning summaries, rather than full reasoning traces, were available for Gemini-2.5-Pro. We assume
that lengths of reasoning summaries correlate with total reasoning length.
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Figure 7: Reasoning trace length for belief generation (top) and the total reasoning length at each
step, summing the belief and action selection reasoning lengths (bottom).
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Figure 8: The total number of tokens processed at each step, including both input (i.e., the context)
and output (i.e., reasoning, actions and belief states). This remains almost constant for ABBEL,
while in many environments it increases nearly linearly for the other frameworks.

R1 has a strong prior to ignore the belief state and reconstruct a posterior from the interaction history
when available, so using belief states as a bottleneck provides an additional benefit of preventing
unnecessary extra reasoning over histories when beliefs are sufficient. For some environments, even
the total length of both action and belief reasoning for R1 with ABBEL was less than VANILLA,
with no drop in success rate (see Fig. 7). Accounting for all tokens involved at each interaction step,
including input contexts, output reasoning, beliefs, and actions, we find ABBEL uses fewer tokens
and requires less memory in most environments once the interaction exceeds 5 steps (see Figures 8
and 9).

D.1 HALLUCINATING PAST OBSERVATIONS DURING BELIEF UPDATE REASONING

We provide an example ABBEL belief update from Deepseek R1 in Mastermind, demonstrating how
LLMs may hallucinate observations from previous steps when reasoning through a belief bottleneck
in multi-step environments.

Game State

Secret: 4 5 1 8
Step: 5 out of 12
Goal Reached: No
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Figure 9: The memory usage at each step, defined as max(input + output tokens for belief updating,
input + output tokens for action selection), representing the inference-time memory requirement.
After the first few steps, ABBEL uses significantly less memory than the other frameworks.

Prior Belief

Exclusions: 0, 6, and 9 are not in the code.
Possible Codes:
- 4 5 [1/2/3] [7/8]
- 4 5 [7/8] [1/2/3]

Action and Observation

Action: 4 5 1 7
Observation: 3 exact matches, 0 partial matches

Deepseek R1 (ABBEL) Belief Update Reasoning

...but previous feedback said that the third guess (4 5 7 8) had a partial match...

4568 was never guessed; this hallucinated previous feedback leads R1 to conclude that 7 was the
partial match and must be in position 4, ruling out the true code 4518 from the posterior:

Updated Belief State

Exclusions: 0, 1, 6, 8, 9 are not in the code.
Possible Codes:
- 4 5 2 7
- 4 5 3 7

D.2 BELIEF STATE RECONSTRUCTION UNDER VANILLA AND BELIEF PROMPTING

We highlight how frontier models reconstruct previously stated information in the Vanilla and BELIEF
PROMPTING settings.

We find that Deepseek R1 reconstructs a posterior belief from the interaction history as the first step
of reasoning about the next action:

Deepseek R1 (vanilla) Action Selection Reasoning

Okay, let’s see. So, the history so far has three guesses: CLOUD, PULSE, and FAULT. Let
me recap the feedback from each.

• From CLOUD:
C, O, D are not in the target. L (second letter) is present but wrong position. U
(fourth letter) is present but wrong position.
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• From PULSE:
P, S, E are not in the target. U (second letter) and L (third letter) are present but
wrong positions.

• From FAULT:
F, A are not in the target. U (third), L (fourth), and T (fifth) are present but wrong
positions.

Putting this together, the letters that are definitely in the target word are L, U, and T. Because
in FAULT, even though F and A are excluded, U, L, T are confirmed. Additionally, from
CLOUD, L and U are confirmed but not in positions 2 and 4 respectively. From PULSE, U and
L are again confirmed but positions 2 and 3 are wrong.
. . .

We find that Deepseek R1 with belief prompting sometimes fails to leverage the explicit belief state
in its context, and wastefully reconstructs a posterior belief from the interaction history:

Deepseek R1 (BELIEF PROMPTING) Action Selection Reasoning

Belief State
First letter is S. Excluded letters: P, O, I, L, E. Correct letters: A in position 3, R in
position 4, T in position 5. Target word format: S_ART. Possible letters for position 2: B,
C, D, F, G, H, J, K, M, N, Q, U, V, W, X, Y, Z.

Reasoning
Okay, so I’m trying to figure out the next guess for Wordle. Let’s recap what we know so far.
The first guess was SPOIL. The response told us that S is correct in the first position. The
letters P, O, I, L, and E (from the fifth letter in SPOIL and the fifth in STARE) are
excluded. Then the second guess was STARE, which confirmed that S is still correct in
position 1. The letter T is present but not in position 2. Also, A is correct in position 3, R in
position 4, and E is excluded. Now the target word structure is S _ A R T. Wait, no, wait.
Wait, let me check again.
Wait, in STARE, the fifth letter was E, which is excluded. But the response for STARE said
that the fifth letter E is not in the target word. So the target word structure is S _ A R _,
since the fifth letter isn’t E. Wait, hold on. No, the correct letters from STARE: third letter A
(position 3), fourth letter R (position 4). The fifth letter E is excluded, so the fifth position
can’t be E. But the first letter is S. The second letter is T in STARE, but it’s in the target
word in a different position. So T exists but isn’t in position 2. So the target word has T
somewhere else. But the structure we have is S _ A R _, with the fifth letter not E, but
from the first guess SPOIL, the fifth letter L is excluded. So fifth position can’t be L or E.
Wait, but what about the third guess? Wait, the user only provided two guesses: SPOIL and
STARE. Then the belief state says the target word is S _ A R T. Wait, how did T get into
the fifth position? Because in STARE, the fifth letter E was wrong, but the correct letters in
STARE are S (position 1), A (3), R (4). Then T in position 2 is present but in a different spot.
So T must be in position 5? Because the only other positions are 2 (which was T in STARE
but it’s not there), or 5. Because positions 1, 3, 4 are already S, A, R. So T must be in
position 5. That makes the target word S _ A R T. So fifth letter is T. So structure is S _
A R T.
. . .

Finally, we find that Deepseek R1 under ABBEL reasons directly with the belief state:

Deepseek R1 (ABBEL) Action Selection Reasoning

Belief State
Excluded letters: S, L, T, R, C, D, H, V
Confirmed present letters: A (position 2), E (position 4), N (position 5)
Possible letter positions:
1: [B, F, G, I, J, K, M, O, P, Q, U, W, X, Y, Z]
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2: [A]
3: [B, F, G, I, J, K, M, O, P, Q, U, W, X, Y, Z]
4: [E]
5: [N]

Reasoning Okay, let’s see. I need to figure out the best word to guess for the third attempt in
Wordle. The excluded letters are S, L, T, R, C, D. So I can’t use any of those. The confirmed
letters are A in position 2 and E in position 4. So the word must be _ A _ E _.
My first thought is to maximize the information gain. Since this is the third attempt and there
are three more left, I shouldn’t be too greedy yet. I need to test possible letters in the unknown
positions (1, 3, 5) while using letters that aren’t excluded.
Looking at the possible letters for positions 1, 3, and 5: they include B, F, G, H, I, J, K, M, N,
O, P, Q, U, V, W, X, Y, Z. I should choose a word that uses as many of these as possible in the
unknown slots to check which ones are present.
. . .

E BELIEF STATE GRADING EXAMPLES

Early on in training belief states were messy and rarely parse-able:

Prompt

You will determine the correct combination of characters at [Position 1, Position 2, Position
3] in a 3-character combination lock through iterative reasoning and queries.
All 3 characters are unique.
The set of valid characters are as follows: [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]
Each action is a query of the form [’char 1’, ’char 2’, ’char 3’].
Each time you query a combination, you will get feedback from the user about each char-
acter: either not in the combination, in the combination but in a different position, or in the
combination and in the right position.
You can make up to 12 queries.
Your goal is to find the correct combination in the least number of queries.
Your current belief state: <belief>No prior belief.</belief>
Your last action:
<action>[’0’, ’1’, ’2’]</action>
Environment feedback:
0 is not in Position 1, but is in the lock
1 is not in the lock
2 is not in the lock
Now update your belief state to include all important new information you have gathered.
Do not say anything about future actions. Think step by step and then output your new
belief state inside <belief> ... </belief>, e.g., <think>Any thinking</think><belief>your new
beliefs</belief>.

Response

<think>Given the feedback from the query [’0’, ’1’, ’2’]:
- ’0’ is not in Position 1 but is in the lock.
- ’1’ and ’2’ are not in the lock.
This means ’0’ must be in either Position 2 or Position 3, and the characters for Position 1, 2,
and 3 are now limited to [’0’, ’1’, ’2’] but with ’1’ and ’2’ not in Position 1. Therefore, ’0’ is
the only character that can be in Position 1, Position 2, or Position 3 excluding the position it
is not in.
So, Position 1 cannot be ’0’, and it must be one of ’1’ or ’2’. Positions 2 and 3 can be either
’0’, ’1’, or ’2’, but ’1’ and ’2’ cannot be in Position 1.</think>
<belief>Position 1 can be ’1’ or ’2’.
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Position 2 and Position 3 can be ’0’, ’1’, or ’2’, but ’1’ and ’2’ cannot simultaneously be in
Position 1 and the other positions at the same time.
’0’ must be in either Position 2 or Position 3.</belief>

Near the end of the belief state grading training run, we find belief states become more parse-able by
our parsing model grok 4 fast (free) provided by openrouter, and the model is more able to handle
complex updates to its posterior.

Prompt

You will determine the correct combination of characters at [Position 1, Position 2, Position
3] in a 3-character combination lock through iterative reasoning and queries. All 3 characters
are unique.
The set of valid characters are as follows: [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’] Each
action is a query of the form [’char 1’, ’char 2’, ’char 3’].
Each time you query a combination, you will get feedback from the user about each char-
acter: either not in the combination, in the combination but in a different position, or in the
combination and in the right position.
You can make up to 12 queries.
Your goal is to find the correct combination in the least number of queries.
Your current belief state: <belief>given that ’2’ cannot be in position 3, it must be in position
1 or position 2. the valid characters are now [’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]. ’0’ and ’1’ are
not in the combination. the remaining characters need to be tested to determine their correct
positions.</belief>
Your last action:
<action>[’2’, ’3’, ’4’]</action>
Environment feedback:
2 is not in Position 1, but is in the lock
3 is not in the lock
4 is not in the lock
Now update your belief state to include all important new information you have gathered.
Do not say anything about future actions. Think step by step and then output your new
belief state inside <belief> ... </belief>, e.g., <think>Any thinking</think><belief>your new
beliefs</belief>.

Response

<think>From the feedback, we know:
- ’2’ is in the combination but not in Position 1, which means ’2’ must be in Position 2.
- ’3’ is not in the combination, so we can exclude it from the valid characters.
- ’4’ is not in the combination, so we can exclude it from the valid characters.
The valid characters are now further reduced to [’2’, ’5’, ’6’, ’7’, ’8’, ’9’]. Since ’2’ is fixed
in Position 2, the remaining characters need to be tested in both Position 1 and Position 3 to
determine their correct positions.</think>
<belief>Given the feedback, ’2’ is fixed in Position 2. The valid characters are now [’2’, ’5’,
’6’, ’7’, ’8’, ’9’]. ’3’ and ’4’ are not in the combination. The remaining characters need to be
tested to determine their correct positions in Position 1 and Position 3.</belief>

F 16 OBJECTIVE QA EXAMPLES

ABBEL

Questions
The principal author of the US Constitution and writer of over 1/3 of the Federalist Papers,
which US President, the 4th, was CIC during the War of 1812?; Of what modern country is
Sarajevo the captial of?; Pre restraining order(s), who did People magazine name as their first
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"Sexiest Man Alive", in 1985?;... What 70’s group released a statement on Monday that read,
in part “We are deeply dismayed by today’s announcement from the YMCA that they feel a
name change and a rebranding are in order after 166 years”?
Belief State
<belief>James Madison was the 4th US President and was CIC during the War of 1812. We
need to find the "Sexiest Man Alive" in 1985, the part of the human body the carotid arteries
supply, the innovation introduced by the Chillicothe Baking Company, the hand holding
the torch on the Statue of Liberty, the sense referred to by the term gustatory, the canal
construction started on July 4, 1817, the baseball legend who retired in 1939, the 2007 movie
based on the plot summary, the Latin phrase for something designed for a specific problem or
task, the planet with Phobos and Deimos as moons, the number of blackbirds in the nursery
rhyme, the proverb, the two cities in Charles Dickens’ novel, and the 70’s group that released
a statement about the YMCA.</belief>

MEM1 does not separate the belief from the reasoning, which can lead to longer internal states.

MEM1-Instruct

Questions
Who is James Cecil, 6Th Earl Of Salisbury’s paternal grandfather?; ... Where did the director
of film The Woman In The Hall study?; What is the place of birth of the composer of film
Chakravalam Chuvannappol?; Where did Africanus Fabius Maximus’s father die?; Which
film has the director who is older than the other, Sign Of The Pagan or Spawn Of The North?
Internal State
<think>From the documents, we can infer that Jacques Becker, the director of "Edward And
Caroline," was born on 15 September 1906 in France. The place of birth of the composer of
"Chakravalam Chuvannappol" is not provided, so we will need to search for more information
about the composer of this film. The father of Africanus Fabius Maximus is not provided,
so we will need to search for more information about Africanus Fabius Maximus. The
director of "The Woman In The Hall" is not provided, so we will need to search for more
information about the director of this film. The place of death of Anne Devereux’s husband
is not provided, so we will need to search for more information about Anne Devereux. The
directors of "Friday The 13Th (1916 Film)" and "Beaumarchais (Film)" are not provided, so
we will need to search for more information about these directors. The film "Sign Of The
Pagan" was released in 1935, and "Spawn Of The North" was released in 1934. Therefore,
the director of "Sign Of The Pagan" is older than the other.</think>

Training ABBEL with a length penalty leads to even more concise beliefs that do not enumerate all
the unknown information.

ABBEL-Length-Penalty

Questions
What literary style describes the 1968 book that features a 1939 international Harvester school
bus?; Is the building located at 200 West Street taller than the one at 888 7th Avenue?; ... Are
Waste Land and Shikashika both types of drinks?
Belief State
<belief>The 1968 book "The Electric Kool-Aid Acid Test" by Tom Wolfe is written in the
New Journalism style. The building at 110 West 7th Street is taller than the one at 888 7th
Avenue.</belief>

G RL DETAILS

G.1 COMBINATION LOCK ENVIRONMENT DETAILS

Combination Lock has the same feedback dynamics as Wordle with 3-character codes and guesses,
while additionally enforcing that all three characters of the secret code and of every guess must
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be unique. Unique secret codes of 3 vocabulary characters were sampled, with a larger disjoint
vocabulary and increased horizon at test time (see Table 4).

Table 4: Characteristics of the Combination Lock environments.

Setting Horizon (H) Vocabulary Answer Space Size
Train 12 012345689 720 (3 unique digits)
Test 16 qawsedrftgyhujik 3360 (3 unique letters)

We prompted Qwen2.5-7B-Instruct to first think step by step between <think>...</think>
tags, and then generate actions or beliefs between <action></action> or
<belief>...</belief> tags. Invalid generations did not count as an environment
step, i.e. did not impact regret, but we limited the number of generation calls per game to H
(VANILLA) or 2H (ABBEL and BELIEF PROMPTING); see Table 5 for details. Each trajectory ends
in success once the secret code is guessed, or failure if either the generation limit or environment
horizon is exceeded, with reward defined as follows to encourage succeeding with as few guesses as
possible:

R =

{
(H + 1− environment steps taken)/H if trajectory successful
−1 otherwise.

(2)

G.2 COMBINATION LOCK TRAINING DETAILS

See Table 6 for the training settings and hyper parameters used, and Algorithm 2 for the belief grading
algorithm.

Algorithm 2 GRPO with Belief Grading

Require: Environment instructions pI ; belief generation prompt pb; belief parsing prompt pp.
Require: ABBEL policy model πθ; batch of trajectories {τi} rolled out by πθ; belief parser Π.

belief_groups← [ ]
for traj in {τi} do

for t, step in enumerate(traj) do
(bt, at, ot, bt+1)← step
belief_context← pI , bt, at, ot, pb
b′t+1 ∼ πθ(·|belief_context) ▷ Redo belief update generation at this step.
r ← GRADE_BELIEF(bt+1, traj, t)
r′ ← GRADE_BELIEF(b′t+1, traj, t)
belief_group← [(belief_context, bt+1, r), (belief_context, b′t+1, r

′)]
belief_groups.append(belief_group)
if r = 0 then

break ▷ Go to next trajectory after the first incorrect belief
end if

end for
end for
Add belief_groups to the current batch of trajectory groups.
Update πθ on all groups with GRPO.
function GRADE_BELIEF(bt+1, traj, t)

b∗t+1 ← compute_posterior(traj[: t]) ▷ Get true posterior from info in previous steps.
parsed_belief ∼ Π(·|pp, bt) ▷ Parse bt+1 into the same format as b∗t+1.
return parsed_belief = b∗t+1 ▷ Return reward of 1 if bt+1 is correct.

end function

G.3 QA TRAINING DETAILS

See Table 7 for the training settings and hyper parameters used.
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Table 5: Handling of invalid generations in Combination Lock.

Case Description Outcome

Valid
action

The action generation is correctly
formatted as <action>[c1,
c2, c3]</action> with three
unique characters.

Both generation and environment steps are incremented,
and feedback is presented in a newline separated list. e.g,:
8 is in Position 1!
6 is not in Position 2, but is in the
lock
9 is not in the lock

Invalid
action

Most often errors take the form of
[action>...</action> or re-
peated characters.

Generation step is incremented, and the model receives
a message stating the action is invalid, reiterating the re-
quired format and prompting regeneration.

Invalid
belief

Not using <belief></belief>
tags. Errors tend to result
from forgotten beginning/ending an-
gle brackets or misspellings of
belief.

Generation step is incremented, and the model receives
a message stating the belief is invalid, reiterating the re-
quired format and prompting regeneration.

Table 6: Settings used in Combination Lock experiments. The mini batch at every gradient update
step was set to the number of tensors present in the step to prevent off-policy updates, which have
been shown to result in unstable training behavior with Qwen models.

Name value

Optimization Algorithm GRPO
AdamW learning rate 1e-7
batch_size 16
GRPO n rollouts 2
mini_batch N/A
training_steps 140
num_epochs (calculated equivalent) 3.2
Learning rate decay 0.0
Gradient clipping 1.0

Belief Length Penalty To calculate the penalty for a trajectory, we take the length of longest belief
state in the trajectory, subtract the mean over all trajectories in the batch, and apply a 0.01 scaling
factor. We only apply a penalty to trajectories which do create a valid belief state, so as not to reward
generating empty beliefs. In addition, we do not normalize the lengths by the in-batch range, and
apply the penalty after advantage normalization, such that as the belief states get shorter the penalty
has a smaller impact. We found this was important to avoid over-compressed beliefs significantly
harming performance.

We find that the peak token metric isn’t very precise, and should instead control for the step at which
the agent is at. More steps of information collection require more tokens in the belief state resulting
in higher penalties, meaning the model desires to reduce its searches. In QA, the model may opt to
depend on its parametric knowledge in place of searches as a strategy to reduce its task reward, which
fails to capture our desire, but will minimize this metric.

G.4 COLBENCH DETAILS

Example ABBEL-Belief-Grading Belief State at Step 50

The user expects the function to handle edge cases where revenue and variable costs are equal.
Specifically, if revenue and variable costs are both USD100,000, the break-even point should
be very high, potentially approaching infinity, and the margin of safety to be close to 100%.
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Figure 10: Test behavior of Qwen2.5-7B-Instruct trained in Combination Lock. (a) Final cumulative
regret shows that after training, ABBEL still takes more attempts on average to find the secret code
than models trained with access to the full history in context (VANILLA and BELIEF PROMPTING).
However, when augmented with belief grading, ABBEL outperforms these settings. (b) ABBEL
without belief grading learns to generate longer beliefs, but they remain significantly shorter than the
interaction history beyond the first two environment step.

Table 7: Settings used in QA experiments.

Name value

Optimization Algorithm GRPO
AdamW learning rate 1e-7
batch_size 16
GRPO n rollouts 2
mini_batch N/A
training_steps 260
num_epochs (calculated equivalent) 3.2
Learning rate decay 0.0
Gradient clipping 1.0

They consider a margin of safety of 100% as a reasonable way to represent a break-even
or nearly break-even situation. The function should output two numbers as the break-even
point and margin of safety, even in edge cases. The function should calculate the margin of
safety as ((revenue−(fixed_costs/(1−(variable_costs/revenue))))/revenue)∗100%,
representing how much sales can drop before incurring a loss. The function signature is:
defcalculate_break_even_point(revenue, fixed_costs, variable_costs).

Example ABBEL (No Belief Grading) Belief State at Step 50

Target year: 2050, Reduction percentage: 50%, Current emissions data: symbolic variables
(e.g., current_emissions), Clarification needed: total emissions cut by 2050 or annual
reduction rate.
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