

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ABBEL: LLM AGENTS ACTING THROUGH BELIEF BOTTLENECKS EXPRESSED IN LANGUAGE

Anonymous authors

Paper under double-blind review

ABSTRACT

As the length of sequential decision-making tasks increases, it becomes computationally impractical to keep full interaction histories in context. We introduce a general framework for LLM agents to maintain concise contexts through multi-step interaction: Acting through Belief Bottlenecks Expressed in Language (ABBEL), and methods to further improve ABBEL agents with RL post-training. ABBEL replaces long multi-step interaction history by a *belief state*, i.e., a natural language summary of what has been discovered about task-relevant unknowns. Under ABBEL, at each step the agent first updates a prior belief with the most recent observation from the environment to form a posterior belief, then uses only the posterior to select an action. We systematically evaluate frontier models under ABBEL across six diverse multi-step environments, finding that ABBEL supports generating interpretable beliefs while maintaining near-constant memory use over interaction steps. However, bottleneck approaches are generally prone to error propagation, which we observe causing inferior performance when compared to the full context setting due to errors in belief updating. Therefore, we train LLMs to generate and act on beliefs within the ABBEL framework via reinforcement learning (RL). We experiment with belief grading, to reward higher quality beliefs, as well as belief length penalties to reward more compressed beliefs. Our experiments demonstrate the ability of RL to improve ABBEL’s performance beyond the full context setting, while using less memory than contemporaneous approaches.

1 INTRODUCTION

Recent approaches to automating complex tasks such as software development and scientific research result in AI systems that take hundreds or thousands of steps of interaction with their environment, often exceeding the practical context limits of even frontier models. These limitations necessitate the development of methods that compress interaction histories while preserving the most relevant information for effective decision-making. While work on maintaining minimal sufficient statistics for sequential decision-making stretches back to Åström (1965), LLMs provide a unique opportunity for expressing such information in *language*, a medium that is both flexible and interpretable. The information in the interaction history required to solve a task can generally be described by a posterior belief over the values of task-relevant variables. Compressing an interaction history into such a belief state could, in principle, limit the growth of the context length without harming performance. Furthermore, recent work suggests that LLMs can accurately update natural language descriptions of beliefs given new observations (Arumugam & Griffiths, 2025), and prompting language agents to explicitly generate a belief before acting can enhance their performance (Kim et al., 2025).

In light of this, we propose **ABBEL** (**A**cting through **B**elief **B**ottlenecks **E**xpressed in **L**anguage), a framework for maintaining compact and interpretable contexts where an agent generates and acts on natural language belief states instead of full interaction histories. Figure 1 illustrates ABBEL in the multi-step word guessing game *Wordle*¹. ABBEL replaces the full history of guesses and feedback (VANILLA) with a current belief over the letters comprising the secret word. ABBEL alternates between updating a belief state given new observations, and selecting an action based solely on the current belief. Thus, ABBEL relies on the ability of a language model to propagate the correct

¹In *Wordle*, the player has 6 tries to guess a 5-letter secret word, receiving feedback about each letter (i.e., whether it is not in the secret, in the secret in a different position, or in the correct position) after each guess.

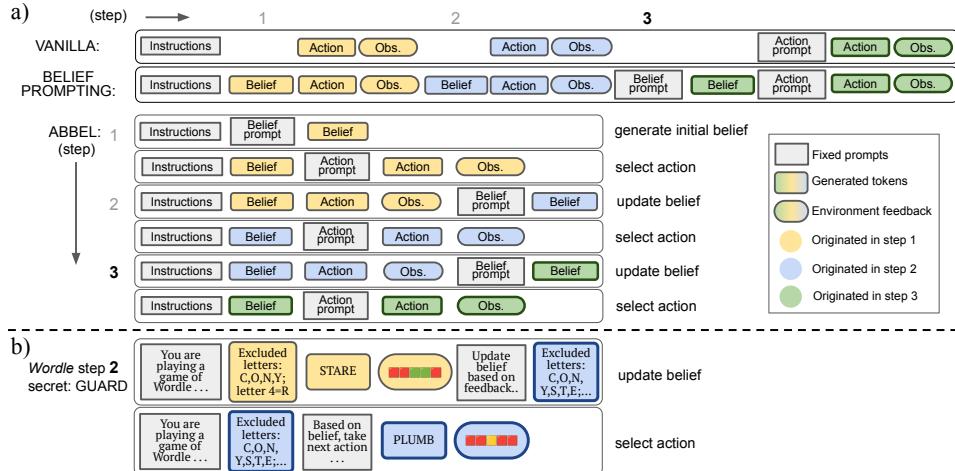


Figure 1: (a) Overview of the belief update and action selection contexts over 3 timesteps under ABBEL, in contrast to the typical multi-step paradigm (VANILLA) or simply prompting for belief generation (BELIEF PROMPTING) which keep all past steps in context. (b) an example step of ABBEL in *Wordle*; actions are word guesses, and observations provide feedback on each letter.

information at each step: the model’s output must maintain *sufficient* information for selecting good actions, while discarding superfluous information, e.g., repeated feedback that a letter is not in the secret word, to generate belief states that are *compact* enough to keep the context length manageable in long-horizon settings.

We systematically evaluate current frontier models under ABBEL across six multi-step environments with varying levels of reasoning complexity and structure, and compare to ablations to separately study the effects of prompting for belief generation and removing the interaction history. We find that in many environments, the generated belief states are human-understandable and significantly shorter than the full interaction history without significantly impacting performance, and that conditioning on self-generated beliefs also reduces unnecessary reasoning. While interaction history grows linearly with interaction steps, the lengths of ABBEL-generated beliefs grow much more slowly, even decreasing in some environments as the beliefs concentrate around the answer. However, for each model, we find environments where reduced context decreases task performance, and identify several key causes: propagating erroneous beliefs across steps, hallucinating false memories of previous steps, and repeating uninformative actions because the belief doesn’t change without new information.

Considering the significant divergence between ABBEL and typical LLM training settings, we propose to use RL to fine-tune LLM agents to better generate and reason through belief state bottlenecks under ABBEL. In addition to outcome rewards, we introduce belief grading and belief length penalty rewards to train the generation of more accurate and more concise beliefs, respectively. Training Qwen2.5-7B-Instruct with belief grading in a simplified version of *Wordle*, we find ABBEL exceeds the performance of the full-context setting by about 20% while maintaining near-constant-length beliefs. We train ABBEL with a belief length penalty in a multi-objective question-answering setting with much lengthier observations and more extreme horizon generalization from Zhou et al. (2025b), obtaining significantly higher task performance with lower memory usage than MEM1 (Zhou et al., 2025b). Ablating the belief length penalty, we find it only slightly decreased performance, demonstrating that the isolated belief state provides the flexibility to effectively trade-off performance for memory usage without degrading reasoning. We finally study our approach in a more complex environment, ColBench (Zhou et al., 2025a), a collaborative programming setting where the agent must assist a user in writing code through asking for clarifications about the desired behavior. We find that belief grading allows more data-efficient training, and ABBEL learns to perform close to the full-context model while using half as much memory.

108
109
110
2 RELATED WORK111
112
113
114
115
116
117
118
119
120
121
122
123

Long context management. Several recent systems have developed practical solutions for managing long contexts. Context compression methods generate dense representations that, while computationally efficient, sacrifice human-understandability (Chevalier et al., 2023; Jiang et al., 2024). Wang et al. (2025b), Örwall (2024) and Starace et al. (2025) hand-design summarization prompts and pruning strategies specific to their target environments, which requires expert human knowledge of what information must be maintained for each task rather than allowing the agent to learn what to remember as part of its decision-making strategy. Packer et al. (2024) and Xu et al. (2025) process long contexts into an external memory store for the agents to query, which is an orthogonal approach with different constraints, and can be combined with ABBEL. Wang et al. (2025a) and Yu et al. (2025) recursively update a natural language summary similar to ABBEL’s belief state, but they summarize pre-existing long contexts divided into chunks, with no method to update summaries after taking actions. We study the more general multi-step setting where the agent must continually update a summary while actively exploring, which requires reasoning over the summary to select actions that gather missing information needed for the task.

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Multi-step exploration with beliefs. Various works have studied compact representations of interaction history for multi-step tasks that involve active information-gathering. Kim et al. (2025) improve action selection by first prompting LLMs to explicitly generate beliefs of the current state relative to the goal, though they still include the full interaction history in context. Hard-coded summary statistics of past observations have proven effective for bandit problems (Krishnamurthy et al., 2024; Nie et al., 2025), but lack the flexibility needed for more complex environments. Arumugam & Griffiths (2025) show that frontier models can be effective at belief updating, but they initialize the agents with hand-crafted prior beliefs tailored to each environment, whereas in realistic settings such priors are often unavailable, and they use the suboptimal posterior sampling algorithm to select actions rather than training agents to explore optimally from beliefs. MEM1 (Zhou et al., 2025b) trains LLMs to maintain an internal state, similar to ABBEL’s belief state, that summarizes key information during multi-step interaction. However, while ABBEL first generates a belief and then reasons with the belief to select an action, MEM1 directly reasons to select an action and treats the entire reasoning trace as the new internal state. Entangling the beliefs about the task with the reasoning harms conciseness and interpretability, and makes it difficult to steer or compress the beliefs during training in contrast to ABBEL’s isolated belief state.

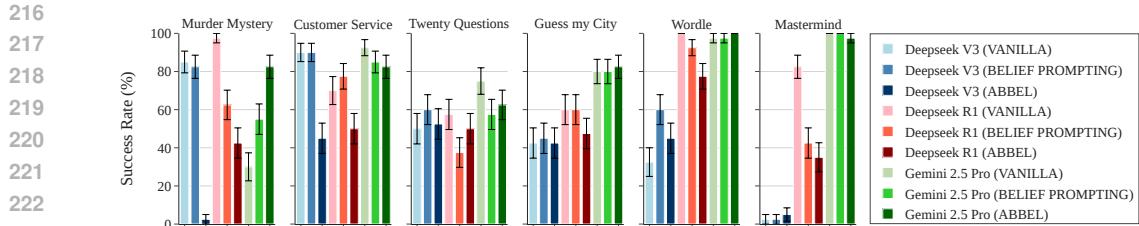
139
140
141
3 FORMULATION142
143
144
145
146
147
148
149
150
151

Problem Setup. We model each environment as a Partially Observable Markov Decision Process, using *Wordle* as an example environment for grounding our formulation. In *Wordle*, the objective is to identify a secret 5-letter word in fewer than 7 turns by guessing a 5-letter word at each step. Each *task* corresponds to a randomly sampled hidden initial state s_0 , e.g., (secret:GUARD, step:0). At each step the agent selects an action a_t from the action space, e.g., 5-letter English words. The hidden state s_{t+1} is updated based on s_t and a_t , which in *Wordle* simply increments the step counter. The agent receives reward r_t and observation o_t both conditioned on a_t and s_t , e.g., $r_t = 1$ if $a_t = \text{GUARD}$ and $\text{step} < 7$ otherwise $r_t = 0$, and o_t is feedback on each letter in a_t (i.e., whether the letter is not present in the secret word, present at a different position, or present at the guessed position) and the new step count (see Fig. 1).

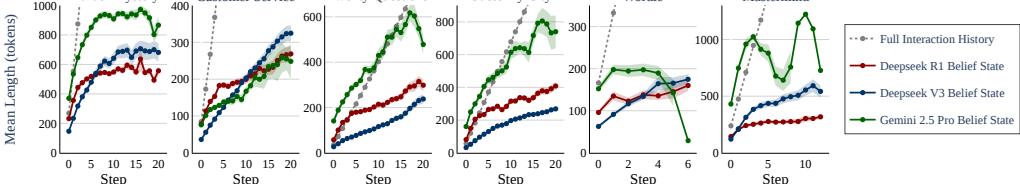
152
153
154
155
156
157
158
159
160
161

Belief Bottleneck Interaction Framework. We use LLMs to implement context-conditioned policies $a_t \sim \pi(\cdot | c_t)$. In the typical multi-step paradigm, the context includes the full interaction history of observations and actions $h_t = \langle a_1, o_2, a_2, o_3, \dots, a_{t-1}, o_{t-1} \rangle$, as shown in Fig. 1 (*Vanilla*), while in ABBEL it contains only a current belief. In ABBEL, the agent is called twice at each step t : first, conditioned on the environment instructions p_I (e.g., how to play *Wordle*) and the last belief, action, and observation, and belief prompt p_b , we generate a new belief $b_t \sim \pi(\cdot | p_I, b_{t-1}, a_{t-1}, o_{t-1}, p_b)$ (*Update belief* in Fig. 1). Next, all steps before t are removed from the context, and π is called with action prompt p_a and the newest belief b_t to select the next action $a_t \sim \pi(\cdot | p_I, b_t, p_a)$ (*Select action* in Fig. 1), resulting in a new observation o_t from the environment. See Appendix B for the full details. We measure the performance of π in each environment by its expected performance across the task distribution, e.g., the uniform distribution over all possible 5-letter secret words.

162 4 EVALUATING FRONTIER MODELS WITH BELIEF BOTTLENECKS
163164 We investigate to what extent current frontier models can already generate and reason through natural
165 language belief states as bottlenecks in reasoning. We use a purely prompting-based approach,
166 following the framework described in section 3.
167168 4.1 ENVIRONMENTS
169170 We evaluate across six multi-step environments from Tajwar et al. (2025) spanning various levels
171 of reasoning complexity and structure.² *Wordle* and *Mastermind* demand complex reasoning using
172 highly structured feedback on each position of a secret word or 4-digit code. *Mastermind* has the
173 same rules as *Wordle* (described in Section 3), except feedback only reveals the total number of
174 guessed digits in the correct position, or in the code but in a different position. *Twenty Questions*
175 and *Guess My City* involve iteratively narrowing down a search space of topics or cities by asking a
176 sequence of questions. In contrast, both actions and observations in *Murder Mystery* and *Customer*
177 *Service* are free-form descriptive sentences: actions correspond to clue-gathering or troubleshooting
178 instructions, and observations, generated by GPT-4o-mini, describe what the detective discovers or
179 how the customer responds. The goal is to identify the culprit or correctly diagnose the customer’s
180 problem, respectively.
181182 4.2 MODELS AND FRAMEWORKS
183184 We evaluate Gemini 2.5 Pro, DeepSeek R1, and DeepSeek V3 using chain-of-thought prompting. For
185 each model, we compare ABBEL with two variations. The first is a standard multi-step interaction
186 framework (Fig. 1, VANILLA) where at each step the agent is prompted with the initial instructions
187 followed by the full interaction history of actions and observations (not including reasoning), and
188 finally a prompt to generate the next action. The second framework (Fig. 1, BELIEF PROMPTING)
189 follows ABBEL in first prompting to update beliefs and then prompting to select an action given
190 the beliefs at each step, but the full interaction history remains in context, ablating the information
191 bottleneck aspect of ABBEL. We sample 40 task instances from each environment and report the
192 mean and standard error of the mean of task outcomes (Success Rate).
193194 4.3 RESULTS
195196 **Task Performance.** We first analyze how well frontier models perform under each framework. Fig. 2a
197 presents the success rates for each setting. We find that Gemini 2.5 Pro with ABBEL maintains or
198 even exceeds the performance of both full-context settings in most tasks. However, the Deepseek
199 models generally perform worse under all frameworks and show greater drops in performance
200 under ABBEL, with the exception of *Twenty Questions*. We then examine the performance of
201 BELIEF PROMPTING to separately study the effects of prompting for belief generation, and acting
202 on the belief state bottleneck. Here, a belief state is maintained, but in contrast to ABBEL, we
203 condition action generation both on the belief state and the full history. Prior work has found
204 that conditioning on interaction history alongside a belief summary is helpful for long sequential
205 decision-making tasks (Kim et al., 2025). In our experiments, we find that BELIEF PROMPTING
206 rarely outperforms VANILLA and sometimes substantially decreases performance. Secondly, we
207 investigate belief *sufficiency*, comparing ABBEL and BELIEF PROMPTING. We observe that the
208 weaker Deepseek models generally struggle more with generating sufficient beliefs in environments
209 with low information structure (*Customer Service* and *Murder Mystery*), where it is more ambiguous
210 what information should be maintained in the beliefs. Even Gemini 2.5 Pro fails to generate sufficient
211 beliefs across all environments, as evidenced by the small performance drop in *Mastermind*.³212 **Belief State Compactness and Interpretability.** We next investigate if ABBEL can reduce the
213 context length for frontier models by examining the compactness of belief states generated through
214 ABBEL across different models and tasks, shown in Fig. 2b. In most cases, beyond the first few
215 steps, the belief states were significantly shorter than the length of the interaction history (gray dashed216
217 ²Table 3 in the Appendix summarizes key characteristics of each environment.
218³Surprisingly, Gemini 2.5 Pro performs much better under ABBEL than VANILLA in *Murder Mystery*. We
219 find that VANILLA is more biased to keep gathering clues and run out of steps before making an accusation.
220



(a) Performance of frontier models across 6 environments under the typical multi-step paradigm (VANILLA), prompting for beliefs before acting (BELIEF PROMPTING), and ABBEL. Error bars indicate standard error of the mean. In most tasks, Gemini 2.5 Pro maintained performance with ABBEL despite significantly reduced context lengths.



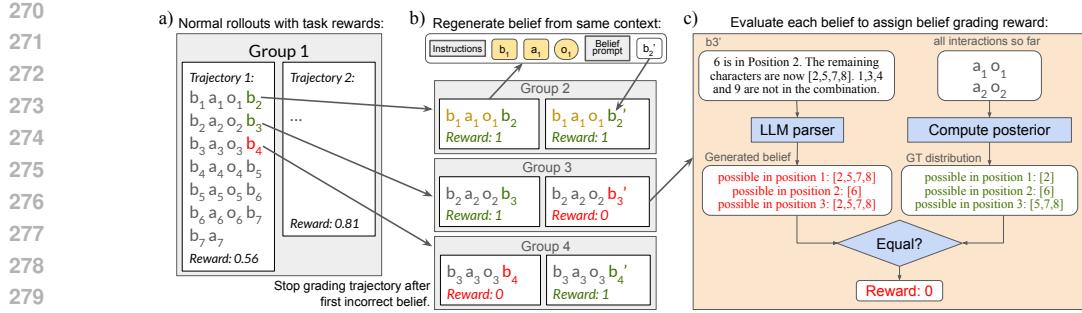
(b) Average length of beliefs generated under ABBEL compared to full interaction histories. While history grows linearly over interaction steps, the belief lengths generally grow more slowly and are significantly shorter after the first few steps.

Figure 2: Behavior of frontier models across environments and frameworks.

line). While the history always grows linearly with the number of interaction steps, belief lengths grow more slowly, plateauing or even decreasing in some environments as possibilities were ruled out, with the exception of Gemini 2.5 Pro in *Twenty Questions* and *Guess My City*. By inspection we found that all models generated human-understandable beliefs, which allowed us to better understand model behavior. For instance, in *Twenty Questions* we find that Gemini 2.5 Pro concatenates all information from the observations, which explains why the length grows linearly with time on par with the history, whereas DeepSeek R1 maintains a compact description of the posterior beliefs (see Appendix C for examples).

Impact on Reasoning. Finally, we investigate how ABBEL affects reasoning for action selection, where models are prompted to think step-by-step before choosing an action, conditioned on some context. We find that conditioning on belief states generated by ABBEL and BELIEF PROMPTING rather than full histories significantly reduces reasoning length for comparable performance in several environments (see Figure 6). We also find ABBEL often uses even less reasoning than BELIEF PROMPTING while achieving similar success rates. Thus, using belief states as a bottleneck provides an additional benefit of preventing unnecessary extra reasoning over interaction histories when beliefs are sufficient. See Appendix D for more analysis.

We additionally inspect the traces to get further insight into the challenges of reasoning through a belief bottleneck. We find that performance of ABBEL is impacted when the agent does not update the belief state after uninformative observations (e.g., in *Customer Service* when the customer responds “I’m not sure” to the agent’s question), causing it to take the same action again, whereas if the action selection step is conditioned on the interaction history (including previous actions), it is much less likely to repeat an uninformative action. Additionally, in environments requiring more complex reasoning (*Wordle* and *Mastermind*), we find many cases where belief state errors are introduced and propagated from one step to the next. If errors are propagated, models have the opportunity to self-correct the belief state if they receive contradictory observations, but the wasted turns may be irrecoverable; whereas access to the full history enables earlier error detection and perfect posterior reconstruction. We find two main causes of belief state errors: incorrectly updating on the new observation due to mistakes in reasoning (e.g., falsely assuming that the secret code cannot contain repeated characters), and hallucinating false memories of past interactions (see Appendix D.1 for an example).



280
281
282
283
284
285

Figure 3: Overview of belief grading. Beliefs, actions and observations generated at timestep t are denoted by b_t , a_t , and o_t , respectively. After collecting trajectories from the current ABBEL policy (a), each step is copied into a new group consisting of the original belief update and a newly generated posterior belief from the same context (b), which are each assigned rewards by a belief grader (c). The grader shown here was customized for *Combination Lock*, a 3-digit version of *Wordle*. The policy is finally updated with GRPO using both the trajectory groups and the belief groups.

286 287 5 REINFORCEMENT LEARNING TO ACT THROUGH BELIEF BOTTLENECKS

290
291
292
293
294
295
296

We found in Section 4 that ABBEL can already lead to significantly shorter yet interpretable contexts for frontier models, and belief bottlenecks also have potential for improving reasoning efficiency. However, for each frontier model we found environments where there was still significant room for improvement, in either the task performance or the conciseness of the beliefs. Reinforcement learning (RL) has been shown to improve general abilities across task structures and input distribution shifts compared to SFT alone (Nie et al., 2025; Kirk et al., 2024; Tajwar et al., 2025). We propose to use RL to improve LLMs' abilities to generate and reason through belief bottlenecks under ABBEL.

297 5.1 METHODS

298
299
300
301
302
303

RL with outcome-based rewards naturally incentivizes learning to accurately maintain the relevant information in the beliefs for completing the task, without requiring task-specific knowledge or demonstrations. In addition, we experiment with rewards that leverage ABBEL's isolated belief states to provide additional training signal.

304 5.1.1 BELIEF LENGTH PENALTIES

305
306
307
308
309
310
311

For settings where ABBEL generates bloated belief states, we propose to add a small negative reward penalizing the token length of the belief states. Because ABBEL's belief states are separated from the reasoning, this penalty encourages more concise beliefs without degrading reasoning capabilities. The penalty for a trajectory is proportional to the length of longest belief state in the trajectory, and like Arora & Zanette (2025), we apply it after advantage normalization, to reduce its impact as beliefs get shorter to avoid over-compression. See Appendix G.3 for details.

312 5.1.2 BELIEF GRADING

313
314
315
316
317

In environments requiring more complex belief update reasoning such as *Wordle* and *Mastermind*, it may be difficult to learn to generate accurate beliefs from a sparse outcome reward. Inspired by the use of belief grading for tuning context summarization prompts in software engineering tasks (Wang et al., 2025b), we propose to add shaping rewards based on the quality of the generated beliefs.

318
319
320
321
322
323

Adding rewards for every belief state directly to each trajectory's outcome rewards may cause reward hacking, as rewards could be maximized by solving the task less efficiently to collect more step-wise belief rewards (Lidayan et al., 2025). Instead, we treat belief generation as a separate task, creating additional "trajectories" consisting of single belief update generations to which we assign the grading rewards (Fig. 3a and 3b). To do this, we collect belief states generated during the environment's multi-step roll out, and for each belief we prompt ABBEL again to generate another belief from the same context to create a size-2 group for GRPO (Fig. 3b). We then grade and assign rewards to each

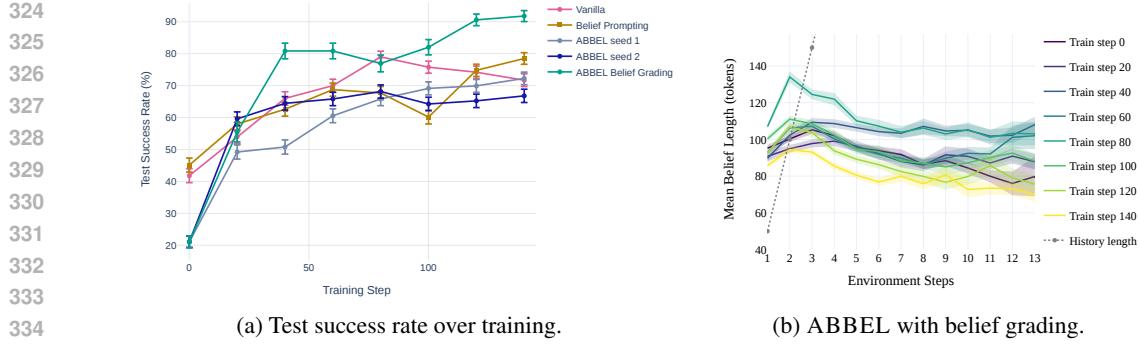


Figure 4: Test behavior of Qwen2.5-7B-Instruct trained in *Combination Lock*. (a) Task success rates over training steps show ABBEL quickly reduces its performance gap with other frameworks, while Belief Grading allows ABBEL to surpass the other frameworks. (b) The beliefs generated by ABBEL BELIEF GRADING initially increase in length but eventually become even shorter over training, and remain significantly shorter than the interaction history beyond the first 2 environment steps.

belief (Fig. 3c), which provides a learning signal whenever the two beliefs in a group receive different grades. The policy gradient step for belief grades and outcome-based rewards is applied concurrently. See Algorithm 2 for more details. Different grading functions may be used for different environments; here we show an example for *Combination Lock*, a 3-digit version of *Wordle* (details in Section 5.2.1). We also propose a domain-general heuristic that does not require parsing or ground-truth posteriors in Section 5.2.3.

5.2 EXPERIMENTS

To evaluate our approach, we train ABBEL in *Combination Lock*, which requires complex belief update reasoning, multi-objective QA (Zhou et al., 2025b), with much lengthier 300-word observations and extreme horizon generalization (from 2 questions and 6 steps to 16 questions and 20 steps), and *ColBench* (Zhou et al., 2025a), a more complex collaborative coding setting. In all experiments, we train Qwen2.5-7B-Instruct with chain-of-thought prompting, and use GRPO in VeRL-agent (Feng et al., 2025), a multi-context synchronous rollout framework (for full details see Appendix G).

5.2.1 COMBINATION LOCK

Environment and Metrics. *Combination Lock* is a 3-character version of *Wordle* proposed by Arumugam & Griffiths (2025); we train with a vocabulary of 10 digits and 12-step horizon, and test on a disjoint vocabulary of 16 letters and 16-step horizon. Each episode ends with reward $(H + 1 - \text{steps to find code})/H$ if the code was identified, and -1 otherwise. As a coarse-grained measure of performance, we report the fraction of episodes ending in identifying the secret code (Success Rate). To cleanly quantify exploration efficiency, we also measure the "Cumulative Regret" over each trajectory, which increases by 1 at every step that the code has not been identified such that the mean Cumulative Regret at step H is the mean number of steps taken to find the code.

Experimental Setup. As *Combination Lock* involves complex belief update reasoning, we train ABBEL with belief grading as outlined in Section 5.1.2 (ABBEL BELIEF GRADING). We also train without belief grading (ABBEL), as well as the full-context BELIEF PROMPTING and VANILLA settings described in Fig. 1.

Belief Grader. In *Combination Lock* it is possible to compute the ground truth posterior exactly from the previous actions and observations in the trajectory. To grade each belief in *Combination Lock*, we first used Grok-4-Fast-Free to parse it into a list of possible numbers at each position, which we compared to the ground truth posterior, generating a reward of 1 when they were identical and 0 otherwise (Fig. 3c). We stop grading each trajectory after the first step with an incorrect belief, to avoid penalizing beliefs that were only incorrect due to propagating errors from the previous step.

378 **Results.** In line with our findings from Section 4.3, the initial performance of all ABBEL agents was
 379 significantly lower than either the baseline (VANILLA) or BELIEF PROMPTING (Fig. 4a). However,
 380 we find that RL with belief grading is highly effective, resulting in ABBEL-BELIEF GRADING
 381 outperforming both. The beliefs remain concise; in fact, we find that they first increase in length,
 382 but then decrease later in training (Fig. 4b), which could be a side-effect of the grading encouraging
 383 the model to generate beliefs that are easier to parse with an LLM (see Appendix E for examples).
 384 Ablating the belief grading, we find it played a major role in boosting performance, especially
 385 Cumulative Regret (Fig. 10a), though we note that RL is still effective for ABBEL, leading to its
 386 success rate quickly increasing to bridge the gap with the full-context models. We also find that
 387 ABBEL without grading learns to generate longer belief states over training (though still significantly
 388 shorter than the full interaction history past the first two steps (Fig. 10b).
 389

390 5.2.2 MULTI-OBJECTIVE QUESTION ANSWERING

391 **Environment and Metrics.** In the multi-objective question answering (QA) environment introduced
 392 by Zhou et al. (2025b) each task requires the agent to answer a set of questions (objectives), by
 393 iteratively querying an external knowledge base before generating a final answer composed of
 394 semicolon-delimited answers to each question. Each query retrieves the first 100 words of the three
 395 most relevant documents in the knowledge base. During training, each task involves only 2 questions
 396 and a horizon of 6 steps, while we evaluate on tasks with up to 16 objectives and 20 steps. We use the
 397 Exact Match Count (EM), defined as the number of answers that exactly match the correct answer
 398 text, as both the reward and performance metric. We measure memory efficiency with the Peak Token
 399 Usage metric proposed by Zhou et al. (2025b), which is the maximum sequence length (input and
 400 output, excluding the system prompt) over all steps in each trajectory. We report mean and standard
 401 error over the test set for each metric.
 402

403 **Experimental Setup.** As this environment involves very lengthy observations, we experiment with
 404 training ABBEL with a belief length penalty (ABBEL-LP) to further decrease memory usage. We
 405 also train with no penalty (ABBEL) and evaluate with no RL at all (ABBEL Zero). We compare
 406 with MEM1 (Zhou et al., 2025b), which also uses RL to train LLMs to generate and act on context
 407 summaries instead of full interaction histories. However, rather than generating a separate belief
 408 state, the entire reasoning trace is used as the memory that gets carried forward to the next step.
 409 We refer to both this memory and ABBEL’s belief states as *internal states*. We compare with the
 410 metrics reported by Zhou et al. (2025b) for MEM1 (MEM1 Base, trained from Qwen2.5-7B-Base),
 411 and an untrained Qwen2.5-14B-Instruct model operating in the full context setting (VANILLA 14B
 412 Zero-Shot). We also re-implement MEM1 by training a Qwen2.5-7B-Instruct model under MEM1’s
 413 prompting and rollout framework (MEM1 Instruct)⁴ for an apples-to-apples comparison with ABBEL.
 414 As a measure of best-case performance, we train a Qwen2.5-7B-Instruct model in the full-context
 415 setting (VANILLA) and also evaluate its zero-shot performance (VANILLA Zero).
 416

417 **Results.** ABBEL achieves significantly higher performance than all other memory models for
 418 more than 2 objectives (Fig. 5a). Inspecting the belief states, we find that they remain concise and
 419 interpretable, summarizing what is known so far about the answers to the questions. Meanwhile
 420 MEM1’s internal states are significantly longer (Fig. 5b), containing reasoning for drawing conclusions
 421 from previous search results (see Appendix F for examples). Though ABBEL’s shorter internal
 422 state doesn’t make a big difference to Peak Token Usage relative to MEM1 due to the length of the
 423 reasoning and environment feedback, the more concise beliefs may help performance by being easier
 424 to reason over. The lower performance of ABBEL Zero-Shot confirms that RL was effective, while
 425 causing only a small increase to memory usage. The belief length penalty further shrinks the belief
 426 states, making ABBEL LP significantly more memory-efficient than MEM1 (Fig. 5c), with only a
 427 slight decrease in performance compared to ABBEL while still significantly outperforming MEM1.
 428 Inspecting the beliefs, we observe that they remain interpretable yet more concise (see Appendix F
 429 for examples). This shows that ABBEL provides the flexibility to efficiently trade-off memory usage
 430 for performance. Note that this shaping reward cannot be applied to MEM1 as it does not isolate
 431 the belief from the reasoning in the internal state, so such a reward would have the adverse effect of
 432 penalizing reasoning. The trained VANILLA model only performs slightly better than ABBEL, with
 433 no advantage at the 16 objective setting despite access to the full context and using 9.5x as much
 434 memory. In addition, both zero-shot VANILLA models cannot handle 16 objectives at all (scoring
 435

⁴In our experiments we found training from Qwen2.5-7B-Instruct outperformed training from the base model.

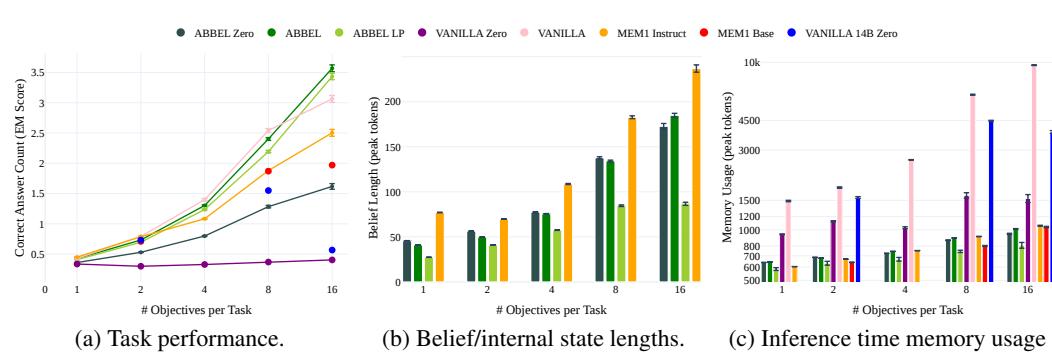


Figure 5: Model comparison in multi-objective QA. ABBEL performs closest to the full-context VANILLA model for 4+ objectives, and training with a length penalty on the belief state (ABBEL LP) remains competitive while using much less memory.

Table 1: Multi-objective QA results. Arrows indicate desired directions. Results for MEM1 Base and VANILLA 14B Zero from Zhou et al. (2025b). Memory models listed in the bottom section.

Model	2-Objective		8-Objective		16-Objective	
	EM Score \uparrow	Tokens ($\times 10^2$) \downarrow	EM Score \uparrow	Tokens ($\times 10^2$) \downarrow	EM Score \uparrow	Tokens ($\times 10^2$) \downarrow
VANILLA Zero	0.30	11.25\pm0.09	0.37	16.06\pm0.59	0.40	15.40\pm0.84
VANILLA 14B Zero	0.73	15.60 \pm 0.19	1.55	44.70 \pm 0.37	0.57	38.40 \pm 0.71
VANILLA	0.79	17.87 \pm 0.15	2.54	64.07 \pm 0.44	3.06	96.08 \pm 0.37
MEM1 Base	0.71	6.40\pm0.02	1.87	8.01 \pm 0.06	1.97	10.40 \pm 0.09
MEM1 Instruct	0.79	6.69 \pm 0.01	1.88	9.13 \pm 0.03	2.50	10.58 \pm 0.07
ABBEL Zero	0.53	6.85 \pm 0.01	1.28	8.67 \pm 0.04	1.62	9.46 \pm 0.08
ABBEL	0.73	6.78 \pm 0.01	2.40	8.95 \pm 0.03	3.57	10.12 \pm 0.06
ABBEL LP	0.70	6.56 \pm 0.01	2.19	7.61\pm0.02	3.43	7.64\pm0.04

about 3.5x lower than ABBEL Zero), suggesting that this setting may be approaching the limit of what long-context models can handle.

5.2.3 COLLABORATIVE PROGRAMMING

Environment and Metrics. We use the collaborative back-end programming environment from the ColBench benchmark introduced by Zhou et al. (2025a), where the agent must collaborate with the user to write a Python function of up to 50 lines. The agent is initially provided with an under-specified high level description and the function signature, and can ask the user up to 10 questions to gather information before finally submitting code. The generated code is finally evaluated by 10 hidden unit tests, yielding an outcome reward equal to the fraction of unit tests passed. We report the mean fraction of passing unit tests (Test Pass Rate), and the fraction of tasks with all 10 tests passing (Success Rate). As in Section 5.2.2, we measure Peak Tokens to evaluate memory usage. The human user is simulated by Gemma 3 27B-it with access to the hidden tests and a reference solution, prompted to behave like a human that needs help.

Experimental Setup and Belief Grader. We train 2 seeds each of ABBEL with and without belief grading (BG), and one seed in the full-context setting described in Fig.1 (VANILLA), evaluating after 0, 50 and 100 training steps. Ground-truth posteriors are unavailable in ColBench, so we use a fully domain-general belief grader: how useful the generated belief b_{t+1} is for reconstructing the most recent observation o_t given previous belief b_t and action a_t , to encourage b_{t+1} to integrate information in o_t that isn't already in b_t . We define this as the mean log probability under the agent model of the tokens in the last observation conditioned on b_{t+1} , b_t , and a_t , i.e.,

$$f_{BG}(b_{t+1}) = \frac{1}{|o_t|} \log p(o_t | b_t, a_t, b_{t+1}). \quad (1)$$

This expression is proportional to $\log p(b_{t+1} | b_t, a_t, o_t) - \log p(b_{t+1} | b_t, a_t)$ plus a constant (by application of Bayes' rule), where the second term encourages b_{t+1} to contain new information relative to the prior, while the first term encourages that new information to be explainable by o_t .

486 **Results.** We find zero-shot ABBEL and VANILLA are on-par due to ABBEL biasing the agent to
 487 ask more questions before submitting code (an average of about 6, versus only 2.8 for VANILLA),
 488 making it more likely to get all necessary clarifications. This also explains why zero-shot VANILLA
 489 has low Peak Tokens. We again find that ABBEL’s performance improves with RL while remaining
 490 far more memory-efficient than VANILLA: ABBEL’s step 100 performance is only 11.5% lower than
 491 VANILLA while using 49% as much memory. We observe that belief grading helps ABBEL learn to
 492 add more useful information to its beliefs, as at step 50 ABBEL-BG’s belief states were on average
 493 24% longer and its performance was significantly better compared to ABBEL (see Appendix G.4 for
 494 examples) and on-par with VANILLA while using less than half as much memory. ABBEL without
 495 belief grading learns more slowly, only catching up at step 100.
 496

497 Table 2: Model comparison on ColBench. Arrows indicate desired directions. We report the mean
 498 and SEM over 2 seeds for ABBEL and ABBEL-BG, and over the test set of 1 seed for VANILLA.
 499

Step	Model	Test Pass Rate \uparrow	Success Rate \uparrow	Peak Tokens ($\times 10^2$) \downarrow
0	VANILLA	0.2827\pm0.0125	0.1748\pm0.0119	4.5938 \pm 0.1532
	ABBEL	0.2642 \pm 0.0125	0.1709\pm0.0118	3.2953\pm0.0525
50	VANILLA	0.4456\pm0.0139	0.3047\pm0.0144	8.9805 \pm 0.1396
	ABBEL	0.3844 \pm 0.0140	0.2651 \pm 0.0093	3.4078\pm0.0499
	ABBEL-BG	0.4560\pm0.0132	0.3228\pm0.0079	3.9693 \pm 0.2542
100	VANILLA	0.5260\pm0.0141	0.3936\pm0.0153	7.8845 \pm 0.1084
	ABBEL	0.4655 \pm 0.0112	0.3286 \pm 0.0121	3.8614 \pm 0.0711
	ABBEL-BG	0.4577 \pm 0.0004	0.3262 \pm 0.0021	3.4149\pm0.3210

513 6 DISCUSSION

514
 515 We introduce ABBEL, a general framework for LLM agents to maintain manageable and interpretable
 516 contexts for long horizon interactive tasks via generating natural language beliefs. ABBEL provides
 517 a valuable testbed for exploring the limitations of models in constructing beliefs, and opens up myriad
 518 possibilities for supervision and controllability during training.
 519

520 Evaluating frontier models in ABBEL across diverse multi-step environments, we find that they
 521 maintain interpretable beliefs that are significantly shorter than full interaction histories, and the
 522 bottleneck can reduce unnecessary reasoning. However, we find the models fail to generate both
 523 concise and sufficient belief states in all environments, with failure modes including propagating
 524 belief errors across steps and hallucinating false memories of previous steps. We thus propose RL in
 525 ABBEL as a general method for post-training LLM agents to more effectively generate and reason
 526 through beliefs, and introduce additional methods for steering RL through belief bottlenecks. In
 527 particular, we propose *belief length penalties* to generate more concise beliefs without degrading
 528 reasoning, and *belief grading* to reward the generation of high quality beliefs. In *Combination Lock*
 529 we show that RL with a task-specific belief grader allows ABBEL to outperform models with
 530 full history access. In multi-objective QA we show that ABBEL outperforms contemporaneous
 531 approaches for multi-step context management, with belief length penalties allowing ABBEL to
 532 efficiently trade off performance and memory use. Finally, we demonstrate ABBEL is also effective
 533 in the more complex ColBench environment, with a domain-general belief grading heuristic helping
 534 ABBEL learn to integrate more useful information into its beliefs.

535 In our work we focus on the improvements which can be gained by improved belief generation, but
 536 for practical settings this may be combined with additional external memory tools such as Packer et al.
 537 (2024) for even better results. Additionally, though ABBEL updates the belief state after every action,
 538 in practice beliefs may be updated much less frequently for lower computational costs. Though
 539 we study multi-step settings, recent work suggests methods like ABBEL may also be helpful for
 single-step long reasoning problems by formulating beliefs over internal reasoning, and treating
 chunks of reasoning as observations to update on (Yan et al., 2025).

540 7 REPRODUCIBILITY STATEMENT
541542 We have provided the full prompts used in Appendix B and the RL training details including the hyper-
543 parameters used in Appendix G. We have also open-sourced our code in an anonymous repository
544 available here. We believe that with our code and prompts, all results from the paper should be
545 completely reproducible.
546547 REFERENCES
548549 Daman Arora and Andrea Zanette. Training language models to reason efficiently. *arXiv preprint*
550 *arXiv:2502.04463*, 2025.551 Dilip Arumugam and Thomas L. Griffiths. Toward efficient exploration by large language model
552 agents, 2025. URL <https://arxiv.org/abs/2504.20997>.
553554 Karl Johan Åström. Optimal control of markov processes with incomplete state information i. *Journal*
555 *of mathematical analysis and applications*, 10:174–205, 1965.
556557 Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
558 compress contexts, 2023. URL <https://arxiv.org/abs/2305.14788>.
559560 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
561 agent training. *arXiv preprint arXiv:2505.10978*, 2025.
562563 Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu.
564 Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt compression.
565 In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*
566 (*Volume 1: Long Papers*), pp. 1658–1677, 2024.567 Jeonghye Kim, Sojeong Rhee, Minbeom Kim, Dohyung Kim, Sangmook Lee, Youngchul Sung, and
568 Kyomin Jung. Reflact: World-grounded decision making in llm agents via goal-state reflection.
569 *arXiv preprint arXiv:2505.15182*, 2025.570 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
571 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
572 diversity, 2024. URL <https://arxiv.org/abs/2310.06452>.
573574 Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
575 large language models explore in-context?, 2024. URL <https://arxiv.org/abs/2403.15371>.
576577 Aly Lidayan, Michael Dennis, and Stuart Russell. Bamdp shaping: a unified framework for in-
578trinsic motivation and reward shaping. In *The Thirteenth International Conference on Learning*
579 *Representations*, 2025. URL <https://arxiv.org/abs/2409.05358>.
580581 Allen Nie, Yi Su, Bo Chang, Jonathan N. Lee, Ed H. Chi, Quoc V. Le, and Minmin Chen. Evolve:
582 Evaluating and optimizing llms for in-context exploration, 2025. URL <https://arxiv.org/abs/2410.06238>.
583584 Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
585 Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL <https://arxiv.org/abs/2310.08560>.
586587 Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
588 Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese,
589 and Tejal Patwardhan. Paperbench: Evaluating ai’s ability to replicate ai research, 2025. URL
590 <https://arxiv.org/abs/2504.01848>.
591592 Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff Schneider,
593 and Ruslan Salakhutdinov. Training a generally curious agent, 2025. URL <https://arxiv.org/abs/2502.17543>.
594

594 Qingyue Wang, Yanhe Fu, Yanan Cao, Shuai Wang, Zhiliang Tian, and Liang Ding. Recursively
 595 summarizing enables long-term dialogue memory in large language models. *Neurocomputing*, 639:
 596 130193, 2025a.

597
 598 Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
 599 Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill
 600 Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan,
 601 Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI software developers
 602 as generalist agents. In *The Thirteenth International Conference on Learning Representations*,
 603 2025b. URL <https://openreview.net/forum?id=OJd3ayDDoF>.

604 Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
 605 memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.

606
 607 Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
 608 Infntythink: Breaking the length limits of long-context reasoning in large language models. *arXiv*
 609 *preprint arXiv:2503.06692*, 2025.

610 Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
 611 Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, et al. Memagent: Reshaping long-context llm with
 612 multi-conv rl-based memory agent. *arXiv preprint arXiv:2507.02259*, 2025.

613
 614 Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
 615 Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks. *arXiv preprint*
 616 *arXiv:2503.15478*, 2025a.

617
 618 Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao, Bryan
 619 Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning for
 620 efficient long-horizon agents, 2025b. URL <https://arxiv.org/abs/2506.15841>.

621 Albert Örwall. Moatless Tools, June 2024. URL <https://github.com/aorwall/moatless-tools>.

625 A LLM USAGE IN PAPER WRITING.

626
 627 LLM tools were used minimally for finding related work, polishing writing, e.g., rephrasing sentences
 628 to flow more naturally, and editing code to reformat figures.

630 B BELIEF BOTTLENECK ROLLOUT

633 Algorithm 1 Belief Bottleneck Rollout

634 **Require:** Instructions p_I ; horizon $H \in \mathbb{N}$; step function $T : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S} \times \mathcal{O}$; initial state s_0 .

635 **Require:** Belief generation prompt p_b ; action selection prompt p_a ; policy π .

```

636    $t \leftarrow 0$ 
637    $s \leftarrow s_0$ 
638    $b \leftarrow \text{"This is the start of the game. No beliefs right now."}$ 
639   while  $t \leq H$  do
640      $a \sim \pi(\cdot | p_I, b, p_a)$  ▷ Action selection
641      $s, o \leftarrow T(s, a)$  ▷ Environment step: get new state and observation.
642      $t \leftarrow t + 1$ 
643      $b \sim \pi(\cdot | p_I, b, a, o, p_b)$  ▷ Belief update
644   end while

```

645
 646 See Algorithm 1 for the rollout algorithm. Below, we show one sample and associated prompts for
 647 the game *Wordle* with Deepseek R1 (illustrated in Fig. 1).

648

Game State

649

Secret: GUARD

650

Step: 2 out of 6

651

Goal Reached: No

652

653

Instructions

654

You are playing a game of Wordle.

655

Format your response in the following way: <Think> Any step-by-step, short and concise thinking to strategically determine the next guess for the secret word </Think> <Answer> your guess of what the word should be </Answer>

656

The game begins now, please make your first guess about the secret five-letter word!

657

658

Current Belief State

659

Excluded letters: C, O, N, Y

660

Included letters: R (must be in position 1, 3, 4, or 5)

661

Target word contains R and excludes C, O, N, Y.

662

Action Prompt

663

This is the game information:

<game_instructions>

664

You are currently taking your attempt <step> out of <horizon> attempts. Look at the current belief state and history and give an answer based on it.

665

Give an answer that leads to optimal exploration and do not be greedy unless it is the last attempt. Try to maximize the amount of information you have so that you can solve the task correctly.

666

Belief: <curr_belief>

667

Please format your response as: <Answer>your answer in the correct format mentioned </Answer>

668

Action and Observation

669

Action: STARE

670

Observation:

671

First letter, s, is not in the target word

672

Second letter, t, is not in the target word

673

Third letter, a, is correct and in the correct position in the target word

674

Fourth letter, r, is correct and in the correct position in the target word

675

Fifth letter, e, is not in the target word

676

<observation>

677

This is the game information:

<game_instructions>

678

Look at the current belief and the agent's action and environment response on that belief.

679

You have to update the current belief based on the action and response, while maintaining important information about the game state needed to take optimal future actions.

680

Current belief: <curr_belief>

681

Agent's action: <action>

682

Environment's response: <observation>

683

Output the updated belief state inside <BELIEF> and </BELIEF> tags.

684

Understand that only the generated belief is fed to the agent to pick the next action, not the history, so be sure to include all necessary information.

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

Updated Belief State

Excluded letters: C, O, N, Y, S, T, E

Included letters: A (position 3), R (position 4)

Target word contains A and R, excludes the listed letters, and has A in position 3 and R in position 4.

Table 3: Characteristics of frontier model evaluation environments.

Environment	Horizon	Complex Reasoning	Information Structure	Answer Space Size
Murder Mystery	20	No	Low	3 (suspects)
Customer Service	20	No	Low	$\sim 10^2$ (faulty parts)
Twenty Questions	20	No	Medium	$\sim 10^3$ (e.g., animals)
Guess My City	20	No	Medium	$\sim 10^3$ (all cities)
Wordle	6	Yes	High	2315 (5-letter words)
Mastermind	12	Yes	High	10^4 (4-digit numbers)

C FRONTIER MODEL-GENERATED BELIEF STATE EXAMPLES

We compare examples of the belief states generated by DeepSeek R1 and Gemini 2.5 Pro operating under ABBEL. Each are at step 15 of the *Twenty Questions* game, where the answer is "waistcocat".

DeepSeek R1

The garment is a standalone structured, strapless, sleeveless formal bridal piece, not layered over other garments (confirmed). Excludes outerwear (boleros, jackets), full gowns, corsets, bustiers, and undergarments. Focus narrows to standalone bridal separates with stiffened fabrics (taffeta, satin) or layered construction for structural elegance, lacking boning. Key possibilities: embellished strapless bridal tops (beaded/embroidered), corsage-inspired designs with tailored support, or reinforced bridal camisoles/decorative tulle overlays. Must function independently (paired with skirts) without waist-flared elements or basque terminology. Core attributes: bridal formality, structural integrity via tailoring or stiff fabrics, no corsetry associations.

Gemini 2.5 Pro

I am playing a game of 20 Questions to identify a piece of clothing. I have now used 15 out of 20 questions.

Here's what I know so far:

- **Fact 1:** The item is worn on the upper body.
- **Fact 2:** It is NOT typically worn as outerwear.
- **Fact 3:** It typically has a collar.
- **Fact 4:** It typically has buttons all the way down the front.
- **Fact 5:** It is typically worn by men.
- **Fact 6:** It is typically worn for formal or business occasions.
- **Fact 7:** It has short sleeves.
- **Fact 8:** It features decorative vertical pleats or embroidery on the front.
- **Fact 9:** It is NOT a Guayabera shirt.
- **Fact 10:** It is NOT considered a form of national dress for a specific country.

756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

- **Fact 11:** It is specifically worn with a tuxedo.
- **Fact 12:** It is NOT called a “short-sleeved tuxedo shirt”.
- **Fact 13:** Its decorative front does NOT feature ruffles.
- **Fact 14:** Its decorative front does NOT consist of a distinct, separate panel of fabric (a “bib”).
- **Fact 15:** The decorative vertical pleats on the front are NOT known as “pin-tucks”.

Based on the cumulative information, my confidence has been updated.

- **Analysis:** The “No” answer to my last question, “Are the decorative vertical pleats on the front known as ‘pin-tucks’?” is a major setback. My leading hypothesis of a “pleated-front shirt” or “pin-tuck shirt” has been invalidated. This means that if the decorative elements are pleats, they are a very obscure type.
- **Re-evaluation:** I must now reconsider the other half of Fact 8: “... pleats **or** embroidery”. Having exhausted the most common types of pleated fronts (ruffles, bib, pin-tucks), it is highly likely that the decorative elements are not pleats at all, but rather a form of embroidery. The object remains a very unusual item: a short-sleeved formal shirt worn with a tuxedo, featuring vertical decorations that are not ruffles, not a bib, and not pin-tucks.
- **Current Prime Candidate:** There is no longer a single prime candidate for the item’s name. The identity is very mysterious. The immediate goal is to confirm the nature of the decoration. My new leading hypothesis is that the item is a shirt with vertical **embroidery** on the front.

My confidence in any specific name is now low. However, I am confident that the next step must be to pivot away from pleats and investigate the “embroidery” possibility directly.

D FRONTIER MODEL REASONING ANALYSIS

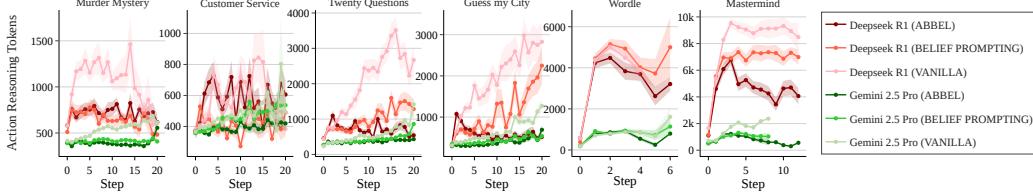


Figure 6: Lengths of reasoning traces for action selection across steps. Some models have no data at higher steps because all episodes ended early. DeepSeek V3 is not shown because it is not a reasoning model. Access to prior beliefs reduces reasoning in most environments, while ABBEL reduces reasoning even more than belief prompting alone.

Figure 6 shows the average length of reasoning used for action selection for DeepSeek-R1 and Gemini-2.5-Pro.⁵ Conditioning on belief states generated by ABBEL and BELIEF PROMPTING rather than full histories significantly reduces reasoning length for comparable performance in several environments. We find that this is because the reasoning models naturally integrate information from the interaction history as the first step of reasoning, and access to beliefs allows them to skip this part of the reasoning process. We also find ABBEL often uses even less reasoning than BELIEF PROMPTING while achieving similar success rates (e.g., Deepseek R1 in *Twenty Questions*, *Guess my City* and *Mastermind*). Inspecting the reasoning traces (see Appendix D.2 for examples), we find that

⁵Only reasoning summaries, rather than full reasoning traces, were available for Gemini-2.5-Pro. We assume that lengths of reasoning summaries correlate with total reasoning length.

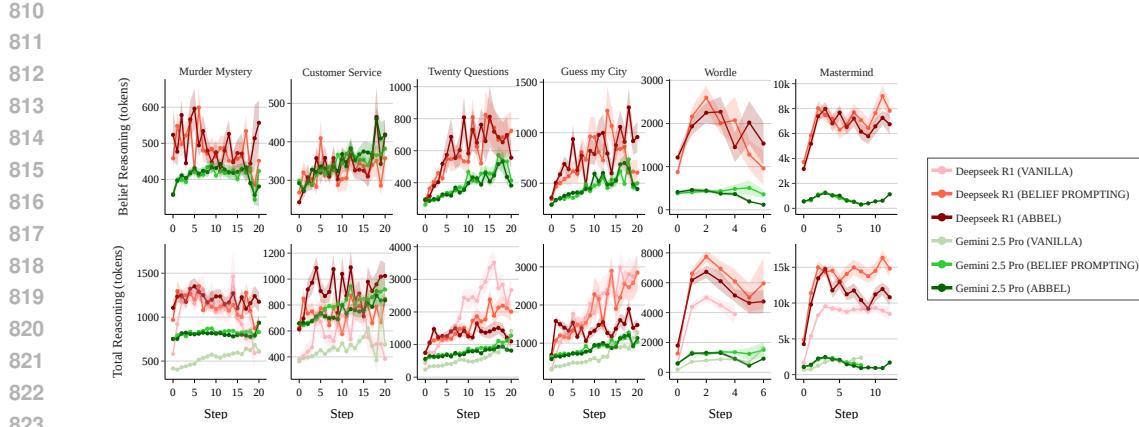


Figure 7: Reasoning trace length for belief generation (top) and the total reasoning length at each step, summing the belief and action selection reasoning lengths (bottom).

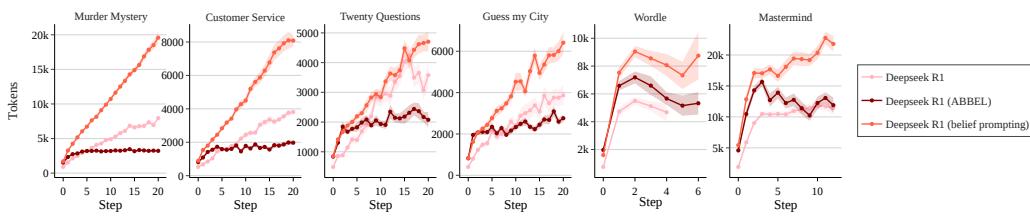


Figure 8: The total number of tokens processed at each step, including both input (i.e., the context) and output (i.e., reasoning, actions and belief states). This remains almost constant for ABBEL, while in many environments it increases nearly linearly for the other frameworks.

R1 has a strong prior to ignore the belief state and reconstruct a posterior from the interaction history when available, so using belief states as a bottleneck provides an additional benefit of preventing unnecessary extra reasoning over histories when beliefs are sufficient. For some environments, even the total length of both action and belief reasoning for R1 with ABBEL was less than VANILLA, with no drop in success rate (see Fig. 7). Accounting for all tokens involved at each interaction step, including input contexts, output reasoning, beliefs, and actions, we find ABBEL uses fewer tokens and requires less memory in most environments once the interaction exceeds 5 steps (see Figures 8 and 9).

D.1 HALLUCINATING PAST OBSERVATIONS DURING BELIEF UPDATE REASONING

We provide an example ABBEL belief update from Deepseek R1 in Mastermind, demonstrating how LLMs may hallucinate observations from previous steps when reasoning through a belief bottleneck in multi-step environments.

Game State	
Secret:	4 5 1 8
Step:	5 out of 12
Goal Reached:	No

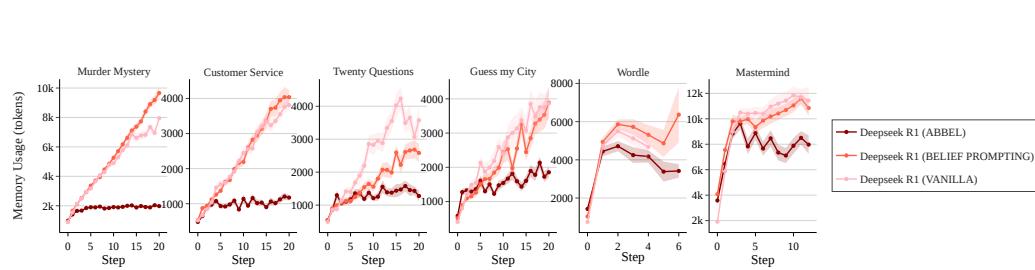


Figure 9: The memory usage at each step, defined as $\max(\text{input} + \text{output tokens for belief updating}, \text{input} + \text{output tokens for action selection})$, representing the inference-time memory requirement. After the first few steps, ABBEL uses significantly less memory than the other frameworks.

Prior Belief

Exclusions: 0, 6, and 9 are not in the code.

Possible Codes:

- 4 5 [1/2/3] [7/8]

- 4 5 [7/8] [1/2/3]

Action and Observation

Action: 4 5 1 7

Observation: 3 exact matches, 0 partial matches

Deepseek R1 (ABBEL) Belief Update Reasoning

...but previous feedback said that the third guess (4 5 7 8) had a partial match...

4568 was never guessed; this hallucinated previous feedback leads R1 to conclude that 7 was the partial match and must be in position 4, ruling out the true code 4518 from the posterior:

Updated Belief State

Exclusions: 0, 1, 6, 8, 9 are not in the code.

Possible Codes:

- 4 5 2 7

- 4 5 3 7

D.2 BELIEF STATE RECONSTRUCTION UNDER VANILLA AND BELIEF PROMPTING

We highlight how frontier models reconstruct previously stated information in the Vanilla and BELIEF PROMPTING settings.

We find that Deepseek R1 reconstructs a posterior belief from the interaction history as the first step of reasoning about the next action:

Deepseek R1 (vanilla) Action Selection Reasoning

Okay, let's see. So, the history so far has three guesses: CLOUD, PULSE, and FAULT. Let me recap the feedback from each.

- **From CLOUD:**

C, O, D are not in the target. L (second letter) is present but wrong position. U (fourth letter) is present but wrong position.

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

- **From PULSE:**

P, S, E are not in the target. U (second letter) and L (third letter) are present but wrong positions.

- **From FAULT:**

F, A are not in the target. U (third), L (fourth), and T (fifth) are present but wrong positions.

Putting this together, the letters that are definitely in the target word are L, U, and T. Because in FAULT, even though F and A are excluded, U, L, T are confirmed. Additionally, from CLOUD, L and U are confirmed but not in positions 2 and 4 respectively. From PULSE, U and L are again confirmed but positions 2 and 3 are wrong.

...

We find that Deepseek R1 with belief prompting sometimes fails to leverage the explicit belief state in its context, and wastefully reconstructs a posterior belief from the interaction history:

Deepseek R1 (BELIEF PROMPTING) Action Selection Reasoning

Belief State

First letter is S. Excluded letters: P, O, I, L, E. Correct letters: A in position 3, R in position 4, T in position 5. Target word format: S_ART. Possible letters for position 2: B, C, D, F, G, H, J, K, M, N, Q, U, V, W, X, Y, Z.

Reasoning

Okay, so I'm trying to figure out the next guess for Wordle. Let's recap what we know so far. The first guess was SPOIL. The response told us that S is correct in the first position. The letters P, O, I, L, and E (from the fifth letter in SPOIL and the fifth in STARE) are excluded. Then the second guess was STARE, which confirmed that S is still correct in position 1. The letter T is present but not in position 2. Also, A is correct in position 3, R in position 4, and E is excluded. Now the target word structure is S _ A R T. Wait, no, wait. Wait, let me check again.

Wait, in STARE, the fifth letter was E, which is excluded. But the response for STARE said that the fifth letter E is not in the target word. So the target word structure is S _ A R _, since the fifth letter isn't E. Wait, hold on. No, the correct letters from STARE: third letter A (position 3), fourth letter R (position 4). The fifth letter E is excluded, so the fifth position can't be E. But the first letter is S. The second letter is T in STARE, but it's in the target word in a different position. So T exists but isn't in position 2. So the target word has T somewhere else. But the structure we have is S _ A R _, with the fifth letter not E, but from the first guess SPOIL, the fifth letter L is excluded. So fifth position can't be L or E. Wait, but what about the third guess? Wait, the user only provided two guesses: SPOIL and STARE. Then the belief state says the target word is S _ A R T. Wait, how did T get into the fifth position? Because in STARE, the fifth letter E was wrong, but the correct letters in STARE are S (position 1), A (3), R (4). Then T in position 2 is present but in a different spot. So T must be in position 5? Because the only other positions are 2 (which was T in STARE but it's not there), or 5. Because positions 1, 3, 4 are already S, A, R. So T must be in position 5. That makes the target word S _ A R T. So fifth letter is T. So structure is S _ A R T.

...

Finally, we find that Deepseek R1 under ABBEL reasons directly with the belief state:

Deepseek R1 (ABBEL) Action Selection Reasoning

Belief State

Excluded letters: S, L, T, R, C, D, H, V

Confirmed present letters: A (position 2), E (position 4), N (position 5)

Possible letter positions:

1: [B, F, G, I, J, K, M, O, P, Q, U, W, X, Y, Z]

972
973
974
975
9762: [A]
3: [B, F, G, I, J, K, M, O, P, Q, U, W, X, Y, Z]
4: [E]
5: [N]977
978
979
980
981
982
983
984
985
986
987

Reasoning Okay, let's see. I need to figure out the best word to guess for the third attempt in Wordle. The excluded letters are S, L, T, R, C, D. So I can't use any of those. The confirmed letters are A in position 2 and E in position 4. So the word must be _ A _ E _.

My first thought is to maximize the information gain. Since this is the third attempt and there are three more left, I shouldn't be too greedy yet. I need to test possible letters in the unknown positions (1, 3, 5) while using letters that aren't excluded.

Looking at the possible letters for positions 1, 3, and 5: they include B, F, G, H, I, J, K, M, N, O, P, Q, U, V, W, X, Y, Z. I should choose a word that uses as many of these as possible in the unknown slots to check which ones are present.

...

E BELIEF STATE GRADING EXAMPLES

990
991

Early on in training belief states were messy and rarely parseable:

992
993

Prompt

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

You will determine the correct combination of characters at [Position 1, Position 2, Position 3] in a 3-character combination lock through iterative reasoning and queries.

All 3 characters are unique.

The set of valid characters are as follows: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

Each action is a query of the form ['char 1', 'char 2', 'char 3'].

Each time you query a combination, you will get feedback from the user about each character: either not in the combination, in the combination but in a different position, or in the combination and in the right position.

You can make up to 12 queries.

Your goal is to find the correct combination in the least number of queries.

Your current belief state: <belief>No prior belief.</belief>

Your last action:

<action>['0', '1', '2']</action>

Environment feedback:

0 is not in Position 1, but is in the lock

1 is not in the lock

2 is not in the lock

Now update your belief state to include all important new information you have gathered.

Do not say anything about future actions. Think step by step and then output your new belief state inside <belief> ... </belief>, e.g., <think>Any thinking</think><belief>your new beliefs</belief>.

1014

Response

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

<think>Given the feedback from the query ['0', '1', '2']:

- '0' is not in Position 1 but is in the lock.
- '1' and '2' are not in the lock.

This means '0' must be in either Position 2 or Position 3, and the characters for Position 1, 2, and 3 are now limited to ['0', '1', '2'] but with '1' and '2' not in Position 1. Therefore, '0' is the only character that can be in Position 1, Position 2, or Position 3 excluding the position it is not in.

So, Position 1 cannot be '0', and it must be one of '1' or '2'. Positions 2 and 3 can be either '0', '1', or '2', but '1' and '2' cannot be in Position 1.</think>

<belief>Position 1 can be '1' or '2'.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

Position 2 and Position 3 can be '0', '1', or '2', but '1' and '2' cannot simultaneously be in Position 1 and the other positions at the same time.
 '0' must be in either Position 2 or Position 3.</belief>

Near the end of the belief state grading training run, we find belief states become more parse-able by our parsing model grok 4 fast (free) provided by openrouter, and the model is more able to handle complex updates to its posterior.

Prompt

You will determine the correct combination of characters at [Position 1, Position 2, Position 3] in a 3-character combination lock through iterative reasoning and queries. All 3 characters are unique.

The set of valid characters are as follows: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] Each action is a query of the form ['char 1', 'char 2', 'char 3'].

Each time you query a combination, you will get feedback from the user about each character: either not in the combination, in the combination but in a different position, or in the combination and in the right position.

You can make up to 12 queries.

Your goal is to find the correct combination in the least number of queries.

Your current belief state: <belief>given that '2' cannot be in position 3, it must be in position 1 or position 2. the valid characters are now ['2', '3', '4', '5', '6', '7', '8', '9']. '0' and '1' are not in the combination. the remaining characters need to be tested to determine their correct positions.</belief>

Your last action:

<action>['2', '3', '4']</action>

Environment feedback:

2 is not in Position 1, but is in the lock

3 is not in the lock

4 is not in the lock

Now update your belief state to include all important new information you have gathered.

Do not say anything about future actions. Think step by step and then output your new belief state inside <belief> ... </belief>, e.g., <think>Any thinking</think><belief>your new beliefs</belief>.

Response

<think>From the feedback, we know:

- '2' is in the combination but not in Position 1, which means '2' must be in Position 2.

- '3' is not in the combination, so we can exclude it from the valid characters.

- '4' is not in the combination, so we can exclude it from the valid characters.

The valid characters are now further reduced to ['2', '5', '6', '7', '8', '9']. Since '2' is fixed in Position 2, the remaining characters need to be tested in both Position 1 and Position 3 to determine their correct positions.</think>

<belief>Given the feedback, '2' is fixed in Position 2. The valid characters are now ['2', '5', '6', '7', '8', '9']. '3' and '4' are not in the combination. The remaining characters need to be tested to determine their correct positions in Position 1 and Position 3.</belief>

F 16 OBJECTIVE QA EXAMPLES

ABBEL

Questions

The principal author of the US Constitution and writer of over 1/3 of the Federalist Papers, which US President, the 4th, was CIC during the War of 1812?; Of what modern country is Sarajevo the capital of?; Pre restraining order(s), who did People magazine name as their first

1080

"Sexiest Man Alive", in 1985?;... What 70's group released a statement on Monday that read, in part "We are deeply dismayed by today's announcement from the YMCA that they feel a name change and a rebranding are in order after 166 years"?

Belief State

<belief>James Madison was the 4th US President and was CIC during the War of 1812. We need to find the "Sexiest Man Alive" in 1985, the part of the human body the carotid arteries supply, the innovation introduced by the Chillicothe Baking Company, the hand holding the torch on the Statue of Liberty, the sense referred to by the term gustatory, the canal construction started on July 4, 1817, the baseball legend who retired in 1939, the 2007 movie based on the plot summary, the Latin phrase for something designed for a specific problem or task, the planet with Phobos and Deimos as moons, the number of blackbirds in the nursery rhyme, the proverb, the two cities in Charles Dickens' novel, and the 70's group that released a statement about the YMCA.</belief>

1093

MEM1 does not separate the belief from the reasoning, which can lead to longer internal states.

MEM1-Instruct

Questions

Who is James Cecil, 6Th Earl Of Salisbury's paternal grandfather?; ... Where did the director of film The Woman In The Hall study?; What is the place of birth of the composer of film Chakravalam Chuvannappol?; Where did Africanus Fabius Maximus's father die?; Which film has the director who is older than the other, Sign Of The Pagan or Spawn Of The North?

Internal State

<think>From the documents, we can infer that Jacques Becker, the director of "Edward And Caroline," was born on 15 September 1906 in France. The place of birth of the composer of "Chakravalam Chuvannappol" is not provided, so we will need to search for more information about the composer of this film. The father of Africanus Fabius Maximus is not provided, so we will need to search for more information about Africanus Fabius Maximus. The director of "The Woman In The Hall" is not provided, so we will need to search for more information about the director of this film. The place of death of Anne Devereux's husband is not provided, so we will need to search for more information about Anne Devereux. The directors of "Friday The 13Th (1916 Film)" and "Beaumarchais (Film)" are not provided, so we will need to search for more information about these directors. The film "Sign Of The Pagan" was released in 1935, and "Spawn Of The North" was released in 1934. Therefore, the director of "Sign Of The Pagan" is older than the other.</think>

1114

Training ABBEL with a length penalty leads to even more concise beliefs that do not enumerate all the unknown information.

ABBEL-Length-Penalty

Questions

What literary style describes the 1968 book that features a 1939 international Harvester school bus?; Is the building located at 200 West Street taller than the one at 888 7th Avenue?; ... Are Waste Land and Shikashika both types of drinks?

Belief State

<belief>The 1968 book "The Electric Kool-Aid Acid Test" by Tom Wolfe is written in the New Journalism style. The building at 110 West 7th Street is taller than the one at 888 7th Avenue.</belief>

1127

G RL DETAILS

1130

G.1 COMBINATION LOCK ENVIRONMENT DETAILS

1132

Combination Lock has the same feedback dynamics as *Wordle* with 3-character codes and guesses, while additionally enforcing that all three characters of the secret code and of every guess must

1134 be unique. Unique secret codes of 3 vocabulary characters were sampled, with a larger disjoint
 1135 vocabulary and increased horizon at test time (see Table 4).
 1136

1137 Table 4: Characteristics of the *Combination Lock* environments.
 1138

1139 Setting	1140 Horizon (H)	1141 Vocabulary	1142 Answer Space Size
1143 Train	1144 12	012345689	720 (3 unique digits)
1145 Test	1146 16	qawsedrftgyhujik	3360 (3 unique letters)

1143
 1144 We prompted Qwen2.5-7B-Instruct to first think step by step between `<think>...</think>`
 1145 tags, and then generate actions or beliefs between `<action></action>` or
 1146 `<belief>...</belief>` tags. Invalid generations did not count as an environment
 1147 step, i.e. did not impact regret, but we limited the number of generation calls per game to H
 1148 (VANILLA) or $2H$ (ABBEL and BELIEF PROMPTING); see Table 5 for details. Each trajectory ends
 1149 in success once the secret code is guessed, or failure if either the generation limit or environment
 1150 horizon is exceeded, with reward defined as follows to encourage succeeding with as few guesses as
 1151 possible:
 1152

$$1153 \mathcal{R} = \begin{cases} (H + 1 - \text{environment steps taken})/H & \text{if trajectory successful} \\ -1 & \text{otherwise.} \end{cases} \quad (2)$$

1154
 1155 **G.2 COMBINATION LOCK TRAINING DETAILS**1156
 1157 See Table 6 for the training settings and hyper parameters used, and Algorithm 2 for the belief grading
 1158 algorithm.1159
 1160 **Algorithm 2** GRPO with Belief Grading

1161 **Require:** Environment instructions p_I ; belief generation prompt p_b ; belief parsing prompt p_p .
 1162 **Require:** ABBEL policy model π_θ ; batch of trajectories $\{\tau_i\}$ rolled out by π_θ ; belief parser Π .
 1163
 1164 belief_groups $\leftarrow []$
 1165 **for** traj in $\{\tau_i\}$ **do**
 1166 **for** t , step in enumerate(traj) **do**
 1167 $(b_t, a_t, o_t, b_{t+1}) \leftarrow$ step
 1168 belief_context $\leftarrow p_I, b_t, a_t, o_t, p_b$
 1169 $b'_{t+1} \sim \pi_\theta(\cdot | \text{belief_context})$ ▷ Redo belief update generation at this step.
 1170 $r \leftarrow \text{GRADE_BELIEF}(b_{t+1}, \text{traj}, t)$
 1171 $r' \leftarrow \text{GRADE_BELIEF}(b'_{t+1}, \text{traj}, t)$
 1172 belief_group $\leftarrow [(\text{belief_context}, b_{t+1}, r), (\text{belief_context}, b'_{t+1}, r')]$
 1173 belief_groups.append(belief_group)
 1174 **if** $r = 0$ **then**
 1175 **break** ▷ Go to next trajectory after the first incorrect belief
 1176 **end if**
 1177 **end for**
 1178 **end for**
 1179 Add belief_groups to the current batch of trajectory groups.
 1180 Update π_θ on all groups with GRPO.
 1181 **function** GRADE_BELIEF(b_{t+1} , traj, t)
 1182 $b^*_{t+1} \leftarrow \text{compute_posterior}(\text{traj}[:t])$ ▷ Get true posterior from info in previous steps.
 1183 parsed_belief $\sim \Pi(\cdot | p_p, b_t)$ ▷ Parse b_{t+1} into the same format as b^*_{t+1} .
 1184 **return** parsed_belief $= b^*_{t+1}$ ▷ Return reward of 1 if b_{t+1} is correct.
 1185 **end function**

1186 **G.3 QA TRAINING DETAILS**1187
 1188 See Table 7 for the training settings and hyper parameters used.

1188
1189
1190 Table 5: Handling of invalid generations in *Combination Lock*.
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Case	Description	Outcome
Valid action	The action generation is correctly formatted as <code><action>[c1, c2, c3]</action></code> with three unique characters.	Both generation and environment steps are incremented, and feedback is presented in a newline separated list. e.g.: 8 is in Position 1! 6 is not in Position 2, but is in the lock 9 is not in the lock
Invalid action	Most often errors take the form of <code>[action>...</action></code> or repeated characters.	Generation step is incremented, and the model receives a message stating the action is invalid, reiterating the required format and prompting regeneration.
Invalid belief	Not using <code><belief></belief></code> tags. Errors tend to result from forgotten beginning/ending angle brackets or misspellings of belief.	Generation step is incremented, and the model receives a message stating the belief is invalid, reiterating the required format and prompting regeneration.

1210
1211
1212 Table 6: Settings used in *Combination Lock* experiments. The mini batch at every gradient update
1213 step was set to the number of tensors present in the step to prevent off-policy updates, which have
1214 been shown to result in unstable training behavior with Qwen models.
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Name	value
Optimization Algorithm	GRPO
AdamW learning rate	1e-7
batch_size	16
GRPO n rollouts	2
mini_batch	N/A
training_steps	140
num_epochs (calculated equivalent)	3.2
Learning rate decay	0.0
Gradient clipping	1.0

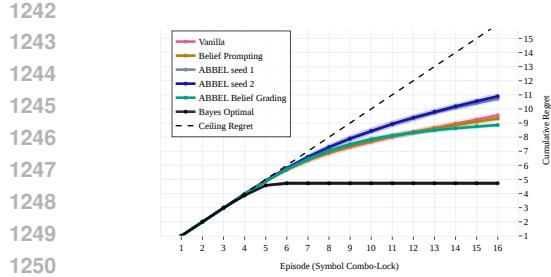
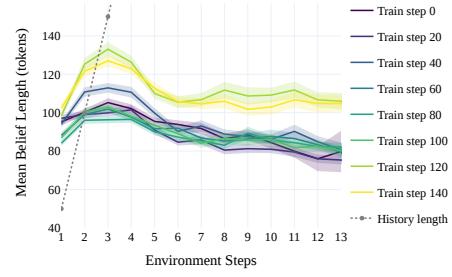
Belief Length Penalty To calculate the penalty for a trajectory, we take the length of longest belief state in the trajectory, subtract the mean over all trajectories in the batch, and apply a 0.01 scaling factor. We only apply a penalty to trajectories which do create a valid belief state, so as not to reward generating empty beliefs. In addition, we do not normalize the lengths by the in-batch range, and apply the penalty after advantage normalization, such that as the belief states get shorter the penalty has a smaller impact. We found this was important to avoid over-compressed beliefs significantly harming performance.

We find that the peak token metric isn't very precise, and should instead control for the step at which the agent is at. More steps of information collection require more tokens in the belief state resulting in higher penalties, meaning the model desires to reduce its searches. In QA, the model may opt to depend on its parametric knowledge in place of searches as a strategy to reduce its task reward, which fails to capture our desire, but will minimize this metric.

G.4 COLBENCH DETAILS

Example ABBEL-Belief-Grading Belief State at Step 50

The user expects the function to handle edge cases where revenue and variable costs are equal. Specifically, if revenue and variable costs are both USD100,000, the break-even point should be very high, potentially approaching infinity, and the margin of safety to be close to 100%.

1241
1242 (a) Test set mean cumulative regret.
1243
1244
1245
1246
1247
1248
1249
12501241
1242 (b) ABBEL .
1243
1244
1245
1246
1247
1248
1249
1250

1251 Figure 10: Test behavior of Qwen2.5-7B-Instruct trained in *Combination Lock*. (a) Final cumulative
1252 regret shows that after training, ABBEL still takes more attempts on average to find the secret code
1253 than models trained with access to the full history in context (VANILLA and BELIEF PROMPTING).
1254 However, when augmented with belief grading, ABBEL outperforms these settings. (b) ABBEL
1255 without belief grading learns to generate longer beliefs, but they remain significantly shorter than the
1256 interaction history beyond the first two environment step.
1257

1258
1259 Table 7: Settings used in QA experiments.
1260

Name	value
Optimization Algorithm	GRPO
AdamW learning rate	1e-7
batch_size	16
GRPO n rollouts	2
mini_batch	N/A
training_steps	260
num_epochs (calculated equivalent)	3.2
Learning rate decay	0.0
Gradient clipping	1.0

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274 They consider a margin of safety of 100% as a reasonable way to represent a break-even
1275 or nearly break-even situation. The function should output two numbers as the break-even
1276 point and margin of safety, even in edge cases. The function should calculate the margin of
1277 safety as $((\text{revenue} - (\text{fixed_costs}/(1 - (\text{variable_costs}/\text{revenue}))))/\text{revenue}) * 100\%$,
1278 representing how much sales can drop before incurring a loss. The function signature is:
1279 `def calculate_break_even_point(revenue, fixed_costs, variable_costs)`.
1280

1281 Example ABBEL (No Belief Grading) Belief State at Step 50

1282 Target year: 2050, Reduction percentage: 50%, Current emissions data: symbolic variables
1283 (e.g., `current_emissions`), Clarification needed: total emissions cut by 2050 or annual
1284 reduction rate.
1285