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Abstract

Large Language Models (LLMs) for multi-turn conversations suffer from ineffi-
ciency: semantically similar queries across different user sessions trigger redundant
computation and duplicate memory-intensive Key-Value (KV) caches. Existing
optimizations such as prefix caching overlook semantic similarities, while typical
semantic caches either ignore conversational context or are not integrated with
low-level KV cache management. We propose SmartCache, a system-algorithm
co-design framework that tackles this inefficiency by exploiting semantic query
similarity across sessions. SmartCache leverages a Semantic Forest structure to
hierarchically index conversational turns, enabling efficient retrieval and reuse of
responses only when both the semantic query and conversational context match.
To maintain accuracy during topic shifts, it leverages internal LLM attention
scores—computed during standard prefill—to dynamically detect context changes
with minimal computational overhead. Importantly, this semantic understanding
is co-designed alongside the memory system: a novel two-level mapping enables
transparent cross-session KV cache sharing for semantically equivalent states, com-
plemented by a semantics-aware eviction policy that significantly improves memory
utilization. This holistic approach significantly reduces redundant computations
and optimizes GPU memory utilization. The evaluation demonstrates SmartCache’s
effectiveness across multiple benchmarks. On the CoQA and SQuAD datasets,
SmartCache reduces KV cache memory usage by up to 59.1% compared to pre-
fix caching and 56.0% over semantic caching, while cutting Time-to-First-Token
(TTFT) by 78.0% and 71.7%, respectively. It improves answer quality metrics,
achieving 39.9% higher F1 and 39.1% higher ROUGE-L for Qwen-2.5-1.5B on
CoQA. The Semantic-aware Tiered Eviction Policy (STEP) outperforms LRU/LFU
by 29.9% in reuse distance under skewed workloads.

1 Introduction

Transformer-based Large Language Models (LLMs) [39], such as GPT [30], PaLM [8], and Llama [37,
16], are revolutionizing the world with their powerful and versatile capabilities, enabling a wide range
of tasks ranging from question answering to code generation [45, 30, 47]. A particularly prominent
application is multi-turn conversation [12, 20, 46, 18, 25], underpinning interactive systems where
users engage with models over extended dialogues, often exploring specific topics in depth [36]. This
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Figure 1: 1(a) illustrates the functionality of SmartCache. 1(b) shows an example of multi-user
multi-turn conversations. GPTCache [6] would encounter a false positive cache hit for Session 2
Turn 2 due to flat query embedding search. PrefixCache [40] fails to reuse the answer of Session 1
Turn 1 for the semantically similar query of Session 3 Turn 1 due to exact token match. 1(c) shows
the resource consumption of different methods on SQuAD dataset with LLama-3.1-8B model.

paradigm is central to applications like collaborative content analysis and comprehension, where
users interact with materials like news articles or videos through conversational interfaces.

However, current LLM serving systems suffer from a fundamental inefficiency in this setting:
semantic redundancy. Different users in separate sessions often ask questions that are semantically
equivalent or highly similar. Existing systems treat each session independently. Semantically similar
queries often trigger separate, full LLM inference passes, redundantly producing identical or nearly
identical responses. This results in unnecessary GPU computation. Furthermore, the associated
Key-Value (KV) caches—essential for efficient token generation yet highly memory-intensive—are
maintained separately for each session, resulting in excessive GPU memory usage and added overhead
from memory management tasks such as offloading [14, 19].

Existing optimization techniques are inadequate to address the problem. Prefix caching methods,
proposed in RadixAttention [48] and commonly used in systems like vLLM [40, 19, 27, 15, 4, 1],
leverage shared token prefixes (e.g., system prompts) to share initial KV cache blocks. They rely on
exact token matching and fail to recognize semantic equivalence when queries are phrased differently
(e.g., "What is PyTorch?" vs. "Tell me about PyTorch" as shown in Figure 1(b)). Their benefits
are also largely confined to the initial prompt processing (prefill stage), offering little help for the
time-consuming token-by-token decoding phase. On the other hand, higher-level semantic caching
systems [6] operate by storing text responses indexed by query embeddings. While they capture
semantic similarity, they often struggle in multi-turn scenarios due to two key limitations. (1) Context
Ignorance. They often retrieve cached responses based solely on the current query’s embedding,
disregarding the preceding conversation turns. This leads to incorrect or nonsensical answers when
a query’s meaning is context-dependent (e.g., "How to use it?"). (2) Decoupling from Inference
State. These caches operate above the LLM inference engine. A cache hit provides text but does not
update the LLM’s internal KV cache state. A subsequent cache miss can force the LLM to reprocess
the entire conversation history to regenerate the KV cache, resulting in significant computational
overhead and undermining potential memory savings. There is a clear need for a solution that
understands semantics, preserves conversational context, and is tightly integrated with the underlying
inference and memory management mechanisms. As depicted in Figure 1(c), utilizing semantics to
further reduce resource usage remains largely unexplored.

To bridge this gap, we present SmartCache — a system-algorithm co-design framework purpose-
built to optimize multi-turn LLM inference by leveraging cross-session semantic similarity while
preserving contextual integrity. SmartCache tightly integrates a novel semantic caching layer with
the core LLM serving engine and its KV cache management. It is built upon several key design
principles and mechanisms.

• Semantic Forest. To ensure cached responses are used only in the appropriate context and to
efficiently manage the branching nature of conversations, SmartCache employs the Semantic Forest
data structure (Section 3.1). This hierarchy of trees organizes conversational turns (query-response
pairs) semantically. Lookups for incoming queries are constrained to relevant branches based on the
preceding turn, ensuring contextual accuracy and efficient search. Cache misses dynamically grow
the forest, capturing new conversational paths.
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• Attention-based Context Identification. Recognizing that conversations can dynamically shift
topics, SmartCache incorporates an attention-based context identification module (Section 3.2). By
analyzing attention patterns during standard query prefill—a low-overhead signal from the model’s
internals—SmartCache distinguishes between queries that extend the current context and those
that begin a new one. This allows sessions to intelligently navigate or transition between different
semantic trees, enhancing both cache effectiveness and response accuracy.

• Semantic-aware Tiered Eviction/Prefetching. To maximize resource savings, SmartCache
features a co-designed KV cache sharing and eviction mechanism that deeply integrates the semantic
layer with memory management (Section 3.3). A novel two-level mapping connects semantic nodes
to physical KV cache blocks, allowing multiple sessions referencing the same conversational point to
transparently share underlying GPU memory. Furthermore, instead of relying on blind page-level
or session-level eviction, SmartCache employs lightweight and powerful Semantic-aware Tiered
Eviction/Prefetching (STEP) policy. STEP manages the lifecycle of KV cache blocks using factors
derived from the Semantic Forest structure and usage patterns, including semantic depth, session
affinity, and node popularity. This refined, contextually-informed approach optimizes memory
utilization more effectively than traditional page- or session-based methods.

To evaluate the effectiveness of SmartCache, we conduct extensive experiments across multiple
benchmarks and models. On the CoQA and SQuAD datasets, SmartCache reduces KV cache memory
usage by up to 59.1% compared to prefix caching and 56.0% over semantic caching, while achieving
78.0% and 71.7% reductions in Time-to-First-Token (TTFT), respectively. SmartCache also improves
answer quality metrics, attaining 39.9% higher F1 and 39.1% higher ROUGE-L scores for the Qwen-
2.5-1.5B model on CoQA, demonstrating its ability to preserve contextual accuracy. Furthermore,
our STEP policy outperforms traditional LRU/LFU policies by up to 29.9% in reuse distance under
skewed workloads, validating its efficiency in dynamic multi-session environments. These results
highlight SmartCache’s ability to balance computational efficiency, memory optimization, and answer
quality across diverse conversational scenarios.

2 Background

2.1 Related Works

Several prior works have explored various methods to address the inefficiencies in multi-user multi-
turn conversations. Table 1 compares different caching strategies used in multi-turn conversations.

Table 1: Comparison of Caching Strategies for Multi-Turn LLM Inference.
Baseline PrefixCache Flat Embedding Context-aware Semantic Cache

Feature No Reuse e.g., vLLM APC [40], e.g., GPTCache [6], SmartCache (ours)
RadixAttention [48, 14] SCALM [21] and [34]

Reuse Trigger ✗ Exact Prefix Match Flat Similarity Hierarchical Semantic
Context Aware ✗ ✗ Limited† ✓ (Hierarchical)
Resource Reused ✗ KV Cache* Text Response only Text Response + KV Cache
Computation Saving ✗ Limited ✓ ✓
Integrated System/Algorithm ✗ ✗ ✗ ✓ (Co-designed)
Key Bottleneck High Redundancy No Semantic Reuse Context Ignorance -
Benefit Focus Simplicity Prefill Speedup Saves Full Compute Context Awareness + Memory/Compute Eff.

†GPTCache can use history for embedding, but lacks explicit conversational structure.
*Only exactly matched prefix tokens are reused.

2.2 Problem Description

Let S be the set of active user sessions. Each session s ∈ S arriving at turn k+1 has a conversational
history H

(k)
s consisting of the preceding k query-response pairs. We can represent this history as

a sequence or concatenation: H(k)
s = {(qi, ai)}ki=1 or, if treated as a single string for embedding

purposes, H(k)
s ≈

∥∥k
i=1

(qi||ai), where || denotes string concatenation. When session s issues the new
query qk+1, the goal is to efficiently determine the appropriate response ak+1.

A standard LLM serving system computes ak+1 = M(qk+1|H(k)
s ), where M is the LLM and H

(k)
s

represents the relevant history context for session s. This computation is expensive.

A flat query-answer cache like GPTCache aims to find if there exists a previously asked query
qprev (from any turn j in any previous session) in a global set of all past queries Qall such that
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sim(E(qk+1), E(qprev)) ≥ τsim, where E is an embedding function, sim is a similarity metric, and
τsim is a threshold. If such a qprev with associated response aprev is found, ak+1 is set to aprev.

Find (qprev, aprev) s.t. qprev ∈ Qall ∧ sim(E(qk+1), E(qprev)) ≥ τsim

The primary limitation is that it disregards the conversational context H(k)
s . The semantic meaning of

qk+1 is often dependent on H
(k)
s , and reusing aprev generated under a different context H(k′)

s′ can be
incorrect, even if qk+1 and qprev are textually similar.

One might attempt to address this by directly incorporating the conversation history H
(k)
s in

the query embedding. A flat semantic cache could store embeddings of the form equery_hist =

E(H
(k)
s ||qk+1). For an incoming query q′k′+1 with history H

(k′)
s′ , the system would compute

e′query_hist = E(H
(k′)
s′ ||q′k′+1) and search for a stored embedding estored = E(H

(j)
prev||qprev) in a

global index, such that sim(e′query_hist, estored) ≥ τsim.

While this approach includes history information, it suffers from the Long History Dominance [23,
32, 38, 22, 10] issue, especially as the number of turns k increases. Standard embedding models
struggle to effectively represent long concatenated sequences in a fixed-size vector such that the final
query qk+1 remains distinctly identifiable. As the history H

(k′)
s′ grows long, the embedding vector

E(H
(k′)
s′ ||q′k′+1) tends to be increasingly dominated by the content of the history Hs itself, rather

than the specific new query qnew, i.e. E(H
(k′)
s′ ||q′k′+1) is closer to E(H

(k′)
s′ ) but more distant from

E(q′k′+1).

3 The Design of SmartCache

SessionID Node Node Block

KVCacheManager

SessionID Node Node Block

KVCacheManager

SemanticManager

Embedding Vector

Response 
Text

Vec
Index

MappingTable

Semantic 
Node

Semantic
Tree

Semantic Forest

LLM

Figure 2: Overview of SmartCache.

In this section, we introduce SmartCache, a
context-aware semantic cache designed for
multi-turn LLM inference with enhanced
context-awareness. First, as illustrated in Fig-
ure 2, SmartCache organizes and indexes con-
versation contexts from different users into a
Semantic Forest, as detailed in Section 3.1. The
semantic forest comprises multiple individual
semantic trees, where each conversation turn
is represented as a semantic node. Semantic
nodes can be associated with and reused across
multiple conversation sessions, enabling effi-
cient context sharing. Second, in Section 3.2,
SmartCache introduces a semantic identification
policy that leverages attention scores from the
prefilling stage of user queries to identify non-
contextual queries, to support dynamic context switching, and unlocks additional sharing opportuni-
ties. Finally, we present the transparent cross-session KV cache sharing design, coupled with a novel
eviction policy, enabling efficient sharing of KV caches based on semantic similarity in Section 3.3.

3.1 Semantic Context Manager

3.1.1 Semantic Tree

In a multi-turn conversational scenario, users often begin a session with a simple question on a
specific topic, followed by a series of progressively deeper queries. Different users may explore the
same topic by asking similar questions in varied ways or by focusing on different aspects. Such
relationships can be effectively represented using a tree structure, referred to as a semantic tree in
SmartCache. Each semantic tree organizes query-response turns as semantic nodes under a specific
semantic context. The initial query of a new session becomes the root node of a new semantic tree,
while subsequent queries create child nodes linked to the corresponding semantic parents.

Conversation sessions centered on the same topic can share a common semantic tree, allowing them
to leverage cached responses when similar queries have been made by other users. Each conversation
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Figure 3: Example of a hierarchical semantic tree shared by three sessions (A, B, and C).

session is associated with a semantic node, representing the last query-response turn of the session.
Users can ask progressive questions based on the context represented by the semantic node. In these
cases, child nodes are evaluated to possibly reuse responses from similar queries, avoiding the need
for regeneration. When there are no reusable responses, the query is processed by the LLM using the
contextual history traced from the root to the current semantic node. In the case where a user poses
an unrelated question and shifts to a different topic, SmartCache either locates a suitable existing
semantic tree or initiates a new one to reflect the updated context.

Figur 3 illustrates a comprehensive example of a semantic tree shared across three sessions (A, B,
and C). At time T1, session A begins with query Q1, which is processed by the LLM to generate a
response, as it is the first query on the topic. Q1 and its generated response are cached as semantic
node 1, which becomes the root of the newly created semantic tree. At T2, session B issues Q1′, a
query semantically similar to Q1, and retrieves the cached response from semantic node 1. Meanwhile,
session A raises query Q2 and receives a newly generated response. At T3, session C initiates Q1′′

and retrieves the same cached response from semantic node 1. However, when session B raises query
Q4, no similar query is found among the children of node 1, the current position of session B. As
a result, its response is generated by the LLM, and a new branch from node 1 to node 4 is created.
Session C continues to reuse node 4 until it encounters a cache miss at query Q6.

The semantic tree design benefits multi-turn conversations in two aspects. First, by reusing semanti-
cally similar nodes across different sessions, queries with identical or similar semantics are computed
and decoded by the LLM only once, and their responses are shared. This approach significantly re-
duces computational overhead and alleviates memory pressure, as the KV cache of common semantic
nodes is shared among sessions. Second, the hierarchical structure of the semantic tree preserves
semantic relationships. The tree grows and the session advances level-by-level with the progress
of queries. Queries are compared and retrieved only within the context of the same parent node,
ensuring accuracy while limiting the search space. This design allows sessions to share several initial
queries at the beginning while enabling diverse and specific questions to branch out independently as
conversations progress.

3.1.2 Semantic Node

Each semantic node represents the context of a single conversation turn. As shown in Figure 2, the
embedding vector of the query, generated by an embedding model is used by the parent node for
similarity search. Consequently, each semantic node stores the embedding vectors of its child nodes
in a vector index [11, 24, 41, 9]. The KV cache for the associated context is maintained on the LLM
side. To enable transparent KV cache sharing, an additional indirect KV cache block mapping table
is introduced and managed by the corresponding semantic node, which is detailed in Section 3.3.

3.1.3 Semantic Forest

Multiple semantically individual trees collectively form the semantic forest. A global vector index
stores the embedding vectors of the root nodes of all semantic trees, which is searched by the initial
query of a new conversation session to locate the most relevant semantic tree. If no similar topic is
found, a new semantic tree is created.

Users may occasionally change topics within a single session, such as shifting from one topic to
another. In SmartCache, an active session can switch to another semantic tree if no similar queries are
found under the current context and the new query is deemed irrelevant to the ongoing conversation.
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To determine whether a query is contextual or not, SmartCache leverages the attention score from the
LLM’s query prefilling stage, enabling dynamic and accurate context switching.

Algorithm 1 Cache Operations
Require: Session s, New Query qnew, Semantic Forest F (access to Iglobal and local IN ), Similarity

threshold τsim, Embedding Model E(·).
Ensure: Boolean is_hit, Node Nhit, Response acached

1: function CACHELOOKUP(s, qnew,F , τsim)
2: Ncur ← CurrentNode(s)
3: enew ← E(qnew)
4: is_hit← false
5: Nhit ← null
6: acached ← null
7: if Ncur = START then
8: Candidates← NearestNeighbor(enew, Iglobal, k = 1, τsim)
9: if Candidates is not empty then

10: Nhit ← Candidates[0].Node
11: acached ← Nhit.a
12: is_hit← true
13: else
14: if Ncur has a local index INcur then
15: Candidates← NearestNeighbor(enew, INcur , k = 1, τsim)
16: if Candidates is not empty then
17: Nhit ← Candidates[0].Node
18: acached ← Nhit.a
19: is_hit← true

return is_hit,Nhit, acached

3.1.4 Cache Operations

SmartCache’s cache operation is responsible for deciding whether an existing semantic node can be
reused or whether the underlying LLM must be invoked to extend the semantic tree, whenever a new
conversation turn arrives. The procedure (as shown in Algorithm 1) consists of three phases: local
lookup, global fallback and miss handling.

• Local Lookup. Every session s records its current semantic node Ncur. The search scope is
constrained to the descendants of Ncur, which preserves the conversational continuity and bounds
the search space. A single-probe k = 1 nearest-neighbor query on the local index INcur finds the
most similar child with a minimum similarity of τsim, using the embedding vector e given by the
embedding model. On cache hit, the cached response acached of the hit node is streamed to the user
and Ncur is updated.

• Global Fallback. On failure of local lookup, SmartCache suspects a context shift. Before falling
back to LLM generation, it performs a root-level lookup on the global vector index that stores the
root nodes of semantic trees. A successful match moves the session to the hit root and returns cached
response.

•Miss Handling. A double-miss triggers LLM inference and semantic node creation: a) Attention
Peeking. After a single-pass prefilling, attention scores to historical tokens are inspected to determine
a context-switch. If the query is contextual, the decoding preceeds. Otherwise, a new semantic
tree is created and the generation is restarted without context. b) Node Creation and KV Cache
Materialization. SmartCache inserts a new semantic node to an appropriate position with newly
generated response anew, and corresponding KV cache blocks, updating vector indices and setting
up correct mappings.

3.1.5 Analysis and Discussion

Let d be the embedding dimension of vector index, |F | the number of semantic trees in the forest,
and |B| the average branching factor of a semantic node, T the average generation length, and |V |
the vocabulary size.
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Figure 4: The attention score heatmaps of two different queries to the same context.

• Asymptotic Time Cost. SmartCache performs at least once approximate-nearest-neighbor [24]
search over:

Iglobal : O(log |F |) or,
Ilocal : O(log |B|)

• Space Overhead. For each semantic node, SmartCache stores a) a d-dimensional embedding
vector (4d Bytes in FP32 format), b) cached response acached (O(T log |V |) Bytes) and c) local
vector index Ilocal consisting of index metadata (O(IndexSize(|B|)) Bytes) depending on the ANN
implementation and the pointers to descendant embedding vectors (8|B| Bytes). Therefore, the space
overhead of each semantic node is:

O (d+ T log |V |+ IndexSize(|B|) + |B|)

3.2 Dynamic Context-Switching

In multi-turn conversations, the sequence length of a user query is typically much shorter than that
of the generated response. Additionally, prefilling a sequence is significantly faster than decoding
the same number of tokens due to the batch processing nature of the prefilling stage. As a result,
query prefilling consumes far less time than response generation. The attention score reveals the
model’s focus on key tokens, with contextual queries exhibiting noticeably higher attention scores
to the context compared to individual queries, as illustrated in Figure 4. This observation motivates
our approach of quickly examining the attention score during the query prefilling stage to determine
whether a query is contextual. If the query is contextual, the LLM proceeds to decode the response.
Otherwise, the query is treated as an individual query, and the session is redirected to another semantic
tree. Since the attention score is already computed during prefilling, the performance overhead of
this "peeking" mechanism is negligible.
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Figure 5: Two-Level Mapping Table.

By switching to a semantic tree with lighter contexts, ses-
sions achieve better response times due to reduced com-
putational load. Furthermore, the semantic forest expands
with additional individual semantic contexts, increasing
opportunities for sharing and improving overall efficiency.

3.3 KV Cache Management

3.3.1 Transparent Cross-Session KV Cache Sharing

SmartCache enables transparent sharing of KV cache
across semantically similar conversation sessions by in-
troducing a two-level mapping table. Original paged
KV cache management relies on a per-session logical-
to-physical token block mapping table, often referred to
as a block table. As illustrated in Figure 5, SmartCache enhances this approach with two additional
structures: per-session context tables, which map logical tokens to contexts, and per-context block
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tables, maintained by each semantic node. This two-level mapping mechanism ensures efficient and
flexible KV cache sharing while preserving semantic relationships.

3.3.2 Semantic-aware Tiered Eviction/Prefetching

• Semantic Tree-Guided Eviction. SmartCache evaluates the eviction urgency Sevict of a semantic
node by two factors: Semantic Depth Score (SDS) and Session Affinity Score (SAS). The SDS is
calculated as SDS = 1

Depth(N) , following the heuristic that deeper nodes in the semantic trees are
prioritized to be evicted. The SAS, computed by SAS = 1

#Session(N) , implies that nodes shared
across fewer active sessions should be evicted first. The weighted eviction score is as follows:

Sevict = α · SDS + β · SAS

• Subtree-aware Prefetching. When a session advances to a semantic node N , SmartCache
prefetches its children C into the GPU memory based on the Node Access Frequency (Popularity)
AF (Ci) =

#sessions accessed Ci after N
#sessions reached N . It is calculated using statistics within a predefined time window,

given that hot topics may change over time.
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Figure 6: Resource efficiency comparison on different models and datasets.

4 Evaluation

4.1 Experiment Setup

Harward settings. We use a server equipped with Intel Xeon Silver 4310 CPU [17] and NVIDIA
RTX4090 GPU [26], connected through PCIe4.0×16. The host has 256GB DDR4 memory and GPU
has 24GB GDDR6X memory. Our server runs Linux 5.4 with CUDA 12.0 [5]. We implement our
method using PyTorch 2.3 [29]. We evaluate our method on three different-sized open-source LLMs:
Qwen-2.5-1.5B-Instruct [43], Llama-3.1-8B-Instruct [16], and Mistral-7B-Instruct-v0.2 [3].

Dataset. Three datasets are used in the evaluation, including the CoQA dev dataset [33] and
SQuAD2.0 dev dataset [31]. CoQA is a conversational question answering dataset where questions
are asked sequentially on the same short story. Later questions often depend on conversation history.
SQuAD (Stanford Question Answering Dataset) contains questions on Wikipedia pages. Each story or
paragraph used in the experiments has one original conversation sessions and two similar conversation
sessions, with each session consisting of on average 5 turns of progressive question and answers.

Methods. Four methods are compared in the evaluation: 1) Baseline: KV caches are not shared
among different conversations sessions, 2) PrefixCache: KV caches of common prefixes from
different conversation sessions are shared, 3) GPTCache: an extra query-answer cache layer using
the embeddings of queries as vector search keys is stacked on top of LLM inference backend, 4)
SmartCache: the hierarchical and co-designed cache proposed in this paper. Conversation queries
are issued interleavingly among different sessions.

The KV cache block size is 16 tokens. BGE-M3 [7] is used as the embedding model with the
dimension of 1024. Embedding vectors are stored and searched using faiss [11] vector index based
on L2 distance. The similarity threshold is set to 0.75.
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Table 2: Answer Quality. Ideal represents the results of Baseline and PrefixCache.
Benchmark CoQA (0-shot) SQuAD2.0 (0-shot)

Model Method ExactMatch F1 ROUGE-L ExactMatch F1 ROUGE-L

Qwen-2.5-1.5B-Instruct
Ideal 27.5 51.1 51.3 14.2 65.5 64.0

GPTCache 16.8 33.3 33.8 12.8 60.4 59.2
SmartCache 24.9 (+48.2%) 46.6 (+39.9%) 47.0 (+39.1%) 13.4 (+4.7%) 64.5 (+6.8%) 63.0 (+6.4%)

Llama-3.1-8B-Instruct
Ideal 36.6 59.6 59.2 14.9 67.8 66.0

GPTCache 23.0 38.8 39.1 13.4 62.3 60.9
SmartCache 24.9 (+8.3%) 49.5 (+20.1%) 49.2 (+20.2%) 14.0 (+4.5%) 66.5 (+6.7%) 64.6 (+6.1%)

Mistral-7B-Instruct
Ideal 5.5 27.0 26.9 7.7 57.8 55.3

GPTCache 3.0 17.4 17.7 6.9 52.7 50.6
SmartCache 3.1 (+3.3%) 20.0 (+14.9%) 20.0 (+13.0%) 7.7 (+11.6%) 56.2 (+6.6%) 54.6 (+7.9%)

4.2 Resource Efficiency

Memory Efficiency. SmartCache significantly improves KV cache sharing by leveraging semantic
relationships in multi-turn conversations, enhancing resource utilization across sessions. As shown in
Figure 6(a), SmartCache reduces KV cache memory usage by up to 59.1% and 56.0% compared to
PrefixCache and GPTCache, respectively, demonstrating superior efficiency in reusing KV cache
memory.

Computational Efficiency. Figure 6(b) presents the average Time to First Token (TTFT) per query.
On the CoQA dataset, across different models, SmartCache achieves 78.0% and 37.7% lower TTFT
than PrefixCache and GPTCache, respectively. Similarly, on the SQuAD dataset, it reduces TTFT by
71.7% and 50.6% compared to the same baselines. These results highlight SmartCache’s effectiveness
in accelerating inference while minimizing computational overhead.

4.3 Answer Quality

The hierarchical semantic awareness of SmartCache significantly improves its answer quality, com-
pared with GPTCache’s flat query similarity search. As demonstrated in Table 2, SmartCache
consistently enhances answer quality across different benchmarks and metrics. For the CoQA dataset,
SmartCache improves Qwen-2.5-1.5B-Instruct’s F1 score by 39.9% and Llama-3.1-8B-Instruct’s
ROUGE-L by 20.2%. For SQuAD2.0, SmartCache achieves smaller but consistent gains.
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Figure 7: Reuse Distances CDF of different KV Cache Management Policy

4.4 KV Cache Management Policy

We compare SmartCache’s STEP policy with commonly used LRU (Least Recently Used) and LFU
(Least Frequently Used) policies. 1500 conversation sessions focusing on CoQA’s stories follow
three different distributions (zipfian, uniform and pareto) to show different real-world environments.
Llama-3.1-8B-Instruct model is used with a GPU KV Cache budget of 4GB. Figure 7 compares
the CDF (Cumulative Distribution Function) of the Reuse Distances (the number of distinct nodes
accessed between two consecutive accesses to the same semantic node) of different policies. STEP
shows up to 29.9% and 25.7% longer average reuse distance over LRU and LFU with skewed
distribution and 18.2% and 15.9% longer with uniform distribution.

4.5 Overhead Analysis

We quantitatively show SmartCache’s compute and memory overhead on Mistral-7B-Instruct-v0.2
using CoQA. Table 3 demonstrates the breakdown of overhead across SmartCache components. For
a cache-missed new query (i.e. creating a new semantic node followed by LLM inference), Smart-
Cache adds ≈8.8% computational overhead (18.54 ms out of 210.37 ms end-to-end). SmartCache’s
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hierarchical semantic organization and co-design with KV cache management increase cache reuse
opportunities, leading to significant end-to-end gains despite modest overhead.

The total GPU memory overhead is ≈7.1%, primarily from the embedding model, while CPU
memory overhead is negligible (≈28.05 MB). Given the reduced inference time from cache reuse,
the amortized cost of these components becomes insignificant at scale.

4.6 Performance under High Concurrency

As shown in Figure 8, we evaluate SmartCache under varying degrees of concurrent requests using
Mistral-7B-Instruct-v0.2 on CoQA. As the number of concurrent requests increases, SmartCache
demonstrates progressively greater speedups. As concurrency increases, the LLM’s batching effi-
ciency plateaus due to inherent GPU parallelism limits. However, SmartCache is able to bypass full
LLM inference for many cache-hit queries, reducing the effective batch size. This not only alleviates
load on the inference engine but also leverages hierarchical KV cache reuse, leading to significant
reductions in TTFT.
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Figure 8: Overhead under different
number of concurrent requests.

Table 3: Computational and Memory Overhead Breakdown
of SmartCache.

Components Computational Overhead Memory Overhead
Embedding Generation 17.13 ms 1.06 GB (GPU)

Vector Search 0.11 ms 18.16 MB (CPU)

Vector Insertion 1.01 ms Shared with vector search

Semantic Forest Maintenance 0.29 ms 9.89 MB (CPU)

5 Related Works

PrefixCache [40] reuses KV cache only when token prefixes match exactly, accelerating prefill but is
limited in handling semantically similar queries. GPTCache [6] stores and retrieves responses based
on flat query embeddings, enabling semantic reuse but lacking context awareness. PromptCache [15]
accelerates inference by reusing attention (KV) states for frequently repeated prompt segments
via a modular schema that preserves positional consistency, substantially reducing TTFT for long,
template-like inputs. CacheBlend [44] targets RAG workloads, enabling chunk-level KV cache
reuse across retrieved documents and selective recomputation of a small subset of tokens to refresh
cross-chunk attention without incurring full prefill cost. Notably, SmartCache can be combined with
CacheBlend and PromptCache to achieve further improvements.

6 Conclusion and Discussion

In this paper, we presented SmartCache, a context-aware semantic cache framework designed to
address the inefficiencies of multi-turn LLM inference. By integrating hierarchical semantic indexing
with KV cache management, SmartCache significantly reduces redundant computations and GPU
memory usage while preserving conversational context.

Limitations and Future Work. First, sharing responses across user sessions introduces potential pri-
vacy risks. To mitigate this, a content desensitization module could be implemented to automatically
remove or anonymize sensitive information prior to caching. Second, scaling the system to support a
broader range of services requires a multi-instance extension, enabling more robust and distributed
processing capabilities.
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A Appendix

A.1 Evaluation on Larger Model

To further evaluate SmartCache’s scalability and effectiveness, we conduct additional experiments
using the Qwen2.5-32B-Instruct model on a high-end hardware configuration: AMD EPYC 7513,
512GB DRAM, and one NVIDIA A100 80GB GPU. Table 4 summarizes the results on the CoQA
dataset.

Table 4: Results on Qwen2.5-32B-Instruct

Metrics / Method TTFT (ms) KV Cache (GB) EM F1 ROUGE-L
Baseline 213.9 189.2 33.3 54.8 55.0
PrefixCache 182.5 171.8 33.3 54.8 55.0
GPTCache 94.1 98.3 18.8 34.3 34.7
SmartCache 69.4 71.4 26.8 50.2 50.4

A.2 Computational Overhead under Concurrency

We evaluate SmartCache’s computational overhead using Mistral-7B-Instruct-v0.2 on CoQA under
varying numbers of concurrent requests. As shown in Table 5, the primary cost under increased
concurrency arises from embedding generation, which supports efficient batching. 8 CPU threads are
used for faiss-cpu internal threading and semantic forest maintenance. Minor contention is observed
in the semantic forest maintenance, especially when multiple queries attempt to insert child nodes
under the same parent node. This is mitigated by batching vector insertions.

Table 5: Overhead under concurrent requests (ms).

# Concurrent Requests 1 2 4 8 16 32 64

Embedding Generation 17.13 18.00 19.44 19.54 20.81 22.08 23.32
Vector Search 0.11 0.23 0.26 0.36 0.75 5.64 9.35

Vector Insertion 1.01 1.01 1.02 1.05 1.06 1.22 1.62
Semantic Forest Maintenance 0.29 0.31 0.31 0.33 0.67 1.34 2.97

A.3 Hyperparameter Sensitivity

We evaluate similarity threshold τsim used to determine semantic matches in the Semantic Forest, and
the weighting coefficients (α, β) that balance the Semantic Depth Score (SDS) and Session Affinity
Score (SAS) in the STEP eviction policy.

A.3.1 Similarity Threshold

Table 6 shows the answer quality and performance on Qwen2.5-1.5B-Instruct with CoQA. Increasing
τsim monotonically improves EM/F1/ROUGE-L by enforcing stricter semantic matches, but reduces
reuse opportunities, increasing both TTFT and KV cache usage. We adopt τsim = 0.75 for a balanced
operating point used in main experiments.

Table 6: Answer quality and performance across different similarity threshold.

τsim EM F1 ROUGE-L TTFT (ms) KV Cache (GB)
0.50 17.4 35.2 35.5 26.8 4.1
0.60 21.6 41.1 41.4 27.5 4.5
0.70 23.5 45.3 45.5 30.2 6.5
0.75 24.9 46.6 47.0 31.3 7.7
0.80 25.4 47.7 47.9 49.0 8.5
0.90 25.9 48.9 49.1 83.2 12.1
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A.3.2 Coefficients α and β of STEP Policy

Table 7 shows the grid search result with the same configuration as Section 4.4. We adopt α = 0.6
and β = 0.4 for STEP in all evaluations, as this setting attains the highest average reuse distance.

Table 7: Average reuse distance over different (α, β) settings (zipfian distribution).

(α, β) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1)

Reuse distance (avg) 231.8 252.0 255.9 262.3 261.6 265.4 260.5 240.9 252.5

A.4 Attention-based Context Switching

Since different models exhibit numeric variations on attention scores, the attention score threshold is
profiled for each model offline using five predefined independent queries, averaged across attention
heads and query tokens for each query, excluding 8 initial tokens that behave as attention sinks (i.e.,
attracting disproportionate attention regardless of context [42]). The same attention score calculation
procedure is triggered during the prefill stage of a query when it fails from reusing its child semantic
nodes. It is then compared with the the profiled threshold to determine whether or not the query is
independent.

Impact of Architectural Differences. The widely used Grouped-Query Attention (GQA [2])
changes per-head magnitudes but preserves the probabilistic semantics of attention. Mixture-of-
Experts (MoE [13]) alters the feed-forward pathway via expert routing while leaving the attention
softmax itself unchanged. Positional encodings such as rotary position embeddings (RoPE [35]) and
attention with linear biases (ALiBi [28]) modify how relative position influences attention logits,
but after softmax the attention weights still form a probability simplex. Therefore, architectural
modifications that change logits but preserve the probabilistic semantics do not require changing the
decision logic.

A.5 Privacy Preserving

SmartCache is designed to support multi-user environments, where multiple sessions may reuse
cached responses across conversations. While semantic reuse offers significant performance and
memory advantages, it also introduces potential privacy concerns. These issues can be mitigated via
query sanitization, access control, and asynchronous privacy filtering.

Query Sanitization. To prevent private or sensitive information from being inadvertently shared
across sessions, SmartCache integrates a privacy data sanitizer module. This module inspects
user queries and determines whether a query-response pair should be treated as private. If so, the
corresponding semantic node is marked as hidden, meaning it is only visible to the originating user
or authorized parties, such as members of the same organization or tenant.

Access Control. Hidden semantic nodes are excluded from the global semantic forest used for
cross-session lookup. These nodes are stored and reused exclusively within the user’s own session or
within authorized scopes defined by privacy policies. This ensures that personal or sensitive queries,
even if semantically similar to others, do not produce cache hits across different users.

Asynchronous Sanitization for Low Latency. To minimize latency, when a new query is issued, it
is immediately processed and added to the cache as a hidden node by default. In the background, the
sanitizer evaluates the query and, if it is deemed non-sensitive, updates the node’s visibility status to
allow future sharing. This decouples privacy inspection from the critical path of inference, preserving
the low TTFT guarantees of SmartCache while still ensuring privacy compliance.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The reported evaluation results in this paper is averaged through multiple runs
of experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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