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Abstract

Recently, the information-theoretical framework has been proven to be able to
obtain non-vacuous generalization bounds for large models trained by Stochastic
Gradient Langevin Dynamics (SGLD) with isotropic noise. In this paper, we opti-
mize the information-theoretical generalization bound by manipulating the noise
structure in SGLD. We prove that with constraint to guarantee low empirical risk,
the optimal noise covariance is the square root of the expected gradient covariance
if both the prior and the posterior are jointly optimized. This validates that the
optimal noise is quite close to the empirical gradient covariance. Technically, we
develop a new information-theoretical bound that enables such an optimization anal-
ysis. We then apply matrix analysis to derive the form of optimal noise covariance.
Presented constraint and results are validated by the empirical observations.

1 Introduction

Generalization ability is one of the core questions in learning theory [4], but remains unclear for
deep learning models [17, 38]. Existing generalization bounds based on the capacity control become
vacuous for practical deep learning models due to the over-parameterization property [1, 26, 39].

From the information theoretical perspective, recent works [30, 37] bound the generalization error
by the mutual information between the dataset and the learned parameters. This result reveals
that good generalization occurs when the learned parameters do not depend on a specific dataset
too much, which is intuitively reasonable and closely related with the idea of algorithm stability
[6, 15, 19, 24, 20] and differential privacy [8, 10]. Meanwhile, based on information-theoretic
metrics, one can analyze general classes of updates and models, e.g., stochastic iterative algorithms
for non-convex objectives, hence applicable to deep learning. It has been shown that the information
theoretical bounds are non-vacuous and closely related with the real generalization error even in deep
learning [14, 26, 9, 39].

Notably, the information theoretical bound is realized in [28] via decomposing the mutual information
across iterations. This framework can perform a step-wise analysis of Stochastic Gradient Langevin
Dynamics (SGLD) [33, 29], by evaluating the mutual information conditional on the previous learned
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parameters at each step. We note that the noise added in SGLD is critical for both the mutual
information evaluation and the empirical risk minimization. Most existing work focus on SGLD with
constant and isotropic noise covariance [22, 25, 14] due to the technical difficulty. However, it is
observed that the test accuracy of SGLD with isotropic noise has a considerable gap compared to
that of the widely-used Stochastic Gradient Descent (SGD) [40]. This empirical gap motivates us to
consider the following question:

Can we find the optimal noise added in SGLD in terms of generalization?

An affirmative answer will lead to an algorithm imitating SGD better, which helps us to better
understand the generalization behavior of SGD.

Specifically, we propose to optimize the structure of the noise in SGLD such that the generalization
bound is minimized while a low empirical risk is guaranteed. To this end, we first show that the trace
of the noise covariance in SGLD is a valid constraint that governs the empirical risk behavior both
theoretically and empirically. Then we devise a new information theoretical generalization bound
that are parallel to those bounds in [25], but facilitate the derivation of the optimal noise. With these
technical preparations, we prove that when jointly optimizing both the prior and the posterior, the
optimal noise covariance is the square root of the expected gradient covariance, i.e., their eigenvectors
are the same and the corresponding eigenvalues of the former are the square root of the latter, and the
optimal prior recovers the prior in [25]. This indicates the optimal noise covariance of SGLD would
be quite close to the empirical gradient covariance, i.e., the noise covariance of SGD, because of the
concentration of measure.

Our result lends support to the belief that the noise introduced by Stochastic Gradient Descent (SGD)
is superior to the isotropic noise, which has been widely observed [18, 36, 40, 38]. As an illustrative
example, we plot the generalization errors of SGD, SGLD with the isotropic noise and SGLD with
the optimal noise in Figure 1, where their training curves behave almost the same (do not show here).
We can see the optimal noise captures the behavior of SGD much better than the isotropic noise.

Figure 1: Generalization errors of
SGD, SGLD with the isotropic noise
(Iso-SGLD) and SGLD with the op-
timal noise (SREC-SGLD).

Specifically, our contribution can be summarized as follows:

1. We formulate a problem of finding the optimal noise covari-
ance by optimizing an information-theoretical bound;
2. We develop a new information-theoretical bound to facilitate
the analysis of the above optimization problem;
3. We obtain the optimal structure of the noise covariances,
and demonstrate the similarity to empirical/expected gradient
covariance;

1.1 Related Works

Information-theoretical bounds. Recently, researchers [37, 30, 28] propose to bound the gener-
alization error by the mutual information between output hypothesis and input samples. Negrea et
al. [25] further tighten the bound by designing a data-dependent prior. Following [25], Haghifam et
al. [14] obtain comparable results through conditional mutual information [31]. Other related work
[2, 16, 5, 13] tightens the information theoretical generalization bounds from different perspectives.
There are also high probability generalization bound [24, 26, 21] obtained by combining information
theory [7] and PAC Bayesian framework [27, 33].

Effects of the noise covariance. SGD achieves excellent performance in terms of generalization
error in deep learning. In contrast, one recent work [40] demonstrates empirically that even with
well-tuned scaling, isotropic SGLD still achieves much worse generalization error than mini-batch
SGD. They obtain an optimal covariance matrix (low-rank approximation of Hessian) in terms of
escaping efficiency at local minima. Furthermore, [34] show empirically large-batch SGD with
diagonal Fisher Gaussian noise can recover similar validation performance as small-batch SGD.
However, both the noise covariance investigated by [40] and [34] has gap with that of SGD. It has
also been proven [23] that the stationary distribution of state-dependent SGLD with the empirical
loss approximated by quadratic function obeys the power law, and has a better escaping efficiency
than SGLD with the isotropic noise.
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2 Preliminaries

Notations. Here we briefly introduce the notations which will be used throughout this paper.

• (Set operation) For a positive integer N , we use [N ] to denote the index set {1, 2, · · · , N},
and use V[T ] to denote the set {Vt}Tt=1. For a finite set S = {z1, · · · , zN}, |S| is the

cardinality of S, and SJ
△
= {zi}i∈J is a subset of S with indices in set J ⊂ [N ].

• (Probability) z ∼ S denotes that z is uniformly sampled from the set S. For two random
variables X and Y , we denote the conditional distribution of X given Y as PY (X) and
denote the conditional expectation of X given Y as EY (X).

• (Matrix) We use Id×d for the d× d identity matrix, abbreviated as I when dimension is clear.
For a differentiable function f , we denote the gradient of f at point W as∇f(W ). For a
positive semi-definite matrix A ∈ Rd×d, we say B = A

1
2 ∈ Rd×d if B ·B = A.

Supervised Learning. In this paper, we focus on the supervised learning. It conducts the empirical
risk minimization (ERM) over training data: MinimizeW RS(W )

△
= 1

|S|
∑

z∈S ℓ(z;W ), where W ∈
Rd is the parameter of the model, S is the training set with each data point i.i.d. sampled from
a distribution D, ℓ is the (individual) loss function. A stochastic algorithm solves the ERM by
outputting a distribution QS of parameter W . The generalization error measures the gap between
the population risk and the training risk as

Gerr
△
= ES,QS [RD(W )−RS(W )] . (1)

SGD and SGLD. The update rule of Stochastic Gradient Descent (SGD) at step t is defined as

Wt ←Wt−1 − ηt∇RSVt
(Wt−1), (2)

where Vt is sampled uniformly without replacement from [N ] with size bt. Given Wt−1, Wt is
random with

E [Wt|Wt−1] = Wt−1 − ηt∇RS (Wt−1) , Cov [Wt|Wt−1] =
N − bt

bt(N − 1)
Σsd

S,Wt−1
,

where Σsd
S,Wt−1

△
= Covz∼S [∇Rz(Wt−1)] is the covariance of∇Rz with z single drawn from S.

The superscript sd means “single draw”. Similarly, we define the population covariance of gradient

as Σpop
W

△
= Covz∼D [∇Rz(W )]. We define the Hessian ofRS(W ) at point W asHS,W .

The Stochastic Gradient Langevine Dynamics (SGLD) is given by

Wt ←Wt−1 − ηt∇RSVt
(Wt−1) +N (0,Σt(S,Wt−1)), (3)

where Σt(S,Wt−1) ∈ Rd×d is a positive semi-definite matrix with dependence on S and Wt−1.
SGLD (Eq. 3) with Σt(S,Wt−1) = ctI where ct a positive constant, is called isotropic SGLD, and
SGLD with Σt(S,Wt−1) dependent on Wt−1 is called state-dependent SGLD.

Statistics for iterative algorithms. Both SGD and SGLD are stochastic iterative algorithms
[11]. Specifically, the update rule at step t of a stochastic iterative algorithm A can be generally
characterized as Wt =Mt(Wt−1,S,Vt), where Vt is the auxiliary random variable at step t, e.g.,
Vt in Eq.(2) and Eq.(3). We use QS,V[T ] to denote the joint distribution of (Wt)

T
t=0 conditional on

{S,V[T ]}, Q
S,V[T ]

i:j to denote the joint distribution of (Wt)
j
t=i conditional on {S,V[T ]}, and Q

S,V[T ]

j|j−1

to denote the distribution of Wj conditional on {Wj−1,S,V[T ]}.
Decomposition of KL divergence. The following Lemma is extensively used throughout this paper.

Lemma 1 (Proposition 2.6, [25]). Let Q0:T and P0:T are two probability measures on Rd×(T+1)

with Q0 = P0. Then, the KL divergence between Q0:T and P0:T can be decomposed into

KL(Q0:T ||P0:T ) =

T∑
t=1

EQ0:t−1

[
KL

(
Qt|[t−1]∥Pt|[t−1]

)]
.

Information theoretical generalization bound. Several existing information-theoretical bounds [14,
25] share similar framework. We state one representative proposed in [25].
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Proposition 1 (Theorem 2.5 in [25]). Let S be the data set i.i.d. sampled from D, and let the loss
function ℓ be [a1, a2] bounded. Let A be an algorithm with update rule

Wt ←Mt(Wt−1,S,Vt),W0 ∼ W0.

Let B be another stochastic iterative optimization algorithm with update rule

Wt ← M̃t(Wt−1,SJ ,Vt,J),W0 ∼ W0.

where J is sampled uniformly without replacement from [N ] with size N − 1. Given S, J , and V[T ],
denote the joint distribution of (Wt)

T
t=1 of A as QS,V[T ] , and the joint distribution of (Wt)

T
t=1 of B

as PJ,SJ ,V[T ] . Then, for any M̃[T ], the generalization error of A can be bounded as:

ES,V[T ]

[
RD

(
Q

S,V[T ]

T

)
− R̂S

(
Q

S,V[T ]

T

)]
≤ ES,V[T ],J

√
(a2 − a1)2

2
KL

(
QS,V[T ]

∥∥PJ,SJ ,V[T ]
)
.

This proposition is used to obtain the generalization error bound for SGLD [25, Theorem 3.1] by
further combing Lemma 1. As M̃[T ] can be arbitrarily picked, P works as an "Auxiliary Line" and
is called the prior distribution, while Q is the real distribution of parameters called the posterior
distribution. In Section 3.2.1, we will argue the difficulty of applying Proposition 1 to analyze the
effect of noise structures.

3 Formulate the Problem: Proper Constraints and Optimization Target

In this part, we formulate the optimization problem, i.e., finding the optimal noise covariance of SGLD
in terms of the information-theoretical generalization bound, by selecting the proper optimization
constraint and optimization target. Specifically, in Section 3.1, we argue that the trace of the noise
covariance is a proper constraint to ensure the same optimization error; in Section 3.2, we argue that
existing generalization bounds are not proper candidates as the optimization target, and propose a
new information-theoretical bound parallel to existing ones but easier to analyze.

3.1 Constraint on the Covariance to Control the Empirical Risk

We first derive the constraint of noise covariance Σt in Eq. (3) from the perspective of training
performance, under which we optimize the generalization bounds in the rest of this paper.

Without any constraint on the noise covariance, optimizing generalization error is trivial but meaning-
less: a direct combination of Theorem 1 of [37] and Theorem 1 of [28] shows that for isotropic SGLD
with Σt = σtI, the generalization error after T step satisfies Gerr ≤ O((

∑T
t=1 log(1 + 1/σt))

1/2).
Therefore, as σt →∞ for t ∈ [T ], we have Gerr→ 0, but then the update of SGLD is dominated
by the noise, leading to arbitrary bad empirical risk. Hence, we need constraints on the covariance
in order to control the empirical risk when minimizing the generalization error. Specifically, the
expected decrease of the empirical risk for one iteration can be bounded as follows.
Lemma 2. Let empirical riskRS(W ) be β-smooth w.r.t. W . Let W[T ] be given by state-dependent
SGLD (Eq. (3)). Then,

Et+1|tRS(Wt+1)−RS(Wt) ≤ −
(
1 −

βηt+1

2

)
ηt+1 ∥∇RS (Wt)∥2

+
β

2
tr

(
η2
t+1(N − bt)

(N − 1)bt
Σ

sd
S,Wt

+ Σt+1(S,Wt)

)
.

The proof can be obtained by a standard analysis in optimization, and we defer it to Appendix B. By
Lemma 2, the noise covariance Σt affects the upper bound of the empirical risk by its trace. Therefore,
it is reasonable to keep tr(Σt(S,Wt−1)) unchanged while seeking the optimal Σt(S,Wt−1) to
minimize the generalization error. The constraint is given formally as follows:
Constraint 1. The trace of Σt(S,Wt−1) is fixed when optimizing the generalization error. That is,
there exist positive constants ct(S,Wt−1) depending on S and Wt−1, such that,

tr(Σt(S,Wt−1)) = ct(S,Wt−1).

We do not put any constraint on the value of ct in our latter analyses. Therefore, it is also possible
to manipulate ct in order to jointly optimize the empirical risk and the generalization bound, which
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however, is beyond the scope of this paper and we defer it to future works. Similar constraint is also
proposed by [40] from the standpoint of kinetic energy when analyzing the effect of noise structure
on the escaping efficiency from saddle points.

We next verify this constraint empirically. We run SGLD with different covariances on a four-layer
neural network for the Fashion-MNIST classification problem. Concretely, the noise covariances are
chosen respectively as Σ(1)

t = Σsd
S,Wt−1

, i.e., “EC-SGLD” ( Empirical Covariance SGLD) curve in

Fig.2, and Σ
(2)
t = 1

d tr(Σ
sd
S,Wt−1

)I, i.e., the “Iso-SGLD (C)” curve in Fig.2. It is easy to verify that

tr(Σ
(1)
t ) = tr(Σ

(2)
t ), which is exactly the Constraint 1. We can see from Fig.2 that the convergence

curves corresponding to Σ
(1)
t and Σ

(2)
t almost coincide with each other, validating the Constraint 1.

Figure 2: Training errors of
SGLD with different noise co-
variances. The experiment is run
on the Fashion-MNIST dataset
with a four-layer neural network
(see Appendix F).

In comparison, another quantity tr(HS,Wt−1
Σt), the trace of the

empirical risk’s Hessian times the empirical covariance, has also
been proposed to govern the convergence behavior [34, Theorem
4.1]. We plot the convergence curve of SGLD with noise covariance

Σ
(3)
t =

tr(HS,Wt−1
Σsd

S,Wt−1
)

tr(HS,Wt−1
) I ("Iso-SGLD (H)" in Fig.2). While

tr(HS,Wt−1Σ
(1)
t ) = tr(HS,Wt−1Σ

(3)
t ), there is a significant gap

between curves of “EC-SGLD ” and “Iso-SGLD (H)” in Fig.2. This
implies that tr(HS,Wt−1

Σt) is not a good constraint for the empirical
risk of SGLD, validating the Constraint 1 from another side.

In the rest of this paper, we will optimize the information-theoretical
bound under Constraint 1 to ensure low empirical risk.

3.2 New Information-theoretical Bounds as the Optimization Target

We first demonstrate that existing information-theoretical bounds are not suitable for the optimization
target in Section 3.2.1. Then we propose a new information-theoretical bound as the optimization
target in Section 3.2.2.

3.2.1 Difficulties When Applying Traditional Information-theoretical Bounds

By Lemma 1, the generalization error bound in Proposition 1 can be rewritten as

ES,V[T ],J

√√√√ (a2 − a1)2

2

T∑
s=1

E
Q

S,V[s−1]
s−1

KL
(
QS,Vs

s|(s−1)

∥∥∥PJ,SJ ,Vs

s|(s−1)

)
. (4)

For Problem 1, there are two difficulties. For a fixed QS,V[T ] , in order to obtain the optimal PJ,SJ ,Vs

s|(s−1)

for any s ∈ [T ], one would first calculate the outside expectation of Eq. (4) over SJc , as PSJ ,V[T ]

is independent of SJc . However, for each term E
Q

S,V[s−1]
s−1

KL (QS,Vs
s|(s−1)∥P

J,SJ ,Vs

s|(s−1) ) where s ∈ [T ],

both the probability measure Q
S,V[s−1]

s−1 and the function KL(QS,Vs
s|(s−1)∥P

J,SJ ,Vs

s|(s−1) ) has dependency on
SJc , which makes evaluating the generalization bound with respect to PSJ ,V[T ] extremely hard.
Furthermore, when we come to optimize the bound w.r.t. Σ[T ], for each Σi where i ∈ [T − 1], the
Eq. (4) depends on Σi via two terms A and B, where

A = E
Q

S,V[T ]
i−1

KL
(
Q

S,V[T ]

i|(i−1)∥P
J,SJ ,V[T ]

i|(i−1)

)
, B =

T∑
s=i+1

E
Q

S,V[s−1]
s−1

KL
(
QS,Vs

s|(s−1)∥P
J,SJ ,Vs

s|(s−1)

)
.

While the first term is easy to deal with as Q
S,V[T ]

i−1 is irrelevant of Σi, the second term depends on Σi

via the distribution Q
S,V[s−1]

s−1 for s ≥ i+ 1, and can be very complex (please refer to Appendix C.1).

3.2.2 Information-theoretical Generalization Bound for Identifying the Noise Effect

We then establish a new information-theoretical generalization bound as the optimization target that
are parallel to the results in [25] but more suitable for analyzing the effect of noise structure. The
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basic idea is to reverse the order of prior and posterior in the KL divergence to let Σt only affect one
term in the generalization bound for each t when finding the optimal point. The formal theorem is
stated as follows:
Theorem 1. Let sample set S, mini-batch V[T ], random subset J , the posterior distribution Q output
by Algorithm A with update ruleM and the prior distribution P output by Algorithm B with update
rule M̃ be defined as Proposition 1. Let [a1, a2] be the range of loss. Then, the generalization error
of A can be bounded as

Gerr ≤ ES,V[T ],J

√
(a2 − a1)2

2
KL

(
PJ,SJ ,V[T ]

∥∥QS,V[T ]
)
. (5)

Compared to Proposition 1, Theorem 1 can be viewed as a parallel version with the positions of the
prior distribution P and the posterior distribution Q reversed. This reverse benefits the optimization
of the generalization error bound with respect to the noise covariance under Constraint 1 in two ways.
First, by Lemma 1, the KL term in Eq. (5) can be further decomposed into

KL
(
PSJ ,V[T ]

∥∥QS,V[T ]
)
=

T∑
s=1

E
P

J,SJ ,V[s−1]
1:s−1

KL
(
PJ,SJ ,Vs

s|(s−1) ||Q
S,Vs

s|(s−1)

)
,

in which only each KL term depends on each Σs, respectively. Secondly, for each summand in the
above decomposition, only QS,Vs

s|(s−1) depends on SJc , making it easy to compute the optimal prior in
a "greedy" sense (see details in Section 4).

Hence in the rest of this paper, we study the optimal structure of Σt in terms of the generalization
bound in Theorem 1 under the Constraint 1. Specifically, our ultimate goal can be stated as follows:
Problem 1. What is the optimal structure of the noise covariance Σ[T ] for SGLD in terms of the
generalization bound in Theorem 1 under the Constraint 1?

In the rest of this paper, we focus on solving Problem 1 and its variants.

4 Obtain the Optimal Noise Covariance with the Greedy Prior

The generalization bound in Theorem 1 depends on both the prior distribution P and the posterior
distribution Q (consequently on Σ[T ]). Therefore it requires searching P and Σ[T ] jointly to optimize
the generalization error.

In this section, we solve Problem 1 with greedily selected priors. Due to that the square root in the
bound Eq. (5) make the dependency on Σ[T ] even more complex, we optimize a slightly different
version of the bound by taking the expectation with respect to SJc into the square root, i.e.,

GenT
△
= ESJ ,V[T ],J

√
(a2 − a1)2

2
ESJc KL

(
PJ,SJ ,V[T ]

∥∥QS,V[T ]
)
. (6)

By Jensen’s Inequality, Eq. (6) is still a generalization bound, but allows the expectation with respect
to SJc to interact with the KL divergence directly. One can easily observe that GenT is a mapping
from P and Q (and thus from P and Σ[T ]) to a positive real. Therefore, we can reformulate Problem
1 mathematically as the following optimization problem (P1):

(P1). min
P,Σ[T ]

GenT (P,Σ[T ]), subject to: Constraint 1.

For simplicity, we restrict that the considered noise covariance Σ[T ] only depends on the parameter
W , and is independent of the sample S. By Lemma 1, the KL term in the optimization target GenT
can be decomposed into

KL
(
PJ,SJ ,V[T ]

∥∥∥QS,V[T ]

)
=

T∑
s=1

E
P

J,SJ ,V[s−1]
s−1

KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs
s|(s−1)

)
. (7)

Therefore, when optimizing GenT with respect to prior P , both KL(PJ,SJ ,Vs

s|(s−1) ||Q
S,Vs

s|(s−1)) and

P
J,SJ ,V[i−1]

i−1 (i > s) have dependence on PJ,SJ ,Vs

s|(s−1) . Similar to the discussion in Section 3.2.1,

the dependence of P
J,SJ ,V[i−1]

i−1 with i > s on PJ,SJ ,Vs

s|(s−1) can be very complex. Therefore, we

approximate the optimal PJ,SJ ,Vs

s|(s−1) by the greedy prior which is defined as follows:
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Definition 1 (Greedy Prior). We say P ∗ is the optimal prior in the greedy sense, or the greedy prior
for brevity, if for any 1 ≤ s ≤ T and any SJ and V[T ], P ∗J,SJ ,Vs

s|(s−1) = P sJ,SJ ,Vs

s|(s−1) , where P s is defined
as follows:

P s △
= argmin

P

(
min
Σ[s]

Gens(P,Σ[s])

)
, subject to: Constraint 1.

Intuitively, the conditional probability of P ∗ of the step s is the optimal one if we only consider the
generalization bound for steps up to s, and a special case is that the step T conditional probability of
P ∗ agrees with the step T conditional probability of PT , which is the desired optimal prior. This is
why we call P ∗ "greedy" and use it to approximate the optimal prior.

With the greedy prior, we characterize the optimal noise covariance by the following theorem.

Theorem 2. Let the iteration of SGLD with state-dependent noise QS,V[T ] be given as Eq.(3). Under
Constraint 1, the greedy optimal prior of step t is given by

Wt = Wt−1 − ηt

(
|Vt ∩ J |
|Vt|

∇RSVt∩J (Wt−1) +
|Vt ∩ Jc|

|Vt|
∇RD (Wt−1)

)
+N (0,Σ∗

t (Wt−1)) ,

while the optimal covariance of noise Σ∗
[T ] for GenT with the greedy prior is given by Σ∗

t (W ) =

λt(W ) (Σpop
W )

1
2 (∀t ∈ [T ]), where λt(W ) = ct(W )/ tr((Σpop

W )
1
2 ).

As the sample size is large enough, we have Σsd
S,W → Σpop

W almost surely, which demonstrates the
similarity between the solution of Problem 1 and the noise covariance of SGD. Also, by the Law of
Large Numbers, ∇RSJ

≈ ∇RD, and the mean of the greedy optimal prior recovers the mean of the
prior used in [25] (one can also refer to Eq. (10) in this paper for the form).

We briefly state the proof skeleton of Theorem 2, with the proof details deferred to Appendix D.
To obtain the final optimal noise covariance in Theorem 2, we need to first derive the greedy prior,
i.e., the optimal conditional distribution Ps|(s−1) of the prior of step s in terms of the generalization
bound Gens, which has the form

ESJ ,V[s],J

√√√√ (a2 − a1)2

2
ESJc

s∑
t=1

E
P

J,SJ ,V[t−1]
t−1

KL
(
PJ,SJ ,Vt

t|(t−1)

∥∥∥QS,Vt

t|(t−1)

)
. (8)

Typically, solving the optimal Ps|(s−1) requires optimizing Gens with respect to all Pt|(t−1) t ∈ [s]
and Σ[s], which is still very complex. However, we can tackle this problem in a rather elegant way.
We first investigate the optimal noise covariance in terms of a single KL divergence term in Gens.

Lemma 3. Under Constraint 1, the optimal noise covariance of the following problem

min
Σs

 min
P

J,SJ ,Vs
s|(s−1)

ESJc∼D KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

) . (9)

is attained at Σ∗
t (W ), where Σ∗

t (W ) is defined as Theorem 2.

By Lemma 3, the optimal solution of Eq. (9) doesn’t rely on J ,SJ , or V[s]. On the other hand, by Eq.

(8), ESJc∼D KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
(∀J ,SJ ,V[s]) are the only terms depending on PJ,SJ ,Vs

s|(s−1)

and Σs. Therefore, the optimal Σs is also λt(W ) (Σpop
W )

1
2 , which is formally stated as the following

lemma.

Lemma 4. The optimal Σs and Ps|(s−1) in terms of Gens are the same as Σ∗
s and P ∗

s|(s−1) given by
Theorem 2, respectively.

With the greedy prior derived, we apply it back to the generalization bound GenT . As GenT depends
on Σs also through ESJc∼D KL

(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
, by applying Lemma 3 again, we derive

Theorem 2.
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5 Extension: Optimal Noise Covariance with Fixed Priors

In existing works [25, 12], the prior distribution is set to be the SGLD with isotropic noise, which
(with the notations in Theorem 1) is given by

M̃t(Wt−1,SJ ,Vt,J)

= Wt−1 − ηt

(
|Vt ∩ J |
|Vt|

∇RSVt∩J (Wt−1) +
|Vt ∩ Jc|

|Vt|
∇RSJ (Wt−1)

)
+N (0, σtId) , (10)

where σt > 0 is the noise scale of prior noise covariance. In our latter analysis, we generalize the
prior by allowing σt depend on Wt−1. The formal description of the iteration of the prior is deferred
to Appendix E.1 for completeness.

Therefore, it is also interesting to see what the optimal noise covariance looks like if the prior is fixed
as the one commonly adopted in the existing analyses, e.g., Eq. (10). We still set the optimization
constraint the same as Section 4, but change the optimization target a little to

G̃enT
△
= ES

√
(a2 − a1)2

2
EV[T ],J KL

(
PJ,SJ ,V[T ]

∥∥QS,V[T ]
)
.

By Jensen’s Inequality and Theorem 1, G̃enT is still a generalization bound, but allows us to treat the
expectation of the KL divergence with respect to V[T ] and J for given S as a whole in optimization.
Similar trick is also adopted in [25] to obtain the final generalization error of SGLD. The problem
can be mathematically formulated as the following optimization problem (P2):

(P2) min
Σ[T ]

G̃enT (P,Σ[T ]), subject to: Constraint 1,

where P is given by the update rule Eq. (10). As SJ is obtained by removing only one sample from
the dataset S and the size of S is usually large in practice, it is reasonable to make the assumption
that for any fixed V[T ] and S, the prior distribution is the same regardless of J .

Assumption 1. For any fixed dataset S and mini-batches V[T ], the distribution PJ,SJ ,V[T ] is invariant
of J .

We also restrict that ct(S,W ) ≤ dσt in order to guarantee the noise scale of the prior comparable to
that of the posterior. The optimal noise covariance with prior fixed can then be characterized by the
following theorem.
Theorem 3. Let prior and posterior be defined as Eq.(10) and Eq.(3), respectively. Let Assumption 1
hold. Then, the solution of (P2) is given by

Σ∗
t (S,W ) = Osd

S,W Diag(ω̃S,W
1 , · · · , ω̃S,W

d )
(
Osd

S,W

)⊤
,

where ω̃S,W
i ≥ 0 (i ∈ [d]) (the exact form is omitted here) and

(
Osd

S,W

)
is the orthogonal matrix

that diagonalizes Σsd
S,W as Σsd

S,W = Osd
S,W Diag(ωS,W

1 , · · · , ωS,W
d )

(
Osd

S,W

)⊤
. Moreover, for

any i ̸= j, ω̃S,W
i ≥ ω̃S,W

j if and only if ωS,W
i ≥ ωS,W

j .

The proof together with the the exact formula of ω̃S,W
i is deferred to Appendix 5. From Theorem 3,

the optimal point (Σ∗
t )

T
t=1 is similar to the empirical gradient covariance matrix Σsd in two ways:

1) {Σ∗
t }Tt=1 share the same eigenvectors with Σsd; 2) the corresponding eigenvalues of Σ∗

t has the
same order as Σsd. Though the value of ω̃S,W

i is not comparable to ωS,W
i because Σ∗

t is affected by
the prior noise and the posterior noise covariance, which are freely chosen, it can be shown that the
condition number of Σ∗

t is smaller than Σsd
S,W (please refer to Appendix E.4 for details).

Theorem 3 also reveals an interesting correlation between the noise covariance matrices of the prior
and posterior. While the optimal noise covariance is affected by the prior noise covariance, it also
depends on the distance between the means of the prior and the posterior (see Lemma 13 in Appendix
E.2), which brings the information of empirical gradient covariance into the optimal noise structure.
That being said, the optimal posterior noise covariance is biased to the empirical gradient covariance
from prior covariance. We note that such analysis can be easily extended to arbitrary priors.
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(a) trace scale = 1 (b) trace scale = 5

Figure 3: The training loss and and the generalization error
(test loss − training loss) of the Iso-SGLD and SREC-SGLD.
Traces of the noise covariance in (a) and (b) are 1 and 5 times of
tr((Σsd

S,W )1/2), respectively.

Figure 4: Ratio of the 1st to
the 500th largest eigenvalue of
the empirical gradient covari-
ance for two SGLDs.

6 Empirical Verification

In this section, we support our theoretical findings with some experiments. We adopt the setting in
[40] where a four-layer neural network with 11330 parameters is used to conduct the classification
task on the Fashion-MNIST except that we use 10000 training samples instead of 1200 used in [40].
We defer detailed settings of the experiments to Appendix F.

We first verify if the empirical gradient covariance is far from isotropic Gaussian distribution. We plot
the ratios of the 1st eigenvalue to the 500th largest eigenvalue of the empirical gradient covariance
along the training trajectory of both SGD and Iso-SGLD in Figure 4. We can see that throughout
the training procedure, the ratios of empirical gradient covariance stay around 107 for both SGD and
Iso-SGLD. In constrast, for the isotropic Gaussian, the distribution of eigenvalues follows semi-circle
law, and the ratio would be around 1.1 for dimension 11330. This demonstrates that the energy of
empirical gradient covariance concentrates in a very small subspace, less than 5% of the total 11330
dimensions. Hence the empirical gradient covariance is highly anisotropic.

We next verify our main claim Theorem 2 that under Constraint 1, the generalization error for SGLD
with the optimal noise covariance is much smaller than that for Iso-SGLD. Specifically, we consider
the SGLD with noise covariance equal to the (scaled) square root of the empirical gradient covariance,
coined “SREC-SGLD”. We compare the training loss and the generalization error of SREC-SGLD
and Iso-SGLD under Constraint 1 on the noise covariance trace. From Figure 3, we can see that
the generalization error of SREC-SGLD is smaller than Iso-SGLD for different noise trace scales,
which supports Theorem 2. Moreover, if we look at the training loss curves, the SREC-SGLD and
Iso-SGLD behave almost the same for the same noise trace scale, which supports Lemma 2.

Finally though our analysis does not cover the generalization bound for SGD, we further empirically
show how SREC-SGLD performs in comparison with SGD and the Iso-SGLD in Figure 1. We can
see that with the same noise trace scale, SREC indeed provides a more accurate characterization of
SGD compared to Iso-SGLD.

7 Conclusion and Future Direction

In this paper, we study the optimal noise covariance of SGLD in terms of its generalization ability.
Specifically, we first formulate the optimization problem both by deriving constraints from the
optimization performance and proposing the optimization target by constructing a new information
theoretical bound. We then solve the problem with both greedy optimal prior and fixed prior. Interest-
ingly, we observe that the optimal noise covariance aligns with the empirical gradient covariance,
which indicates the superiority of the noise covariance of SGD in terms of generalization.
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