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Abstract

Fine-tuning language models (LMs) on human-generated data remains a prevalent practice.
However, the performance of such models is often limited by the quantity and diversity of
high-quality human data. In this paper, we explore whether we can go beyond human data
on tasks where we have access to scalar feedback, for example, on math problems where
one can verify correctness. To do so, we investigate a simple self-training method based on
expectation-maximization, which we call ReSTEM , where we (1) generate samples from the
model and filter them using binary feedback, (2) fine-tune the model on these samples, and
(3) repeat this process a few times. Testing on advanced MATH reasoning and APPS coding
benchmarks using PaLM-2 models, we find that ReSTEM scales favorably with model size
and significantly surpasses fine-tuning only on human data. Overall, our findings suggest
self-training with feedback can reduce dependence on human-generated data.

1 Introduction

Large Language Models (LLMs) are revolutionizing the landscape of deep learning, showcasing remarkable
capabilities in generating human-quality text and tackling diverse language tasks (Google et al., 2023; Ope-
nAI, 2023). While supervised fine-tuning (SFT) on human-collected data further boosts their performance
on tasks of interest, acquiring high-quality human data poses a significant bottleneck. This is particularly
demanding for complex problem-solving tasks, requiring significant resources and expert knowledge. To
address this hurdle, model-generated synthetic data emerges as a promising alternative, offering scalability
and cost-effectiveness, provided its quality can be ensured. While LLMs hold the potential to self-evaluate
generated data, this paper explores a simpler setting where an external, scalar feedback signal serves as a
quality indicator for each generated sample.

To investigate training on model-generated data, we consider a simple yet powerful self-training approach
for language models that requires only two capabilities: 1) generating samples from the model and 2)
evaluating these samples with a scoring mechanism. This approach shares similarities with Reinforced Self-
Training (ReST) proposed by Gulcehre et al. (2023). We make some modifications to ReST (detailed in
Section 3), and call our approach ReSTEM . We show that ReSTEM can be viewed as applying expectation-
maximization for reinforcement learning (Dayan & Hinton, 1997; Peters & Schaal, 2007), which we present
formally in Section 3. Specifically, ReSTEM alternates between the expectation and maximization steps:
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Figure 1: Self-training with ReSTEM substantially improves test performance of PaLM 2 models on two
challenging benchmarks: MATH and HumanEval. Results for other models are shown for general progress
on these tasks and are typically not comparable due to difference in model scales. GPT-4 results are taken
from Bubeck et al. (2023). The x-axis approximately denotes release time (not to scale).

1. Generate (E-step): The language model generates multiple output samples for each input context.
Then, we filter these samples using a binary reward to collect the training dataset.

2. Improve (M-step): The original language model is supervised fine-tuned on the training dataset
from the previous Generate step. The fine-tuned model is then used in the next Generate step.

ReSTEM , with its various adaptations (Section 4), has demonstrated success in enhancing language models
across diverse domains, including machine translation (Norouzi et al., 2016; Gulcehre et al., 2023), semantic
parsing (Agarwal et al., 2019), preference alignment (Dong et al., 2023), and elementary reasoning (Zelikman
et al., 2022; Yuan et al., 2023). However, prior works primarily applied training with self-generated data
to relatively small language models (up to 7B parameters), with limited scalability observed for larger
models (Yuan et al., 2023). Complementing these efforts, our work aims to investigate the effectiveness and
scalability of model-generated synthetic data compared to human-generated data in two challenging, less
explored domains: competition-level mathematical problem-solving (MATH) (Hendrycks et al., 2021b) and
code generation (APPS) (Hendrycks et al., 2021a).

Our empirical findings reveal significant advancements in both mathematical reasoning and code generation
capabilities when applying ReSTEM to PaLM 2 models of varying scales (Figure 1). Notably, models fine-
tuned on model-generated synthetic data exhibit remarkably larger performance gains compared to those
trained on human-written data (Figure 2, 3). Interestingly, exceeding a couple of iterations of ReSTEM leads
to diminishing improvement, indicating potential overfitting on small amount of training problems (Figure 4).
Additionally, models fine-tuned using ReSTEM improve pass@k as well as majority voting performance. Fur-
thermore, these fine-tuned models demonstrate enhanced performance on related but held-out benchmarks,
including math problems (GSM8K and Hungarian HS finals), coding (HumanEval), and Big-Bench Hard
tasks. We also perform ablation studies to investigate the effect of number of model-generated solutions,
training problems, and iterations for ReSTEM fine-tuning. Overall, our findings suggest self-training with
feedback as a promising approach to reduce dependence on human data.

The key contributions of this work are:

• We introduce ReSTEM that enables learning from self-generated data for LLMs, employing a prin-
cipled expectation-maximization approach within a reinforcement learning framework.

• We demonstrate that training on self-generated solutions surpasses training on human-generated
solutions in problem-solving domains, such as mathematics and code generation.

• Through comprehensive ablation studies, we pinpoint the crucial elements necessary for attaining
optimal performance.
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• LLMs fine-tuned with ReSTEM exhibit robust transfer capabilities across various held-out tasks.

2 Preliminaries

An autoregressive language model produces an output sequence y = (y1, y2, ....yT ) given a context (or source
input) x = (x1, x2, ...xL), where the tokens xl, yt belong to a fixed vocabulary. Auto-regressive generation
involves predicting tokens one at a time, based on the previously generated tokens. Assuming that the model
is parameterized by θ, the conditional probability distribution of generating a sequence y given x is

pθ(y | x) =
T∏

t=1
pθ(yt | y<t, x),

with the convention y1:0 = ∅ and y1:t−1 = (y1, y2, ....yt−1). For ease of notation, we define p(yt|x) :=
p(yt|y<t, x). The probability of predicting tth token yt, p(yt|x), is determined using a softmax with temper-
ature γ: p(yt|x) = exp(zt/γ)∑M

i=1
exp(zi/γ)

, where zt is the logit score for the token yt. Higher values of temperature γ

introduces more randomness, while a lower value makes the output more deterministic by favoring the most
probable words.

Given a dataset D of inputs x and human-generated outputs y, supervised fine-tuning (SFT) trains the
policy by minimizing the negative log likelihood loss:

LSFT(θ) = −E(x,y)∼D

[
T∑

t=1
log pθ(yt | y1:t−1, x)

]
. (1)

We also assume access to a deterministic sequence-level (or terminal) reward r(x, y). Then, the reinforcement
learning (RL) objective corresponds to:

LRL(θ) = Ex∼D
[
Ey∼pθ(y|x) [r(x, y)]

]
.

Optimizing LRL loss directly using online RL methods, such as policy gradients, requires updating and
sampling from the policy numerous times during training. However, the computational cost of fine-tuning
on a continual flow of new samples becomes a limitation of online methods, especially when the sizes of the
policy network grow to tens or hundreds of billion parameters. We discuss an alternative to such online RL
approaches in the next section.

3 Expectation-Maximization for Reinforced Self-Training

Expectation-Maximization (EM) for RL We first describe the EM-based framework for RL with
language models, building upon the prior work by Dayan & Hinton (1997). Let’s define a binary optimality
variable O, such that p(O = 1|x, y) ∝ f (r(x, y)), for some non-decreasing non-negative function f : R → R+.
We want to maximize the log-likelihood of observing O = 1 (obtaining high reward):

log p(O = 1|x) := log
∑

y

pθ(y|x)p(O = 1 | x, y).

However, the sum over all possible sequences y is typically intractable. Instead of maximizing log p(O = 1; x),
one can consider maximizing its ELBO L(pθ, q) with respect to parameters θ and variational distribution
q(y|x). Specifically,

log p(O = 1 | x) = logEq(y|x)

[
p(O = 1 | x, y)pθ(y | x)

q(y | x)

]
≥ Eq(y|x)

[
log p(O = 1 | x, y)pθ(y|x)

q(y | x)

]
(Jensen’s inequality)

= Eq(y|x) [log p(O = 1 | x, y)] − KL [q(y | x)||pθ(y | x)]
=: L(pθ, q) (2)
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Algorithm 1: ReST (Expectation-Maximization). Given a initial policy (e.g., pre-trained LM),
ReSTEM iteratively applies Generate and Improve steps to update the policy.
Input: D: Training dataset, Dval: Validation dataset, L(x, y; θ): loss, r(x, y): Non-negative reward

function, I: number of iterations, N : number of samples per context
for i = 1 to I do

// Generate (E-step)
Generate dataset Di by sampling: Di = { (xj , yj)|Nj=1 s.t. xj ∼ D, yj ∼ pθ(y|xj) } Annotate Di

with the reward r(x, y).
// Improve (M-step)
while reward improves on Dval do

Optimise θ to maximize objective: J(θ) = E(x,y)∼Di
[r(x, y) log pθ(y|x)]

end
end
Output: Policy pθ

The EM algorithm (Dempster et al., 1977) for Equation 2 alternates between an E-step and M-step: at
iteration t, denote the language model parameter to be θt and the variational distribution to be qt.

• E-step: qt+1 = arg maxq L(pθt , q). Since L(pθt , q) can be written as −KL[q(y|x)||q∗(y|x)], qt+1(y |
x) ∝ q∗(y | x) := p(O = 1|x, y)pθt(y | x). Thus, this step is equivalent to weighting the output
samples from conditional language model distribution based on their likelihood of obtaining high
rewards.

• M-step: θt+1 := arg maxθ L(pθ, qt+1) = arg minθ KL
[
qt+1(y | x)||pθ(y | x)

]
=

arg minθ

∑
y −qt+1(y | x) log pθ(y | x). As such, this step corresponds to maximizing a weighted

negative log-likelihood loss.

Alternating between above steps ensures a monotonic improvement in the ELBO: L(pθt+1 , qt+1) ≥
L(pθt , qt+1) ≥ L(pθt , qt).

EM with non-negative rewards. If the rewards are non-negative and f is set to the identity function,
then p(O = 1|x, y) ∝ r(x, y) which implies qt+1(y | x) ∝ r(x, y)pθt(y | x). In this scenario, the updated
policy parameters θt+1 resulting from the M-step at iteration t are given by:

θt+1 := arg max
θ

Ex∼D

[
Ey∼pt

θ
(y|x) [r(x, y) log pθ(y | x)]

]
. (3)

Comparing the above equation with the typical RL objective (LRL) reveals the key distinction between
standard RL and EM-based RL: how output data is sampled. Standard RL continuously updates the policy
and uses this latest policy to collect data. In contrast, EM-based RL employs a fixed sampling policy from
the previous iteration, decoupling data collection from policy optimization. This decoupling in EM-based
approaches enables easier scaling to large policy networks, such as LLMs.

ReSTEM Motivated by the EM framework, we now discuss a simplified version of Reinforced Self-
Training (ReST) approach by Gulcehre et al. (2023). This approach, which we call ReSTEM , decouples
data collection (E-step) and policy optimization (M-step) in a typical RL pipeline. Algorithm 1 outlines the
ReSTEM algorithm with multiple iterations, where each iteration corresponds to one Generate and Improve
step. We describe these steps in detail below.

• Generate (E-step): In this step, we generate a dataset Di by sampling many output sequences from
the current policy pθ: Di = { (xj , yj)|Nj=1 s.t. xj ∼ D, yj ∼ pθ(y|xj) }. Here, the inputs are
resampled from the original dataset xj ∼ D. The output sequences in Di are then scored with
a binary reward function r(x, y). In our experiments, we condition the language model using a
few-shot prompt with programs for code generation and step-by-step solutions for math problems.
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• Improve (M-step): In the ith iteration, we use the new dataset Di from Generate step to fine-tune
the policy pθ. To mitigate task-specific over-fitting, we minimize drift from the base model by always
fine tuning the base pretrained language model. For fine-tuning, we minimize the reward-weighted
negative log-likelihood loss J(θ) = E(x,y)∼Di

[r(x, y) log pθ(y|x)]. Once the policy is improved, a
new dataset of better quality samples can be created once again.

Differences with ReST (Gulcehre et al., 2023). Unlike ReST, we refrain from augmenting Di in Generate
step with human-generated outputs as such data may not always be optimal for learning or it might not be
easily available. Furthermore, each Improve step fine-tunes the base model instead of the model obtained
from the previous ReST iteration. This results in comparable task-specific performance but much better
transfer performance on held-out tasks (see Figure 7).

Remark. Our experiments focus on problem-solving settings with binary rewards (either 0 or 1), unlike
the bounded real-valued rewards assumed by Gulcehre et al. (2023). Specifically, for each Generate step,
Gulcehre et al. (2023) perform multiple Improve steps, where each Improve step can be viewed as an M-step
with the function f(r(x, y)) = r(x, y) > τ , where τ ∈ R+ increases in successive M-steps. However, with
binary rewards, any value of τ ∈ (0, 1) corresponds to the identical Improve steps.

4 Related work

Several prior methods can be instantiated using the expectation-maximization framework presented in Sec-
tion 3. We discuss methods and their relation to ReSTEM in this section.

• Expert Iteration (ExiT) (Anthony et al., 2017) alternates between two steps: expert improvement
and policy distillation. During the expert improvement step (E-step), we combine a base policy with
a search procedure to generate samples from a better policy, called the expert policy. Then, in the
policy distillation step (M-step), we use these expert samples to train the base policy in a supervised
way, effectively improving it to match the expert policy. While ExiT used monte-carlo tree-search, we
simply use temperature sampling for collecting samples from the expert policy in ReST. That said,
improving the E-step in ReST using the ExIT framework via search and planning procedures with
language models would be interesting for future work. For example, Huang et al. (2022) implement a
single iteration of ReSTEM on simple math reasoning problems. However, unlike our setup, they do
not assume access to a correctness reward and instead employ majority-voting (Wang et al., 2023)
as a search procedure within the E-step.

• Self-Taught Reasoner (STaR) (Zelikman et al., 2022) employed greedy decoding instead of tem-
perature sampling for the E-step in ReSTEM , which is restricted to one model-generated solution
per problem during data collection. Additionally, STaR proposed rationalization as an alternative to
temperature sampling, where the language model is provided with the correct answer as part of the
input to generate correct solutions for difficult problems. However, in our preliminary experiments,
rationalization leads to substantial increase in false positive solutions that result in correct answer
but with incorrect reasoning.

• Rejection Sampling Fine-tuning (RFT) (Yuan et al., 2023) improves reasoning performance on
GSM8K and corresponds to running a single generate (E-step) and improve (M-step) of ReSTEM .
While RFT demonstrated limited performance improvements on GSM8K with increasing language
model capacity, ReSTEM achieves larger gains on more challenging APPS and MATH benchmarks
when scaling PaLM 2 model capacity. Moreover, we observe that using multiple iterations of
ReSTEM result in larger performance gains.

• Iterative Maximum Likelihood (IML) optimizes a policy using a reward-weighted log-likelihood
objective on self-collected data. IML has been shown to perform well with relatively small-scale
language models for semantic parsing (Liang et al., 2016; Agarwal et al., 2019), machine transla-
tion (Wu et al., 2016) and simple math reasoning (Ni et al., 2022). Each E-step and M-step in IML
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ReSTEM ReST STaR RFT
Starts from fine-tuned model ✗ ✓ ✗ ✗
Finetunes from base model in each iteration ✓ ✗ ✓ N/A
Uses rationalizations for unsolved questions ✗ ✗ ✓ ✗
Temperature sampling for exploration ✓ ✓ ✗ ✓
Experiments with Large LMs ✓ ✗ ✗ ✓
Multiple iterations ✓ ✓ ✓ ✗
Larger gains on bigger models ✓ N/A N/A ✗
Evaluation on held out tasks ✓ ✗ ✗ ✗

Table 1: Differences between ReSTEM and other closely related approaches utilizing synthetic data for
advancing language model capabilities.

is performed over a mini-batch of training examples instead of the entire training dataset, as done
in ReSTEM . In IML, the learned policy can significantly diverge from the initial pretrained model,
which can manifest as task-specific overfitting, where the model performs well on the target task
but loses its ability to generalize to other tasks or domains. Additionally, the tightly coupled nature
of data collection and policy optimization in IML leads to high computational cost with large LMs,
making it significantly more expensive than ReSTEM .

• Reward weighted regression (RWR) (Peters & Schaal, 2007) corresponds to EM where we set
p(O = 1|x, y) ∝ exp (r(x, y)) in Section 3. RWR has been previously applied to robotic control,
as it can be easily applied to non-binary reward functions. Norouzi et al. (2016) build on RWR to
propose a general variant of IML for machine translation.

• Reward ranked fine-tuning (RAFT) (Dong et al., 2023) can be interpreted as alternating between
E-step and M-step over mini-batches, where E-step uses the the output sample with maximum reward
for each input context. For binary reward functions, RAFT is analogous to IML and as such, can
be viewed as an instantiation of ReSTEM .

Other related works: TRICE (Phan et al., 2023) proposes an EM-based approach to maximize the
marginal log-likelihood (MML) of generating a correct answer for a reasoning problem, where the chain-of-
thought rationale is treated as a latent variable. While E-step in ReSTEM simply corresponds to sampling
from the model and filtering with a binary reward, TRICE uses Markov-chain Monte Carlo with a control
variate to approximate the MML gradient. Sordoni et al. (2023) propose a gradient-free EM-based approach,
similar to RAFT, for prompt-optimization for frozen LLMs.

5 Experiments and analysis

The goal of our experiments is to answer the following questions:

1. How effective is ReSTEM compared to fine-tuning on human-generated data?

2. How many iterations are needed for optimal performance? How quickly does ReSTEM leads to
overfitting on training set?

3. How does ReSTEM affect pass@k and majority voting performance?

4. If we fine-tune using model-generated data on a specific task, do we see positive transfer to related
tasks? Is there any performance degradation compared to the base model when evaluating our
fine-tuned models on a broad suite of tasks?

5. How much input data do we need to get most of the performance gains from ReSTEM ? Is one
iteration of ReSTEM sufficient?
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Figure 2: ReSTEM for math problem-solving. Test performance on MATH and GSM8K (transfer)
for PaLM 2-S* and PaLM 2-L as a function of ReSTEM iterations. We also report performance of models
fine-tuned via SFT on human-generated data as a baseline. Iteration 0 corresponds to pre-trained model
performance. Following Google et al. (2023), we use greedy decoding for evaluation.

Training Datasets. We evaluate ReSTEM primarily on mathematical problem solving using the
Hendrycks’ MATH dataset (Hendrycks et al., 2021b) and code generation using the APPS (Introductory)
dataset (Hendrycks et al., 2021a). MATH and APPS (Introductory) contain 7500 and 2342 training problems
respectively. We select these tasks because the model outputs can be automatically evaluated as correct or in-
correct, perfectly suited for ReSTEM . Both these datasets offer binary rewards: on MATH, model-generated
answers can be easily verified for correctness using the ground-truth answer, while on APPS, test cases
determine whether the generated code is correct.

Models. We use the PaLM 2 models (Google et al., 2023) with public APIs on Google Cloud for experiments,
including PaLM 2-S (Bison), PaLM 2-S* (Codey), and PaLM 2-L (Unicorn).

Evaluation. We report generalization performance using the test splits of the MATH and APPS (Introduc-
tory) datasets. For measuring transfer performance, we look at GSM8K (Cobbe et al., 2021), Hungarian HS
finals (Paster, 2023), and HumanEval (Chen et al., 2021) datasets. We also evaluate our models using the
Big-Bench Hard (Suzgun et al., 2022) benchmark to evaluate general capabilities. All evaluations follow the
settings from Google et al. (2023), unless specified otherwise.

Implementation Details. During each iteration of ReSTEM , we generated a fixed number of solutions per
problem for the E-step: 32 for the MATH dataset and 64 for the APPS dataset. For generating solutions,
we sample from the language model using top-K sampling with K=40 and temperature of 0.7. However,
directly using all these model-generated solutions can lead to an imbalanced dataset, as we will have a lot
more correct solutions for the easier problems. To mitigate this, we introduced a cut-off threshold for the
maximum number of solutions per problem, a design choice also used by Zelikman et al. (2022), included in
the fine-tuning dataset: 10 for both MATH and APPS. This approach ensures diversity in the training data
and safeguards against overfitting on easier problems. For fine-tuning, we use the few-shot prompt (and the
question) as input to the model, and use the model-generated solutions as targets. We only apply the next
token prediction loss (Equation 1) on the targets. Due to the cost of our experiments (thousands of TPU
hours for every fine-tuning run), each experiment is performed once.

5.1 ReSTEM on MATH and APPS

Figures 2 and 3 show the performance of ReSTEM when trained on the MATH and APPS datasets, re-
spectively. We see that MATH benefits from performing multiple iterations of ReSTEM , both in terms of
performance on the MATH test set, as well as transfer to GSM8K. On the other hand, we see that most of
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Figure 3: ReSTEM for code-generation. Test performance on APPS (introductory) and Hu-
manEval (transfer) for PaLM 2-S* and PaLM 2-L as a function of ReSTEM iterations.
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Figure 4: Train-test performance gap on (left) MATH with PaLM-2-L, and (right) APPS with PaLM-
2-S*, as a function of ReSTEM iterations.

the gains for APPS come from the first iteration, and the performing more iterations leads to a regression
in performance on both APPS and HumanEval.

Interestingly, Figures 2 and 3 demonstrate that fine-tuning on model-generated solutions substantially out-
performs using human-written solutions, especially for the PaLM 2-L model. This aligns with findings of
Yuan et al. (2023) and recent work on distilling LLMs using model-generated data (Agarwal et al., 2023; Gu
et al., 2023). However, unlike Yuan et al. (2023), who observed diminishing returns from model-generated
data on GSM8K when scaling model capacity, our results suggest an opposite trend: ReSTEM leads to larger
performance gains as model capacity increases. On the MATH dataset, the test accuracy improvement with
ReSTEM is 5.94% for PaLM 2-S compared to 6.34% for the larger PaLM 2-L model. Similarly, on the APPS
dataset, improvements are 5.6% for PaLM 2-S* compared to 6.4% for PaLM 2-L. This is in addition to
the fact that the larger models start with a much stronger initial performance, and improvements on these
benchmarks generally get harder as the baseline performance goes up.

Train-test performance gap. Figure 4 shows that while training performance increases linearly with the
number of ReSTEM iterations, test set performance does not. For MATH, test performance improvements
are small after the first iteration, and for APPS, we observe a regression in performance in the 2nd iteration.
We suspect that the regression in performance is likely due to overfitting on the small set of training problems.
Since the APPS dataset is about a third of the size of the MATH dataset, it suffers more from this problem.

8



Published in Transactions on Machine Learning Research (04/2024)

0 20 40 60
Num samples (K)

40%

60%

80%

Pa
ss

 @
 K

 Te
st

 A
cc

ur
ac

y 
(%

)
HumanEval

PaLM-2-L
PaLM-2-L (ReST)

2 4 6 8 10
Num samples (K)

10%

20%

30%

40%

Pa
ss

 @
 K

 Te
st

 A
cc

ur
ac

y 
(%

)

APPS (Introductory)
PaLM-2-L
PaLM-2-L (ReST)

0 20 40 60
Num samples (K)

20%

30%

40%

50%

60%

70%

80%

Pa
ss

 @
 K

 Te
st

 A
cc

ur
ac

y 
(%

)

Hendrycks MATH

Palm-2-L
Palm-2-L (ReST)

Figure 5: Pass@K results for PaLM-2-L pretrained model as well as model fine-tuned with ReSTEM . For
a fixed number of samples K, fine-tuning with ReSTEM substantially improves Pass@K performance. We
set temperature to 1.0 and use nucleus sampling with p = 0.95.

5.2 Impact on Pass@K and Majority-Voting Performance

To investigate the impact of fine-tuning with ReSTEM on the diversity of the final model’s generated outputs,
we evaluate pass@k (Chen et al., 2021) and majority voting (Wang et al., 2023) performance of the fine-tuned
PaLM 2-L model relative to the base model.

Pass@K measures the probability that at least one of the K generated solutions for a problem is correct, that
is, outputs the correct answer for math problems or passes all the unit tests for code generation. Figure 5
shows the performance of Palm-2-L on the pass@K metric. We see that model obtained after ReSTEM

fine-tuning is stronger for all values of K, with the performance gap typically being the highest for K=1.

Majority voting first samples a diverse set of reasoning paths instead of only taking the greedy one, and
then selects the most consistent answer by marginalizing out the sampled reasoning paths. For Hendrycks
MATH, it is possible to use majority voting to maximize Pass@1 performance, and we find that when using
64 samples per question, the PaLM 2-L fine-tuned with ReSTEM obtains a test accuracy of 48.82, while
the base model gets 44.02.

5.3 Ablation Studies

Impact of multiple iterations Our results show that multiple iterations can sometimes lead to over-
fitting on the train set (Figure 4). This raises the question of whether multiple iterations are really necessary.
Is it better to collect a larger dataset and perform just a single iteration of ReSTEM ? To investigate this,
we collect a dataset with the base PaLM-2-L model on Hendrycks MATH that is 3× as many solutions
per problem as used in a single iteration of ReSTEM for the E-step. Fine-tuning with this dataset results
in pass@1 performance of 40.3%, which is lower than the 41% in second and 41.9% in third iteration, as
shown in Figure 2. These results indicate that performing multiple iterations of ReSTEM leads to higher
performance compared a single iteration with 3x the data.

Comparing model-generated data with human data A key strength of ReSTEM is its ability to gen-
erate multiple correct solutions for each problem. This provides valuable additional training data compared
to human-generated data, which typically offers only a single solution per problem. While this makes a com-
parison in Figures 2 and 3 not entirely fair, it also highlights the potential of ReSTEM to boost performance
with diverse and correct solutions.

In order to enable an apples-to-apples comparison, we conduct the following study: we select all Hendrycks
MATH questions for which we have at least one correct model-generated solution, resulting in about 5K
questions. For these 5K questions, we run two fine-tuning experiments: SFT(5K) where we fine-tune on
human-written solutions (one per question), and ReST∗(5K) where we fine-tune on model-generated solutions
(also one per question, selected at random).

9



Published in Transactions on Machine Learning Research (04/2024)

SFT (7K) SFT (5K) ReST *  (5K) ReSTEM (5K)
Method (Num questions)

34

36

38

40

42

Pa
ss

@
1 

Pe
rfo

rm
an

ce
 (%

) Hendrycks MATH (Test)

SFT (Human) Distill* (2-L) ReSTEM (2-S) Distill (2-L)
Method (Data Source)

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Pa
ss

@
1 

Pe
rfo

rm
an

ce
 (%

) PaLM 2-S on Hendrycks MATH (Test)

Figure 6: Left. Comparing ReSTEM with SFT on MATH. SFT refers to fine-tuning on human data, while
ReST* refers to a version of ReSTEM with one iteration that uses only one correct sample per problem.
Here, ReST denotes ReSTEM with 3 iterations. For each method, we denote the number of questions in
parenthesis. Right. Impact of Model-Generated Data for Distillation.

The results in Figure 6 (right), show that ReSTEM outperforms fine-tuning on human data even in this much
more restricted setting. Furthermore, the efficacy of ReST(5K) over ReST∗(5K) highlights the additional
gain in performance that we can obtain by spending more compute on sampling a large number of solutions
and performing multiple iterations of ReSTEM .

Distillation with ReSTEM -generated data The above results indicate that self-generated data can
be better than human data for fine-tuning language models. We hypothesize this may be because model-
generated solutions are more in-distribution compared to human-written solutions. This raises the question
of whether ReSTEM -generated data can benefit different models than the one generating the data.

To answer this question, we consider a distillation setup on MATH where we fine-tune PaLM 2-S using data
generated by PaLM 2-L, resulting in solutions for about 5K questions. Specifically, we ran two distillation
experiments: Distill∗ (2-L) where we fine-tune on teacher-generated solutions (one per question), similar
to ReST (5K), and Distill (2-L), which includes multiple solutions per problem, generated during the final
iteration of ReSTEM with PaLM 2-L.

Our results, shown in Figure 6 (right), reveal that Distill∗ surpasses the performance achieved by fine-tuning
on human-written solutions, despite having smaller number of training questions. Additionally, fine-tuning
PaLM 2-S with multiple solutions from PaLM 2-L, namely Distill (2-L), is superior than using self-generated
solutions via ReSTEM . This improvement is likely due to the larger number of training questions with
solutions in PaLM 2-L generated data compared to 2-S. Overall, these results indicate that model-generated
data can be more effective for fine-tuning smaller models than relying on human-generated data.
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Figure 7: ReSTEM vs ReST using PaLM 2-S*.

ReST vs ReSTEM One of the main differences
between ReST and ReSTEM is that ReSTEM always
fine-tunes the base model for each iteration while
ReST continues to finetune the the model from the
last iteration. We run an ablation comparing these
options using PaLM 2-S* in Figure 7 and observe
that while ReST and ReSTEM have similar perfor-
mance on APPS, the transfer performance to Hu-
manEval is substantially better with ReSTEM .

Impact of dataset size Since one of the main
ingredients needed for ReSTEM is a dataset of input
contexts (e.g., questions for MATH), we are interested in evaluating the effect of number of input problems.
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Figure 8: Left. Performance for a single iteration of ReSTEM as a function of dataset size (number of
questions) on MATH. Right. Improvement from ReSTEM based on the difficulty level of the question.

The results from our dataset ablations using the PaLM-2-L model on Hendrycks MATH, Figure 8 (left), show
that utilizing just 1000 MATH questions results in significant gains, implying that the method is very efficient
in the number of prompts needed. However, we noted a slight decrease in performance when using 4,000
questions compared to 2,000, indicating potential variance in the fine-tuning process. Ideally, conducting
this experiment multiple times would help quantify this variance, but this is prohibitively resource-intensive.
Overall, we find that ReSTEM is quite sample efficient and performance gains from ReSTEM improve as we
increase the dataset size.

Which Questions Benefit Most from ReSTEM We evaluate the performance enhancement of ReSTEM

across different question difficulties in the Hendrycks MATH dataset. Questions are classified based on
success rates from the base model at a temperature setting of T=1.0 into four categories: “easy” (answered
correctly 75%-100% of the time), “medium” (50%-75%), “hard” (25%-50%), and “very hard” (below 25%).
Figure 8 (right) presents the average success rates for these categories, comparing the base model to the
ReSTEM -finetuned model. The results demonstrate that ReSTEM consistently improves performance across
all difficulties, with the highest gains coming for questions categorized as medium and hard.

5.4 Impact on Reasoning capabilities

General capabilities. BIG-Bench provides a suite of over 200 tasks that can be used to probe LLMs’
performance across a range of fields and capabilities. BIG-Bench Hard (BBH) (Suzgun et al., 2022) is a
subset of 23 BIG-Bench tasks where the previous generation of LLMs, such as Codex and PaLM 540B,
performed below the average human rater. We follow the protocol of Google et al. (2023) and evaluate on
BBH using both few-shot and chain-of-thought prompting. Figure 9 shows the performance of ReSTEM -
finetuned models, and compares them against the base PaLM-2 model. We see no major degradation on
any of the BBH tasks. Furthermore, the model fine-tuned on Hendrycks MATH outperforms the base model
on this suite when using chain-of-thought prompting, and the model fine-tuned on APPS also shows slight
performance gains. When using direct prompting, all three models perform similarly.

Problem-solving. To stress test the math problem-solving capabilities on a held-out “real-world" evaluation
set, we evaluate our model on the 2023 Hungarian high school finals exam in mathematics, akin to Grok.
We follow the evaluation protocol from Paster (2023). Specifically, we evaluate the PaLM 2-L model, fine-
tuned with ReSTEM on Hendrycks MATH, using the 1-shot prompt from Grok, sample solutions using
temperature 0.1, and manually grade the outputs using the rubric provided by the examiners. The results
from evaluation are shown in Figure 10. We find that PaLM-2-L fine-tuned with ReSTEM performs well on
this exam, surpassing the performance of all existing models except GPT-4.
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Figure 10: Transfer results on Hungarian HS Finals Exam. Results for models other than PaLM-2-L
finetuned with ReSTEM are taken from Paster (2023). Several models specialized for mathematics perform
well on the widely-used GSM8K benchmark but perform poorly on the Hungarian exam. In contrast, PaLM
2-L model fine-tuned with ReSTEM performs well on both these benchmarks.

6 Discussion
In this paper, we propose training on model-generated data combined with a reward function, via ReSTEM ,
for improving the performance of LLMs on problem-solving tasks. Furthermore, we demonstrate that
ReSTEM is theoretically grounded in the application of expectation-maximization to RL. We evaluate
ReSTEM on mathematical problem solving and code generation, and show that ReSTEM offers signifi-
cant performance gains at a relatively low computational cost, especially when compared to the cost of
pre-training. Our experiments also show that ReSTEM does not lead to regression on other tasks. We
conduct a number of ablations to better understand the strengths and weaknesses of this method, and find
that it is data-efficient, but also requires some vigilance to avoid over-fitting.
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There are a number of limitations associated with ReSTEM . First, this method requires a moderately-sized
training set of problems or prompts, which would need to be collected (from humans) for any new task of
interest. Second, ReSTEM also requires access to a manually-designed or learned reward function, ideally one
that can be computed automatically. Finally, while ReSTEM allows significant performance improvements
in pass@1 performance, it may not quite close the gap to pass@K performance for the same task (with a
sufficiently large K). Future research in self-improvement in language models should focus on automating
manual parts of the pipeline (likely through language models as well), and explore algorithmic improvements
that reduce the gap to pass@K performance.
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