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ABSTRACT

Deep representations have shown promising performance when transferred to
downstream tasks in a black-box manner. Yet, their inherent lack of interpretabil-
ity remains a significant challenge, as these features are often opaque to human un-
derstanding. In this paper, we propose Non-negative Contrastive Learning (NCL),
a renaissance of Non-negative Matrix Factorization (NMF) aimed at deriving in-
terpretable features. The power of NCL lies in its enforcement of non-negativity
constraints on features, reminiscent of NMF’s capability to extract features that
align closely with sample clusters. NCL not only aligns mathematically well with
an NMF objective but also preserves NMF’s interpretability attributes, resulting in
a more sparse and disentangled representation compared to standard contrastive
learning (CL). Theoretically, we establish guarantees on the identifiability and
downstream generalization of NCL. Empirically, we show that these advantages
enable NCL to outperform CL significantly on feature disentanglement, feature
selection, as well as downstream classification tasks. At last, we show that NCL
can be easily extended to other learning scenarios and benefit supervised learning
as well. Code is available at https://github.com/PKU-ML/non_neg.
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Figure 1: Feature visualization on semantic consistency (a-b) and sparsity (c-d) on CIFAR-10. The
first two demonstrate top-activated samples along each feature dimension, where those of CL (a)
often have distinct semantics along each dimension (column) (e.g., dears and airplanes), while those
of NCL (b) have much better semantic consistency, indicating better feature disentanglement. Com-
paring (c) and (d), it is easy to see that NCL features enjoy much better sparsity than CL features
with only a few activated dimensions (< 10%) per sample.

1 INTRODUCTION

It is widely believed that the success of deep learning lies in its ability to learn meaningful represen-
tations (Bengio et al., 2013). In recent years, contrastive learning (CL) has further initiated a huge
interest in self-supervised learning (SSL) of representations and attained promising performance in
various downstream tasks (Chen et al., 2020; Wang et al., 2021; Guo et al., 2023; Luo et al., 2023).
Nevertheless, the learned representations still lack natural interpretability. As shown in Figure 1a,
top activated examples along each feature dimension (column) belong to quite different classes, so
we can hardly inspect the meaning of each feature. Although various interpretability tools have been
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Figure 2: Relationship between different learning paradigms discussed in this work.

developed (Selvaraju et al., 2017), we are wondering whether there is a way to directly learn inter-
pretable features while maintaining the simplicity, generality, and superiority advantages of deep
representation learning.

In this paper, we develop Non-negative Contrastive Learning (NCL) as an interpretable alternative
to canonical CL. Through a simple reparameterization, NCL can remarkably enhance the feature
interpretability, sparsity, orthogonality, and disentanglement. As illustrated in Figure 1b, each fea-
ture derived from NCL corresponds to a cluster of samples with similar semantics, offering intuitive
insights for human inspection. NCL draws inspiration from the venerable Non-negative Matrix
Factorization (NMF) technique. Notably, by imposing non-negativity on features, NMF is known
to derive components that are more naturally interpretable than its unrestricted counterpart, Matrix
Factorization (MF) (Lee & Seung, 1999). Guided by this merit, we develop NCL as a non-negative
counterpart for CL. NCL is indeed mathematically equivalent to the NMF objective, analogous to
the equivalence between CL and MF discovered in prior work (HaoChen et al., 2021; Zhang et al.,
2023a;b) (refer to Figure 2 for a visual summary). Built upon this connection, we theoretically
justify these desirable properties of NCL in comparison to CL. In particular, we establish provable
guarantees on the identifiability and downstream generalization of NCL, showing that NCL, in the
ideal case, can even attain Bayes-optimal error. In practice, NCL can bring clear benefits to various
tasks (feature selection, feature disentanglement, and downstream classification). At last, we show
that NCL can be extended and yield better performance for supervised learning as well with the
proposed Non-negative Cross Entropy (NCE) loss. We summarize our contributions as follows:

• We introduce Non-negative Contrastive Learning (NCL), an evolved adaptation of NMF,
to address the interpretability challenges posed by CL. Our findings demonstrate NCL’s
superiority in sparsity, orthogonality, and feature disentanglement.

• We provide a comprehensive theoretical analysis of NCL, which not only characterizes the
optimal representations and justifies these desirable properties, but also establishes identi-
fiability and generalization guarantees for NCL.

• We show how the advantages of NCL in feature interpretability can be applied to improv-
ing various downstream tasks. We also discuss how to extend NCL beyond SSL with a
demonstration of its benefit in supervised learning.

2 BACKGROUND ON CONTRASTIVE LEARNING

The task of representation learning is to learn an encoder function f : Rd → Rk that extracts
low-dimensional data representations z ∈ Rk (a.k.a. features) from inputs x ∈ Rd. To perform
contrastive learning, we first draw a pair of positive samples (x, x+) by randomly augmenting the
same natural sample x̄ ∼ P(x̄), and we denote the augmentation distribution as A(·|x̄). We also
draw negative samples x− as independently augmented samples, following the marginal distribution
P(x) = Ex̄A(x|x̄). The goal of contrastive learning is to align the features of positive samples while
pushing negative samples apart. A well-known CL objective is the InfoNCE loss (Oord et al., 2018),

LNCE(f) = −Ex,x+,{x−
i }M

i=1
log

exp(f(x)⊤f(x+))

exp(f(x)⊤f(x+)) +
∑M

i=1 exp(f(x)
⊤f(x−i )

, (1)
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where {x−i }Mi=1 are M negative samples independently drawn from P(x). HaoChen et al. (2021)
propose the spectral contrastive loss (spectral loss) that is more amenable for the theoretical analysis:

Lsp(f) = −2Ex,x+
f(x)⊤f(x+) + Ex,x−(f(x)⊤f(x−i ))

2. (2)

Besides CL, it is also used for other types of SSL (Zhang et al., 2022; 2023a).

Equivalence to Matrix Factorization. Notably, HaoChen et al. (2021) show that the spectral con-
trastive loss (Eq. (2)) can be equivalently written as the following matrix factorization objective:

LMF = ∥Ā− FF⊤∥2, where Fx,: =
√
P(x)f(x). (3)

Here, Ā = D−1/2AD−1/2 denotes the normalized version of the co-occurrence matrix A ∈ RN×N
+

of all augmented samples x ∈ X (assuming |X | = N for ease of exposition): ∀x, x′ ∈ X , Ax,x′ :=
P(x, x′) = Ex̄A(x|x̄)A(x′|x̄). More discussions on related work can be found in Appendix A.

2.1 LIMITATIONS IN REPRESENTATION SYMMETRY

According to the seminal work of Bengio et al. (2012), a good representation should extract ex-
planatory factors that are sparse, disentangled, and with semantic meanings. However, upon close
observation, CL-derived features remain predominantly non-explanatory and fall short of these cri-
teria. For example, Figure 1a shows that different samples (like planes and dogs) may have similar
activation along each feature dimension (a sign of non-disentanglement). Further, we also visualize
the values of the learned features of SimCLR (Chen et al., 2020) in Figure 1c, where we can see that
almost all CL features have non-zero values, indicating an absence of sparsity.

Remarkably, an important cause of CL’s deficiency in these aspects is its rotation symmetry. Notice
that CL objectives are invariant w.r.t. the rotation group SO(k), which means that for an optimal
solution f∗(x), any rotation matrix R also gives an optimal solution Rf∗(x). Consequently, CL
cannot guarantee feature disentanglement along a specific axis since a non-permutative rotation can
easily corrupt them. The following theorem shows that any (unconstrained) CL objective depending
only on pairwise distance will have rotation symmetry in its optimal solution, covering most (if not
all) CL objectives, such as InfoNCE (Oord et al., 2018), hinge loss (Saunshi et al., 2019), NT-Xent
(Chen et al., 2020), spectral contrastive loss (HaoChen et al., 2021)), etc.
Theorem 1. As long as the unconstrained objective L only relies on pairwise Euclidean similarity
(or distance), e.g., f(x)⊤f(x′), its solution f∗(x) suffers from rotation symmetry.

Proof. Observe that ∀ x, x′ ∈ X , (Rf∗(x))⊤Rf∗(x) = f∗(x)⊤R⊤Rf∗(x′) = f∗(x)⊤f∗(x′).

To attain feature disentanglement, we need to break this representation symmetry and learn repre-
sentations aligned with the given axes.

3 NON-NEGATIVE CONTRASTIVE LEARNING

In classical machine learning, an effective way to make matrix factorization (MF) features inter-
pretable is through non-negative matrix factorization (NMF), where a non-negative matrix V ≥ 0
is factorized into two non-negative features V ≈ WH where W,H ≥ 0 1. Inspired by the equiva-
lence between MF and CL (Eq. (3)), we propose a modern variant for NMF (also with mathematical
equivalence) and show that it also demonstrates good feature interpretability as NMF.

In the equivalent MF objective of CL, a critical observation is that the normalized co-occurrence
matrix Ā ∈ RN×N

+ (Eq. (3)) is a non-negative symmetric matrix (all values in Ā are probability
values). Therefore, we can apply symmetric NMF to Ā into non-negative features F+:

LNMF(F ) = ∥Ā− F+F
⊤
+ ∥2, where F+ ≥ 0. (4)

Unfornaturely, Eq. (4) is intractable with canonical NMF algorithms since the input space X is ex-
ponentially large (N → ∞). To get rid of this obscure, we reformalize the NMF problem (Eq. (4))
equivalently as a tractable CL objective (Eq. (5)) that only requires sampling positive/negative sam-
ples from the joint/marginal distribution. The following theorem guarantees their equivalence.

1Throughout this paper, ≥ denotes element-wise comparison.
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(b) Feature Sparsity (c) Feature Correlation

Figure 3: Comaprisons between contrastive learning (CL) and non-negative contrastive learning
(NCL): a) class consistency rate, measuring the proportion of activated samples that belong to their
most frequent class along each feature dimension; b) feature sparsity, the average proportion of zero
elements (|x| < 1e−5) in the features of each test sample; c) dimensional correlation matrix C of 20

random features: ∀(i, j), Cij = Exf̃i(x)
⊤f̃j(x), where f̃i(x) = fi(x)/

√∑
x (fi(x))

2.

Theorem 2. The non-negative matrix factorization problem in Eq. (4) is equivalent to the following
non-negative spectral contrastive loss when the row vector (F+)x,: =

√
P(x)f+(x)

⊤,

LNCL = −2Ex,x+
f+(x)

⊤f+(x+) + Ex,x−
(
f+(x)

⊤f+(x
−)

)2
,

such that f+(x) ≥ 0,∀x ∈ X .
(5)

Non-negative Reparameterization. Comparing Eq. (5) to the original spectral contrastive loss in
Eq. (2), we find that the objectives remain the same, while the only difference is that NCL enforces
non-negativity on output features f+(·). We can realize this constraint via a reparameterization of
neural network outputs, e.g., applying a non-negative transformation σ+(·) (satisfying σ+(x) ≥
0,∀x) at the end of a standard neural network encoder f used in CL,

f+(x) = σ+(f(x)). (6)

Potential choices of σ+ include ReLU, sigmoid, softplus, etc. We find that the simple ReLU func-
tion, ReLU(x) = max(x, 0), works well in practice. Its zero-out effect can induce good feature
sparsity compared to other operators with strictly positive outputs. Although our discussions mainly
adopt the spectral contrastive loss, this reparameterization trick also applies to other CL objectives
(such as the InfoNCE loss in Eq. (1)) and transforms them to the corresponding non-negative ver-
sions. We regard these variants generally as Non-negative Contrastive Learning (NCL). We also
briefly discuss how to extend it to other learning paradigms (supervised, multi-modal) in Section 6.

Resurrecting the Dead Neurons. We notice that although ReLU output features enjoy better
sparisty, they may suffer from the dead neuron problem during training (Lu et al., 2019). In practice,
some dimensions of NCL features (e.g., 86/512) are inactive on all samples, sacrificing the given
model capacity. To avoid this problem while ensuring non-negativity, inspired by Gumbel softmax
(Jang et al., 2016), we adopt a simple (biased) reparameterization trick (in PyTorch style),

z = F.relu(z).detach() + F.gelu(z) - F.gelu(z).detach(), (7)

where z.detach() eliminates the gradients of z. In this way, the forward output still equals
to F.relu(z) while the gradient is calculated w.r.t. GELU (Hendrycks & Gimpel, 2016), which
is close to ReLU but has gradients for negative inputs. This reparameterization trick works on
CIFAR-10 and CIFAR-100 and improves the overall feature diversity, but is inferior to ReLU on
ImageNet-100. More systematic study of this problem is left for future work.

3.1 BENEFITS OF NON-NEGATIVITY: CONSISTENCY, SPARSITY, AND ORTHOGONALITY

In canonical NMF, researchers found that non-negative constraints help discover interpretable parts
of facial images (Lee & Seung, 1999). It also has applications in many scenarios for discovering
meaningful features (Wang & Zhang, 2012), such as text mining, factor analysis, and speech de-
noising. In our scenario, the non-negativity inherent to NCL offers clear advantages in deriving
interpretable representations. Unlike canonical CL, non-negativity ensures that different features
will not cancel one another out when calculating feature similarity. As NCL drives dissimilar neg-
ative samples to have minimal similarity (f+(x)

⊤f+(x
′) → 0), each sample is forced to have zero

activation on features it does not possess, rendering NCL features inherently sparse.
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Furthermore, NCL offers a robust solution to the rotation symmetry challenge associated with stan-
dard CL, as outlined in Theorem 1. Any rotation applied to features, especially sparse ones, often

disrupts their non-negative nature. To exemplify, consider the feature matrix I =

(
1 0
0 1

)
. This

matrix cannot undergo any non-permutative rotation while preserving its non-negativity. As a con-
sequence, NCL features are enforced to be aligned with the given axes. In particular, with non-
negative constraints, activated samples along each feature dimension have high similarity and thus
have similar semantics.

To verify the analysis above, we conduct a pilot study on SimCLR and its NCL variant on benchmark
datasets. First, we find that NCL features indeed have better semantic consistency than CL (Figure
3a), aligning with the examples in Figure 1. Second, around 90% dimensions of NCL features are
zero per sample, while CL features do not have any sparsity, as we observed in Figure 3b. Third,
Figure 3c shows the feature correlation matrices, and we can observe that NCL features are also
more orthogonal than CL features. Overall, NCL enjoys much better semantic consistency, feature
sparsity, and feature orthogonality than CL.

4 THEORETICAL PROPERTIES OF NON-NEGATIVE CONTRASTIVE LEARNING

In Section 3, we have proposed non-negative contrastive learning (NCL) and shown that a simple
reparameterization can bring significantly better semantic consistency, sparsity, and orthogonality.
In this section, we provide comprehensive theoretical analyses of non-negative contrastive learning
in terms of its optimal representations, feature identifiability, and downstream generalization.

4.1 ASSUMPTIONS

As in Saunshi et al. (2019), we assume that in the pretraining data, samples belong to m latent
classes C = {c1, . . . , cm} with non-neglectable support P(c) > 0,∀c ∈ C. We assume that positive
samples generated by contrastive learning are drawn independently from the same latent class.

Assumption 1 (Positive Generation). ∀x, x′ ∈ X ,P(x, x′) = EcP(x|c)P(x′|c).

Remark. Some previous works, e.g., Wang et al. (2022), criticized this assumption to be non-
realistic. But this is mainly because Saunshi et al. (2019) only consider the extreme case when
the latent classes are the same as the observed labels, i.e., C = Y; while in fact, positive samples
generated by data augmentations are still dependent within the same observed class. In fact, when
we define latent classes using more fine-grained categorization (e.g., a specific type of car), this
assumption is still plausible. In the extreme case, each original sample x̄ ∈ X̄ can be seen as
a latent class, which reduces to the general definition in HaoChen et al. (2021) with P(x, x′) =
Ex̄P(x|x̄)P(x′|x̄). Thus, our framework includes the two previous frameworks as special cases.

As a common property of natural data, we assume different latent classes only have small overlap.

Assumption 2 (Latent Class Overlap). The maximal class overlap probability is no more than ε,
i.e., maxi ̸=j P(ci, cj) ≤ ε, where P(ci, cj) = ExP(ci|x)P(cj |x) denotes the overlap probability
between ci and cj . If each sample only belongs to one latent class, we have ε = 0.

The latent class information of an example x can be denoted as an m-dimensional vector ψ(x) =
[P(c1|x), . . . ,P(ck|x)]. This vector captures the subclass-level semantics and can be seen as an
ideal representation of x. Next, we show that non-negative contrastive learning can recover this
ground-truth feature from observed samples, up to trivial dimensional scaling and permutation.

4.2 OPTIMAL REPRESENTATIONS

The following theorem states that when the number of feature dimensions k is as large as the number
of latent classes m, the following solution ϕ(x) is an optimal solution to the NCL objective:

ϕ(x) =

[
1√

P(π1)
P(π1|x), . . . ,

1√
P(πm)

P(πm|x)

]
∈ Rm

+ ,∀ x ∈ X , (8)
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where [π1, . . . , πm] is a random permutation of latent classes [c1, . . . , cm].2 Nicely, ϕ(x) admits
natural interpretability since it contains the posterior distribution along each dimension.

Theorem 3. Under the latent class assumption (Assumption 1) and choosing k = m, ϕ(·) is a
minimizer of the NCL objective Eq. (5), i.e., ϕ ∈ argminLNCL.

Compared to CL with non-explanatory eigenvectors of Ā as the closed-form solution (HaoChen
et al., 2021), NCL’s optimal features ϕ(x) are advantages in the following aspects. 1) Semantic
Consistency. For each c ∈ C, the activated samples with ϕc(x) > 0 indicates that P(c|x) > 0,
meaning that x indeed belongs to c to some extent. Thus, activated samples along each dimension
will have similar semantics. Instead, CL’s eigenvector features containing both positive and negative
values do not have a clear semantic interpretation. 2) Sparsity. As each sample belongs to one or
a few subclasses (Assumption 2), only one or a few elements in ϕ(x) are positive with P(c|x) >
0. Thus, ϕ(x) is sparse. In comparison, eigenvectors used by CL are usually dense vectors. 3)
Orthogonality. Since feature dimensions in ϕ(x) indicate class assignments, that different feature
dimensions have very low correlation when the latent class overlap ε is small (Assumption 2):

∀ i ̸= j,Exϕi(x)ϕj(x) =
1√

P(πi)P(πj)
ExP(πi|x)P(πj |x) ≤

ε

minc P(c)
. (9)

In the ideal case when evey sample belongs to a single latent class, we can show that ϕ(x) perfectly
recovers the one-hot ground-truth factors with high sparsity and perfect orthogonality.

Theorem 4 (Optimal representations under one-hot latent labels). If each sample x only belongs to
only one latent class c = µ(x), we have ϕ(x) = 1µ(x), where µ(x) indicates x’s belonging class.
Meanwhile, we have ∥ϕ(x)∥0 = 1 (highly sparse) and Exϕ(x)ϕ(x)

⊤ = I (perfectly orthogonal).

4.3 FEATURE IDENTIFIABILITY

Despite the advantages of ϕ(x) discussed above, it remains unclear whether it is the unique solution
to NCL. As discussed in Section 2.1, rotation symmetry will break the desirable properties of ϕ(x).
In a general context, the uniqueness of NMF is an important research topic in itself (Laurberg et al.,
2008; Huang et al., 2014). It is also widely studied in signal analysis and representation learning,
known as (feature) identifiability (Fu et al., 2018; Zhang et al., 2023b), concerning whether NMF
can recover ground-truth latent factors (up to trivial transformation), as defined below.

Definition 1 (Feature Identifiability). We say that an algorithm produces identifiable (or unique)
features if any two solutions f, g are equivalent up to permutation and dimensional scaling: there
exists a permutation matrix P and a diagonal matrix D such that f(x) = DPg(x),∀ x ∈ X .

For NCL, we find that a mild condition on unique samples (Assumption 3) can guarantee NCL’s
identifiability and disentanglement. This assumption is plausible in practice since it only requires
one unique sample in each latent class. Intuitively, the one-hot encodings of unique samples prevent
any non-permutative rotation under the non-negative constraint. Therefore, NCL’s non-negativity
indeed helps break the rotation symmetry of CL features.

Assumption 3 (Existence of unique samples). For every latent class c ∈ C, there exists one sample
x ∈ X such that it belongs uniquely to c, i.e., P (c|x) = 1.

Theorem 5. Under Assumptions 1 & 3, the solution ϕ(x) (Eq. (8)) is the unique solution to the NCL
objective Eq. (5). As a result, NCL features are identifiable and disentangled.

4.4 DOWNSTREAM GENERALIZATION

In real-world applications, pretrained features are often transferred to facilitate various downstream
tasks. Following the previous convention, we consider the linear classification task, where a linear
head g(z) = W⊤z is applied to pretrained features z = ϕ(x) (Eq. (8)). The linear head is learned

2For the ease of exposure, we consider k = m. If k > m, we can fill the rest of dimensions with all zeros,
while if k < m, we can always tune k to attain a lower loss. In practice, some feature dimensions are never
activated, so we believe that generally we have k > m and omit inactive dimensions for simplicity. Besides,
although the discrete latent class is adopted here, the discovered optimal solutions also apply to continuous
latent variables, as long as the position generation still follows Assumption 1.

6



Published as a conference paper at ICLR 2024

Table 1: Comparison of CL and NCL (ours) on ImageNet-100 in terms of three feature selection
tasks: linear probing (measured by classification accuracy), image retrieval (measured by mean
Average Precision @ 10 (mAP@10), and transfer learning (measured by classification accuracy).

Selection Linear Probing Image Retrieval Transfer Learning
CL NCL CL NCL CL NCL

All (2048) 66.8 ± 0.2 68.9 ± 0.1 10.9 ± 0.2 14.2 ± 0.2 17.2 ± 0.1 19.9 ± 0.1
Random (512) 66.2 ± 0.1 (-0.6) 64.3 ± 0.2 (-5.6) 10 ± 0.1 (-0.9) 8.2 ± 0.1 (-6.0) 16.6 ± 0.2 (-0.6) 16.7 ± 0.1 (-3.2)
EA (512, w/o ReLU) 66.3 ± 0.2 (-0.5) 66.7 ± 0.1 (-2.2) 9.9 ± 0.21 (-0.9) 11.1 ± 0.2 (-3.1) 16.5 ± 0.3 (-0.7) 17.7 ± 0.2 (-2.2)
EA (512, w/ ReLU) (ours) 66.5 ± 0.1 (-0.3) 68.9 ± 0.3 (-0.0) 10.2 ± 0.2 (-0.7) 14.2 ± 0.2 (-0.0) 16.6 ± 0.3 (-0.6) 19.8 ± 0.1 (-0.1)

on the labeled data (x, y) ∼ P(x, y), where y ∈ Y = {y1, . . . , yC} denotes an observed label.
As discussed in Section 4.1, latent classes are supposed to correspond to more fine-grained clusters
within each observed class. For example, an observed class “dog” contains many species of dogs as
its latent classes. Thus, we assume that each observed label y contains a set of latent classes Cy ⊆ C,
and there is no overlap between different observed labels, i.e., ∀ i ̸= j, Cyi

⋂
Cyj = ∅.

The following theorem characterizes the optimal linear classifier under this setting, and shows that
the linear classifier alone can attain the Bayes optimal classifier, argmaxy P(y|x). In other words,
ideally, a linear classifier is enough for the classification task. Nevertheless, in practice, since the
learning process is not as perfect as we have assumed, fully fine-tuning usually brings further gains.
Theorem 6. With the optimal NCL features ϕ(x), there exists a linear classifier g∗(z) = W ∗⊤z
such that its prediction p(x) = argmaxy[g(ϕ(x))]y is Bayes optimal, specifically,

W ∗ = [w∗
1 , . . . , w

∗
C ], where w∗

y = [
√

P(π1)1π1∈Cy
, . . . ,

√
P(πm)1πm∈Cy

],∀y ∈ [C]. (10)

The optimal linear classifier g∗(z) also enjoys good explanability, since only latent classes in Cy
have non-zero weights in wy . Therefore, we can directly inspect how each latent class c belongs to
a certain observed class y by observing non-zero weights in W ∗.

5 APPLICATIONS

In this section, leveraging the ability of non-negative contrastive learning (NCL) to extract explana-
tory features, we explore three application scenarios: feature selection, feature disentanglement,
and downstream generalization. In the former two scenarios, NCL brings significant benefits over
canonical CL. In the standard evaluation with downstream classification, NCL also obtains better
performance than CL under both linear probing and fine-tuning settings. By default, we compare
CL and NCL objectives using the SimCLR backbone on ImageNet-100 with 200 training epochs.
For all experiments, we run 3 random trials and report their mean and standard deviation.

5.1 FEATURE SELECTION

As shown in Figure 3b, NCL features are only sparsely activated on a few feature dimensions, and
upon our closer examination, many feature dimensions are only activated with a few examples.
Leveraging this feature sparsity property, we can sort out feature importance with non-negative
features and use this as a guidance for selecting a small subset of features while retaining most of
the performance. This is particularly useful for large-scale image or text retrieval tasks by allowing
a flexible tradeoff between performance and computation cost, a natural way to realize shortening
embeddings (OpenAI, 2024) without additional training strategies as in Kusupati et al. (2022).

Here, we explore a simple strategy to rank non-negative features f = [f1, . . . , fk] according to their
Expected Activation (EA) on the training data, EA(fi) = Exf̃i(x), where f̃(x) = f(x)/∥f(x)∥ is
normalized. Intuitively, higher EA indicates common high-level features that represent class seman-
tics, and lower EA corresponds to rare and noisy features that are less useful. In our experiments,
we select the top 512 features among all 2048 features of projector outputs, and evaluate them with
linear probing, image retrieval, and transfer learning on ImageNet-100 (details in Appendix G.4).

Results. Table 1 summarizes the results of feature selection experiments. First, when using all
features, NCL achieves significant gains over CL on all three tasks. Meanwhile, when selecting
1/4 dimensions (512/2048), with EA criterion (w/ ReLU), NCL is almost “lossless”, since it attains

7
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Table 2: Feature disentanglement score (measured by SEPIN@k (Do & Tran, 2020)) of CL and
NCL on ImageNet-100, where k denotes the top-k dimensions. Values are scaled by 102.

SEPIN@1 SEPIN@10 SEPIN@100 SEPIN@all

CL 0.88 ± 0.08 0.79 ± 0.02 0.69 ± 0.01 0.47 ± 0.01
NCL 7.43 ± 0.15 5.93 ± 0.12 3.87 ± 0.04 0.48 ± 0.01

Table 3: Evaluation of learned representations on linear probing (LP) and finetuning (FT) tasks. (a)
in-distribution evaluation on three benchmark datasets: CIFAR-100, CIFAR-10, and ImageNet-100.
(b) linear probing accuracy of ImageNet-100 pretrained features on three OOD datasets.

(a) in-distribution evaluation

Method CIFAR-100 CIFAR-10 ImageNet-100
LP FT LP FT LP FT

CL 58.6 ± 0.2 72.6 ± 0.1 87.6 ± 0.2 92.3 ± 0.1 68.7 ± 0.3 77.3 ± 0.5
NCL 59.7 ± 0.4 73.0 ± 0.2 87.8 ± 0.2 92.6 ± 0.1 69.4 ± 0.3 79.2 ± 0.4

(b) out-of-distribution transferability

Method Stylized Corruption Sketch

CL 19.6 ± 0.4 34.5 ± 0.2 27.1 ± 0.1
NCL 21.2 ± 0.2 36.1 ± 0.3 28.0 ± 0.2

comparable performance to using all features on all tasks. In comparison, CL features always suffer
from a larger drop when using fewer features. Thus, benefiting from the sparsity and disentangle-
ment properties, NCL allows flexible feature selection that retains most of the original performance.

5.2 FEATURE DISENTANGLEMENT

According to Section 4.3, NCL features enjoy identifiability (under mild conditions), which is often
regarded as a sufficient condition to achieve feature disentanglement (Khemakhem et al., 2020),
while CL suffers from severe feature ambiguities (Theorem 1). To validate this property, we show
that NCL can significantly improve the degree of feature disentanglement on real-world data.

Evaluation Metric. Many disentanglement metrics like MIG (Chen et al., 2018) are supervised and
require ground-truth factors that are not available in practice, so current disentanglement evaluation
is often limited to synthetic data (Zaidi et al., 2020). To validate the disentanglement on real-world
data, we adopt an unsupervised disentanglement metric SEPIN@k (Do & Tran, 2020). SEPIN@k
measures how each feature fi(x) is disentangled from others f̸=i(x) by computing their conditional

mutual information with the top k features, i.e., SEPIN@k = 1
k

k∑
i=1

I(x, fri(x)|f ̸=ri(x)), which are

estimated with InfoNCE lower bound (Oord et al., 2018) in practice (see Appendix G.3).

Results. As shown in Table 2, NCL features show much better disentanglement than CL in all
top-k dimensions. The advantage is larger by considering the top features (e.g., 0.69 v.s. 3.87
SEPIN@100), since learned features also contain noisy dimensions. This verifies our identifia-
bility result that with non-negativity constraints, NCL indeed brings better feature disentanglement
on real-world data.

5.3 DOWNSTREAM GENERALIZATION

Finally, we evaluate CL and NCL on the linear probing and fine-tuning tasks using all features on
three benchmark datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-100
(Deng et al., 2009). Apart from in-distribution evaluation, we also compare them on three out-of-
distribution datasets, stylized ImageNet (Geirhos et al., 2018), ImageNet-Sketch (Wang et al., 2019),
ImageNet-C (Hendrycks & Dietterich, 2019) (restricted to ImageNet-100 classes). More details can
be found in Appendix G.5. Following the conventional setup, we adopt the encoder output for better
downstream performance. See more results in Appendix F.4.

Results. As shown in Table 3, NCL shows superior generalization performance than original con-
trastive learning across multiple real-world datasets. On average, it improves linear probing accu-
racy by 0.6% and improves fine-tuning accuracy by 0.9%. Moreover, we observe from Table 3b
that NCL shows significant advantages in the out-of-distribution generalization downstream tasks
(+1.4% on average). Considering that NCL only brings minimal change to CL by adding a simple
reparameterization with neglectable cost, the improvements are quite favorable. It also aligns well
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Figure 4: Training from scratch with CE and
NCE (w/o projector) on ImageNet-100.

Loss From Scratch Finetune

CE 76.1 78.6
NCE 78.6 80.2
CE + MLP projector 78.4 81.1
NCE + MLP projector 79.2 82.0

Table 4: Test accuracy (%) of CE and NCE losses
for supervised learning on ImageNet-100.

with the common belief that disentangled feature learning can yield representations that are more
robust against domain shifts (Guillaume et al., 2019).

6 EXTENSION TO BROADER SCENARIOS

In the above discussions, we have developed NCL in the context of self-supervised learning, where
contrastive learning originates from (Oord et al., 2018). Meanwhile, contrastive learning also finds
wide applications in many other scenarios, such as, SupCon (Khosla et al., 2020; Cui et al., 2023)
for supervised learning and CLIP (Radford et al., 2021a) for multi-modal learning. The generality of
NCL enables easy extension. First, it is straightforward to generalize NCL to supervised contrastive
learning since they adopt the same contrastive loss. Second, Zhang et al. (2023a) shows that multi-
modal contrastive learning (MMCL) like CLIP is equivalent to asymmetric matrix factorization,
∥A−FV F

⊤
L ∥2. Leveraging this connection, we can similarly derive multi-modal NCL as equivalent

to asymmetric NMF (Appendix C). We leave a systematic study on broad domains to future work.

Non-negative Cross Entropy (NCE). Besides existing variants of contrastive learning, we also note
that NCL can be extended to standard supervised learning with cross-entropy (CE) loss. Notice that
the CE loss can be written as LCE(f) = Ex,y log

exp(f(x)⊤wy)∑C
c=1 exp(f(x)⊤wc)

, where f(x) is the represen-
tation of x and W = [w1, . . . , wC ] contains the learned embeddings of each class in the last linear
layer of C-way classification NNs. Thus, CE loss can be seen as a special case of InfoNCE when
taking (x, y) as positive pairs and (f(x), wy) as their representations (i.e., a special MMCL loss
(Appendix C)). Accordingly, we can derive the Non-negative Cross Entropy (NCE) loss by applying
a non-negative transformation (e.g., ReLU) to (f(x), wy) in CE and eliminate rotation symmetry.

Setup. As a preliminary study, we compare CE and NCE on ImageNet-100 for 1) finetuning a
standard SimCLR-pretrained encoder and 2) training from scratch, with a ResNet-18 backbone (w/o
projector). We also study adding an MLP projector (as in SimCLR) before the last linear layer,
allowing more flexible feature transformations before linear classification (details in Appendix G.6).

Results. Figure 4 shows that non-negative training with NCE is much faster than conventional
CE loss at the early stage (around 2x before the 40th epoch). After training converges, NCL also
enjoys slightly better performance. As shown in Table 4, in terms of the final performance, NCE
is helpful for training from scratch (2.5%). With the help of the MLP projector network, NCL also
attains significant gains by outperforming original CE by 3.1% and CE-with-projector by 0.8%. For
finetuning, with MLP projector, NCE can attain a significant gain by improving 3.4% over CE and
0.9 over CE-with projector. These results show that although simple, non-negative training can be
quite helpful for supervised tasks as well.

7 CONCLUSION

Despite the promising performance of contrastive learning, its learned features still have limited
interpretability. Inspired by the classical non-negative matrix factorization algorithm, we proposed
non-negative contrastive learning (NCL) to impose non-negativity on contrastive features. With
minimal modifications to canonical CL, NCL can maintain or slightly improve its performance on
classical tasks, while significantly enriching the interpretability of output features. We also provided
comprehensive theoretical analyses for NCL, showing that NCL enjoys not only good downstream
performance but also feature identifiability. At last, we show that NCL can be extended to benefit
other learning scenarios as well. Overall, we believe that NCL may serve as a better alternative to
CL in pursuit of better representation learning methodologies.
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A RELATED WORK

The most closely related work is HaoChen et al. (2021), which firstly links contrastive learning back
to matrix factorization. This link inspires us to leverage the classical non-negative matrix factor-
ization technique, in turn, to improve modern contrastive learning. Previously, matrix factorization
has played an important part in representation learning, for example, GloVe for word representation
(Pennington et al., 2014), but was gradually replaced by deep models. Aside from our NMF-based
approach, many works study disentangled representation with generative models like VAEs (Kingma
& Welling, 2014; Chen et al., 2018). Locatello et al. (2019) point that disentanglement is impossible
without additional assumptions (Kivva et al., 2022) or supervision (Khemakhem et al., 2020). Nev-
ertheless, these methods often have limited representation ability compared to contrastive learning
in practice. In this work, our goal is to develop a representation algorithm whose performance is as
good as contrastive learning, while alleviating its interpretability limitations in real-world scenarios.

Relationship to CL. A deep connection between CL and NCL is that they are both equivalent to
matrix factorization problems w.r.t. a non-negative cooccurrence matrix (Eq. (3) & Eq. (4)); while
the difference in non-negative constraints leads to different solutions, and it enables good explain-
ability of NCL features. Theoretically, CL admits eigenvectors as closed-form solutions (though
not computationally tractable), while NMF (NCL) problems generally do not permit closed-form
solutions. Yet, we show that under appropriate data assumptions regarding latent classes, we can
still identify an optimal solution, and establish its uniqueness and generalization guarantees under
certain conditions. Thus, for real-world data obeying our assumptions, NCL features are also guar-
anteed to deliver good performance, while offering significantly better explainability than canonical
CL as discussed above.

Relationship to Clustering. In fact, Ding et al. (2005) also establish the equivalence between
NMF, Kernel K-means and spectral clustering (SC)3. Leveraging this connection, NCL can also be
regarded as an (implicit) deep clustering method. Previously, several works (HaoChen et al., 2021;
Tan et al., 2023) claim the equivalence between canonical CL and SC. However, this connection
is not rigorous, because they only consider the equivalence between CL and eigendecomposition
(the first step of SC), while SC also has a K-means step that utilizes eigenvectors to produce cluster
assignments as its final outputs (like NCL).4

Relationship to MF and Deep NMF. Matrix Factorization (MF) is a classical dimension reduction
technique, with mathematical equivalence to many machine learning techniques, such as, PCA,
LDA. However, it is pointed out that features extracted by MF are often hardly visually inspected.
A seminal work by Lee & Seung (1999) points that by enforcing non-negativity constraints on
MF, i.e., non-negative matrix factorization (NMF), we can obtain interpretable part-based features.
In their well-known face recognition experiment, each decomposed feature is only activated on a
certain facial region, while PCA components have no clear meanings. Ding et al. (2005) further
reveal the inherent clustering property of NMF, specifically, the equivalence between NMF and
K-means clustering with additional orthogonal constraints. In this way, each NMF feature can be
interpreted as the cluster assignment probability. Due to these advantages, NMF is widely applied to
many scenarios, including but not limited to recommendation systems, computer vision, document
clustering, etc. We refer to Wang & Zhang (2012) for a comprehensive review.

In the deep learning era, as a linear model, NMF is gradually replaced with deep neural networks
(DNNs) with better feature extraction ability. Following this trend, various deep NMF methods
have been proposed, where they replace the linear embedding layer with a multi-layer (optionally
nonlinear) encoder, and enforce the non-negativity constraint by either architectural modules or reg-
ularization objectives. See Chen et al. (2021) for an overview of deep NMF methods. Nevertheless,
these deep NMF methods can hardly achieve comparable performance to existing supervised and
self-supervised learning methods for representation learning.

Our non-negative contrastive learning can also be regarded as a deep NMF method, as we also lever-
age a neural encoder and show the equivalence between the NCL objective and the NMF objective.

3In order to make this equivalence hold, Ding et al. (2005) add orthogonal constraints to NMF features,
which are automatically satisfied under our one-hot latent label setting (Theorem 4).

4We note that theoretically, the K-means here is computed over the exponentially large population data X .
So it is not feasible in practice to utilize this connection to produce an NCL solution using CL features.
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However, the key difference is that we do not apply NMF to the actual input (e.g., the image), but to
the co-occurrence matrix implicitly defined by data augmentation. In this way, we can transform the
original NMF problem to a sampling-based contrastive loss, which allows us to solve it with deep
neural networks.

B PROOFS

B.1 PROOF OF THEOROEM 2

Proof. We expend LNMF(F ) and obtain:

LNMF(F ) =∥Ā− F+F
⊤
+ ∥2

=
∑
x,x+

(
P(x, x+)√
P(x)P(x+)

−
√
P(x)f+(x)

⊤
√
P(x+)f+(x+)

)2

=
∑
x,x+

(
P(x, x+)

2

P(x)P(x+)
− 2P(x, x+)f+(x)

⊤f+(x+)

+ P(x)P(x+)
(
f+(x)

⊤f+(x+)
)2 )

=
∑
x,x+

(
P(x, x+)

2

P(x)P(x+)

)
︸ ︷︷ ︸

const

−2Ex,x+
f+(x)

⊤f+(x
+) + Ex,x−

(
f+(x)

⊤f+(x
−)

)2

=LNCL + const,

which completes the proof.

B.2 PROOF OF THEOREM 3

Proof. We expand LNMF(ϕ) and obtain:

LNMF(ϕ) =
∑
x,x+

(
P(x, x+)√
P(x)P(x+)

−
√
P(x)ϕ(x)⊤

√
P(x+)ϕ(x+)

)2

=
∑
x,x+

(
P(x, x+)√
P(x)P(x+)

−
m∑
i=1

P(x)P(x+)P(πi|x)P(πi|x+)√
P(x)P(x+)P(πi)

)2

=
∑
x,x+

(
P(x, x+)√
P(x)P(x+)

−
m∑
i=1

P(πi, x)P(πi, x
+)√

P(x)P(x+)P(πi)

)2

=
∑
x,x+

(
P(x, x+)√
P(x)P(x+)

−
m∑
i=1

P(πi)P(x|πi)P(x+|πi)√
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=
∑
x,x+

(
P(x, x+)√
P(x)P(x+)

− EcP(x|c)P(x+|c)√
P(x)P(x+)

)2

With Assumption 1, we know that P(x, x+) = EcP(x|c)P(x+|c). So LNMF(ϕ) = 0, i.e., ϕ ∈
argminLNMF. Combing with the equivalence between NMF and NCL, we obtain that ϕ is an
optimal solution of LNCL.

B.3 PROOF OF THEOREM 4

Proof. When each sample only belongs to one latent class c = µ(x), we have
[P(π1|x), · · · ,P(πm|x)] = 1µ(x). Combined with Theorem 3, we have ϕ(x) =

√
1

P(πµ(x))
1µ(x).
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As there only exists one non-zero elements for ϕ(x), we obtain ∥ϕ(x)∥0 = 1. And for the or-
thogonality, we have Exϕi(x)ϕj(x) =

∑
x
P(x)

√
1

P(πj)P(πj)
1µ(x)=πi

1µ(x)=πj
. So when i ̸= j,

Exϕi(x)ϕj(x) = 0. And when i = j, Exϕi(x)ϕj(x) = 1
P(πi)

∑
x
P(x)1µ(x)=πi

= 1. Then we

obtain: Exϕ(x)ϕ(x)
⊤ = I .

B.4 PROOF OF THEOREM 5

Proof. First, we introduce two useful results from previous works.

Lemma 1 (Lemma 1 of Paul & Chen (2016)). For any N ×N symmetric matrix Ā, if rank(Ā) =
k ≤ N , then the order k exact symmetric NMF of Ā is unique up to an orthogonal matrix.

Lemma 2 (Lemma 1.1 of Minc (1988)). The inverse of a non-negative matrix matrix M is non-
negative if and only if M is a generalized permutation matrix.

Let Φ ∈ RN×k
+ be the feature matrix composed of N features, i.e., the x-the row is

√
P(x)ϕ(x)⊤.

Note that Φ satisfies Ā = ΦΦ⊤, an exact non-negative matrix factorization of Ā (Theorem 4). If ϕ
is not unique, there exists another F+ ̸= Φ and F+ ∈ RN×k

+ such that Ā = F+F
⊤
+ .

According to Lemma 1, we can deduce H = ΦT , where T ∈ Rk×k is an orthogonal matrix.
As ΦT is also an exact symmetric NMF of Ā, it satisfies ΦT ≥ 0. For each x ∈ X , it holds
that ϕ(x)⊤T ≥ 0. Since for every latent class c ∈ C, there exists a sample xc ∈ X such that
P (c|xc) = 1, the c-th entry of ϕ(xc) is

√
1

p(πc)
, while all other entries are 0. Denote the row vectors

of matrix T as T1, T2, . . . , Tk. As ϕ(xc)⊤T ≥ 0, we must have Tc ≥ 0. Applying this deduction to
every latent class, we have ∀c ∈ C, Tc ≥ 0, i.e., T ≥ 0.

Recall that T ≥ 0 is also an orthogonal matrix with T⊤T = I . According to Lemma 2, T must be
a permutation matrix. Therefore, ϕ(·) is unique under permutation.

B.5 PROOF OF THEOREM 6

Proof. We consider the y-th dimension of the prediction:

g⋆y(ϕ(x))

=(W ⋆)⊤ϕ(x)

=

m∑
j=1

√
P(πj)1πj∈Cy

P(πj |x)√
P(πj)

=

m∑
j=1

P(πj |x)1πj∈Cy

=P(y|x).

So argmax g⋆(ϕ(x)) = argmaxP(y|x). In other words, the classifier attains the Bayes optimal
classifier.

C EXTENSION TO MULTI-MODAL CONTRASTIVE LEARNING

In the main paper, we have proposed non-negative contrastive learning (NCL) for self-supervised
learning, where the co-occurrence matrix A is symmetric by definition. Apart from the self-
supervised setting, we know that contrastive learning is also successfully applied to visual-language
representation learning that involves multi-modal data, e.g., CLIP (Radford et al., 2021b). Zhang
et al. (2023a) show that multi-modal contrastive learning is mathematically equivalent to an asym-
metric matrix factorization problem. Based on this link, we can develop the asymmetric version of
non-negative contrastive learning in the multi-modal setting, that can also enable the interpretability
of visual-language representations.
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Following the similar spirit of symmetric contrastive learning, asymmetric contrastive learning also
aligns positive pairs together while pushing negative samples apart. However, there exist differences
in the data sampling process. Taking the image-text pairs as an example, we use XV to denote
the set of all visual data with distribution PV , and XL to denote the set of all language data with
distribution PL. Then the positive pairs (xv, xl) are sampled from the joint multi-modal distribution
PM and the negative pairs (x−v , x

−
l ) are independently drawn from PV nad PL. And we denote

AM : (AM )xv,xl
= PM (xv, xl) as the asymmetric co-occurrence matrix. For the ease of theoretical

analysis, we consider the multi-modal spectral contrative loss:

LMMCL(fV , fL) = −2Exv,xl
fV (xv)

⊤fL(xl) + Ex−
v ,x−

l
(fV (x

−
v )

⊤fL(x
−
l ))

2, (11)

where fV and fL are two encoders that respectively encode vision and language samples. Corre-
spondingly, we propose the multi-modal variant of NCL loss:

LMMNCL(fV+, fL+) = −2Exv,xl
fV+(xv)

⊤fL+(xl) + Ex−
v ,x−

l
(fV+(x

−
v )

⊤fL+(x
−
l ))

2,

such that fV+(xv) ≥ 0, fL+(xl) ≥ 0,∀xv ∈ XV , xl ∈ XL.
(12)

And we introduce asymmetric non-negative matrix factorization objective:

LANMF = ∥ĀM − FV+F
⊤
L+∥2, such that FV+, FL+ ≥ 0, (13)

where (FV+)xv =
√
PV (xv)fV+(xv)

⊤, (FL+)xl
=

√
PL(xl)fL+(xl)

⊤ and ĀM is the normal-
ized co-occurrence matrix. Then we establish the equivalence between MMNCL and asymmetric
non-negative matrix factorization objective following the proofs in Theorem 2:

Proof.

LANMF(FV , FL) = ∥ĀM − FV+F
⊤
L+∥2

=
∑
xv,xl

(
PM (xv, xl)√
PV (xv)PL(xl)

−
√
PV (xv)fV+(xv)

⊤
√
PL(xl)fL+(xl)

)2

=
∑
xv,xl

(
PM (xv, xl)

2

PV (xv)PL(xl)
− 2PM (xv, xl)fV+(xv)

⊤fL+(xL)

+ PV (xv)PL(xl)
(
fV+(xv)

⊤fL+(xL)
)2 )

=
∑
xv,xl

(
PM (xv, xl)

2

PV (xv)PL(xl)

)
︸ ︷︷ ︸

const

−2Exv,xl
fV+(xv)

⊤fL+(xl) + Ex−
v ,x−

l

(
fV+(x

−
v )

⊤fL+(x
−
l )

)2
=LMMNCL + const.

Following the proofs of Theorem 3, then we can obtain the optimal solutions of MMNCL under the
positive generation assumption (∀xv ∈ XV , xl ∈ XL,PM (xv, xl) = EcP(xv|c)P(xl|c)):

ϕV (x) =

[
1√

P(π1)
P(π1|xv), . . . ,

1√
P(πm)

P(πm|xv)

]
∈ Rm

+ ,∀ xv ∈ XV ,

ϕL(x) =

[
1√

P(π1)
P(π1|xl), . . . ,

1√
P(πm)

P(πm|xl)

]
∈ Rm

+ ,∀ xl ∈ XL.

We observe that the optimal representations of MMNCL have a similar form to NCL, As a result,
we can directly follow the theoretical analysis in NCL and prove that the learned representations of
MMNCL also show semantic consistency such as dimensional clustering, sparsity and orthogonality.
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Figure 5: Comparison between spectral contrastive learning (SCL) and non-negative contrastive
learning (NCL) on CIFAR-10: a) linear probing accuracy; b) class consistency rate, measur-
ing the proportion of activated samples that belong to their most frequent class along each fea-
ture dimension; c) feature sparsity, the average proportion of zero elements (|x| < 1e−5) in
the features of each test sample; d) dimensional correlation matrix C of 20 random features:

∀(i, j), Cij = Exf̃i(x)
⊤f̃j(x), where f̃i(x) = fi(x)/

√∑
x (fi(x))

2.

D ADDITIONAL EMPIRICAL ANALYSES

D.1 PERFORMANCE ON THE SPECTRAL CONTRASTIVE LEARNING LOSS

In the main text, we mainly consider the widely adopted InfoNCE loss. Here, we provide the results
with the spectral contrastive loss (SCL) that our analysis is originally based on.

Setup. During the pretraining process, we utilize ResNet-18 as the backbone and train the models
on CIFAR-10. We respectively pretrain the model with Spectral Contrastive Learning (SCL) and
NCL for 200 epochs. We pretrain the models with batch size 256 and weight decay 0.0001. When
implementing NCL, we follow the default settings of SCL. During the linear evaluation, we train a
classifier following the frozen backbone for 100 epochs. For the experiments that compare semantic
consistency, feature sparsity and feature correlation, we follow the settings in Section 3.1.

Results. As shown in Figure 5, NCL can also attain slight improvement over SCL in linear probing
(88.6% v.s. 88.0%), while bring clear interpretability improvements in terms of class consistency
(Figure 5b), sparsity (Figure 5c) and correlation (Figure 5d). It shows that NCL indeed works well
across different CL objectives.

D.2 COMPARISON TO SPARSITY REGULARIZATION

Another classic method to encourage feature sparsity is directly adding ℓ1 regularization on the
output features, leading to the following regularized CL objective,

LCL + λEx∥f(x)∥1, (14)

where λ is a coefficient for regularization strength. We find that λ = 0.01 is a good tradeoff between
accuracy and sparsity on CIFAR-10.

Results. As shown in Table 5, NCL outperforms ℓ1 regularized SCL on both classification accuracy
(88.5% v.s. 87.2%), which indicates that ℓ1 regularization hurts downstream performance while
our non-negative constraint can help improve it. As for feature sparsity, we find that 69.654% of
NCL features are sparse while ℓ1 regularization only achieves 0.03% sparsity. Therefore, NCL is
more effective than sparsity regularization in terms of both downstream performance and promoting
feature sparsity.

Table 5: Comparing NCL to ℓ1-based sparsity regularization on CIFAR-10.

Linear Accuracy (Encoder) (%) Linear Accuracy (Projector) (%) Feature Sparsity (%)

SCL 88.0 85.4 0.00
SCL + ℓ1 reg 87.2 84.1 0.03
NCL 88.6 86.2 69.65
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E EMPIRICAL VERIFICATIONS OF THEORETICAL ANALYSIS ON NCL

E.1 EMPIRICAL VERIFICATIONS OF OPTIMAL REPRESENTATIONS

To further verify the theoretical analysis of the optimal solutions in Section 4, we further investigate
properties of the learned representations on real-world datasets, e.g., CIFAR-10. As we have no
knowledge of the latent classes of CIFAR-10, we consider a simplified case, where we assume that
the 10 classes in CIFAR-10 are latent classes, and generate positive samples by randomly sampling
two augmented samples from the same class, in other words, supervised contrastive learning (Sup-
Con) (Khosla et al., 2020). Then we train a ResNet-18 with CL and NCL objectives for 200 epochs,
respectively.

By observing the largest 50 expected activation (EA) values of learned representations (Figure 6a),
we find that the features of NCL are mostly activated in the first 10 dimensions, which is highly
consistent with the ground-truth number of (latent) class in this setting with C = 10. In comparison,
CL features do not differ much from one feature to another, showing that they do have good dimen-
sional feature interpretability. Also, the eigenvalue distribution in Figure 6b reveals that CL features
collapse even quicker than NCL features, and degrade to small values even before 10 dimensions,
while the eigenvalues of NCL features only degrade quickly after the first 10 dimensions. Therefore,
we believe that the learned NCL features do lie closer to the ideal ground truth.

0 10 20 30 40 50
Dimension

200

400

600

800

1000

1200

1400

1600

To
ta

l A
ct

iv
at

io
n

NCL
CL

(a) Distribution of the 50 largest EA values

0 10 20 30 40 50
Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Ei
ge

nv
al

ue
s

NCL
CL

(b) Distribution of the 50 largest eigenvalues

Figure 6: Analysis of the learned features of CL and NCL on CIFAR-10.

E.2 EMPIRICAL VERIFICATIONS OF ASSUMPTIONS IN THEOREM 5

To verify the assumptions we used in Theorem 5 (for each latent class, there exists at least one sample
in the datasets only has that feature activated), we conduct experiments to observe the activated
dimensions of different samples. As shown in Figure 7, samples generally have much fewer activated
dimensions under NCL: around 70% examples have less than 20 activated dimensions, and in terms
of the smallest, 16 examples are only activated on 2 dimensions. Considering that the noisy training
in practice can lead to some redundant features and some gaps to the optimal solution, we believe
that our assumption is indeed approximately true.

F ADDTIONAL RESULTS OF FEATURE PROPERTIES IN NCL

F.1 DISENTANGLEMENT EVALUATION ON SYNTHETIC DATA

In the main paper, we evaluate feature disentanglement of CL and NCL on real-world datasets,
which are difficult without knowledge of ground truth. Here, following the common practice of
disentanglement literature, we also evaluate disentanglement on Dsprites, a toy dataset where we
are aware of the ground-truth latents (Abdi et al., 2019). To be specific, we respectively train the
models with original contrastive loss and NCL loss on Dsprites following the settings of Abdi et al.
(2019). Then we evaluate the disentanglement by the widely adopted disentanglement metric Mutual
Information Gap (MIG) (Chen et al., 2018).
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Figure 7: The number of activated dimensions of the representations learned by CL and NCL on
CIFAR-10.

As shown in Table 6, NCL features also show much better disentanglement than CL on Dsprites as
measured by MIG, which further verifies the advantages of NCL. Since Dspirtes is a toy model that
is very different from real-world images, the default SimCLR augmentation could be suboptimal to
obtain good positive samples. We leave more finetuning of NCL on these toy datasets for future
work.

Table 6: Comparing disentanglement between CL and NCL on Dsprites.

Method MIG

CL 0.037
NCL 0.065

F.2 MORE INTERPRETABILITY VISUALIZATION

Besides the CIFAR-10 examples in Figure 1, we perform the interoperability visualization exper-
iments on CIFAR-100 (Figure 8) and ImageNet-100 (Figure 9). We can still observe a clear dis-
tinction in semantic consistency: activated samples along each feature dimension often come from
different classes in CL while those in NCL mostly belong to the same class. It verifies that NCL has
clear advantages over CL in feature interpretability on multiple datasets.

(a) Contrative Learning (b) Non-negative Contrative Learning (ours)

Figure 8: Visualization of CIFAR-100 test samples with the largest values along each feature di-
mension (sorted according to activation values, see Appendix G).

F.3 PERFORMANCE UNDER DYNAMIC FEATURE LENGTH

To further investigate the benefit of sparsity in the representations learned by NCL, we conduct ad-
ditional experiments to observe the performance of expected activation (EA) with different numbers
of selected dimensions. As shown in Figure 10, EA-based NCL features keep a high level of mAP
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Figure 9: Visualization of ImageNet-100 test samples with the largest values along each feature
dimension (sorted according to activation values, see Appendix G).

and have almost no degradation of performance. Instead, CL features keep degrading under fewer
features and underperform NCL a lot at last. This experiment shows the clear advantage of the
sparsity and disentanglement properties of NCL.
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Figure 10: Image retrieval with CL and NCL features and two feature selection criteria (random,
EA) on ImageNet-100.

F.4 DOWNSTREAM PERFORMANCE OF PROJECTOR OUTPUT

Following the common practice (Chen et al., 2020; He et al., 2020), in the main paper, feature trans-
ferability is by default evaluated based on the encoder features (before projector) to attain better
downstream performance. For completeness, we also evaluate the features of projector outputs on
CIFAR-10 and CIFAR-100. As shown in Table 7, we can see that NCL (w/ ReLU) output can
achieve comparable performance to CL outputs (w/o ReLU) while providing much better feature
interpretability as shown in Figure 3. Besides, Tables 3 & 3b shows that when pursuing inter-
pretability, NCL can also induce better encoder features than CL. Overall, we believe that NCL is
indeed favorable since it attains better feature interpretability while maintaining feature usefulness.

G DETAILS OF EXPERIMENT SETUP

G.1 IMPLEMENTATION AND EVALUATION OF NON-NEGATIVE FEATURES

In a standard contrastive learning method like SimCLR, the encoder is composed of two subsequen-
tial components: the backbone network (e.g., a ResNet) g, and the projector network (usually an
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Table 7: Downstream classification performance (accuracy in percentage) with projector outputs.

Method CIFAR-10 CIFAR-100
LP FT LP FT

CL (w/o ReLU) 85.6±0.1 92.1±0.1 53.6±0.3 71.4±0.2
NCL (w/o ReLU) 85.4±0.3 92.4±0.1 53.7±0.2 71.5±0.2

MLP network) p. The projector output f(x) = p(g(x)) is then used to compute the InfoNCE, using
the cosine similarity between positive and negative features. We apply the reparameterization at the
final output of the projector output, i.e., f+(x) = σ+(f(x)). Then, the non-negative feature is fed
into computing the InfoNCE loss. All hyperparameters stay the same as the default ones.

Evaluation. Since non-negative constraints are only imposed on the projector output, we regard the
projector outputs as the learned features in the visualization, feature selection, and feature disentan-
glement experiments, which aligns well with our theoretical analysis. When evaluating the feature
transferability to downstream classification, following the convention, we also discard the projector
and use the backbone network output for linear probing and fine-tuning.

G.2 EXPERIMENT DETAILS OF VISUALIZATION RESULTS AND PILOT STUDY

In all experiments in this part, we adopt SimCLR as the default backbone method (with ResNet-18),
train the models for 200 epochs, and collect results on CIFAR-10 test data. In Figure 1, we sort
feature dimensions according to expected activation (taking absolute values for contrastive learning
features), and select the top samples with the largest activation in each dimension. In other results,
the feature dimensions and samples are all randomly selected (without cherry-picking). Dimensions
that have zero activation on all test samples (i.e., dead features) are excluded.

G.3 EXPERIMENT DETAILS OF FEATURE DISENTANGLEMENT

In practice, for the ease of computation, we first decompose the SEPIN metric based on the definition
of the mutual information:

I(x, fri(x)|f ̸=ri(x)) = I(x, (fri(x), f̸=ri(x)))− I(x, f̸=ri(x))

= I(x, f(x))− I(x, f̸=ri(x))
(15)

In the next step, we calculate two terms respectively. As it is quite hard to calculate the mutual
information directly, we use a tractable lower bound: the InfoNCE (Oord et al., 2018) to estimate
that. To be specific, for the mutual information I(x, f(x)), we estimate it with LNCE(f), i.e.,

I(x, f(x)) ≈ LNCE(f) = −Ex,x+ log
exp(f(x)⊤f(x+))

exp(f(x)⊤f(x+)) +
1
M

∑M
i=1 exp(f(x)

⊤f(x−i )
, (16)

where f is the learned encoder. Similarly, for the mutual information I(x, f̸=i(x)), we obtain:

I(x, f̸=i(x)) ≈ LNCE(f̸=i) = −Ex,x+ log
exp(f ̸=i(x)

⊤f ̸=i(x
+))

exp(f ̸=i(x)⊤f ̸=i(x+)) +
1
M

∑M
i=1 exp(f ̸=i(x)⊤f ̸=i(x

−
i )
.

(17)
Then we respectively calculate two terms on the test data of ImageNet-100 with the encoders learned
by NCL and CL. Following the definition of SEPIN@k, we sort the dimensions based on the values
of SEPIN, and SEPIN@k calculates the mean values of k largest SEPIN values of learned represen-
tations.

G.4 EXPERIMENT DETAILS OF FEATURE SELECTION

During the pretraining process, we utilize ResNet-18 (He et al., 2016) as the backbone and train
the models on ImageNet-100 (Deng et al., 2009). We follow the default settings of SimCLR (Chen
et al., 2020) and pretrain the model for 200 epochs.

Linear Probing on Selected Dimensions. During the evaluation process, we train a linear classifier
following the frozen representations with the default settings of linear probing in SimCLR. As shown
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in Table 1, the features of NCL selected with EA show significantly better linear accuracy, which
verifies that the features of NCL are interpretable and EA values can discover the most important
semantic dimensions related to the ground-truth labels.

Image Retrieval on Selected Dimensions. For each sample, we first encode it with the pretrained
networks and then select dimensions from the features. Then we find 10 images that have the largest
cosine similarity with the query image and calculate the mean average precision @ 10 (mAP@10)
that returned images belong to the same class as the query ones. As shown in Table 1, we observe
the dimensions selected by EA values of NCL can find the intra-class neighbors more accurately,
which further shows that NCL can find the most important features that are useful in downstream
tasks.

Transfer Learning on Selected Dimensions. In the downstream transfer learning tasks, we train a
linear classifier on stylized ImageNet-100 (Geirhos et al., 2018) following the frozen representations
with the default settings of linear probing. As shown in Table 1, the 512 dimensions with the largest
EA values show superior performance, which implies that the estimated importance of NCL is robust
and effective in downstream transfer learning tasks.

G.5 EXPERIMENT DETAILS OF DOWNSTREAM CLASSIFICATION

During the pretraining process, we utilize ResNet-18 (He et al., 2016) as the backbone and train the
models on CIFAR-10, CIFAR-100 and ImageNet-100 (Deng et al., 2009). We pretrain the model for
200 epochs on CIFAR-10, CIFAR-100, and 100 epochs for ImageNet-100. We compare NCL and
the original contrastive learning with the SimCLR (Chen et al., 2020) backbone. For CIFAR-10 and
CIFAR-100, the projector is a two-layer MLP with hidden dimension 2048 and output dimension
256. And for ImageNet-100, the projector is a two-layer MLP with hidden dimension 16384 and
output dimension 2048. We pretrain the models with batch size 256 and weight decay 0.0001. When
implementing NCL, we follow the default settings of SimCLR.

During the evaluation process, we consider three generalization tasks: in-distribution linear evalua-
tion, in-distribution finetuning and out-of-distribution generalization. During the linear evaluation,
we train a classifier following the frozen backbone pretrained by different methods for 50 epochs.
For the in-distribution finetuning, we train both the backbone and the classifier for 30 epochs. And
for the out-of-distribution generalization, we use the linear classifier obtained with the linear evalu-
ation process on original ImageNet-100. Then we evaluate the linear accuracy on stylized ImageNet
(Geirhos et al., 2018), ImageNet-Sketch (Wang et al., 2019), ImageNet-Corrpution (Hendrycks &
Dietterich, 2019). As we pretrain the network on ImageNet-100, we select the samples of the corre-
sponding 100 classes from these out-of-distribution datasets and evaluate the accuracy.

G.6 EXPERIMENT DETAILS OF SUPERVISED LEARNING

For the fine-tuning tasks, we first train a model by SimCLR. During the pretraining process, we
utilize ResNet-18 (He et al., 2016) as the backbone and train the models on ImageNet-100 (Deng
et al., 2009). We pretrain the model for 200 epochs. We use a projector which is a two-layer MLP
with hidden dimension 16384 and output dimension 2048. We pretrain the models with batch size
256 and weight decay 0.0001. During the fine-tuning process, we train a classifier following the
backbone for 50 epochs respectively with supervised and non-negative supervised learning and we
follow the default settings of fine-tuning. When implementing the non-negative supervised learning,
we select the ReLU function as the non-negative operator.

For the training from scratch, we also follow the default settings of fine-tuning. And we training
the randomly initialized ResNet-18 with supervised and non-negative supervised learning for 100
epochs on ImageNet-100. When implementing the non-negative supervised learning, we select the
ReLU function as the non-negative operator. It is worth noting that we also apply ReLU functions
on the linear classifiers during the training process.

In both tasks, we respectively apply the CE and NCE loss on the encoders with and without the
projectors. We follow the default settings of the projectors used in SimCLR, i.e., the projector is a
two-layer MLP with hidden dimension 16384 and output dimension 2048.
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